1
|
Zhang N, Shan W, Gao L, Kou SH, Lu C, Yang H, Peng B, Tam KY, Lee LTO, Zheng J. Repurposing the Hedgehog pathway inhibitor, BMS-833923, as a phosphatidylglycerol-selective membrane-disruptive colistin adjuvant against ESKAPE pathogens. Int J Antimicrob Agents 2023; 62:106888. [PMID: 37328075 DOI: 10.1016/j.ijantimicag.2023.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
The rapid emergence and spread of multi-drug- or pan-drug-resistant bacterial pathogens, such as ESKAPE, pose a serious threat to global health. However, the development of novel antibiotics is hindered by difficulties in identifying new antibiotic targets and the rapid development of drug resistance. Drug repurposing is an effective alternative strategy for combating antibiotic resistance that both saves resources and extends the life of existing antibiotics in combination treatment regimens. Screening of a chemical compound library identified BMS-833923 (BMS), a smoothened antagonist that kills Gram-positive bacteria directly, and potentiates colistin to destroy various Gram-negative bacteria. BMS did not induce detectable antibiotic resistance in vitro, and showed effective activity against drug-resistant bacteria in vivo. Mechanistic studies revealed that BMS caused membrane disruption by targeting the membrane phospholipids phosphatidylglycerol and cardiolipin, promoting membrane dysfunction, metabolic disturbance, leakage of cellular components, and, ultimately, cell death. This study describes a potential strategy to enhance the efficacy of colistin and combat multi-drug-resistant ESKAPE pathogens.
Collapse
Affiliation(s)
- Nian Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wenying Shan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Liangliang Gao
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Si Hoi Kou
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Chang Lu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Huilin Yang
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Bo Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Leo Tsz On Lee
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Ministry of Education Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau, China; Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
2
|
Wu Y, Hu F, Yang X, Zhang S, Jia C, Liu X, Zhang X. Titanium surface polyethylene glycol hydrogel and gentamicin-loaded cross-linked starch microspheres release system for anti-infective drugs. J Drug Target 2023; 31:217-224. [PMID: 36214127 DOI: 10.1080/1061186x.2022.2134395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To design and construct a hydrogel drug-controlled release system loaded with gentamicin on a titanium surface, and to evaluate the in vitro drug release behaviour and antibacterial properties and biocompatibility of the controlled release system. METHODS Titanium (Ti) surface was coated with poly dopamine (PDA) substrate, and then polyethylene glycol (PEG) was attached to PDA. The composite drug microsphere controlled release layer formed by gentamicin (GEN) and cross-linked starch (CSt) were subsequently covered with poly lactic⁃co⁃glycolic acid (PLGA) as a barrier to construct a Ti-GEN-Cst-PLGA anti-infective drug controlled release system. RESULTS The hydrogel drug release system was successfully constructed. The results of in vitro anti-staphylococcus aureus (SAU) assay, anti-staphylococcus epidermidis (SEP) assay and anti-Escherichia coli (ECO) assay showed that Ti-GEN-Cst-PLGA could effectively inhibit the growth of three bacteria. Assay in the New Zealand rabbit found that Ti-GEN-Cst-PLGA could promote wound healing at the 3rd week after implantation, and the pathology assay found that the Ti-GEN-Cst-PLGA group had less inflammatory reactions and significant tissue proliferation at the endophyte contact surface. CONCLUSION Ti-GEN-Cst-PLGA can effectively inhibit the inflammatory response and promote wound healing, or may be a potential treatment for orthopaedic endophytes.
Collapse
Affiliation(s)
- Yunfeng Wu
- Medical School of Chinese PLA, Beijing, China.,Department of Orthopedics, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fanqi Hu
- Department of Orthopedics, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaoqing Yang
- Department of Orthopedics, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shaofu Zhang
- Department of Orthopedics, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Chengqi Jia
- Medical School of Chinese PLA, Beijing, China
| | - Xiaole Liu
- Medical School of Chinese PLA, Beijing, China
| | - Xuesong Zhang
- Department of Orthopedics, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Huang T, Zeng M, Fu H, Zhao K, Song T, Guo Y, Zhou J, Zhai L, Liu C, Prithiviraj B, Wang X, Chu Y. A novel antibiotic combination of linezolid and polymyxin B octapeptide PBOP against clinical Pseudomonas aeruginosa strains. Ann Clin Microbiol Antimicrob 2022; 21:38. [PMID: 36038932 PMCID: PMC9422153 DOI: 10.1186/s12941-022-00531-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background Antibiotic-resistant Gram-negative bacteria are becoming a major public health threat such as the important opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). The present study investigated enhancement of the linezolid spectrum, which is normally used to treat Gram-positive bacteria, at inhibiting P. aeruginosa growth. Methods The checkerboard test or time-kill assay were carried out to determine the antibacterial effects of linezolid in cooperation with polymyxin B octapeptide PBOP (LP) against P. aeruginosa based on in vitro model. The protective effect of LP against P. aeruginosa infection was assessed based on a Caenorhabditis elegans (C. elegans) model. Results The synergistic activity and antibacterial effects were significantly increased against P. aeruginosa by LP treatment, while linezolid and PBOP as monotherapies exhibited no remarkably bactericidal activity against the clinical strains. Additionally, LP treatment modified biofilm production, morphology, swimming motility of P. aeruginosa, and protected C. elegans from P. aeruginosa infection. Conclusions This research demonstrates that LP combination has significant synergistic activity against P. aeruginosa, and PBOP is potential to be an activity enhancer. Notably, this strategy improved the antibacterial activity spectrum of linezolid and other anti-Gram-positive agents and represents an effective choice to surmount the antibiotic resistance of bacteria in the long term. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-022-00531-5.
