1
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
2
|
Gong Y, Wang H, Sun J. AMP-Mimetic Antimicrobial Polymer-Involved Synergic Therapy with Various Coagents for Improved Efficiency. Biomacromolecules 2024; 25:4619-4638. [PMID: 38717069 DOI: 10.1021/acs.biomac.3c01458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The misuse of antibiotics contributes to the emergence of multidrug-resistant (MDR) bacteria. Infections caused by MDR bacteria are rapidly evolving into a significant threat to global healthcare due to the lack of effective and safe treatments. Antimicrobial peptides (AMPs) with broad-spectrum antibacterial activity kill bacteria generally through a membrane disruption mechanism; hence, they tend not to induce resistance readily. However, AMPs exhibit disadvantages, such as high cost and susceptibility to proteolytic degradation, which limit their clinical application. AMP-mimetic antimicrobial polymers, with low cost, stability to proteolysis, broad-spectrum antimicrobial activity, negligible antimicrobial resistance, and rapid bactericidal effect, have received extensive attention as a new type of antibacterial drugs. Lately, AMP-mimetic polymer-involved synergic therapy provides a superior alternative to combat MDR bacteria by distinct mechanisms. In this Review, we summarize the AMP-mimetic antimicrobial polymers involved in synergic therapy, particularly focusing on the different combinations between the polymers with commercially available antimicrobials, organic small molecule photosensitizers, inorganic nanomaterials, and nitric oxide.
Collapse
Affiliation(s)
- Yiyu Gong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Hepeng Wang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P. R. China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| |
Collapse
|
3
|
Syryamina VN, Aisenbrey C, Kardash M, Dzuba SA, Bechinger B. Self-assembly of spin-labeled antimicrobial peptides magainin 2 and PGLa in lipid bilayers. Biophys Chem 2024; 310:107251. [PMID: 38678820 DOI: 10.1016/j.bpc.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
The cationic antimicrobial peptides PGLa and magainin 2 (Mag2) are known for their antimicrobial activity and synergistic enhancement in antimicrobial and membrane leakage assays. Further use of peptides in combinatory therapy requires knowledge of the mechanisms of action of both individual peptides and their mixtures. Here, electron paramagnetic resonance (EPR), double electron-electron resonance (DEER, also known as PELDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies were applied to study self-assembly and localization of spin-labeled PGLa and Mag2 in POPE/POPG membranes with a wide range of peptide/lipid ratios (P/L) from ∼1/1500 to 1/50. EPR and DEER data showed that both peptides tend to organize in clusters, which occurs already at the lowest peptide/lipid molar ratio of 1/1500 (0.067 mol%). For individual peptides, these clusters are quite dense with intermolecular distances of the order of ∼2 nm. In the presence of a synergistic peptide partner, these homo-clusters are transformed into lipid-diluted hetero-clusters. These clusters are characterized by a local surface density that is several times higher than expected from a random distribution. ESEEM data indicate a slightly different insertion depth of peptides in hetero-clusters when compared to homo-clusters.
Collapse
Affiliation(s)
- Victoria N Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation
| | - Christopher Aisenbrey
- University of Strasbourg/CNRS, UMR7177, Strasbourg Institute of Chemistry, Membrane Biophysics and NMR, 67000 Strasbourg, France
| | - Maria Kardash
- University of Strasbourg/CNRS, UMR7177, Strasbourg Institute of Chemistry, Membrane Biophysics and NMR, 67000 Strasbourg, France
| | - Sergei A Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation; Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russian Federation.
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177, Strasbourg Institute of Chemistry, Membrane Biophysics and NMR, 67000 Strasbourg, France; Institut Universitaire de France, 75231 Paris, France.
