1
|
Zhou J, Xu B, Zheng Y, Huang H, Wei Z, Chen S, Huang W, Liu M, Zhang Y, Wu X. Optimization of oral isavuconazole dose for population in special physiological or pathological state: a physiologically based pharmacokinetics model-informed precision dosing. J Antimicrob Chemother 2024; 79:2379-2389. [PMID: 39086118 DOI: 10.1093/jac/dkae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVE To recommend precision dosing and improve therapeutic efficacy against invasive fungal disease, a physiologically based pharmacokinetic model (PBPK) of oral isavuconazole (ISA) was established and used to explore its disposition across populations in different physiological and pathological states. METHODS Twenty-five pharmacokinetic (PK) studies of oral ISA were identified through a systematic search of PubMed. Concentration-time data were extracted using WebPlotDigitizer. Physiochemical parameters were obtained from published literature and DrugBank. Model development and simulation used the Simcyp population-based simulator, and visual predictive check and predictive error were used for the model evaluation. Probability of target attainment and the cumulative fraction of response analyses were performed for dose optimization. RESULTS The developed PBPK model was successfully validated in different populations. Most predicted concentration-time points aligned with the observed data, with acceptable predictive errors for the critical parameters. We predicted the PK profiles and parameters of ISA in a population with severe hepatic impairment (HI), a population with obesity and paediatric patients aged 1 to less than 6 years old. The probability of target attainment and cumulative fraction of response analyses indicated that the population with severe HI should have half the maintenance dose. The population with obesity and population with severe HI should have a loading dose of 300 mg every 8 h for 2 days. For paediatric patients aged 1 to less than 6 years old, a weight-based dosing regimen (5.38 mg/kg) of ISA was suggested. CONCLUSION The predicted value aligns with observations, suggesting ISA's potential predictability in PK profiles for other populations. The recommended dosing regimens increase our understanding of the use of ISA in special populations.
Collapse
Affiliation(s)
- Jianxing Zhou
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Baohua Xu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - You Zheng
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Huiping Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zipeng Wei
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shengyang Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Wei Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Maobai Liu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yifan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xuemei Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Borgonovo F, Quici M, Gidaro A, Giustivi D, Cattaneo D, Gervasoni C, Calloni M, Martini E, La Cava L, Antinori S, Cogliati C, Gori A, Foschi A. Physicochemical Characteristics of Antimicrobials and Practical Recommendations for Intravenous Administration: A Systematic Review. Antibiotics (Basel) 2023; 12:1338. [PMID: 37627758 PMCID: PMC10451375 DOI: 10.3390/antibiotics12081338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Most antimicrobial drugs need an intravenous (IV) administration to achieve maximum efficacy against target pathogens. IV administration is related to complications, such as tissue infiltration and thrombo-phlebitis. This systematic review aims to provide practical recommendations about diluent, pH, osmolarity, dosage, infusion rate, vesicant properties, and phlebitis rate of the most commonly used antimicrobial drugs evaluated in randomized controlled studies (RCT) till 31 March 2023. The authors searched for available IV antimicrobial drugs in RCT in PUBMED EMBASE®, EBSCO® CINAHL®, and the Cochrane Controlled Clinical trials. Drugs' chemical features were searched online, in drug data sheets, and in scientific papers, establishing that the drugs with a pH of <5 or >9, osmolarity >600 mOsm/L, high incidence of phlebitis reported in the literature, and vesicant drugs need the adoption of utmost caution during administration. We evaluated 931 papers; 232 studies were included. A total of 82 antimicrobials were identified. Regarding antibiotics, 37 reach the "caution" criterion, as well as seven antivirals, 10 antifungals, and three antiprotozoals. In this subgroup of antimicrobials, the correct vascular access device (VAD) selection is essential to avoid complications due to the administration through a peripheral vein. Knowing the physicochemical characteristics of antimicrobials is crucial to improve the patient's safety significantly, thus avoiding administration errors and local side effects.
Collapse
Affiliation(s)
- Fabio Borgonovo
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
| | - Massimiliano Quici
- Internal Medicine Unit, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Antonio Gidaro
- Internal Medicine Unit, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Davide Giustivi
- Emergency Department and Vascular Access Team ASST Lodi, 26900 Lodi, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
| | - Cristina Gervasoni
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
| | - Maria Calloni
- Internal Medicine Unit, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Elena Martini
- Internal Medicine Unit, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Leyla La Cava
- Internal Medicine Unit, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Spinello Antinori
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
| | - Chiara Cogliati
- Internal Medicine Unit, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Andrea Gori
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
| | - Antonella Foschi
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
| |
Collapse
|
3
|
Mertens B, Elkayal O, Dreesen E, Wauters J, Meersseman P, Debaveye Y, Degezelle K, Vermeersch P, Gijsen M, Spriet I. Isavuconazole Exposure in Critically Ill Patients Treated with Extracorporeal Membrane Oxygenation: Two Case Reports and a Narrative Literature Review. Antibiotics (Basel) 2023; 12:1085. [PMID: 37508181 PMCID: PMC10376546 DOI: 10.3390/antibiotics12071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Effective dosing of isavuconazole in patients supported by extracorporeal membrane oxygenation (ECMO) is important due to the role of isavuconazole as a first-line treatment in patients with influenza- and COVID-19-associated pulmonary aspergillosis. To date, robust pharmacokinetic data in patients supported by ECMO are limited. Therefore, it is unknown whether ECMO independently impacts isavuconazole exposure. We measured isavuconazole plasma concentrations in two patients supported by ECMO and estimated individual pharmacokinetic parameters using non-compartmental analysis and two previously published population pharmacokinetic models. Furthermore, a narrative literature review on isavuconazole exposure in adult patients receiving ECMO was performed. The 24 h areas under the concentration-time curve and trough concentrations of isavuconazole were lower in both patients compared with exposure values published before. In the literature, highly variable isavuconazole concentrations have been documented in patients with ECMO support. The independent effect of ECMO versus critical illness itself on isavuconazole exposure cannot be deduced from our and previously published (case) reports. Pending additional data, therapeutic drug monitoring is recommended in critically ill patients, regardless of ECMO support.
Collapse
Affiliation(s)
- Beatrijs Mertens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Omar Elkayal
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven and Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Philippe Meersseman
- Department of Microbiology, Immunology and Transplantation, KU Leuven and Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Yves Debaveye
- Department of Cellular and Molecular Medicine, KU Leuven and Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Karlien Degezelle
- Department of Perfusion Technology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Matthias Gijsen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and Pharmacy Department, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Ravenstijn P, Chetty M, Manchandani P, Elmeliegy M, Qosa H, Younis I. Design and conduct considerations for studies in patients with hepatic impairment. Clin Transl Sci 2022; 16:50-61. [PMID: 36176049 PMCID: PMC9841300 DOI: 10.1111/cts.13428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the liver being the primary site for clearance of xenobiotics utilizing a myriad of mechanisms ranging from cytochrome P450 enzyme pathways, glucuronidation, and biliary excretion, there is a dearth of information available as to how the severity of hepatic impairment (HI) can alter drug absorption and disposition (i.e., pharmacokinetics [PK]) as well as their efficacy and safety or pharmacodynamics (PD). In general, regulatory agencies recommend conducting PK studies in subjects with HI when hepatic metabolism/excretion accounts for more than 20% of drug elimination or if the drug has a narrow therapeutic range. In this tutorial, we provide an overview of the global regulatory landscape, clinical measures for hepatic function assessment, methods to stage HI severity, and consequently the impact on labeling. In addition, we provide an in-depth practical guidance for designing and conducting clinical trials for patients with HI and on the application of modeling and simulation strategies in lieu of dedicated trials for dosing recommendations in patients with HI.