Collapse
Affiliation(s)
- Ting Huang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Mao Zeng
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Huiyao Fu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Kelei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Tao Song
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Yidong Guo
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Jingyu Zhou
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Longfei Zhai
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Chaolan Liu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China
| | - Balakrishnan Prithiviraj
- Marine Bio-Products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Xinrong Wang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China.
| | - Yiwen Chu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610052, Sichuan, China.
| |
Collapse
|
4
|
Bhandari RK, Pandey AK, Shafiq N, Kumar J, Malhotra S, Mothsara C, Sajan S, Gautam V, Ray P, Sankhyan N, Dutta S, Kumar P, Patial A, Attri S. Colistin disposition in the cerebrospinal fluid when administered either intravenously alone or with intraventricular/intrathecally in neonates/pediatric patients with culture-proven meningitis. Pediatr Neonatol 2022; 63:190-191. [PMID: 35148977 DOI: 10.1016/j.pedneo.2021.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ritika Kondel Bhandari
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Avaneesh Kumar Pandey
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Nusrat Shafiq
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Jogender Kumar
- Department of Pediatrics Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Samir Malhotra
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Chakrant Mothsara
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Shiv Sajan
- Department of Pediatrics Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vikas Gautam
- Department of Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pallab Ray
- Department of Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Naveen Sankhyan
- Department of Pediatrics Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Saurabh Dutta
- Department of Pediatrics Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Praveen Kumar
- Department of Pediatrics Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Patial
- SRF, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Savita Attri
- Department of Pediatrics Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
5
|
Haseeb A, Faidah HS, Alghamdi S, Alotaibi AF, Elrggal ME, Mahrous AJ, Almarzoky Abuhussain SS, Obaid NA, Algethamy M, AlQarni A, Khogeer AA, Saleem Z, Sheikh A. Dose Optimization of Colistin: A Systematic Review. Antibiotics (Basel) 2021; 10:antibiotics10121454. [PMID: 34943666 PMCID: PMC8698549 DOI: 10.3390/antibiotics10121454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Colistin is considered a last treatment option for multi-drug and extensively resistant Gram-negative infections. We aimed to assess the available data on the dosing strategy of colistin. A systematic review was performed to identify all published studies on the dose optimization of colistin. Grey literature and electronic databases were searched. Data were collected in a specified form and the quality of the included articles was then assessed using the Newcastle-Ottawa scale for cohort studies, the Cochrane bias tool for randomized clinical trials (RCT), and the Joanna Briggs Institute (JBI) critical checklist for case reports. A total of 19 studies were included, of which 16 were cohort studies, one was a RCT, and two were case reports. A total of 18 studies proposed a dosing regimen for adults, while only one study proposed a dosing schedule for pediatric populations. As per the available evidence, a loading dose of 9 million international units (MIU) of colistin followed by a maintenance dose of 4.5 MIU every 12 h was considered the most appropriate dosing strategy to optimize the safety and efficacy of treatment and improve clinical outcomes. This review supports the administration of a loading dose followed by a maintenance dose of colistin in severe and life-threatening multi-drug Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Abdul Haseeb
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al Qura University, Makkah 24382, Saudi Arabia; (A.F.A.); (M.E.E.); (A.J.M.); (S.S.A.A.)
- Correspondence: ; Tel.: +96-656-856-0776
| | - Hani Saleh Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al Qura University, Makkah 24382, Saudi Arabia;
| | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia;
| | - Amal F. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al Qura University, Makkah 24382, Saudi Arabia; (A.F.A.); (M.E.E.); (A.J.M.); (S.S.A.A.)
| | - Mahmoud Essam Elrggal
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al Qura University, Makkah 24382, Saudi Arabia; (A.F.A.); (M.E.E.); (A.J.M.); (S.S.A.A.)
| | - Ahmad Jamal Mahrous
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al Qura University, Makkah 24382, Saudi Arabia; (A.F.A.); (M.E.E.); (A.J.M.); (S.S.A.A.)
| | - Safa S. Almarzoky Abuhussain
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al Qura University, Makkah 24382, Saudi Arabia; (A.F.A.); (M.E.E.); (A.J.M.); (S.S.A.A.)