| |
Collapse
|
4
|
Schaefer S, Melodia D, Corrigan N, Lenardon MD, Boyer C. Effect of Star Topology Versus Linear Polymers on Antifungal Activity and Mammalian Cell Toxicity. Macromol Biosci 2024; 24:e2300452. [PMID: 38009827 DOI: 10.1002/mabi.202300452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/05/2023] [Indexed: 11/29/2023]
Abstract
The global increase in invasive fungal infections and the emergence of drug-resistant strains demand the urgent development of novel antifungal drugs. In this context, synthetic polymers with diverse compositions, mimicking natural antimicrobial peptides, have shown promising potential for combating fungal infections. This study investigates how altering polymer end-groups and topology from linear to branched star-like structures affects their efficacy against Candida spp., including clinical isolates. Additionally, the polymers' biocompatibility is accessed with murine embryonic fibroblasts and red blood cells in vitro. Notably, a low-molecular weight star polymer outperforms both its linear polymeric counterparts and amphotericin B (AmpB) in terms of an improved therapeutic index and reduced haemolytic activity, despite a higher minimum inhibitory concentration against Candida albicans (C. albicans) SC5314 (16-32 µg mL-1 vs 1 µg mL-1 for AmpB). These findings demonstrate the potential of synthetic polymers with diverse topologies as promising candidates for antifungal applications.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales, 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, 2052, Australia
| | - Daniele Melodia
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales, 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales, 2052, Australia
| | - Megan Denise Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
5
|
Lou Y, Gaitor J, Treichel M, Noonan KJT, Palermo EF. Biocidal Potency of Polymers with Bulky Cations. ACS Macro Lett 2023; 12:215-220. [PMID: 36700616 DOI: 10.1021/acsmacrolett.2c00726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The performance of antimicrobial polymers depends sensitively on the type of cationic species, charge density, and spatial arrangement of cations. Here we report antimicrobial polymers bearing unusually bulky tetraaminophosphonium groups as the source of highly delocalized cationic charge. The bulky cations drastically enhanced the biocidal activity of amphiphilic polymers, leading to remarkably potent activity in the submicromolar range. The cationic polynorbornenes with pendent tetraaminophosphonium groups killed over 98% E. coli at a concentration of 0.1 μg/mL and caused a 4-log reduction of E. coli within 2 h at a concentration of 2 μg/mL, showing very rapid and potent bactericidal activity. The polymers are also highly hemolytic at similar concentrations, indicating a biocidal activity profile. Polymers of a similar chemical structure but with more flexible backbones were made to examine the effects of the flexibility of polymer chains on their activity, which turned out to be marginal. We also explore variants with different spacer arm groups separating the cations from the backbone main chain. The antibacterial activity was comparably potent in all cases, but the polymers with shorter spacer arm groups showed more rapid bactericidal kinetics. Interestingly, pronounced counterion effects were observed. Tightly bound PF6- counteranions showed poor activity at high concentrations due to gross aggregate formation and precipitation from the assay media, whereas loosely bound Cl- counterions resulted in very potent activity that monotonically increased with increasing concentration. In this paper, we reveal that bulky phosphonium cations are associated with markedly enhanced biocidal activity, which provides an innovative strategy to develop more effective self-disinfecting materials.
Collapse
Affiliation(s)
- Yang Lou
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Jamie Gaitor
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Megan Treichel
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Edmund F Palermo
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
6
|
Wu S, Guo W, Li B, Zhou H, Meng H, Sun J, Li R, Guo D, Zhang X, Li R, Qu W. Progress of polymer-based strategies in fungal disease management: Designed for different roles. Front Cell Infect Microbiol 2023; 13:1142029. [PMID: 37033476 PMCID: PMC10073610 DOI: 10.3389/fcimb.2023.1142029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Fungal diseases have posed a great challenge to global health, but have fewer solutions compared to bacterial and viral infections. Development and application of new treatment modalities for fungi are limited by their inherent essential properties as eukaryotes. The microorganism identification and drug sensitivity analyze are limited by their proliferation rates. Moreover, there are currently no vaccines for prevention. Polymer science and related interdisciplinary technologies have revolutionized the field of fungal disease management. To date, numerous advanced polymer-based systems have been developed for management of fungal diseases, including prevention, diagnosis, treatment and monitoring. In this review, we provide an overview of current needs and advances in polymer-based strategies against fungal diseases. We high light various treatment modalities. Delivery systems of antifungal drugs, systems based on polymers' innate antifungal activities, and photodynamic therapies each follow their own mechanisms and unique design clues. We also discuss various prevention strategies including immunization and antifungal medical devices, and further describe point-of-care testing platforms as futuristic diagnostic and monitoring tools. The broad application of polymer-based strategies for both public and personal health management is prospected and integrated systems have become a promising direction. However, there is a gap between experimental studies and clinical translation. In future, well-designed in vivo trials should be conducted to reveal the underlying mechanisms and explore the efficacy as well as biosafety of polymer-based products.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongqi Meng
