1
|
Singh V, Dziwornu GA, Chibale K. The implication of Mycobacterium tuberculosis-mediated metabolism of targeted xenobiotics. Nat Rev Chem 2023; 7:340-354. [PMID: 37117810 PMCID: PMC10026799 DOI: 10.1038/s41570-023-00472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 03/29/2023]
Abstract
Drug metabolism is generally associated with liver enzymes. However, in the case of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), Mtb-mediated drug metabolism plays a significant role in treatment outcomes. Mtb is equipped with enzymes that catalyse biotransformation reactions on xenobiotics with consequences either in its favour or as a hindrance by deactivating or activating chemical entities, respectively. Considering the range of chemical reactions involved in the biosynthetic pathways of Mtb, information related to the biotransformation of antitubercular compounds would provide opportunities for the development of new chemical tools to study successful TB infections while also highlighting potential areas for drug discovery, host-directed therapy, dose optimization and elucidation of mechanisms of action. In this Review, we discuss Mtb-mediated biotransformations and propose a holistic approach to address drug metabolism in TB drug discovery and related areas. ![]()
Mycobacterium tuberculosis-mediated metabolism of xenobiotics poses an important research question for antitubercular drug discovery. Identification of the metabolic fate of compounds can inform requisite structure–activity relationship strategies early on in a drug discovery programme towards improving the properties of the compound.
Collapse
Affiliation(s)
- Vinayak Singh
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Godwin Akpeko Dziwornu
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
2
|
Gao X, Yu X, Zhu K, Qin B, Wang W, Han P, Aleksandra Wojdyla J, Wang M, Cui S. Crystal Structure of Mycobacterium tuberculosis Elongation Factor G1. Front Mol Biosci 2021; 8:667638. [PMID: 34540889 PMCID: PMC8446442 DOI: 10.3389/fmolb.2021.667638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) caused an estimated 10 million cases of tuberculosis and 1.2 million deaths in 2019 globally. The increasing emergence of multidrug-resistant and extensively drug-resistant Mtb is becoming a public health threat worldwide and makes the identification of anti-Mtb drug targets urgent. Elongation factor G (EF-G) is involved in tRNA translocation on ribosomes during protein translation. Therefore, EF-G is a major focus of structural analysis and a valuable drug target of antibiotics. However, the crystal structure of Mtb EF-G1 is not yet available, and this has limited the design of inhibitors. Here, we report the crystal structure of Mtb EF-G1 in complex with GDP. The unique crystal form of the Mtb EF-G1-GDP complex provides an excellent platform for fragment-based screening using a crystallographic approach. Our findings provide a structure-based explanation for GDP recognition, and facilitate the identification of EF-G1 inhibitors with potential interest in the context of drug discovery.
Collapse
Affiliation(s)
- Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing, China
| | - Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pu Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | - Meitian Wang
- Swiss Light Source at the Paul Scherrer Institut, Villigen, Switzerland
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Sanming Project of Medicine in Shenzhen on Construction of Novel Systematic Network Against Tuberculosis, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Hajikhani B, Goudarzi M, Kakavandi S, Amini S, Zamani S, van Belkum A, Goudarzi H, Dadashi M. The global prevalence of fusidic acid resistance in clinical isolates of Staphylococcus aureus: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2021; 10:75. [PMID: 33933162 PMCID: PMC8088720 DOI: 10.1186/s13756-021-00943-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIM Staphylococcus aureus (S. aureus) is one of the most common pathogens causing nosocomial and community-acquired infections with high morbidity and mortality rates. Fusidic acid has been increasingly used for the treatment of infections due to methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). The present study aimed to determine the precise prevalence of fusidic acid resistant MRSA (FRMRSA), fusidic acid resistant MSSA (FRMSSA), and total fusidic acid resistant S. aureus (FRSA) on a global scale. METHODS Several international databases including Medline, Embase, and the Web of Sciences were searched (2000-2020) to discern studies addressing the prevalence of FRSA, FRMRSA, and FRMSSA. STATA (version14) software was used to interpret the data. RESULTS Of the 1446 records identified from the databases, 215 studies fulfilled the eligibility criteria for the detection of FRSA (208 studies), FRMRSA (143 studies), and FRMSSA (71 studies). The analyses manifested that the global prevalence of FRSA, FRMRSA, and FRMSSA was 0.5%, 2.6% and 6.7%, respectively. CONCLUSION This meta-analysis describes an increasing incidence of FRSA, FRMSSA, and FRMRSA. These results indicate the need for prudent prescription of fusidic acid to stop or diminish the incidence of fusidic acid resistance as well as the development of strategies for monitoring the efficacy of fusidic acid use.