Collapse
Affiliation(s)
| | - Manoranjenni Chetty
- Discipline of Pharmaceutical SciencesCollege of Health SciencesUniversity of KwaZulu NatalBereaSouth Africa
| | - Pooja Manchandani
- Clinical Pharmacology and Exploratory DevelopmentAstellas Pharma US Inc.NorthbrookIllinoisUSA
| | - Mohamed Elmeliegy
- Clinical PharmacologyGlobal Product DevelopmentPfizer Inc.San DiegoCaliforniaUSA
| | - Hisham Qosa
- Clinical Pharmacology and PharmacometricsBristol Myers SquibbPrincetonNew JerseyUSA
| | - Islam Younis
- Clinical PharmacologyGilead SciencesFoster CityCaliforniaUSA
| |
Collapse
|
5
|
Bolcato L, Thiebaut-Bertrand A, Stanke-Labesque F, Gautier-Veyret E. Variability of Isavuconazole Trough Concentrations during Longitudinal Therapeutic Drug Monitoring. J Clin Med 2022; 11:jcm11195756. [PMID: 36233624 PMCID: PMC9573296 DOI: 10.3390/jcm11195756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Isavuconazole (ISA), a triazole antifungal agent, is licensed for the treatment of invasive aspergillosis and mucormycosis. Therapeutic drug monitoring (TDM) is a cornerstone of treatment efficacy for triazole antifungals due to their pharmacokinetic variability, except for ISA, for which the utility of TDM is still uncertain. We performed a retrospective study that aimed to assess the inter- and intra-individual variability of ISA trough concentrations (Cmin) and to identify the determinants involved in such variability. ISA Cmin measured in adult patients at the Grenoble Alpes University Hospital between January 2018 and August 2020 were retrospectively analyzed. In total, 304 ISA Cmin for 33 patients were analyzed. The median ISA Cmin was 2.8 [25th−75th percentiles: 2.0−3.7] mg/L. The inter- and intra-individual variability was 41.5% and 30.7%, respectively. Multivariate analysis showed independent covariate effects of dose (β = 0.004 ± 3.56 × 10−4, p < 0.001), Aspartate aminotransférase (ASAT) (β = 0.002 ± 5.41 × 10−4, p = 0.002), and protein levels (β = 0.022 ± 0.004, p < 0.001) on ISA Cmin, whereas C reactive protein levels did not show any association. This study, conducted on a large number of ISA Cmin, shows that ISA exposure exhibits variability, explained in part by the ISA dose, and ASAT and protein levels.
Collapse
Affiliation(s)
- Léa Bolcato
- Laboratory of Pharmacology, Pharmacogenetics and Toxicology, Grenoble Alpes University Hospital, 38000 Grenoble, France
| | - Anne Thiebaut-Bertrand
- Clinical Hematology Department, Grenoble Alpes University Hospital, 38000 Grenoble, France
| | - Françoise Stanke-Labesque
- Laboratory of Pharmacology, Pharmacogenetics and Toxicology, Grenoble Alpes University Hospital, 38000 Grenoble, France
- Faculty of Medicine, University Grenoble Alpes, Inserm, U1300, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Elodie Gautier-Veyret
- Laboratory of Pharmacology, Pharmacogenetics and Toxicology, Grenoble Alpes University Hospital, 38000 Grenoble, France
- Faculty of Medicine, University Grenoble Alpes, Inserm, U1300, CHU Grenoble Alpes, 38000 Grenoble, France
- Correspondence: ; Tel.: +33-476-765492; Fax: +33-476-764664
| |
Collapse
|
6
|
Shirae S, Mori Y, Kozaki T, Ose A, Hasegawa S. A Pharmacokinetic Bioequivalence Study Comparing Different-Strength and -Size Capsules of Isavuconazonium Sulfate in Healthy Japanese Subjects. Clin Pharmacol Drug Dev 2022; 11:1092-1098. [PMID: 35403832 PMCID: PMC9541682 DOI: 10.1002/cpdd.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 01/26/2023]
Abstract
Isavuconazonium sulfate is the water-soluble prodrug of the novel, broad-spectrum, triazole antifungal agent isavuconazole. A size 0 elongated hard capsule containing 100 mg equivalent of isavuconazole is the currently marketed oral formulation in countries where it is approved. An alternative oral formulation, based on a lower-strength and smaller-size capsule, is required for pediatric and adolescent patients, as well as for some adult Japanese patients, especially those with difficulties swallowing larger capsules. This study was conducted to evaluate the bioequivalence of a size 0 elongated capsule containing 100 mg equivalent of isavuconazole and a size 3 capsule containing 40 mg equivalent of isavuconazole, after administration of 200 mg equivalent of isavuconazole (5 size 3 capsules or 2 size 0 elongated capsules) under fasted conditions. Bioequivalence of isavuconazole between the formulations was demonstrated, since point estimates (90%CI) for the ratio of the size 0 elongated capsules vs the size 3 capsules for maximum plasma concentration and area under the plasma concentration-time curve from time 0 to the last quantifiable concentration were within the acceptable range of 0.8 to 1.25. It was confirmed that both formulations were well tolerated, and no new safety signals were observed in healthy Japanese adult male subjects.
Collapse
Affiliation(s)
- Shinichiro Shirae
- Development Planning, Clinical Development CenterAsahi Kasei Pharma CorporationChiyoda‐kuTokyoJapan
| | - Yoko Mori
- Development Planning, Clinical Development CenterAsahi Kasei Pharma CorporationChiyoda‐kuTokyoJapan
| | - Tomohito Kozaki
- Development Planning, Clinical Development CenterAsahi Kasei Pharma CorporationChiyoda‐kuTokyoJapan
| | - Atsushi Ose
- Development Planning, Clinical Development CenterAsahi Kasei Pharma CorporationChiyoda‐kuTokyoJapan
| | | |
Collapse
|
7
|
Ullah N, Sepulcri C, Mikulska M. Isavuconazole for COVID-19-Associated Invasive Mold Infections. J Fungi (Basel) 2022; 8:674. [PMID: 35887431 PMCID: PMC9323932 DOI: 10.3390/jof8070674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Isavuconazole is a broad-spectrum antifungal drug recently approved as a first-line treatment for invasive aspergillosis and as a first or alternative treatment for mucormycosis. The purpose of this review was to report and discuss the use of isavuconazole for the treatment of COVID-19-associated aspergillosis (CAPA), and COVID-19-associated mucormycosis (CAM). Among all studies which reported treatment of CAPA, approximately 10% of patients were reportedly treated with isavuconazole. Considering 14 identified studies that reported the use of isavuconazole for CAPA, isavuconazole was used in 40% of patients (95 of 235 treated patients), being first-line monotherapy in over half of them. We identified six studies that reported isavuconazole use in CAM, either alone or in combination therapy. Overall, isavuconazole was used as therapy in 13% of treated CAM patients, frequently as combination or sequential therapy. The use of isavuconazole in CAPA and CAM is complicated by the challenge of achieving adequate exposure in COVID-19 patients who are frequently obese and hospitalized in the ICU with concomitant renal replacement therapy (RRT) or extracorporeal membrane oxygenation (ECMO). The presence of data on high efficacy in the treatment of aspergillosis, lower potential for drug-drug interactions (DDIs) and for subtherapeutic levels, and no risk of QT prolongation compared to other mold-active azoles, better safety profile than voriconazole, and the possibility of using an intravenous formulation in the case of renal failure are the advantages of using isavuconazole in this setting.
Collapse
Affiliation(s)
- Nadir Ullah
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (N.U.); (C.S.)
| | - Chiara Sepulcri
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (N.U.); (C.S.)
- Division of Infectious Diseases, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (N.U.); (C.S.)
- Division of Infectious Diseases, Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
8
|
Therapeutic Drug Monitoring of Antifungal Agents in Critically Ill Patients: Is There a Need for Dose Optimisation? Antibiotics (Basel) 2022; 11:antibiotics11050645. [PMID: 35625289 PMCID: PMC9137962 DOI: 10.3390/antibiotics11050645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Invasive fungal infections are an important cause of morbidity and mortality, especially in critically ill patients. Increasing resistance rates and inadequate antifungal exposure have been documented in these patients, due to clinically relevant pharmacokinetic (PK) and pharmacodynamic (PD) alterations, leading to treatment failure. Physiological changes such as third spacing (movement of fluid from the intravascular compartment to the interstitial space), hypoalbuminemia, renal failure and hepatic failure, as well as common interventions in the intensive care unit, such as renal replacement therapy and extracorporeal membrane oxygenation, can lead to these PK and PD alterations. Consequently, a therapeutic target concentration that may be useful for one patient may not be appropriate for another. Regular doses do not take into account the important PK variations in the critically ill, and the need to select an effective dose while minimising toxicity advocates for the use of therapeutic drug monitoring (TDM). This review aims to describe the current evidence regarding optimal PK/PD indices associated with the clinical efficacy of the most commonly used antifungal agents in critically ill patients (azoles, echinocandins, lipid complexes of amphotericin B, and flucytosine), provide a comprehensive understanding of the factors affecting the PK of each agent, document the PK parameters of critically ill patients compared to healthy volunteers, and, finally, make recommendations for therapeutic drug monitoring (TDM) of antifungals in critically ill patients.