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Junyi Sun
- Changchun American International School, Changchun, China
| | - Ruiyan Li
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Deming Guo
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| |
Collapse
|
7
|
Varghese M, Grinstaff MW. Beyond nylon 6: polyamides via ring opening polymerization of designer lactam monomers for biomedical applications. Chem Soc Rev 2022; 51:8258-8275. [PMID: 36047318 PMCID: PMC9856205 DOI: 10.1039/d1cs00930c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ring opening polymerization (ROP) of lactams is a highly efficient and versatile method to synthesize polyamides. Within the last ten years, significant advances in polymerization methodology and monomer diversity are ushering in a new era of polyamide chemistry. We begin with a discussion of polymerization techniques including the most widely used anionic ring opening polymerization (AROP), and less prevalent cationic ROP and enzyme-catalyzed ROP. Next, we describe new monomers being explored for ROP with increased functionality and stereochemistry. We emphasize the relationships between composition, structure, and properties, and how chemists can control composition and structure to dictate a desired property or performance. Finally, we discuss biomedical applications of the synthesized polyamides, specifically as biomaterials and pharmaceuticals, with examples to include as antimicrobial agents, cell adhesion substrates, and drug delivery scaffolds.
Collapse
Affiliation(s)
- Maria Varghese
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| | - Mark W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
8
|
Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive Synthetic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105063. [PMID: 34611948 DOI: 10.1002/adma.202105063] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Synthetic polymers are omnipresent in society as textiles and packaging materials, in construction and medicine, among many other important applications. Alternatively, natural polymers play a crucial role in sustaining life and allowing organisms to adapt to their environments by performing key biological functions such as molecular recognition and transmission of genetic information. In general, the synthetic and natural polymer worlds are completely separated due to the inability for synthetic polymers to perform specific biological functions; in some cases, synthetic polymers cause uncontrolled and unwanted biological responses. However, owing to the advancement of synthetic polymerization techniques in recent years, new synthetic polymers have emerged that provide specific biological functions such as targeted molecular recognition of peptides, or present antiviral, anticancer, and antimicrobial activities. In this review, the emergence of this generation of bioactive synthetic polymers and their bioapplications are summarized. Finally, the future opportunities in this area are discussed.
Collapse
Affiliation(s)
- Kenward Jung
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
9
|
Juhl DW, Glattard E, Aisenbrey C, Bechinger B. Antimicrobial peptides: mechanism of action and lipid-mediated synergistic interactions within membranes. Faraday Discuss 2021; 232:419-434. [PMID: 34533138 DOI: 10.1039/d0fd00041h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Biophysical and structural studies of peptide-lipid interactions, peptide topology and dynamics have changed our view of how antimicrobial peptides insert and interact with membranes. Clearly, both peptides and lipids are highly dynamic, and change and mutually adapt their conformation, membrane penetration and detailed morphology on a local and a global level. As a consequence, peptides and lipids can form a wide variety of supramolecular assemblies in which the more hydrophobic sequences preferentially, but not exclusively, adopt transmembrane alignments and have the potential to form oligomeric structures similar to those suggested by the transmembrane helical bundle model. In contrast, charged amphipathic sequences tend to stay intercalated at the membrane interface. Although the membranes are soft and can adapt, at increasing peptide density they cause pronounced disruptions of the phospholipid fatty acyl packing. At even higher local or global concentrations the peptides cause transient membrane openings, rupture and ultimately lysis. Interestingly, mixtures of peptides such as magainin 2 and PGLa, which are stored and secreted naturally as a cocktail, exhibit considerably enhanced antimicrobial activities when investigated together in antimicrobial assays and also in pore forming experiments applied to biophysical model systems. Our most recent investigations reveal that these peptides do not form stable complexes but act by specific lipid-mediated interactions and the nanoscale properties of phospholipid bilayers.