| | - Najla A. Obaid
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 24382, Saudi Arabia;
| | - Manal Algethamy
- Alnoor Specialist Hospital, Department of Infection Prevention & Control Program, Makkah 24382, Saudi Arabia;
| | - Abdullmoin AlQarni
- Alnoor Specialist Hospital, Infectious Diseases Department, Makkah 24382, Saudi Arabia;
| | - Asim A. Khogeer
- Plan and Research Department, General Directorate of Health Affairs of Makkah Regiona, Ministry of Health, Makkah 24382, Saudi Arabia;
- Medical Genetics Unit, Maternity & Children Hospital, Makkah Healthcare Cluster, Ministry of Health, Makkah 24382, Saudi Arabia
| | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan;
| | - Aziz Sheikh
- Usher Institute, The University of Edinburgh, Teviot Place, Edinburgh EH16 4UX, UK;
| |
Collapse
|
6
|
Dosage Individualization of Linezolid: Precision Dosing of Linezolid To Optimize Efficacy and Minimize Toxicity. Antimicrob Agents Chemother 2021; 65:AAC.02490-20. [PMID: 33820765 DOI: 10.1128/aac.02490-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/18/2021] [Indexed: 01/02/2023] Open
Abstract
The high interindividual variability in the pharmacokinetics (PK) of linezolid has been described, which results in an unacceptably high proportion of patients with either suboptimal or potentially toxic concentrations following the administration of a fixed regimen. The aim of this study was to develop a population pharmacokinetic model of linezolid and use this to build and validate alogorithms for individualized dosing. A retrospective pharmacokinetic analysis was performed using data from 338 hospitalized patients (65.4% male, 65.5 [±14.6] years) who underwent routine therapeutic drug monitoring for linezolid. Linezolid concentrations were analyzed by using high-performance liquid chromatography. Population pharmacokinetic modeling was performed using a nonparametric methodology with Pmetrics, and Monte Carlo simulations were employed to calculate the 100% time >MIC after the administration of a fixed regimen of 600 mg administered every 12 h (q12h) intravenously (i.v.). The dose of linezolid needed to achieve a PTA ≥ 90% for all susceptible isolates classified according to EUCAST was estimated to be as high as 2,400 mg q12h, which is 4 times higher than the maximum licensed linezolid dose. The final PK model was then used to construct software for dosage individualization, and the performance of the software was assessed using 10 new patients not used to construct the original population PK model. A three-compartment model with an absorptive compartment with zero-order i.v. input and first-order clearance from the central compartment best described the data. The dose optimization software tracked patients with a high degree of accuracy. The software may be a clinically useful tool to adjust linezolid dosages in real time to achieve prespecified drug exposure targets. A further prospective study is needed to examine the potential clinical utility of individualized therapy.
Collapse
|
7
|
Garcia E, Diep JK, Sharma R, Hanafin PO, Abboud CS, Kaye KS, Li J, Velkov T, Rao GG. Evaluation Strategies for Triple-Drug Combinations against Carbapenemase-Producing Klebsiella Pneumoniae in an In Vitro Hollow-Fiber Infection Model. Clin Pharmacol Ther 2021; 109:1074-1080. [PMID: 33548079 PMCID: PMC8048493 DOI: 10.1002/cpt.2197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Mounting antimicrobial resistance to carbapenemase‐producing Klebsiella pneumoniae (CPKP) highlights the need to optimize currently available treatment options. The objective of this study was to explore alternative dosing strategies that limit the emergence of resistance to preserve the utility of last‐line antibiotics by: (i) evaluating the pharmacodynamic (PD) killing activity of simulated humanized exposures to monotherapy and two‐drug and three‐drug combinations against CPKP bacterial isolates with different resistance mechanisms; and (ii) optimizing polymyxin B (PMB) exposure simulated in the three‐drug combination regimens to maximize the killing activity. Two CPKP clinical isolates (BAA2146 (NDM‐1) and BRKP76 (KPC‐2)) were evaluated over 168 hours using a hollow‐fiber infection model simulating clinically relevant PMB, fosfomycin, and meropenem dosing regimens. PMB‐based three‐drug combinations were further optimized by varying the initial exposure (0–24 hours) or maintenance dose received over the duration of treatment. The area under the bacterial load‐versus‐time curve (AUCFU) was used to determine PD activity. Overall reductions in PMB exposure ranged from 2 to 84%. BAA2146 and BRKP76 had median (range) AUCFUs of 11.0 (10.6–11.6) log10 CFU hour/mL and 7.08 (7.04–11.9) log10 CFU hour/mL, respectively. The PMB “front loaded” 2.5 mg/kg/day + 0.5 mg/kg maintenance dose in combination with meropenem and fosfomycin was a promising regimen against BRKP76, with an overall reduction in PMB exposure of 56% while still eradicating the bacteria. Tailored triple‐combination therapy allows for the optimization of dose and treatment duration of last‐line agents like PMB to achieve adequate drug exposure and appropriate PD activity while minimizing the emergence of resistance.
Collapse
Affiliation(s)
- Estefany Garcia
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - John K Diep
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rajnikant Sharma
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Patrick O Hanafin
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cely S Abboud
- Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil
| | - Keith S Kaye
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jian Li
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gauri G Rao
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Chua HC, Tse A, Smith NM, Mergenhagen KA, Cha R, Tsuji BT. Combatting the Rising Tide of Antimicrobial Resistance: Pharmacokinetic/Pharmacodynamic Dosing Strategies for Maximal Precision. Int J Antimicrob Agents 2021; 57:106269. [PMID: 33358761 DOI: 10.1016/j.ijantimicag.2020.106269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Antimicrobial pharmacokinetics/pharmacodynamics (PK/PD) principles and PK/PD models have been essential in characterizing the mechanism of antibiotic bacterial killing and determining the most optimal dosing regimen that maximizes clinical outcomes. This review summarized the fundamentals of antimicrobial PK/PD and the various types of PK/PD experiments that shaped the utilization and dosing strategies of antibiotics today. METHODS Multiple databases - including PubMed, Scopus, and EMBASE - were searched for published articles that involved PK/PD modelling and precision dosing. Data from in vitro, in vivo and mechanistic PK/PD models were reviewed as a basis for compiling studies that guide dosing regimens used in clinical trials. RESULTS Literature regarding the utilization of exposure-response analyses, mathematical modelling and simulations that were summarized are able to provide a better understanding of antibiotic pharmacodynamics that influence translational drug development. Optimal pharmacokinetic sampling of antibiotics from patients can lead to personalized dosing regimens that attain target concentrations while minimizing toxicity. Thus the development of a fully integrated mechanistic model based on systems pharmacology can continually adapt to data generated from clinical responses, which can provide the framework for individualized dosing regimens. CONCLUSIONS The promise of what PK/PD can provide through precision dosing for antibiotics has not been fully realized in the clinical setting. Antimicrobial resistance, which has emerged as a significant public health threat, has forced clinicians to empirically utilize therapies. Future research focused on implementation and translation of PK/PD-based approaches integrating novel approaches that combine knowledge of combination therapies, systems pharmacology and resistance mechanisms are necessary. To fully realize maximally precise therapeutics, optimal PK/PD strategies are critical to maximize antimicrobial efficacy against extremely-drug-resistant organisms, while minimizing toxicity.