Collapse
|
9
|
Kably B, Launay M, Derobertmasure A, Lefeuvre S, Dannaoui E, Billaud EM. Antifungal Drugs TDM: Trends and Update. Ther Drug Monit 2022; 44:166-197. [PMID: 34923544 DOI: 10.1097/ftd.0000000000000952] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The increasing burden of invasive fungal infections results in growing challenges to antifungal (AF) therapeutic drug monitoring (TDM). This review aims to provide an overview of recent advances in AF TDM. METHODS We conducted a PubMed search for articles during 2016-2020 using "TDM" or "pharmacokinetics" or "drug-drug-interaction" with "antifungal," consolidated for each AF. Selection was limited to English language articles with human data on drug exposure. RESULTS More than 1000 articles matched the search terms. We selected 566 publications. The latest findings tend to confirm previous observations in real-life clinical settings. The pharmacokinetic variability related to special populations is not specific but must be considered. AF benefit-to-risk ratio, drug-drug interaction (DDI) profiles, and minimal inhibitory concentrations for pathogens must be known to manage at-risk situations and patients. Itraconazole has replaced ketoconazole in healthy volunteers DDI studies. Physiologically based pharmacokinetic modeling is widely used to assess metabolic azole DDI. AF prophylactic use was studied more for Aspergillus spp. and Mucorales in oncohematology and solid organ transplantation than for Candida (already studied). Emergence of central nervous system infection and severe infections in immunocompetent individuals both merit special attention. TDM is more challenging for azoles than amphotericin B and echinocandins. Fewer TDM requirements exist for fluconazole and isavuconazole (ISZ); however, ISZ is frequently used in clinical situations in which TDM is recommended. Voriconazole remains the most challenging of the AF, with toxicity limiting high-dose treatments. Moreover, alternative treatments (posaconazole tablets, ISZ) are now available. CONCLUSIONS TDM seems to be crucial for curative and/or long-term maintenance treatment in highly variable patients. TDM poses fewer cost issues than the drugs themselves or subsequent treatment issues. The integration of clinical pharmacology into multidisciplinary management is now increasingly seen as a part of patient care.
Collapse
Affiliation(s)
- Benjamin Kably
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| | - Manon Launay
- Laboratoire de Pharmacologie-Toxicologie-Gaz du sang, Hôpital Nord-CHU Saint Etienne, Saint-Etienne
| | - Audrey Derobertmasure
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
| | - Sandrine Lefeuvre
- Laboratoire de Toxicologie et Pharmacocinétique, CHU de Poitiers, Poitiers; and
| | - Eric Dannaoui
- Faculté de Médecine, Université de Paris, Paris, France
- Unité de Parasitologie-Mycologie, Laboratoire de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Eliane M Billaud
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
10
|
A physiologically based pharmacokinetic analysis to predict the pharmacokinetics of intravenous isavuconazole in patients with or without hepatic impairment. Antimicrob Agents Chemother 2021; 65:AAC.02032-20. [PMID: 33619060 PMCID: PMC8092901 DOI: 10.1128/aac.02032-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Isavuconazole (ISA) is an azole antifungal used in the treatment of invasive aspergillosis and mucormycosis. Patients with mild and moderate hepatic impairment have lower clearance (CL) as compared to the healthy population. Currently, there is no data on ISA in patients with severe hepatic impairment (Child-Pugh Class C). The purpose of this study was to build a physiologically based pharmacokinetic (PBPK) model to describe the pharmacokinetics (PK) of intravenous ISA, and to predict changes in ISA disposition in different patient populations and in patients with hepatic impairment to guide personalized dosing. By incorporating the systemic and drug specific parameters of ISA, the model was initially developed in healthy population and validated with 10 independent PK profiles obtained from healthy subjects and from patients with normal liver function. The results showed a satisfactory predictive capacity, with most of the relative predictive errors being between ±30% for area under the curve (AUC) and Cmax The observed plasma concentration-time profiles of ISA were well described by the model predicted profiles. The model adequately predicted the reduced CL of ISA in patients with mild and moderate hepatic impairment. Furthermore, the model predicted a decrease in CL of about 60% in patients with severe hepatic impairment. Therefore, we recommend reducing the dose by 50% in patients with severe hepatic impairment. The model also predicted differences in the PK of ISA between Caucasian and Asian population, with the CL ratio of 0.67 in Chinese vs Caucasian population. The developed PBPK model of ISA provides a reasonable approach for optimizing the dosage regimen in different ethnic populations and in patients with severe hepatic impairment.
Collapse
|
11
|
Heydari S, Habibi D, Reza Faraji A, keypour H, Mahmoudabadi M. An overview on the progress and development on the palladium catalyzed direct cyanation. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Population Pharmacokinetics of Intravenous Isavuconazole in Solid-Organ Transplant Recipients. Antimicrob Agents Chemother 2020; 64:AAC.01728-19. [PMID: 31767725 DOI: 10.1128/aac.01728-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
Isavuconazole (ISA) is a triazole antifungal with activity against yeasts and molds. We established a population pharmacokinetic (pop PK) model of intravenous (i.v.) ISA to identify covariates that affect pharmacokinetics, using plasma samples from solid-organ transplant (SOT) recipients receiving peritransplant prophylaxis. Samples (n = 471) from 79 SOT recipients were utilized for pop PK analysis using nonlinear mixed-effect modeling NONMEM software. ISA (i.v.) PK parameters were best described by a two-compartment model. Significant covariates were sex on clearance (∼53% higher in women than men) and body mass index on peripheral volume of distribution. Incorporating drug exposure into Monte Carlo simulations, we demonstrated that standard ISA dosing is likely to attain the PK-pharmacodynamic (PD) target (area under the concentration curve/MIC ratio [AUC/MIC]) for treatment effectiveness against almost all infections caused by Aspergillus fumigatus isolates exhibiting MICs of ≤0.5 μg/ml (modal MIC). In contrast, standard dosing is predicted to attain PK-PD targets against <20% of infections caused by Candida albicans and Candida glabrata isolates exhibiting MICs of ≥0.016 and ≥0.5 μg/ml, respectively (modal MICs). These data are consistent with our SOT program's experience with ISA breakthrough infections, where 3 of 4 were caused by C. glabrata for which probabilities of PK-PD target attainment (PTA) were only 70% and 0% for isolates with MICs of 0.25 μg/ml and 1 μg/ml. Our findings provide important new insights into how ISA use might be optimized following SOT.
Collapse
|
13
|
Tissue Distribution and Penetration of Isavuconazole at the Site of Infection in Experimental Invasive Aspergillosis in Mice with Underlying Chronic Granulomatous Disease. Antimicrob Agents Chemother 2019; 63:AAC.00524-19. [PMID: 30988140 PMCID: PMC6535567 DOI: 10.1128/aac.00524-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022] Open
Abstract
Isavuconazole, the active moiety of the prodrug isavuconazonium sulfate, has potent activity against a wide spectrum of fungal pathogens and is approved for the treatment of invasive aspergillosis, yet little is known about the tissue penetration of isavuconazole at the target sites of infection. Here, we explored the spatial and quantitative distribution of isavuconazole in tissue lesions in experimental pulmonary aspergillosis established in mice with chronic granulomatous disease (CGD) (gp91phox-). Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and laser capture microdissection (LCM)-directed high-pressure liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) were used to analyze infected lungs and brain tissues collected 1, 3, 6, and 24 h after a single oral administration of the prodrug at a dose of 256 mg/kg of body weight (corresponding to 122.9 mg/kg of isavuconazole). Drug enrichment within granulomatous lesions was observed in lung tissue at 1 h postdose, although drug levels quickly equilibrated afterwards between lesion and nonlesion areas. A prominent antifungal effect in the infected lung tissue was revealed by histopathological analysis. Isavuconazole also penetrated into the brain with high efficiency. These data further support the value of isavuconazole to treat patients with invasive aspergillosis.