Collapse
Affiliation(s)
- Dennis W Juhl
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Elise Glattard
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Christopher Aisenbrey
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France. .,Institut Universitaire de France, France
| |
Collapse
|
10
|
Wang H, Nie X, You W, Huang W, Chen G, Gao F, Xia L, Zhang L, Wang L, Shen AZ, Wu KL, Ding SG, You YZ. Tug-of-War between Covalent Binding and Electrostatic Interaction Effectively Killing E. coli without Detectable Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56838-56849. [PMID: 34816709 DOI: 10.1021/acsami.1c15868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance in Gram-negative bacteria has become one of the leading causes of morbidity and mortality and a serious worldwide public health concern due to the fact that Gram-negative bacteria have an additional outer membrane protecting them from an unwanted compound invading. It is still very difficult for antimicrobials to reach intracellular targets and very challenging to treat Gram-negative bacteria with the current strategies. Here, we found that (o-(bromomethyl)phenyl)boronic acid was incorporated into poly((2-N,N-diethyl)aminoethyl acrylate) (PDEA), forming a copolymer (poly(o-Bn-DEA)) having both phenylboronic acid (B) and ((2-N,N-diethyl)amino) (DEA) units. Poly(o-Bn-DEA) exhibits very strong intramolecular B-N coordination, which could highly promote the covalent binding of phenylboronic acid with lipopolysaccharide (LPS) on the outer membrane of E. coli and lodge poly(o-Bn-DEA) on the LPS layer on the surface of E. coli. Meanwhile, the strong electrostatic interaction between poly(o-Bn-DEA) and the negatively charged lipid preferred tugging the poly(o-Bn-DEA) into the lipid bilayer of E. coli. The combating interactions between covalent binding and electrostatic interaction form a tug-of-war action, which could trigger the lysis of the outer membrane, thereby killing Gram-negative E. coli effectively without detectable resistance.
Collapse
Affiliation(s)
- Haili Wang
- The Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuan Nie
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei You
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiqiang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guang Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fan Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Xia
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Zhang
- The Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Longhai Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ai-Zong Shen
- The Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Kai-Le Wu
- Department of Otolaryngology Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Sheng-Gang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ye-Zi You
- The Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Hu XL, Shang Y, Yan KC, Sedgwick AC, Gan HQ, Chen GR, He XP, James TD, Chen D. Low-dimensional nanomaterials for antibacterial applications. J Mater Chem B 2021; 9:3640-3661. [PMID: 33870985 DOI: 10.1039/d1tb00033k] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The excessive use of antibiotics has led to a rise in drug-resistant bacteria. These "superbugs" are continuously emerging and becoming increasingly harder to treat. As a result, new and effective treatment protocols that have minimal risks of generating drug-resistant bacteria are urgently required. Advanced nanomaterials are particularly promising due to their drug loading/releasing capabilities combined with their potential photodynamic/photothermal therapeutic properties. In this review, 0-dimensional, 1-dimensional, 2-dimensional, and 3-dimensional nanomaterial-based systems are comprehensively discussed for bacterial-based diagnostic and treatment applications. Since the use of these platforms as antibacterials is relatively new, this review will provide appropriate insight into their construction and applications. As such, we hope this review will inspire researchers to explore antibacterial-based nanomaterials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Ying Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China.
| |
Collapse
|
12
|
|
13
|
Schaefer S, Pham TTP, Brunke S, Hube B, Jung K, Lenardon MD, Boyer C. Rational Design of an Antifungal Polyacrylamide Library with Reduced Host-Cell Toxicity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27430-27444. [PMID: 34060800 DOI: 10.1021/acsami.1c05020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Life-threatening invasive fungal infections represent an urgent threat to human health worldwide. The limited set of antifungal drugs has critical constraints such as resistance development and/or adverse side effects. One approach to overcome these limitations is to mimic naturally occurring antifungal peptides called defensins. Inspired by their advantageous amphiphilic properties, a library of 35 synthetic, linear, ternary polyacrylamides was prepared by controlled/living radical polymerization. The effect of the degree of polymerization (20, 40, and 100) and varying hydrophobic functionalities (branched, linear, cyclic, or aromatic differing in their number of carbons) on their antifungal activity was investigated. Short copolymers with a calculated log P of ∼1.5 revealed optimal activity against the major human fungal pathogen Candida albicans and other pathogenic fungal species with limited toxicity to mammalian host cells (red blood cells and fibroblasts). Remarkably, selected copolymers outperformed the commercial antifungal drug amphotericin B, with respect to the therapeutic index, highlighting their potential as novel antifungal compounds.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Thi Thu Phuong Pham
- School of Chemical Engineering, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Kenward Jung
- School of Chemical Engineering, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Megan Denise Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
14
|
Biomaterials for the Prevention of Oral Candidiasis Development. Pharmaceutics 2021; 13:pharmaceutics13060803. [PMID: 34072188 PMCID: PMC8229946 DOI: 10.3390/pharmaceutics13060803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Thousands of microorganisms coexist within the human microbiota. However, certain conditions can predispose the organism to the overgrowth of specific pathogens that further lead to opportunistic infections. One of the most common such imbalances in the normal oral flora is the excessive growth of Candida spp., which produces oral candidiasis. In immunocompromised individuals, this fungal infection can reach the systemic level and become life-threatening. Hence, prompt and efficient treatment must be administered. Traditional antifungal agents, such as polyenes, azoles, and echinocandins, may often result in severe adverse effects, regardless of the administration form. Therefore, novel treatments have to be developed and implemented in clinical practice. In this regard, the present paper focuses on the newest therapeutic options against oral Candida infections, reviewing compounds and biomaterials with inherent antifungal properties, improved materials for dental prostheses and denture adhesives, drug delivery systems, and combined approaches towards developing the optimum treatment.