Collapse
Affiliation(s)
- Hubert C Chua
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA; VA Western New York Healthcare System, Buffalo, NY, USA
| | - Andy Tse
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Nicholas M Smith
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | | | - Raymond Cha
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA.
| |
Collapse
|
9
|
Lee W, Cai Y, Lim TP, Teo J, Chua SC, Kwa ALH. In vitro Pharmacodynamics and PK/PD in Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:105-116. [PMID: 31364074 DOI: 10.1007/978-3-030-16373-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
In the last decade, considerable advancements have been made to identify the pharmacokinetic/pharmacodynamic (PK/PD) index that defines the antimicrobial activity of polymyxins. Dose-fractionation studies performed in hollow-fiber models found that altering the dosing schedule had little impact on the killing or suppression of resistance emergence, alluding to AUC/MIC as the pharmacodynamic index that best describes polymyxin's activity. For in vivo efficacy, the PK/PD index that was the most predictive of the antibacterial effect of colistin against P. aeruginosa and A. baumannii was ƒAUC/MIC.
Collapse
Affiliation(s)
- Winnie Lee
- Singapore General Hospital, Singapore, Singapore
| | - Yiying Cai
- Singapore General Hospital, Singapore, Singapore
| | - Tze-Peng Lim
- Singapore General Hospital, Singapore, Singapore
| | - Jocelyn Teo
- Singapore General Hospital, Singapore, Singapore
| | - Sonja Courtney Chua
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Andrea Lay-Hoon Kwa
- Singapore General Hospital, Singapore, Singapore. .,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore. .,Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.
| |
Collapse
|
10
|
Menina S, Eisenbeis J, Kamal MAM, Koch M, Bischoff M, Gordon S, Loretz B, Lehr C. Bioinspired Liposomes for Oral Delivery of Colistin to Combat Intracellular Infections by Salmonella enterica. Adv Healthc Mater 2019; 8:e1900564. [PMID: 31328434 DOI: 10.1002/adhm.201900564] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/27/2019] [Indexed: 01/07/2023]
Abstract
Bacterial invasion into eukaryotic cells and the establishment of intracellular infection has proven to be an effective means of resisting antibiotic action, as anti-infective agents commonly exhibit a poor permeability across the host cell membrane. Encapsulation of anti-infectives into nanoscaled delivery systems, such as liposomes, is shown to result in an enhancement of intracellular delivery. The aim of the current work is, therefore, to formulate colistin, a poorly permeable anti-infective, into liposomes suitable for oral delivery, and to functionalize these carriers with a bacteria-derived invasive moiety to enhance their intracellular delivery. Different combinations of phospholipids and cholesterol are explored to optimize liposomal drug encapsulation and stability in biorelevant media. These liposomes are then surface-functionalized with extracellular adherence protein (Eap), derived from Staphylococcus aureus. Treatment of HEp-2 and Caco-2 cells infected with Salmonella enterica using colistin-containing, Eap-functionalized liposomes resulted in a significant reduction of intracellular bacteria, in comparison to treatment with nonfunctionalized liposomes as well as colistin alone. This indicates that such bio-invasive carriers are able to facilitate intracellular delivery of colistin, as necessary for intracellular anti-infective activity. The developed Eap-functionalized liposomes, therefore, present a promising strategy for improving the therapy of intracellular infections.