Collapse
|
14
|
Maurer E, Hörtnagl C, Lackner M, Grässle D, Naschberger V, Moser P, Segal E, Semis M, Lass-Flörl C, Binder U. Galleria mellonella as a model system to study virulence potential of mucormycetes and evaluation of antifungal treatment. Med Mycol 2019; 57:351-362. [PMID: 29924357 PMCID: PMC6398984 DOI: 10.1093/mmy/myy042] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/04/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Mucorales can cause cutaneous to deep-seated infections, mainly in the immunocompromised host, resulting in high mortality rates due to late and inefficient treatment. In this study, Galleria mellonella larvae were evaluated as a heterologous invertebrate host to study pathogenicity of clinically relevant mucormycetes (Rhizopus spp., Rhizomucor spp., Lichtheimia spp., Mucor spp.). All tested species were able to infect G. mellonella larvae. Virulence potential was species-specific and correlated to clinical relevance. Survival of infected larvae was dependent on (a) the species (growth speed and spore size), (b) the infection dose, (c) the incubation temperature, (d) oxidative stress tolerance, and (e) iron availability in the growth medium. Moreover, we exploited the G. mellonella system to determine antifungal efficacy of liposomal amphotericin B, posaconazole, isavuconazole, and nystatin-intralipid. Outcome of in vivo treatment was strongly dependent upon the drug applied and the species tested. Nystatin-intralipid exhibited best activity against Mucorales, followed by posaconazole, while limited efficacy was seen for liposomal amphotericin B and isavuconazole. Pharmacokinetic properties of the tested antifungals within this alternative host system partly explain the limited treatment efficacy. In conclusion, G. mellonella represents a useful invertebrate infection model for studying virulence of mucormycetes, while evaluation of treatment response was limited.
Collapse
Affiliation(s)
- Elisabeth Maurer
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Caroline Hörtnagl
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Michaela Lackner
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Denise Grässle
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Verena Naschberger
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Patrizia Moser
- Department of Pathology, Medical University Innsbruck, Austria
| | - Esther Segal
- Department of Clinical Microbiology and Immunology, Tel-Aviv University, Israel
| | - Margarita Semis
- City of Hope, Beckman research Institute, Department of Molecular Immunology, Duarte, CA, USA
| | - Cornelia Lass-Flörl
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Ulrike Binder
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| |
Collapse
|
15
|
Pre-Existing Liver Disease and Toxicity of Antifungals. J Fungi (Basel) 2018; 4:jof4040133. [PMID: 30544724 PMCID: PMC6309049 DOI: 10.3390/jof4040133] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
Pre-existing liver disease in patients with invasive fungal infections further complicates their management. Altered pharmacokinetics and tolerance issues of antifungal drugs are important concerns. Adjustment of the dosage of antifungal agents in these cases can be challenging given that current evidence to guide decision-making is limited. This comprehensive review aims to evaluate the existing evidence related to antifungal treatment in individuals with liver dysfunction. This article also provides suggestions for dosage adjustment of antifungal drugs in patients with varying degrees of hepatic impairment, after accounting for established or emerging pharmacokinetic–pharmacodynamic relationships with regard to antifungal drug efficacy in vivo.
Collapse
|
16
|
Pharmacokinetics of Intravenous Isavuconazole in Solid-Organ Transplant Recipients. Antimicrob Agents Chemother 2018; 62:AAC.01643-18. [PMID: 30275091 DOI: 10.1128/aac.01643-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Isavuconazole may be useful in treating and preventing fungal infections in solid-organ transplant (SOT) recipients due to its safety profile and activity against Aspergillus and some Mucorales Isavuconazole has favorable pharmacokinetics based on clinical trials in various patient populations, but data are limited in SOT recipients. We evaluated the steady-state pharmacokinetics of isavuconazole in 26 SOT recipients receiving the drug intravenously for prophylaxis. There was moderate interpatient variability in isavuconazole pharmacokinetic parameters (coefficients of variation of 51% for the area under the plasma concentration-versus-time curve [AUC] and 59% for the trough plasma concentration [C trough]). AUC and steady-state C trough were significantly lower in women, patients with a body mass index of ≥18.5 kg/m2, and those receiving hemodialysis. Trough plasma concentrations were highly correlated with AUCs (R 2 = 0.94) and can serve as a suitable measure of isavuconazole exposure in patients. In conclusion, moderate interpatient variability in isavuconazole exposure, the identification of factors associated with lower exposure, the recognition that C trough is a surrogate marker for AUC, and the availability of a simple analytical method suggest that therapeutic drug monitoring (TDM) may be useful for guiding treatment in at least some SOT recipients. Future studies are needed to correlate isavuconazole exposure with patients' clinical outcomes and to determine the clinical role of TDM.
Collapse
|
17
|
Wilby KJ. A Review of the Clinical Pharmacokinetics and Pharmacodynamics of Isavuconazole. Eur J Drug Metab Pharmacokinet 2018; 43:281-290. [PMID: 29101732 DOI: 10.1007/s13318-017-0445-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Invasive fungal infections are a major cause of morbidity and mortality, especially for immunocompromised patients. Treatment options are few and most are limited by safety and formulation concerns. Isavuconazole is a new triazole antifungal agent with official indications for the treatment of invasive fungal infections caused by Aspergillus and Mucormycosis. Its clinical efficacy has been proven in two landmark trials, SECURE and VITAL. This review aims to summarize and evaluate the published literature reporting clinical pharmacokinetic and pharmacodynamic outcome data of isavuconazole in humans. Data from healthy volunteers demonstrated high oral bioavailability, high hepatic metabolism, and an extended elimination half-life. Data from diseased patients confirmed these findings and also consistently demonstrated that regular dosing of isavuconazole results in achievement of concentrations and exposures that meet pharmacodynamic targets for therapeutic efficacy. Additionally, it was found that renal dysfunction, and mucositis do not majorly affect pharmacokinetic or pharmacodynamic outcomes yet further study is required for severe hepatic and gastric impairment. Future studies should further attempt to understand dose and concentration response relationships, investigate the role (if any) of therapeutic drug monitoring, and strive to optimize dosing in special populations.
Collapse
Affiliation(s)
- Kyle John Wilby
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
18
|
Isavuconazole Concentration in Real-World Practice: Consistency with Results from Clinical Trials. Antimicrob Agents Chemother 2018; 62:AAC.00585-18. [PMID: 29735569 DOI: 10.1128/aac.00585-18] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/02/2018] [Indexed: 01/26/2023] Open
Abstract
Clinical use of voriconazole, posaconazole, and itraconazole revealed the need for therapeutic drug monitoring (TDM) of plasma concentrations of these antifungal agents. This need for TDM was not evident from clinical trials. In order to establish whether this requirement also applies to isavuconazole, we examined the plasma concentrations of 283 samples from patients receiving isavuconazole in clinical practice and compared the values with those from clinical trials. The concentration distributions from real-world use and clinical trials were nearly identical (>1 μg/ml in 90% of patients). These findings suggest that routine TDM may not be necessary for isavuconazole in most instances.
Collapse
|
19
|
McCarthy MW, Moriyama B, Petraitiene R, Walsh TJ, Petraitis V. Clinical Pharmacokinetics and Pharmacodynamics of Isavuconazole. Clin Pharmacokinet 2018; 57:1483-1491. [DOI: 10.1007/s40262-018-0673-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Jenks JD, Salzer HJ, Prattes J, Krause R, Buchheidt D, Hoenigl M. Spotlight on isavuconazole in the treatment of invasive aspergillosis and mucormycosis: design, development, and place in therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1033-1044. [PMID: 29750016 PMCID: PMC5933337 DOI: 10.2147/dddt.s145545] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent decades, important advances have been made in the diagnosis and treatment of invasive aspergillosis (IA) and mucormycosis. One of these advances has been the introduction of isavuconazole, a second-generation broad spectrum triazole with a favorable pharmacokinetic and safety profile and few drug–drug interactions. Phase III trials in patients with IA and mucormycosis demonstrated that isavuconazole has similar efficacy to voriconazole for the treatment of IA (SECURE trial) and liposomal amphotericin B for the treatment of mucormycosis (VITAL trial with subsequent case–control analysis) and a favorable safety profile with significantly fewer ocular, hepatobiliary, and skin and soft tissue adverse events compared to voriconazole. As a result, recent IA guidelines recommend isavuconazole (together with voriconazole) as gold standard treatment for IA in patients with underlying hematological malignancies. In contrast to liposomal amphotericin B, isavuconazole can be safely administered in patients with reduced renal function and is frequently used for the treatment of mucormycosis in patients with reduced renal function. Updated guidelines on mucormycosis are needed to reflect the current evidence and give guidance on the use of isavuconazole for mucormycosis. Studies are needed to evaluate the role of isavuconazole for 1) anti-mold prophylaxis in high-risk patients, 2) salvage treatment for IA and mucormycosis, and 3) treatment for other mold infections such as Scedosporium apiospermum.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Helmut Jf Salzer
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Clinical Tuberculosis Center, Leibniz Lung Center, Borstel, Germany
| | - Juergen Prattes
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria.,CBmed - Center for Biomarker Research in Medicine, Graz, Austria
| | - Dieter Buchheidt
- Department of Hematology and Oncology, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Martin Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, USA.,German Center for Infection Research, Clinical Tuberculosis Center, Leibniz Lung Center, Borstel, Germany.,Division of Pulmonology, Medical University of Graz, Graz, Austria.,Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
21
|
Pyrpasopoulou A, Iosifidis E, Roilides E. Current and potential treatment options for invasiveCandidainfections. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1379392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- A. Pyrpasopoulou
- Infectious Diseases Unit, 3rd Department of Paediatrics, Aristotle University School of Health Sciences, Thessaloniki, Greece
- 2nd Department of Propedeutic Internal Medicine, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - E. Iosifidis
- Infectious Diseases Unit, 3rd Department of Paediatrics, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - E. Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Aristotle University School of Health Sciences, Thessaloniki, Greece
| |
Collapse
|
22
|
Isavuconazole: Has It Saved Us? A Pharmacotherapy Review and Update on Clinical Experience. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017. [DOI: 10.1007/s40506-017-0133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Effects of Isavuconazole on the Plasma Concentrations of Tacrolimus among Solid-Organ Transplant Patients. Antimicrob Agents Chemother 2017; 61:AAC.00970-17. [PMID: 28674051 DOI: 10.1128/aac.00970-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
We evaluated the interaction between isavuconazole and tacrolimus among 55 organ transplant recipients. After isavuconazole discontinuation, the tacrolimus concentration/dose ratio normalized by weight (C/D) was reduced by 16%. Liver transplant recipients experienced the largest C/D reduction. A 1.3-fold decrease in tacrolimus daily dose was required to maintain desired tacrolimus levels. There was considerable interpatient variability in the magnitude of the drug interaction. Tacrolimus doses should not be adjusted uniformly but, rather, be guided by therapeutic drug monitoring.