Collapse
|
15
|
Bechinger B, Juhl DW, Glattard E, Aisenbrey C. Revealing the Mechanisms of Synergistic Action of Two Magainin Antimicrobial Peptides. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:615494. [PMID: 35047895 PMCID: PMC8757784 DOI: 10.3389/fmedt.2020.615494] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The study of peptide-lipid and peptide-peptide interactions as well as their topology and dynamics using biophysical and structural approaches have changed our view how antimicrobial peptides work and function. It has become obvious that both the peptides and the lipids arrange in soft supramolecular arrangements which are highly dynamic and able to change and mutually adapt their conformation, membrane penetration, and detailed morphology. This can occur on a local and a global level. This review focuses on cationic amphipathic peptides of the magainin family which were studied extensively by biophysical approaches. They are found intercalated at the membrane interface where they cause membrane thinning and ultimately lysis. Interestingly, mixtures of two of those peptides namely magainin 2 and PGLa which occur naturally as a cocktail in the frog skin exhibit synergistic enhancement of antimicrobial activities when investigated together in antimicrobial assays but also in biophysical experiments with model membranes. Detailed dose-response curves, presented here for the first time, show a cooperative behavior for the individual peptides which is much increased when PGLa and magainin are added as equimolar mixture. This has important consequences for their bacterial killing activities and resistance development. In membranes that carry unsaturations both peptides align parallel to the membrane surface where they have been shown to arrange into mesophases involving the peptides and the lipids. This supramolecular structuration comes along with much-increased membrane affinities for the peptide mixture. Because this synergism is most pronounced in membranes representing the bacterial lipid composition it can potentially be used to increase the therapeutic window of pharmaceutical formulations.
Collapse
Affiliation(s)
- Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Dennis Wilkens Juhl
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
| | - Elise Glattard
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
| | - Christopher Aisenbrey
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Palman Y, De Leo R, Pulvirenti A, Green SJ, Hayouka Z. Antimicrobial peptide cocktail activity in minced turkey meat. Food Microbiol 2020; 92:103580. [DOI: 10.1016/j.fm.2020.103580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/02/2023]
|
17
|
Si Z, Lim HW, Tay MYF, Du Y, Ruan L, Qiu H, Zamudio‐Vazquez R, Reghu S, Chen Y, Tiong WS, Marimuthu K, De PP, Ng OT, Zhu Y, Gan Y, Chi YR, Duan H, Bazan GC, Greenberg EP, Chan‐Park MB, Pethe K. A Glycosylated Cationic Block Poly(β‐peptide) Reverses Intrinsic Antibiotic Resistance in All ESKAPE Gram‐Negative Bacteria. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhangyong Si
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Hui Wen Lim
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 636921 Singapore
| | - Moon Y. F. Tay
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Yu Du
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Lin Ruan
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Haofeng Qiu