Collapse
Affiliation(s)
- Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Kakavandi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sana Amini
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Zamani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alex van Belkum
- Data Analytics Unit, bioMérieux 3, Route de Port Michaud, La Balme Les Grottes, France
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
4
|
Singh K, Kaur G, Shanika PS, Dziwornu GA, Okombo J, Chibale K. Structure-activity relationship analyses of fusidic acid derivatives highlight crucial role of the C-21 carboxylic acid moiety to its anti-mycobacterial activity. Bioorg Med Chem 2020; 28:115530. [PMID: 32362386 DOI: 10.1016/j.bmc.2020.115530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 12/01/2022]
Abstract
Fusidic acid (FA) is a potent congener of the fusidane triterpenoid class of antibiotics. Structure-activity relationship (SAR) studies suggest the chemical structure of FA is optimal for its antibacterial activity. SAR studies from our group within the context of a drug repositioning approach in tuberculosis (TB) suggest that, as with its antibacterial activity, the C-21 carboxylic acid group is indispensable for its anti-mycobacterial activity. Further studies have led to the identification of 16-deacetoxy-16β-ethoxyfusidic acid (58), an analog which exhibited comparable activity to FA with an in vitro MIC99 value of 0.8 µM. Preliminary SAR studies around the FA scaffold suggested that the hydrophobic side chain at C-20, like the C-11 OH group, was required for activity. The C-3 OH group, however, can be functionalized to obtain more potent compounds.
Collapse
Affiliation(s)
- Kawaljit Singh
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Gurminder Kaur
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | | | | | - John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
5
|
Strydom N, Kaur G, Dziwornu GA, Okombo J, Wiesner L, Chibale K. Pharmacokinetics and Organ Distribution of C-3 Alkyl Esters as Potential Antimycobacterial Prodrugs of Fusidic Acid. ACS Infect Dis 2020; 6:459-466. [PMID: 32011859 DOI: 10.1021/acsinfecdis.9b00405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fusidic acid (FA) has previously been shown to be rapidly metabolized in rodents to its C-3 epimer, which has significantly lower antimycobacterial activity relative to FA. This was in part hypothesized to account for FA's lack of in vivo efficacy in a mouse model of tuberculosis despite potent in vitro antimycobacterial activity. In the current work, we hypothesized that C-3 alkyl ester prodrugs of FA would deliver higher levels of the drug and prevent the rapid metabolism observed upon administration of FA in its original form. Pharmacokinetic analysis of FA and its 3-ketofusidic acid metabolite as well as novel C-3 alkyl ester prodrugs of FA revealed that FA has low exposure in mice due to rapid metabolism to a species-specific metabolite, 3-epifusidic acid. The C-3 alkyl ester prodrugs showed improved absorption and tissue distribution in pharmacokinetic and organ distribution experiments. These results support the original objective of the FA C-3 ester prodrugs to improve drug concentrations and tissue distribution.
Collapse
Affiliation(s)
| | | | | | | | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
6
|
Njoroge M, Kaur G, Espinoza-Moraga M, Wasuna A, Dziwornu GA, Seldon R, Taylor D, Okombo J, Warner DF, Chibale K. Semisynthetic Antimycobacterial C-3 Silicate and C-3/C-21 Ester Derivatives of Fusidic Acid: Pharmacological Evaluation and Stability Studies in Liver Microsomes, Rat Plasma, and Mycobacterium tuberculosis culture. ACS Infect Dis 2019; 5:1634-1644. [PMID: 31309823 DOI: 10.1021/acsinfecdis.9b00208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fusidic acid (FA), a natural product fusidane triterpene-based antibiotic with unique structural features, is active in vitro against Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). While possessing good pharmacokinetics in man, FA is rapidly metabolized in rodents, thus complicating proof-of-concept studies in this model. Toward the repositioning of FA as an anti-TB agent, we herein describe the synthesis, activity, and metabolism of FA and semisynthesized ester derivatives in rat liver microsomes, rat plasma, and mycobacterial cell culture. FA and derivative molecules with a free C-3 OH underwent species-specific metabolism to the corresponding 3-OH epimer, 3-epifusidic acid (3-epiFA). FA was also metabolized in rat plasma to form FA lactone. These additional routes of metabolism may contribute to the more rapid clearance of FA observed in rodents. C-3 alkyl and aryl esters functioned as classic prodrugs of FA, being hydrolyzed to FA in microsomes, plasma, and Mycobacterium tuberculosis culture. In contrast, C-3 silicate esters and C-21 esters were inert to hydrolysis and so did not act as prodrugs. The antimycobacterial activity of the C-3 silicate esters was comparable to that of FA, and these compounds were stable in microsomes and plasma, identifying them as potential candidates for evaluation in a rodent model of tuberculosis.