Collapse
|
24
|
Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection 2017; 45:737-779. [PMID: 28702763 PMCID: PMC5696449 DOI: 10.1007/s15010-017-1042-z] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/25/2017] [Indexed: 02/08/2023]
Abstract
Introduction Because of the high mortality of invasive fungal infections (IFIs), appropriate exposure to antifungals appears to be crucial for therapeutic efficacy and safety. Materials and methods This review summarises published pharmacokinetic data on systemically administered antifungals focusing on co-morbidities, target-site penetration, and combination antifungal therapy. Conclusions and discussion Amphotericin B is eliminated unchanged via urine and faeces. Flucytosine and fluconazole display low protein binding and are eliminated by the kidney. Itraconazole, voriconazole, posaconazole and isavuconazole are metabolised in the liver. Azoles are substrates and inhibitors of cytochrome P450 (CYP) isoenzymes and are therefore involved in numerous drug–drug interactions. Anidulafungin is spontaneously degraded in the plasma. Caspofungin and micafungin undergo enzymatic metabolism in the liver, which is independent of CYP. Although several drug–drug interactions occur during caspofungin and micafungin treatment, echinocandins display a lower potential for drug–drug interactions. Flucytosine and azoles penetrate into most of relevant tissues. Amphotericin B accumulates in the liver and in the spleen. Its concentrations in lung and kidney are intermediate and relatively low myocardium and brain. Tissue distribution of echinocandins is similar to that of amphotericin. Combination antifungal therapy is established for cryptococcosis but controversial in other IFIs such as invasive aspergillosis and mucormycosis.
Collapse
Affiliation(s)
- Romuald Bellmann
- Clinical Pharmacokinetics Unit, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Piotr Smuszkiewicz
- Department of Anesthesiology, Intensive Therapy and Pain Treatment, University Hospital, Poznań, Poland
| |
Collapse
|
25
|
McCarthy MW, Walsh TJ. Special considerations for the diagnosis and treatment of invasive pulmonary aspergillosis. Expert Rev Respir Med 2017; 11:739-748. [PMID: 28595486 DOI: 10.1080/17476348.2017.1340835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The diagnosis and treatment of invasive pulmonary aspergillosis (IPA) are ongoing challenges in clinical practice. While important advances have recently been made, including enhanced diagnostic modalities as well as novel therapeutic and prophylactic options, more effective options are urgently needed as the population of immunocompromised patients continues to expand. Areas covered: In this paper, we review novel approaches to diagnosis of IPA, including multiplex PCR, Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry and provide a detailed review of the extended-spectrum triazole isavuconazole, which was approved in 2015 to treat IPA. Expert commentary: We explore burgeoning approaches to diagnosis, including the lateral flow assay, volatile organic compounds, and artificial olfactory technology, as well as novel antifungal agents to treat IPA such as SCY-078 and F901318.
Collapse
Affiliation(s)
- Matthew William McCarthy
- a Hospital Medicine , Joan and Sanford I Weill Medical College of Cornell University , New York , NY , USA
| | - Thomas J Walsh
- b Transplantation-Oncology Infectious Diseases Program , Weill Cornell Medical Center , New York , NY , USA
| |
Collapse
|
26
|
Natesan SK, Chandrasekar PH. Isavuconazole for the treatment of invasive aspergillosis and mucormycosis: current evidence, safety, efficacy, and clinical recommendations. Infect Drug Resist 2016; 9:291-300. [PMID: 27994475 PMCID: PMC5153275 DOI: 10.2147/idr.s102207] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The majority of invasive mold infections diagnosed in immunocompromised cancer patients include invasive aspergillosis (IA) and mucormycosis. Despite timely and effective therapy, mortality remains considerable. Antifungal agents currently available for the management of these serious infections include triazoles, polyenes, and echinocandins. Until recently, posaconazole has been the only triazole with a broad spectrum of anti-mold activity against both Aspergillus sp. and mucorales. Other clinically available triazoles voriconazole and itraconazole, with poor activity against mucorales, have significant drug interactions in addition to a side effect profile inherent for all triazoles. Polyenes including lipid formulations pose a problem with infusion-related side effects, electrolyte imbalance, and nephrotoxicity. Echinocandins are ineffective against mucorales and are approved as salvage therapy for refractory IA. Given that all available antifungal agents have limitations, there has been an unmet need for a broad-spectrum anti-mold agent with a favorable profile. Following phase III clinical trials that started in 2006, isavuconazole (ISZ) seems to fit this profile. It is the first novel triazole agent recently approved by the United States Food and Drug Administration (FDA) for the treatment of both IA and mucormycosis. This review provides a brief overview of the salient features of ISZ, its favorable profile with regard to spectrum of antifungal activity, pharmacokinetic and pharmacodynamic parameters, drug interactions and tolerability, clinical efficacy, and side effects.
Collapse
Affiliation(s)
- Suganthini Krishnan Natesan
- Division of Infectious Diseases, Department of Internal Medicine, Wayne State University
- John D Dingell VA Medical Center, Detroit, MI, USA
| | | |
Collapse
|
27
|
Murrell D, Bossaer JB, Carico R, Harirforoosh S, Cluck D. Isavuconazonium sulfate: a triazole prodrug for invasive fungal infections. INTERNATIONAL JOURNAL OF PHARMACY PRACTICE 2016; 25:18-30. [DOI: 10.1111/ijpp.12302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 07/27/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Derek Murrell
- Department of Pharmaceutical Sciences; Gatton College of Pharmacy; East Tennessee State University; Johnson City TN
| | - John B. Bossaer
- Department of Pharmacy Practice; Gatton College of Pharmacy; East Tennessee State University; Johnson City TN
| | - Ronald Carico
- Department of Pharmacy Practice; Gatton College of Pharmacy; East Tennessee State University; Johnson City TN
| | - Sam Harirforoosh
- Department of Pharmaceutical Sciences; Gatton College of Pharmacy; East Tennessee State University; Johnson City TN
| | - David Cluck
- Department of Pharmacy Practice; Gatton College of Pharmacy; East Tennessee State University; Johnson City TN
| |
Collapse
|
28
|
Population Pharmacokinetics of Isavuconazole from Phase 1 and Phase 3 (SECURE) Trials in Adults and Target Attainment in Patients with Invasive Infections Due to Aspergillus and Other Filamentous Fungi. Antimicrob Agents Chemother 2016; 60:5483-91. [PMID: 27381396 PMCID: PMC4997882 DOI: 10.1128/aac.02819-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/26/2016] [Indexed: 12/11/2022] Open
Abstract
Isavuconazole, the active moiety of the water-soluble prodrug isavuconazonium sulfate, is a triazole antifungal agent used for the treatment of invasive fungal infections. The objective of this analysis was to develop a population pharmacokinetic (PPK) model to identify covariates that affect isavuconazole pharmacokinetics and to determine the probability of target attainment (PTA) for invasive aspergillosis patients. Data from nine phase 1 studies and one phase 3 clinical trial (SECURE) were pooled to develop the PPK model (NONMEM, version 7.2). Stepwise covariate modeling was performed in Perl-speaks-NONMEM, version 3.7.6. The area under the curve (AUC) at steady state was calculated for 5,000 patients by using Monte Carlo simulations. The PTA using the estimated pharmacodynamic (PD) target value (total AUC/MIC ratio) estimated from in vivo PD studies of invasive aspergillosis over a range of MIC values was calculated using simulated patient AUC values. A two-compartment model with a Weibull absorption function and a first-order elimination process adequately described plasma isavuconazole concentrations. The mean estimate for isavuconazole clearance was 2.360 liters/h (percent coefficient of variation [%CV], 34%), and the mean AUC from 0 to 24 h (AUC0-24) was ∼100 mg·h/liter. Clearance was approximately 36% lower in Asians than in Caucasians. The PTA calculated over a range of MIC values by use of the nonneutropenic murine efficacy index corresponding to 90% survival indicated that adequate isavuconazole exposures were achieved in >90% of simulated patients to treat infections with MICs up to and including 1 mg/liter according to European Committee on Antimicrobial Susceptibility Testing methodology and in >90% of simulated patients for infections with MICs up to and including 0.5 mg/liter according to Clinical and Laboratory Standards Institute methodology. The highest MIC result for PTA was the same for Caucasian and Asian patients.