- Medical School of Ningbo UniversityNingbo University Ningbo 315211 China
| | - Rubí Zamudio‐Vazquez
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Sheethal Reghu
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Yahua Chen
- Department of BiochemistryNational University of Singapore Singapore 117596 Singapore
| | - Wen Shuo Tiong
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 636921 Singapore
| | - Kalisvar Marimuthu
- Tan Tock Seng Hospital Singapore 308433 Singapore
- Yong Loo Lin School of MedicineNational University of Singapore Singapore 119228 Singapore
- National Centre for Infectious Diseases Singapore
| | | | - Oon Tek Ng
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 636921 Singapore
- Tan Tock Seng Hospital Singapore 308433 Singapore
- National Centre for Infectious Diseases Singapore
| | - Yabin Zhu
- Medical School of Ningbo UniversityNingbo University Ningbo 315211 China
| | - Yunn‐Hwen Gan
- Department of BiochemistryNational University of Singapore Singapore 117596 Singapore
| | - Yonggui Robin Chi
- Division of Chemistry & Biological ChemistryNanyang Technological University Singapore 637371 Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Guillermo C. Bazan
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
- Department of Chemistry and BiochemistryUniversity of California Santa Barbara CA 93106-9510 USA
| | - E. Peter Greenberg
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
- Department of MicrobiologyUniversity of Washington Seattle WA 98195 USA
| | - Mary B. Chan‐Park
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 636921 Singapore
| | - Kevin Pethe
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 636921 Singapore
- School of Biological SciencesNanyang Technological University Singapore 637551 Singapore
| |
Collapse
|
18
|
Si Z, Lim HW, Tay MYF, Du Y, Ruan L, Qiu H, Zamudio-Vazquez R, Reghu S, Chen Y, Tiong WS, Marimuthu K, De PP, Ng OT, Zhu Y, Gan YH, Chi YR, Duan H, Bazan GC, Greenberg EP, Chan-Park MB, Pethe K. A Glycosylated Cationic Block Poly(β-peptide) Reverses Intrinsic Antibiotic Resistance in All ESKAPE Gram-Negative Bacteria. Angew Chem Int Ed Engl 2020; 59:6819-6826. [PMID: 32011781 DOI: 10.1002/anie.201914304] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/07/2020] [Indexed: 02/02/2023]
Abstract
Carbapenem-resistant Gram-negative bacteria (GNB) are heading the list of pathogens for which antibiotics are the most critically needed. Many antibiotics are either unable to penetrate the outer-membrane or are excluded by efflux mechanisms. Here, we report a cationic block β-peptide (PAS8-b-PDM12) that reverses intrinsic antibiotic resistance in GNB by two distinct mechanisms of action. PAS8-b-PDM12 does not only compromise the integrity of the bacterial outer-membrane, it also deactivates efflux pump systems by dissipating the transmembrane electrochemical potential. As a result, PAS8-b-PDM12 sensitizes carbapenem- and colistin-resistant GNB to multiple antibiotics in vitro and in vivo. The β-peptide allows the perfect alternation of cationic versus hydrophobic side chains, representing a significant improvement over previous antimicrobial α-peptides sensitizing agents. Together, our results indicate that it is technically possible for a single adjuvant to reverse innate antibiotic resistance in all pathogenic GNB of the ESKAPE group, including those resistant to last resort antibiotics.