Collapse
Affiliation(s)
- Mathew Njoroge
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Gurminder Kaur
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Antonina Wasuna
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Ronnett Seldon
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | - John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Digby F. Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
7
|
Activities of Combinations of Antistaphylococcal Antibiotics with Fusidic Acid against Staphylococcal Biofilms in In Vitro Static and Dynamic Models. Antimicrob Agents Chemother 2018; 62:AAC.00598-18. [PMID: 29712650 DOI: 10.1128/aac.00598-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/20/2018] [Indexed: 02/08/2023] Open
Abstract
Staphylococcal biofilms are a major cause of therapeutic failure, especially when caused by multiresistant strains. Oral fusidic acid is currently being redeveloped in the United States for skin, skin structure, and orthopedic infections, in which biofilms play a major role. The aim of this study was to examine the activity of fusidic acid alone or combined with other antistaphylococcal drugs against biofilms made by a reference strain and five clinical isolates of Staphylococcus aureus or Staphylococcus epidermidis in in vitro static and dynamic models (microtiter plates and a CDC reactor) exposed to clinically relevant concentrations. In microtiter plates, antibiotics alone were poorly active, with marked differences among strains. At concentrations mimicking the free-drug human maximum concentration of drug in serum (Cmax), the combination of fusidic acid with linezolid, daptomycin, or vancomycin resulted in increased activity against 4 to 5 strains, while the combination with doxycycline, rifampin, or moxifloxacin increased activity against 1 to 3 strains only. In the CDC reactor, biofilms were grown under constant flow and antibiotic concentrations decreased over time according to human elimination rates. A bactericidal effect was obtained when fusidic acid was combined with daptomycin or linezolid, but not with vancomycin. The higher tolerance of biofilms to antibiotics in the CDC reactor is probably attributable to the more complex architecture they adopt when growing under constant flow. Because biofilms grown in the CDC reactor are considered more similar to those developing in vivo, the data support further testing of combinations of fusidic acid with daptomycin or linezolid in models pertinent to chronic skin, skin structure, or orthopedic infections.
Collapse
|
8
|
Abouelfetouh A, Kassem M, Naguib M, El-Nakeeb M. Investigation and Treatment of Fusidic Acid Resistance Among Methicillin-Resistant Staphylococcal Isolates from Egypt. Microb Drug Resist 2017; 23:8-17. [DOI: 10.1089/mdr.2015.0336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Alaa Abouelfetouh
- Department of Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mervat Kassem
- Department of Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa Naguib
- Department of Microbiology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Moustafa El-Nakeeb
- Department of Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Fernandes P. Fusidic Acid: A Bacterial Elongation Factor Inhibitor for the Oral Treatment of Acute and Chronic Staphylococcal Infections. Cold Spring Harb Perspect Med 2016; 6:a025437. [PMID: 26729758 DOI: 10.1101/cshperspect.a025437] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fusidic acid is an oral antistaphylococcal antibiotic that has been used in Europe for more than 40 years to treat skin infections as well as chronic bone and joint infections. It is a steroidal antibiotic and the only marketed member of the fusidane class. Fusidic acid inhibits protein synthesis by binding EF-G-GDP, which results in the inhibition of both peptide translocation and ribosome disassembly. It has a novel structure and novel mode of action and, therefore, there is little cross-resistance with other known antibiotics. Many mutations can occur in the FusA gene that codes for EF-G, and some of these mutations can result in high-level resistance (minimum inhibitory concentration [MIC] > 64 mg/L), whereas others result in biologically unfit staphylococci that require compensatory mutations to survive. Low-level resistance (<8 mg/L) is more common and is mediated by fusB, fusC, and fusD genes that code for small proteins that protect EF-G-GDP from binding fusidic acid. The genes for these proteins are spread by plasmids and can be selected mostly by topical antibiotic use. Reports of resistance have led to combination use of fusidic acid with rifampin, which is superseded by the development of a new dosing regimen for fusidic acid that can be used in monotherapy. It consists of a front-loading dose to decrease the potential for resistance development followed by a maintenance dose. This dosing regimen is now being used in clinical trials in the United States for skin and refractory bone and joint infections.