Collapse
|
29
|
Wilson DT, Dimondi VP, Johnson SW, Jones TM, Drew RH. Role of isavuconazole in the treatment of invasive fungal infections. Ther Clin Risk Manag 2016; 12:1197-206. [PMID: 27536124 PMCID: PMC4977098 DOI: 10.2147/tcrm.s90335] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite recent advances in both diagnosis and prevention, the incidence of invasive fungal infections continues to rise. Available antifungal agents to treat invasive fungal infections include polyenes, triazoles, and echinocandins. Unfortunately, individual agents within each class may be limited by spectrum of activity, resistance, lack of oral formulations, significant adverse event profiles, substantial drug–drug interactions, and/or variable pharmacokinetic profiles. Isavuconazole, a second-generation triazole, was approved by the US Food and Drug Administration in March 2015 and the European Medicines Agency in July 2015 for the treatment of adults with invasive aspergillosis (IA) or mucormycosis. Similar to amphotericin B and posaconazole, isavuconazole exhibits a broad spectrum of in vitro activity against yeasts, dimorphic fungi, and molds. Isavuconazole is available in both oral and intravenous formulations, exhibits a favorable safety profile (notably the absence of QTc prolongation), and reduced drug–drug interactions (relative to voriconazole). Phase 3 studies have evaluated the efficacy of isavuconazole in the management of IA, mucormycosis, and invasive candidiasis. Based on the results of these studies, isavuconazole appears to be a viable treatment option for patients with IA as well as those patients with mucormycosis who are not able to tolerate or fail amphotericin B or posaconazole therapy. In contrast, evidence of isavuconazole for invasive candidiasis (relative to comparator agents such as echinocandins) is not as robust. Therefore, isavuconazole use for invasive candidiasis may initially be reserved as a step-down oral option in those patients who cannot receive other azoles due to tolerability or spectrum of activity limitations. Post-marketing surveillance of isavuconazole will be important to better understand the safety and efficacy of this agent, as well as to better define the need for isavuconazole serum concentration monitoring.
Collapse
Affiliation(s)
- Dustin T Wilson
- Department of Pharmacy Practice, Campbell University College of Pharmacy & Health Sciences, Buies Creek, NC, USA; Department of Pharmacy, Duke University Hospital, Durham, NC, USA
| | - V Paul Dimondi
- Department of Pharmacy Practice, Campbell University College of Pharmacy & Health Sciences, Buies Creek, NC, USA; Department of Pharmacy, Durham VA Medical Center, Durham, NC, USA
| | - Steven W Johnson
- Department of Pharmacy Practice, Campbell University College of Pharmacy & Health Sciences, Buies Creek, NC, USA; Department of Pharmacy, Forsyth Medical Center, Winston-Salem, NC, USA
| | - Travis M Jones
- Department of Pharmacy Practice, Campbell University College of Pharmacy & Health Sciences, Buies Creek, NC, USA
| | - Richard H Drew
- Department of Pharmacy Practice, Campbell University College of Pharmacy & Health Sciences, Buies Creek, NC, USA; Division of Infectious Diseases, Duke University Hospital, Durham, NC, USA
| |
Collapse
|
30
|
Tverdek FP, Kofteridis D, Kontoyiannis DP. Antifungal agents and liver toxicity: a complex interaction. Expert Rev Anti Infect Ther 2016; 14:765-76. [PMID: 27275514 DOI: 10.1080/14787210.2016.1199272] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The number of antifungal agents has sharply increased in recent decades. Antifungals differ in their spectrum of activity, pharmacokinetic/pharmacodynamic properties, dosing, safety-profiles and costs. Risk of developing antifungal associated hepatotoxicity is multifactorial and is influenced by pre-existing liver disease, chemical properties of the drug, patient demographics, comorbidities, drug-drug interactions, environmental and genetic factors. Antifungal related liver injury typically manifests as elevations in serum aminotransferase levels, although the clinical significance of these biochemical alterations is not always clear. Incidence rates of hepatotoxicity induced by antifungal therapy range widely, occurring most frequently in patients treated with azole antifungals for documented fungal infections. AREAS COVERED This review provides an update regarding the hepatotoxicity profiles of the modern systemic antifungals used in treatment of invasive fungal infections. Expert commentary: Understanding the likelihood and pattern of hepatotoxicity for all suspected drugs can aid the clinician in early detection of liver injury allowing for intervention and potential mitigation of liver damage. Therapeutic drug monitoring is emerging as a potential tool to assess risk for hepatotoxicity.
Collapse
Affiliation(s)
- Frank P Tverdek
- a Department of Pharmacy Clinical Programs , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Diamantis Kofteridis
- b Infectious Disease Unit, Department of Internal Medicine , University Hospital of Heraklion , Crete , Greece
| | - Dimitrios P Kontoyiannis
- c Departments of Infectious Diseases , Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
31
|
Bounoua N, Sekkoum K, Belboukhari N, Cheriti A, Aboul-Enein HY. Achiral and chiral separation and analysis of antifungal drugs by HPLC and CE: A comparative study: Mini review. J LIQ CHROMATOGR R T 2016. [DOI: 10.1080/10826076.2016.1174942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nadia Bounoua
- Bioactive Molecules & Chiral Separation Laboratory, University of Bechar, Bechar, Algeria
| | - Khaled Sekkoum
- Bioactive Molecules & Chiral Separation Laboratory, University of Bechar, Bechar, Algeria
| | - Nasser Belboukhari
- Bioactive Molecules & Chiral Separation Laboratory, University of Bechar, Bechar, Algeria
| | - Abdelkrim Cheriti
- Phytochemistry & Organic Synthesis Laboratory, University of Bechar, Bechar, Algeria
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
32
|
Population Pharmacokinetics of Isavuconazole in Subjects with Mild or Moderate Hepatic Impairment. Antimicrob Agents Chemother 2016; 60:3025-31. [PMID: 26953193 PMCID: PMC4862513 DOI: 10.1128/aac.02942-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/01/2016] [Indexed: 11/30/2022] Open
Abstract
Isavuconazole, administered as the prodrug isavuconazonium sulfate, was recently approved by the U.S. Food and Drug Administration and the European Medicines Agency for the treatment of adults with invasive aspergillosis and mucormycosis. The objective of this analysis was to develop a population pharmacokinetic model using NONMEM (version 7.2) for subjects with hepatic impairment, using intravenous and oral administration data from two hepatic studies, and to simulate concentration profiles to steady state, thus evaluating the need for dose adjustment. A two-compartment model with Weibull absorption function and first-order elimination process adequately described plasma isavuconazole concentrations. The population mean clearance in healthy subjects was 2.5 liters/h (5th and 95th percentiles: 2.0 and 3.1). The mean clearance values for subjects with mild and moderate hepatic impairment decreased approximately to 1.55 liters/h (5th and 95th percentiles: 1.3 and 1.8 liters/h) and 1.32 liters/h (5th and 95th percentiles: 1.05 and 1.35), respectively. Peripheral volume of distribution increased with body mass index. Simulations of mean concentration time profiles to steady state showed less than a 2-fold increase in mean trough concentrations for subjects with mild and moderate hepatic impairment compared with healthy subjects. After administration of the single dose, safety data for subjects with mild and moderate hepatic impairment were generally comparable to those for healthy subjects in both studies. Due to the <2-fold increase in trough concentrations and the established safety margin, dose adjustment appears to be unnecessary in subjects with mild or moderate hepatic impairment.