Collapse
Affiliation(s)
- Sara Menina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- Department of PharmacySaarland University Saarbrücken 66123 Germany
| | - Janina Eisenbeis
- Institute of Medical Microbiology and HygieneSaarland University Homburg 66421 Germany
| | - Mohamed Ashraf M. Kamal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
| | - Marcus Koch
- Institute for New MaterialsSaarland University Saarbrücken 66123 Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and HygieneSaarland University Homburg 66421 Germany
| | - Sarah Gordon
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- School of Pharmacy and Biomolecular SciencesJohn Moores University Liverpool L3 3AF UK
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
| | - Claus‐Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- Department of PharmacySaarland University Saarbrücken 66123 Germany
| |
Collapse
|
11
|
Cui AL, Hu XX, Gao Y, Jin J, Yi H, Wang XK, Nie TY, Chen Y, He QY, Guo HF, Jiang JD, You XF, Li ZR. Synthesis and Bioactivity Investigation of the Individual Components of Cyclic Lipopeptide Antibiotics. J Med Chem 2018; 61:1845-1857. [DOI: 10.1021/acs.jmedchem.7b01367] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A-Long Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin-Xin Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Gao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiu-Kun Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tong-Ying Nie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qi-Yang He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui-Fang Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xue-Fu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Smith NM, Bulman ZP, Sieron AO, Bulitta JB, Holden PN, Nation RL, Li J, Wright GD, Tsuji BT. Pharmacodynamics of dose-escalated 'front-loading' polymyxin B regimens against polymyxin-resistant mcr-1-harbouring Escherichia coli. J Antimicrob Chemother 2018; 72:2297-2303. [PMID: 28505268 DOI: 10.1093/jac/dkx121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/24/2017] [Indexed: 01/09/2023] Open
Abstract
Objectives Gram-negative bacteria harbouring the mcr-1 plasmid are resistant to the 'last-line' polymyxins and have been reported worldwide. Our objective was to define the impact of increasing the initial polymyxin B dose intensity against an mcr-1 -harbouring strain to delineate the impact of plasmid-mediated polymyxin resistance on the dynamics of bacterial killing and resistance. Methods A hollow fibre infection model (HFIM) was used to simulate polymyxin B regimens against an mcr-1 -harbouring Escherichia coli (MIC 8 mg/L) over 10 days. Four escalating polymyxin B 'front-loading' regimens (3.33, 6.66, 13.3 or 26.6 mg/kg for one dose followed by 1.43 mg/kg every 12 h starting 12 h later) simulating human pharmacokinetics were utilized in the HFIM. A mechanism-based, mathematical model was developed using S-ADAPT to characterize bacterial killing. Results The 3.33 mg/kg 'front-loading' regimen resulted in regrowth mirroring the growth control. The 6.66, 13.3 and 26.6 mg/kg 'front-loading' regimens resulted in maximal bacterial reductions of 1.91, 3.79 and 6.14 log 10 cfu/mL, respectively. Irrespective of the early polymyxin B exposure (24 h AUC), population analysis profiles showed similar growth of polymyxin B-resistant subpopulations. The HFIM data were well described by the mechanism-based model integrating three subpopulations (susceptible, intermediate and resistant). Compared with the susceptible subpopulation of mcr-1 -harbouring E. coli , the resistant subpopulation had an approximately 10-fold lower rate of killing due to polymyxin B treatment. Conclusions Manipulating initial dose intensity of polymyxin B was not able to overcome plasmid-mediated resistance due to mcr-1 in E. coli . This reinforces the need to develop new combinatorial strategies to combat these highly resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Nicholas M Smith
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,New York State Center of Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Zackery P Bulman
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,New York State Center of Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Arthur O Sieron
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada
| | - Jürgen B Bulitta
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Patricia N Holden
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,New York State Center of Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Gerard D Wright
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,New York State Center of Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| |
Collapse
|
13
|
Pouch SM, Satlin MJ. Carbapenem-resistant Enterobacteriaceae in special populations: Solid organ transplant recipients, stem cell transplant recipients, and patients with hematologic malignancies. Virulence 2017; 8:391-402. [PMID: 27470662 PMCID: PMC5477691 DOI: 10.1080/21505594.2016.1213472] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/01/2016] [Accepted: 07/09/2016] [Indexed: 01/28/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are a major global public health concern and pose a serious threat to immunocompromised hosts, particularly patients with hematologic malignancies and solid organ (SOT) and stem cell transplant recipients. In endemic areas, carbapenem-resistant Klebsiella pneumoniae infections occur in 1-18% of SOT recipients, and patients with hematologic malignancies represent 16-24% of all patients with CRE bacteremia. Mortality rates approaching 60% have been reported in these patient populations. Early diagnosis and rapid initiation of targeted therapy is critical in the management of immunocompromised hosts with CRE infections, as recommended empiric regimens are not active against CRE. Therapeutic options are limited by antibiotic-associated toxicities, interactions with immunosuppressive agents, and paucity of antibiotic options currently available. Prevention of CRE infection in these patients requires a multidisciplinary approach involving hospital epidemiology and antimicrobial stewardship. Large, multicenter studies are needed to develop risk-stratification tools to assist in guiding the management of these individuals.
Collapse
Affiliation(s)
- Stephanie M. Pouch
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | |
Collapse
|
14
|
Polymyxin B in Combination with Rifampin and Meropenem against Polymyxin B-Resistant KPC-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2017; 61:AAC.02121-16. [PMID: 27872078 DOI: 10.1128/aac.02121-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022] Open
Abstract
Safe and effective therapies are urgently needed to treat polymyxin-resistant KPC-producing Klebsiella pneumoniae infections and suppress the emergence of resistance. We investigated the pharmacodynamics of polymyxin B, rifampin, and meropenem alone and as polymyxin B-based double and triple combinations against KPC-producing K. pneumoniae isolates. The rates and extents of killing with polymyxin B (1 to 128 mg/liter), rifampin (2 to 16 mg/liter), and meropenem (10 to 120 mg/liter) were evaluated against polymyxin B-susceptible (PBs) and polymyxin B-resistant (PBr) clinical isolates using 48-h static time-kill studies. Additionally, humanized triple-drug regimens of polymyxin B (concentration at steady state [Css] values of 0.5, 1, and 2 mg/liter), 600 mg rifampin every 12 or 8 h, and 1 or 2 g meropenem every 8 h dosed as an extended 3-h infusion were simulated over 48 h by using a one-compartment in vitro dynamic infection model. Serial bacterial counts were performed to quantify the pharmacodynamic effect. Population analysis profiles (PAPs) were used to assess the emergence of polymyxin B resistance. Monotherapy was ineffective against both isolates. Polymyxin B with rifampin demonstrated early bactericidal activity against the PBs isolate, followed by regrowth by 48 h. Bactericidal activity was sustained at all polymyxin B concentrations of ≥2 mg/liter in combination with meropenem. No two-drug combinations were effective against the PBr isolate, but all simulated triple-drug regimens showed early bactericidal activity against both strains by 8 h that was sustained over 48 h. PAPs did not reveal the emergence of resistant subpopulations. The triple-drug combination of polymyxin B, rifampin, and meropenem may be a viable consideration for the treatment of PBr KPC-producing K. pneumoniae infections. Further investigation is warranted to optimize triple-combination therapy.