Collapse
Affiliation(s)
- Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Hui Wen Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Moon Y F Tay
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yu Du
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lin Ruan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Haofeng Qiu
- Medical School of Ningbo University, Ningbo University, Ningbo, 315211, China
| | - Rubí Zamudio-Vazquez
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Sheethal Reghu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yahua Chen
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Wen Shuo Tiong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Kalisvar Marimuthu
- Tan Tock Seng Hospital, Singapore, 308433, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,National Centre for Infectious Diseases, Singapore
| | | | - Oon Tek Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore.,Tan Tock Seng Hospital, Singapore, 308433, Singapore.,National Centre for Infectious Diseases, Singapore
| | - Yabin Zhu
- Medical School of Ningbo University, Ningbo University, Ningbo, 315211, China
| | - Yunn-Hwen Gan
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Guillermo C Bazan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106-9510, USA
| | - E Peter Greenberg
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore.,Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
19
|
Mayandi V, Sridhar S, Fazil MHUT, Goh ETL, Htoon HM, Orive G, Choong YK, Saravanan R, Beuerman RW, Barkham TMS, Yang L, Baskaran M, Jhanji V, Loh XJ, Verma NK, Lakshminarayanan R. Protective Action of Linear Polyethylenimine against Staphylococcus aureus Colonization and Exaggerated Inflammation in Vitro and in Vivo. ACS Infect Dis 2019; 5:1411-1422. [PMID: 31099239 DOI: 10.1021/acsinfecdis.9b00102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased evolution of multidrug resistant pathogens necessitates the development of multifunctional antimicrobials. There is a perceived need for developing new antimicrobials that can interfere with acute inflammation after bacterial infections. Here, we investigated the therapeutic potential of linear polyethylenimine (LPEI) in vitro and in vivo. The minimum inhibitory concentration of LPEI ranged from 8 to 32 μg/mL and elicited rapid bactericidal activity against clinical isolates of meticillin-resistant Staphylococcus aureus (MRSA). The polymer was biocompatible for human cultured ocular and dermal cells. Prophylactic addition of LPEI inhibited the bacterial colonization of human primary dermal fibroblasts (hDFs). In a scratch wound cell migration assay, LPEI attenuated the migration inhibitory effects of bacterial secretions. The polymer neutralized the cytokine release by hDFs exposed to bacterial secretions, possibly by blocking their accessibility to host cell receptors. Topical instillation of LPEI (1 mg/mL) was noncytotoxic and did not affect the re-epithelialization of injured porcine cornea. In a prophylactic in vivo model of S. aureus keratitis, LPEI was superior to gatifloxacin in terms of reducing stimulation of cytokines, corneal edema, and overall severity of the infection. These observations demonstrate therapeutic potential of LPEI for antimicrobial prophylaxis.
Collapse
Affiliation(s)
- Venkatesh Mayandi
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Sreepathy Sridhar
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Mobashar Hussain Urf Turabe Fazil
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Experimental Medicine Building, Singapore 636921, Singapore
| | - Eunice Tze Leng Goh
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Hla Myint Htoon
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Yeu Khai Choong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Experimental Medicine Building, Singapore 636921, Singapore
| | - Rathi Saravanan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Experimental Medicine Building, Singapore 636921, Singapore
| | - Roger W. Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | | | - Liang Yang
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
- Singapore Centre for Environmental Life Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Mani Baskaran
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
| | - Vishal Jhanji
- UPMC Eye Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Navin Kumar Verma
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Experimental Medicine Building, Singapore 636921, Singapore
- Skin Research Institute of Singapore, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
20
|
Aisenbrey C, Marquette A, Bechinger B. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:33-64. [PMID: 30980352 DOI: 10.1007/978-981-13-3588-4_4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Even 30 years after the discovery of magainins, biophysical and structural investigations on how these peptides interact with membranes can still bear surprises and add new interesting detail to how these peptides exert their antimicrobial action. Early on, using oriented solid-state NMR spectroscopy, it was found that the amphipathic helices formed by magainins are active when being oriented parallel to the membrane surface. More recent investigations indicate that this in-planar alignment is also found when PGLa and magainin in combination exert synergistic pore-forming activities, where studies on the mechanism of synergistic interaction are ongoing. In a related manner, the investigation of dimeric antimicrobial peptide sequences has become an interesting topic of research which bears promise to refine our views how antimicrobial action occurs. The molecular shape concept has been introduced to explain the effects of lipids and peptides on membrane morphology, locally and globally, and in particular of cationic amphipathic helices that partition into the membrane interface. This concept has been extended in this review to include more recent ideas on soft membranes that can adapt to external stimuli including membrane-disruptive molecules. In this manner, the lipids can change their shape in the presence of low peptide concentrations, thereby maintaining the bilayer properties. At higher peptide concentrations, phase transitions occur which lead to the formation of pores and membrane lytic processes. In the context of the molecular shape concept, the properties of lipopeptides, including surfactins, are shortly presented, and comparisons with the hydrophobic alamethicin sequence are made.