Collapse
|
33
|
Pharmacokinetic variations in cancer patients with liver dysfunction: applications and challenges of pharmacometabolomics. Cancer Chemother Pharmacol 2016; 78:465-89. [DOI: 10.1007/s00280-016-3028-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/30/2016] [Indexed: 12/24/2022]
|
34
|
|
35
|
Taneja A, Oosterholt SP, Danhof M, Della Pasqua O. Biomarker exposure-response relationships as the basis for rational dose selection: Lessons from a simulation exercise using a selective COX-2 inhibitor. J Clin Pharmacol 2015; 56:609-21. [DOI: 10.1002/jcph.629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/26/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Amit Taneja
- Division of Pharmacology; Leiden Academic Centre for Drug Research; Leiden University; Leiden The Netherlands
| | - Sean P. Oosterholt
- Division of Pharmacology; Leiden Academic Centre for Drug Research; Leiden University; Leiden The Netherlands
| | - Meindert Danhof
- Division of Pharmacology; Leiden Academic Centre for Drug Research; Leiden University; Leiden The Netherlands
| | - Oscar Della Pasqua
- Division of Pharmacology; Leiden Academic Centre for Drug Research; Leiden University; Leiden The Netherlands
- Clinical Pharmacology & Therapeutics; University College London; London UK
- Clinical Pharmacology Modelling & Simulation; GlaxoSmithKline; Stockley Park UK
| |
Collapse
|
36
|
Role of New Antifungal Agents in the Treatment of Invasive Fungal Infections in Transplant Recipients: Isavuconazole and New Posaconazole Formulations. J Fungi (Basel) 2015; 1:345-366. [PMID: 29376915 PMCID: PMC5753129 DOI: 10.3390/jof1030345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 11/30/2022] Open
Abstract
Invasive fungal infections are a major cause of morbidity and mortality among solid organ transplant (SOT) and hematopoietic stem cell transplant (HSCT) recipients. Transplant patients are at risk for such invasive fungal infections. The most common invasive fungal infections are invasive candidiasis in the SOT and invasive aspergillosis in the HSCT. In this article, we will discuss the epidemiology of invasive fungal infections in the transplant recipients and susceptibility patterns of the fungi associated with these infections. Additionally, the pharmacology and clinical efficacy of the new antifungal, isavuconazole, and the new posaconazole formulations will be reviewed. Isavuconazole is a new extended-spectrum triazole that was recently approved for the treatment of invasive aspergillosis and mucormycosis. Advantages of this triazole include the availability of a water-soluble intravenous formulation, excellent bioavailability of the oral formulation, and predictable pharmacokinetics in adults. Posaconazole, a broad-spectrum triazole antifungal agent, is approved for the prevention of invasive aspergillosis and candidiasis in addition to the treatment of oropharyngeal candidiasis. Posaconazole oral suspension solution has shown some limitations in the setting of fasting state absorption, elevated gastrointestinal pH, and increased motility. The newly approved delayed-release oral tablet and intravenous solution formulations provide additional treatment options by reducing interpatient variability and providing flexibility in these set of critically ill patients. This review will detail these most recent studies.
Collapse
|
37
|
|
38
|
Seyedmousavi S, Verweij PE, Mouton JW. Isavuconazole, a broad-spectrum triazole for the treatment of systemic fungal diseases. Expert Rev Anti Infect Ther 2015; 13:9-27. [PMID: 25488140 DOI: 10.1586/14787210.2015.990382] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The prodrug isavuconazonium sulfate (BAL8557) is an extended-spectrum water-soluble triazole, developed for the treatment of severe invasive and life-threatening fungal diseases. Its active moiety, BAL4815, is a potent inhibitor of ergosterol biosynthesis, resulting in the disruption of fungal membrane structure and function. The active compound shows broad-spectrum of activity and potency against all major opportunistic fungi, such as Aspergillus spp., Candida spp., Cryptococcus spp., Mucorales, Black yeasts and their filamentous relatives and the true pathogenic fungi, including Histoplasma capsulatum and Blastomyces dermatitidis. It is currently in Phase III clinical development for treatment of aspergillosis, candidiasis and mucormycosis, as well as other rare fungi infections. We reviewed the pharmacokinetic and pharmacodynamic characteristics of isavuconazole, and its microbiological and clinical investigation progress in advanced stages of development.
Collapse
Affiliation(s)
- Seyedmojtaba Seyedmousavi
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, P.O. Box. 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | |
Collapse
|
39
|
Miceli MH, Kauffman CA. Isavuconazole: A New Broad-Spectrum Triazole Antifungal Agent. Clin Infect Dis 2015; 61:1558-65. [PMID: 26179012 DOI: 10.1093/cid/civ571] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/01/2015] [Indexed: 11/14/2022] Open
Abstract
Isavuconazole is a new extended-spectrum triazole with activity against yeasts, molds, and dimorphic fungi. It is approved for the treatment of invasive aspergillosis and mucormycosis. Advantages of this triazole include the availability of a water-soluble intravenous formulation, excellent bioavailability of the oral formulation, and predictable pharmacokinetics in adults. A randomized, double-blind comparison clinical trial for treatment of invasive aspergillosis found that the efficacy of isavuconazole was noninferior to that of voriconazole. An open-label trial that studied primary as well as salvage therapy of invasive mucormycosis showed efficacy with isavuconazole that was similar to that reported for amphotericin B and posaconazole. In patients in these studies, as well as in normal volunteers, isavuconazole was well tolerated, appeared to have few serious adverse effects, and had fewer drug-drug interactions than those noted with voriconazole. As clinical experience increases, the role of this new triazole in the treatment of invasive fungal infections will be better defined.
Collapse
Affiliation(s)
- Marisa H Miceli
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System
| | - Carol A Kauffman
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System Veterans Affairs Ann Arbor Healthcare System, Michigan
| |
Collapse
|
40
|
Chitasombat MN, Kontoyiannis DP. The 'cephalosporin era' of triazole therapy: isavuconazole, a welcomed newcomer for the treatment of invasive fungal infections. Expert Opin Pharmacother 2015; 16:1543-58. [PMID: 26100603 DOI: 10.1517/14656566.2015.1057500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Invasive fungal infections remain frequent life-threatening complications in immunocompromised patients. Each of the currently available antifungals has limitations in terms of pharmacokinetic and pharmacodynamic profile, spectrum of efficacy, and tolerability. Isavuconazole (ISA) is a new generation, broad-spectrum triazole that has a favorable spectrum of efficacy and is available in both intravenous and oral forms. Recent Phase III clinical studies showed that ISA had comparable efficacy to voriconazole for the treatment of a variety of mould infections. AREAS COVERED This review summarizes the literature on the use of ISA. PubMed was searched for publications in English from 2006 to December 2014 using the terms 'ISA', 'BAL4815', and 'BAL 8557'. Relevant publications were reviewed and reference lists were examined for further publications. Conference abstracts from the meeting during 2013 - 2014 were also reviewed. EXPERT OPINION ISA is a new broad spectrum triazole antifungal for the treatment of invasive fungal disease available as oral and intravenous formulations, and the ability to be administered as a once-daily regimen. ISA has broad-spectrum in vitro activity, favorable pharmacokinetic profile, and good tolerability. ISA may be considered for primary treatment for a vast variety of invasive fungal infections. Further study of ISA given as prophylaxis, combination, or salvage therapy is warranted.