Collapse
|
15
|
Development of new polymyxin derivatives for multi-drug resistant Gram-negative infections. J Antibiot (Tokyo) 2017; 70:386-394. [PMID: 28074057 DOI: 10.1038/ja.2016.146] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/02/2016] [Accepted: 11/12/2016] [Indexed: 12/29/2022]
Abstract
Over the last decade, there has been a resurgence of interest in polymyxins owing to the rapid rise in multi-drug resistant Gram-negative bacteria against which polymyxins offer a last-resort treatment. Although having excellent antibacterial activity, the clinical utility of polymyxins is limited by toxicity, especially renal toxicity. There is much interest therefore in developing polymyxin analogues with an improved therapeutic index. This review describes recent work aimed at improving the activity and/or reducing the toxicity of polymyxins. Consideration to providing activity against emerging strains with reduced susceptibility to polymyxins is also made.
Collapse
|
16
|
Aminov R. History of antimicrobial drug discovery: Major classes and health impact. Biochem Pharmacol 2016; 133:4-19. [PMID: 27720719 DOI: 10.1016/j.bcp.2016.10.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
Abstract
The introduction of antibiotics into clinical practice revolutionized the treatment and management of infectious diseases. Before the introduction of antibiotics, these diseases were the leading cause of morbidity and mortality in human populations. This review presents a brief history of discovery of the main antimicrobial classes (arsphenamines, β-lactams, sulphonamides, polypeptides, aminoglycosides, tetracyclines, amphenicols, lipopeptides, macrolides, oxazolidinones, glycopeptides, streptogramins, ansamycins, quinolones, and lincosamides) that have changed the landscape of contemporary medicine. Given within a historical timeline context, the review discusses how the introduction of certain antimicrobial classes affected the morbidity and mortality rates due to bacterial infectious diseases in human populations. Problems of resistance to antibiotics of different classes are also extensively discussed.
Collapse
Affiliation(s)
- Rustam Aminov
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|
17
|
Combinatorial pharmacodynamics of polymyxin B and tigecycline against heteroresistant Acinetobacter baumannii. Int J Antimicrob Agents 2016; 48:331-6. [PMID: 27449542 DOI: 10.1016/j.ijantimicag.2016.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/22/2016] [Accepted: 06/05/2016] [Indexed: 11/22/2022]
Abstract
The prevalence of heteroresistant Acinetobacter baumannii is increasing. Infections due to these resistant pathogens pose a global treatment challenge. Here, the pharmacodynamic activities of polymyxin B (PMB) (2-20 mg/L) and tigecycline (0.15-4 mg/L) were evaluated as monotherapy and in combination using a 4 × 4 concentration array against two carbapenem-resistant and polymyxin-heteroresistant A. baumannii isolates. Time Kill Experiments was employed at starting inocula of 10(6) and 10(8) CFU/mL over 48 h. Clinically relevant combinations of PMB (2 mg/L) and tigecycline (0.90 mg/L) resulted in greater reductions in the bacterial population compared with polymyxin alone by 8 h (ATCC 19606, -6.38 vs. -3.43 log10 CFU/mL; FADDI AB115, -1.38 vs. 2.08 log10 CFU/mL). At 10× the clinically achievable concentration (PMB 20 mg/L in combination with tigecycline 0.90 mg/L), there was bactericidal activity against FADDI AB115 by 4 h that was sustained until 32 h, and against ATCC 19606 that was sustained for 48 h. These studies show that aggressive polymyxin-based dosing in combination with clinically achievable tigecycline concentrations results in early synergistic activity that is not sustained beyond 8 h, whereas combinations with higher tigecycline concentrations result in sustained bactericidal activity against both isolates at both inocula. These results indicate a need for optimised front-loaded polymyxin-based combination regimens that utilise high polymyxin doses at the onset of treatment to achieve good pharmacodynamic activity whilst minimising adverse events.
Collapse
|
18
|
Paradoxical Effect of Polymyxin B: High Drug Exposure Amplifies Resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2016; 60:3913-20. [PMID: 27067330 DOI: 10.1128/aac.02831-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/05/2016] [Indexed: 11/20/2022] Open
Abstract
Administering polymyxin antibiotics in a traditional fashion may be ineffective against Gram-negative ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Here, we explored increasing the dose intensity of polymyxin B against two strains of Acinetobacter baumannii in the hollow-fiber infection model. The following dosage regimens were simulated for polymyxin B (t1/2 = 8 h): non-loading dose (1.43 mg/kg of body weight every 12 h [q12h]), loading dose (2.22 mg/kg q12h for 1 dose and then 1.43 mg/kg q12h), front-loading dose (3.33 mg/kg q12h for 1 dose followed by 1.43 mg/kg q12h), burst (5.53 mg/kg for 1 dose), and supraburst (18.4 mg/kg for 1 dose). Against both A. baumannii isolates, a rapid initial decline in the total population was observed within the first 6 h of polymyxin exposure, whereby greater polymyxin B exposure resulted in greater maximal killing of -1.25, -1.43, -2.84, -2.84, and -3.40 log10 CFU/ml within the first 6 h. Unexpectedly, we observed a paradoxical effect whereby higher polymyxin B exposures dramatically increased resistant subpopulations that grew on agar containing up to 10 mg/liter of polymyxin B over 336 h. High drug exposure also proliferated polymyxin-dependent growth. A cost-benefit pharmacokinetic/pharmacodynamic relationship between 24-h killing and 336-h resistance was explored. The intersecting point, where the benefit of bacterial killing was equal to the cost of resistance, was an fAUC0-24 (area under the concentration-time curve from 0 to 24 h for the free, unbound fraction of drug) of 38.5 mg · h/liter for polymyxin B. Increasing the dose intensity of polymyxin B resulted in amplification of resistance, highlighting the need to utilize polymyxins as part of a combination against high-bacterial-density A. baumannii infections.