Collapse
|
10
|
Kaur G, Singh K, Pavadai E, Njoroge M, Espinoza-Moraga M, De Kock C, Smith PJ, Wittlin S, Chibale K. Synthesis of fusidic acid bioisosteres as antiplasmodial agents and molecular docking studies in the binding site of elongation factor-G. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00343a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural modifications through bioisosteric approach yielded fusidic acid analogues with 2–35 folds increase in antiplasmodial activity as compared to fusidic acid.
Collapse
Affiliation(s)
- Gurminder Kaur
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit
| | - Kawaljit Singh
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit
| | - Elumalai Pavadai
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit
| | - Mathew Njoroge
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit
| | - Marlene Espinoza-Moraga
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit
| | - Carmen De Kock
- Division of Clinical Pharmacology
- Department of Medicine
- University of Cape Town
- Groote Schuur Hospital
- Observatory
| | - Peter J. Smith
- Division of Clinical Pharmacology
- Department of Medicine
- University of Cape Town
- Groote Schuur Hospital
- Observatory
| | - Sergio Wittlin
- University of Basel
- 4002 Basel
- Switzerland
- Swiss Tropical and Public Health Institute
- Socinstrasse 57
| | - Kelly Chibale
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit
| |
Collapse
|
11
|
Mendes JJ, Leandro C, Mottola C, Barbosa R, Silva FA, Oliveira M, Vilela CL, Melo-Cristino J, Górski A, Pimentel M, São-José C, Cavaco-Silva P, Garcia M. In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections. J Med Microbiol 2014; 63:1055-1065. [PMID: 24869663 DOI: 10.1099/jmm.0.071753-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In patients with diabetes mellitus, foot infections pose a significant risk. These are complex infections commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii, all of which are potentially susceptible to bacteriophages. Here, we characterized five bacteriophages that we had determined previously to have antimicrobial and wound-healing potential in chronic S. aureus, P. aeruginosa and A. baumannii infections. Morphological and genetic features indicated that the bacteriophages were lytic members of the family Myoviridae or Podoviridae and did not harbour any known bacterial virulence genes. Combinations of the bacteriophages had broad host ranges for the different target bacterial species. The activity of the bacteriophages against planktonic cells revealed effective, early killing at 4 h, followed by bacterial regrowth to pre-treatment levels by 24 h. Using metabolic activity as a measure of cell viability within established biofilms, we found significant cell impairment following bacteriophage exposure. Repeated treatment every 4 h caused a further decrease in cell activity. The greatest effects on both planktonic and biofilm cells occurred at a bacteriophage : bacterium input multiplicity of 10. These studies on both planktonic cells and established biofilms allowed us to better evaluate the effects of a high input multiplicity and a multiple-dose treatment protocol, and the findings support further clinical development of bacteriophage therapy.
Collapse
Affiliation(s)
- João J Mendes
- Internal Medicine Department, Santa Marta's Hospital/Central Lisbon Hospital Center, Lisbon, Portugal.,TechnoPhage, S.A., Lisbon, Portugal
| | | | - Carla Mottola
- Interdisciplinary Center of Research in Animal Health, Faculty of Veterinary Medicine of the University of Lisbon, Lisbon, Portugal
| | | | | | - Manuela Oliveira
- Interdisciplinary Center of Research in Animal Health, Faculty of Veterinary Medicine of the University of Lisbon, Lisbon, Portugal
| | - Cristina L Vilela
- Interdisciplinary Center of Research in Animal Health, Faculty of Veterinary Medicine of the University of Lisbon, Lisbon, Portugal
| | - José Melo-Cristino
- Institute of Microbiology, Faculty of Medicine of the University of Lisbon, Lisbon, Portugal
| | - Andrzej Górski
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Madalena Pimentel
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,TechnoPhage, S.A., Lisbon, Portugal
| | - Carlos São-José
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,TechnoPhage, S.A., Lisbon, Portugal
| | - Patrícia Cavaco-Silva
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Superior Institute of Health Sciences Egas Moniz, Monte de Caparica, Portugal.,TechnoPhage, S.A., Lisbon, Portugal
| | | |
Collapse
|