Collapse
Affiliation(s)
- Maria N Chitasombat
- Mahidol University, Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital , Bangkok , Thailand
| | | |
Collapse
|
41
|
Abstract
Objective: To review the pharmacology, chemistry, in vitro susceptibility, pharmacokinetics, clinical efficacy, safety, tolerability, dosage, and administration of isavuconazole, a triazole antifungal agent. Data Sources: Studies and reviews were identified through an English language MEDLINE search (1978 to March 2015) and from http://www.clinicaltrials.gov , Food and Drug Administration (FDA) briefing documents, program abstracts from international symposia, and the manufacturer’s Web site. Study Selection and Data Extraction: All published and unpublished trials, abstracts, in vitro and preclinical studies, and FDA briefing documents were reviewed. Data Synthesis: Isavuconazole has activity against a number of clinically important yeasts and molds, including Candida spp, Aspergillus spp, Cryptococcus neoformans, and Trichosporon spp and variable activity against the Mucorales. Isavuconazole, available for both oral and intravenous administration, is characterized by slow elimination allowing once-daily dosing, extensive tissue distribution, and high (>99%) protein binding. The most commonly reported adverse events, which are mild and limited in nature, include nausea, diarrhea, and elevated liver function tests. Its drug interaction potential appears to be similar to other azole antifungals but less than those observed with voriconazole. Comparative trials are under way or have been recently completed for the treatment of candidemia, invasive candidiasis and aspergillosis, and rare mold infections. Conclusions: Isavuconazole has a broad spectrum of activity and favorable pharmacokinetic properties, providing an advantage over other currently available broad-spectrum azole antifungals and a clinically useful alternative to voriconazole for the treatment of invasive aspergillosis. It may also prove useful for the treatment of candidemia and invasive mold infections; however, these indications await the results of clinical trials.
Collapse
Affiliation(s)
- Natasha N. Pettit
- University of Chicago Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Peggy L. Carver
- University of Michigan College of Pharmacy, Ann Arbor, MI, USA
- University of Michigan Health System, Ann Arbor, MI, USA
| |
Collapse
|
42
|
Ananda-Rajah MR, Kontoyiannis D. Isavuconazole: a new extended spectrum triazole for invasive mold diseases. Future Microbiol 2015; 10:693-708. [DOI: 10.2217/fmb.15.34] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT Isavuconazole is the first broad spectrum prodrug triazole with efficacy against invasive fungal diseases including aspergillosis and mucormycosis. Characteristics include linear dose-proportional pharmacokinetics, intravenous and oral formulations allowing therapeutic streamlining, once daily dosing, absence of nephrotoxic solubilizing agents and excellent oral bioavailability independent of prandial status and gastric acidity. An open label noncomparator study demonstrated encouraging results for isavuconazole as primary or salvage therapy for a range of fungi including mucormycosis. Isavuconazole had fewer premature drug discontinuations and adverse events in the eye, hepatobiliary and psychiatry systems than the comparator agent, voriconazole in a randomized double-blind clinical trial. Cross-resistance of isavuconazole best correlates with voriconazole. In vitro resistance is not invariably predictive of clinical failure. Isavuconazole signals progress in pharmacokinetics, bioavailability and toxicity/tolerability supported by clinical efficacy from Phase III trials.
Collapse
Affiliation(s)
| | - Dimitrios Kontoyiannis
- Department of Infectious Diseases, Infection Control & Employee Health, Unit 1416, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
43
|
|
44
|
Allen D, Wilson D, Drew R, Perfect J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev Anti Infect Ther 2015; 13:787-98. [DOI: 10.1586/14787210.2015.1032939] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Moriyama B, Gordon LA, McCarthy M, Henning SA, Walsh TJ, Penzak SR. Emerging drugs and vaccines for candidemia. Mycoses 2014; 57:718-33. [PMID: 25294098 DOI: 10.1111/myc.12265] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 11/27/2022]
Abstract
Candidemia and other forms of invasive candidiasis are important causes of morbidity and mortality. The evolving challenge of antimicrobial resistance among fungal pathogens continues to highlight the need for potent, new antifungal agents. MEDLINE, EMBASE, Scopus and Web of Science searches (up to January 2014) of the English-language literature were performed with the keywords 'Candida' or 'Candidemia' or 'Candidiasis' and terms describing investigational drugs with activity against Candida spp. Conference abstracts and the bibliographies of pertinent articles were also reviewed for relevant reports. ClinicalTrials.gov was searched for relevant clinical trials. Currently available antifungal agents for the treatment of candidemia are summarised. Investigational antifungal agents with potential activity against Candida bloodstream infections and other forms of invasive candidiasis and vaccines for prevention of Candida infections are also reviewed as are selected antifungal agents no longer in development. Antifungal agents currently in clinical trials include isavuconazole, albaconazole, SCY-078, VT-1161 and T-2307. Further data are needed to determine the role of these compounds in the treatment of candidemia and other forms of invasive candidiasis. The progressive reduction in antimicrobial drug development may result in a decline in antifungal drug discovery. Still, there remains a critical need for new antifungal agents to treat and prevent invasive candidiasis and other life-threatening mycoses.
Collapse
Affiliation(s)
- Brad Moriyama
- Pharmacy Department, NIH Clinical Center, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
46
|
Bϋdingen FV, Gonzalez D, Tucker AN, Derendorf H. Relevance of Liver Failure for Anti-Infective Agents: From Pharmacokinetic Alterations to Dosage Adjustments. Ther Adv Infect Dis 2014; 2:17-42. [PMID: 24949199 DOI: 10.1177/2049936113519089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The liver is a complex organ with great ability to influence drug pharmacokinetics. Due to its wide array of function, its impairment has the potential to affect bioavailability, enterohepatic circulation, drug distribution, metabolism, clearance, and biliary elimination. These alterations differ widely depending on the cause of the liver failure, if it is acute or chronic in nature, the extent of impairment, and comorbid conditions. In addition, effects on liver functions do not occur in a proportional or predictable manner for escalating degrees of liver impairment. The ability of hepatic alterations to influence PK is also dependent on drug characteristics, such as administration route, chemical properties, protein binding, and extraction ratio, among others. This complexity makes it difficult to predict what these effects have on drugs. Unlike certain classes of agents, efficacy of anti-infectives is most often dependent on fulfilling pharmacokinetic/pharmacodynamic targets, such as Cmax/MIC, AUC/MIC, T>MIC, IC50/EC50, or T>EC95. Loss of efficacy, or conversely, increased risk of toxicity may occur in certain circumstances of liver injury. Although important to consider these potential alterations and their effects on specific anti-infectives, many lack data to constitute specific dosing adjustments, making it important to monitor patients for effectiveness and toxicities of therapy.
Collapse
Affiliation(s)
- Fiona V Bϋdingen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Daniel Gonzalez
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA ; Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA ; Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| | - Amelia N Tucker
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
47
|
|
48
|
Falci DR, Pasqualotto AC. Profile of isavuconazole and its potential in the treatment of severe invasive fungal infections. Infect Drug Resist 2013; 6:163-74. [PMID: 24187505 PMCID: PMC3810441 DOI: 10.2147/idr.s51340] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The triazole class of antifungal drugs comprises first-line agents for the treatment of several invasive fungal diseases. Isavuconazole is a novel broad-spectrum triazole agent. Here we summarize its characteristics and compare it with the currently available antifungal agents. Isavuconazole is administered as a prodrug, and it is water soluble. Oral and intravenous formulations are available. Its intravenous formulation does not contain cyclodextrin, which is an advantage over voriconazole, considering the potential for nephrotoxicity of cyclodextrin. As with other azoles, isavuconazole requires a loading dose. Due to its prolonged half-life, a once-a-day regimen is possible. Considering that isavuconazole shares the same mechanism of action with the other triazoles, cross-resistance is an important concern in the class. Tolerability and safety profiles are favorable, and no serious adverse events have been consistently reported. Significant interactions with drugs metabolized by cytochrome P450 are expected to occur, especially with substrates and inducers of the CYP3A4 enzyme. Isavuconazole has in vitro activity against most medically important fungi, including species of Candida, Aspergillus, and Cryptococcus. It has some activity against the agents of mucormycosis. Clinical data regarding isavuconazole remain limited because ongoing trials have not yet been completed or published. Isavuconazole has the potential to become first-line therapy for invasive aspergillosis. It also has the potential for use in the context of antifungal prophylaxis, salvage therapy, or in combination regimens. Results of clinical trials are ultimately expected in order to adequately position isavuconazole in the current antifungal armamentarium.
Collapse
Affiliation(s)
- Diego R Falci
- Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil ; Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | |
Collapse
|
49
|
Drew RH, Townsend ML, Pound MW, Johnson SW, Perfect JR. Recent advances in the treatment of life-threatening, invasive fungal infections. Expert Opin Pharmacother 2013; 14:2361-74. [DOI: 10.1517/14656566.2013.838217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
|