Collapse
|
19
|
Fiaccadori E, Antonucci E, Morabito S, d'Avolio A, Maggiore U, Regolisti G. Colistin Use in Patients With Reduced Kidney Function. Am J Kidney Dis 2016; 68:296-306. [PMID: 27160031 DOI: 10.1053/j.ajkd.2016.03.421] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/21/2016] [Indexed: 11/11/2022]
Abstract
Colistin (polymyxin E) is a mainly concentration-dependent bactericidal antimicrobial active against multidrug-resistant Gram-negative bacteria. After being abandoned over the past 30 years due to its neuro- and nephrotoxicity, colistin has been reintroduced recently as a last-resort drug for the treatment of multidrug-resistant Gram-negative bacteria infections in combination with other antimicrobials. Unfortunately, although renal toxicity is a well-known dose-related adverse effect of colistin, relatively few studies are currently available on its peculiar pharmacodynamic/pharmacokinetic properties in clinical settings at high risk for drug accumulation, such as acute or chronic kidney disease. In these specific contexts, the risk for underdosing is also substantial because colistin can be easily removed by dialysis/hemofiltration, especially when the most efficient modalities of renal replacement therapy (RRT) are used in critically ill patients. For this reason, recent recommendations in patients undergoing RRT have shifted toward higher dosing regimens, and therapeutic drug monitoring is advised. This review aims to summarize the main issues related to chemical structure, pharmacodynamics/pharmacokinetics, and renal toxicity of colistin. Moreover, recent data and current recommendations concerning colistin dosing in patients with reduced kidney function, with special regard to those receiving RRT such as dialysis or hemofiltration, are also discussed.
Collapse
Affiliation(s)
- Enrico Fiaccadori
- Renal Failure Unit, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy.
| | - Elio Antonucci
- Intermediate Care Unit, Emergency Department "Guglielmo da Saliceto" Hospital, Piacenza, Italy
| | - Santo Morabito
- Hemodialysis Unit, Department of Nephrology and Urology, University of Rome "Sapienza," Rome, Italy
| | - Antonio d'Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Infectious Disease Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Umberto Maggiore
- Kidney-Pancreas Transplantation Unit, Parma University Hospital, Parma, Italy
| | - Giuseppe Regolisti
- Renal Failure Unit, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| |
Collapse
|
20
|
Optimization of dosing regimens and dosing in special populations. Clin Microbiol Infect 2015; 21:886-93. [DOI: 10.1016/j.cmi.2015.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/13/2015] [Accepted: 05/02/2015] [Indexed: 11/20/2022]
|
21
|
Mishra SB, Azim A. Antimicrobial dosing in critically ill patients with sepsis-induced acute kidney injury. Indian J Crit Care Med 2015; 19:295-6. [PMID: 25983445 PMCID: PMC4430757 DOI: 10.4103/0972-5229.156502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Shakti Bedanta Mishra
- Department of Critical Care Medicine, SGPGIMS, Raebareli Road, Lucknow, Uttar Pradesh, India
| | - Afzal Azim
- Department of Critical Care Medicine, SGPGIMS, Raebareli Road, Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
|
23
|
Di X, Wang R, Liu B, Zhang X, Ni W, Wang J, Liang B, Cai Y, Liu Y. In vitro activity of fosfomycin in combination with colistin against clinical isolates of carbapenem-resistant Pseudomas aeruginosa. J Antibiot (Tokyo) 2015; 68:551-5. [PMID: 25805069 DOI: 10.1038/ja.2015.27] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 02/09/2015] [Accepted: 02/21/2015] [Indexed: 11/09/2022]
Abstract
The shortage of effective antibiotics against carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a public health threat. Combination treatment may represent a good choice for treating infections caused by CRPA. The aim of this study was to evaluate the in vitro efficacy of fosfomycin in combination with colistin against clinical CRPA isolates. Eighty-seven isolates were collected from three hospitals in China. The checkerboard method and time-kill assay were used to assess the interactions between fosfomycin and colistin. The fosfomycin/colistin combination displayed synergistic and partial synergistic activity against 21.84% and 27.59% of the isolates, respectively. Antagonism was not observed. In combination, the colistin MIC values were ⩽0.5 μg ml(-1) for 91.95% of the isolates. This result differed significantly from those obtained using a single agent treatment (The colistin MIC values were ⩽0.5 μg ml(-1) for only 25.29% of the isolates). In addition, the time-kill assay demonstrated that the fosfomycin/colistin combination treatment exerted bactericidal effects against five isolates and that the regrowth observed after colistin monotherapy was prevented. In summary, the combination of fosfomycin and colistin demonstrated synergistic activity against the CRPA isolates tested in this study. Furthermore, fosfomycin may potentially widen the therapeutic window of colistin, suggesting that this combination could be applied clinically to control infections caused by CRPA.