Collapse
Affiliation(s)
| | - Arnaud Marquette
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France. .,Faculté de chimie, Institut le Bel, Strasbourg, France.
| |
Collapse
|
21
|
Peptide-Like Nylon-3 Polymers with Activity against Phylogenetically Diverse, Intrinsically Drug-Resistant Pathogenic Fungi. mSphere 2018; 3:3/3/e00223-18. [PMID: 29794056 PMCID: PMC5967195 DOI: 10.1128/msphere.00223-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Understanding the dimensions of fungal diversity has major implications for the control of diseases in humans, plants, and animals and in the overall health of ecosystems on the planet. One ancient evolutionary strategy organisms use to manage interactions with microbes, including fungi, is to produce host defense peptides (HDPs). HDPs and their synthetic analogs have been subjects of interest as potential therapeutic agents. Due to increases in fungal disease worldwide, there is great interest in developing novel antifungal agents. Here we describe activity of polymeric HDP analogs against fungi from 18 pathogenic genera composed of 41 species and 72 isolates. The synthetic polymers are members of the nylon-3 family (poly-β-amino acid materials). Three different nylon-3 polymers show high efficacy against surprisingly diverse fungi. Across the phylogenetic spectrum (with the exception of Aspergillus species), yeasts, dermatophytes, dimorphic fungi, and molds were all sensitive to the effects of these polymers. Even fungi intrinsically resistant to current antifungal drugs, such as the causative agents of mucormycosis (Rhizopus spp.) and those with acquired resistance to azole drugs, showed nylon-3 polymer sensitivity. In addition, the emerging pathogens Pseudogymnoascus destructans (cause of white nose syndrome in bats) and Candida auris (cause of nosocomial infections of humans) were also sensitive. The three nylon-3 polymers exhibited relatively low toxicity toward mammalian cells. These findings raise the possibility that nylon-3 polymers could be useful against fungi for which there are only limited and/or no antifungal agents available at present.IMPORTANCE Fungi reside in all ecosystems on earth and impart both positive and negative effects on human, plant, and animal health. Fungal disease is on the rise worldwide, and there is a critical need for more effective and less toxic antifungal agents. Nylon-3 polymers are short, sequence random, poly-β-amino acid materials that can be designed to manifest antimicrobial properties. Here, we describe three nylon-3 polymers with potent activity against the most phylogenetically diverse set of fungi evaluated thus far in a single study. In contrast to traditional peptides, nylon-3 polymers are highly stable to proteolytic degradation and can be produced efficiently in large quantities at low cost. The ability to modify nylon-3 polymer composition easily creates an opportunity to tailor efficacy and toxicity, which makes these materials attractive as potential broad-spectrum antifungal therapeutics.
Collapse
|
22
|
Affiliation(s)
- Melanie A. Hutnick
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Jonathan K. Pokorski
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| |
Collapse
|
23
|
Marquette A, Bechinger B. Biophysical Investigations Elucidating the Mechanisms of Action of Antimicrobial Peptides and Their Synergism. Biomolecules 2018; 8:E18. [PMID: 29670065 PMCID: PMC6023007 DOI: 10.3390/biom8020018] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/30/2023] Open
Abstract
Biophysical and structural investigations are presented with a focus on the membrane lipid interactions of cationic linear antibiotic peptides such as magainin, PGLa, LL37, and melittin. Observations made with these peptides are distinct as seen from data obtained with the hydrophobic peptide alamethicin. The cationic amphipathic peptides predominantly adopt membrane alignments parallel to the bilayer surface; thus the distribution of polar and non-polar side chains of the amphipathic helices mirror the environmental changes at the membrane interface. Such a membrane partitioning of an amphipathic helix has been shown to cause considerable disruptions in the lipid packing arrangements, transient openings at low peptide concentration, and membrane disintegration at higher peptide-to-lipid ratios. The manifold supramolecular arrangements adopted by lipids and peptides are represented by the 'soft membranes adapt and respond, also transiently' (SMART) model. Whereas molecular dynamics simulations provide atomistic views on lipid membranes in the presence of antimicrobial peptides, the biophysical investigations reveal interesting details on a molecular and supramolecular level, and recent microscopic imaging experiments delineate interesting sequences of events when bacterial cells are exposed to such peptides. Finally, biophysical studies that aim to reveal the mechanisms of synergistic interactions of magainin 2 and PGLa are presented, including unpublished isothermal titration calorimetry (ITC), circular dichroism (CD) and dynamic light scattering (DLS) measurements that suggest that the peptides are involved in liposome agglutination by mediating intermembrane interactions. A number of structural events are presented in schematic models that relate to the antimicrobial and synergistic mechanism of amphipathic peptides when they are aligned parallel to the membrane surface.
Collapse
Affiliation(s)
- Arnaud Marquette
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| |
Collapse
|