Collapse
Affiliation(s)
- Xiuzhen Di
- The Center of Medicine Clinical Research, Translational Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Rui Wang
- The Center of Medicine Clinical Research, Translational Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Bin Liu
- Department of Respiratory Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin Zhang
- Department of Respiratory Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wentao Ni
- Department of Respiratory Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jin Wang
- The Center of Medicine Clinical Research, Translational Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Beibei Liang
- The Center of Medicine Clinical Research, Translational Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yun Cai
- The Center of Medicine Clinical Research, Translational Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Youning Liu
- Department of Respiratory Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
24
|
Patel G, Perez F, Hujer AM, Rudin SD, Augustine JJ, Jacobs GH, Jacobs MR, Bonomo RA. Fulminant endocarditis and disseminated infection caused by carbapenem-resistant Acinetobacter baumannii in a renal-pancreas transplant recipient. Transpl Infect Dis 2015; 17:289-96. [PMID: 25661804 DOI: 10.1111/tid.12351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/13/2014] [Accepted: 12/11/2014] [Indexed: 01/23/2023]
Abstract
Acinetobacter baumannii is an important cause of healthcare-associated infections, and is particularly problematic among patients who undergo organ transplantation. We describe a case of fulminant sepsis caused by carbapenem-resistant A. baumannii harboring the blaOXA-23 carbapenemase gene and belonging to international clone II. This isolate led to the death of a patient 6 days after simultaneous kidney-pancreas transplantation. Autopsy findings revealed acute mitral valve endocarditis, myocarditis, splenic and renal emboli, peritonitis, and pneumonia. This case highlights the severe nature of certain A. baumannii infections and the vulnerability of transplanted patients to the increasingly intractable "high-risk" clones of multidrug-resistant organisms.
Collapse
Affiliation(s)
- G Patel
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hites M, Dell'Anna AM, Scolletta S, Taccone FS. The challenges of multiple organ dysfunction syndrome and extra-corporeal circuits for drug delivery in critically ill patients. Adv Drug Deliv Rev 2014; 77:12-21. [PMID: 24842474 DOI: 10.1016/j.addr.2014.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/01/2014] [Accepted: 05/07/2014] [Indexed: 12/25/2022]
Abstract
The multiple organ dysfunction syndrome (MODS) is characterized by more than one organ system failing, especially during critical illness. MODS is the leading cause of morbidity and mortality in current ICU practice; moreover, multiple organ dysfunction, especially liver and kidneys, may significantly affect the pharmacokinetics (PKs) of different drugs that are currently administered in critically ill patients. These PK alterations may either result in insufficient drug concentrations to achieve the desired effects or in blood and tissue accumulation, with the development of serious adverse events. The use of extra-corporeal circuits, such as extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT), may further contribute to PKs changes in this patients' population. In this review, we have described the main PK changes occurring in all these conditions and how drug concentrations may potentially be affected. The lack of prospective studies on large cohorts of patients makes impossible any specific recommendation on drug regimen adjustment in ICU patients. Nevertheless, the clinicians should be aware of these abnormalities in order to better understand some unexpected therapeutic issues occurring in such patients.
Collapse
Affiliation(s)
- Maya Hites
- Department of Infectious Diseases, Hopital Erasme - Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels Belgium
| | - Antonio Maria Dell'Anna
- Department of Intensive Care, Hopital Erasme - Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels Belgium
| | - Sabino Scolletta
- Department of Anesthesia and Intensive Care, University of Siena, Viale Bracci 1, 53100 Siena, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hopital Erasme - Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels Belgium.
| |
Collapse
|
26
|
Poulakou G, Bassetti M, Righi E, Dimopoulos G. Current and future treatment options for infections caused by multidrug-resistant Gram-negative pathogens. Future Microbiol 2014; 9:1053-69. [DOI: 10.2217/fmb.14.58] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
ABSTRACT The spread of multidrug-resistant, extensively drug-resistant and pan-drug-resistant pathogens is causing an unprecedented public health crisis. The limited current therapeutic options led to the revival of two ‘old’ antibiotics – colistin and fosfomycin – for which a better understanding of their pharmacokinetics in the critically ill patient and in specific body compartments is required. Tigecycline's use in clinical practice for nonapproved indication based on its in vitro activity against problematic pathogens requires caution and probably higher doses. Furthermore, all three antibiotics should be used as part of combination regimens in order to prevent resistance and optimize outcomes. The development of new antibacterials in the near future, namely combinations of avibactam, ceftolozane/tazobactam and plazomicin, seems promising; however, they will only partially address current mechanisms of resistance.
Collapse
Affiliation(s)
- Garyphallia Poulakou
- 4th Department of Internal Medicine, Athens University School of Medicine, Attikon University General Hospital, 1 Rimini Street, Athens 12462, Greece
| | - Matteo Bassetti
- Infectious Disease Division, Azienda Ospedaliera Universitaria Santa Maria della Misericordia, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Elda Righi
- Infectious Disease Division, Azienda Ospedaliera Universitaria Santa Maria della Misericordia, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - George Dimopoulos
- Department of Critical Care, Medical School, University of Athens, University Hospital ATTIKON, 1 Rimini Street, Haidari, 12462 Athens, Greece
| |
Collapse
|