1
|
Nie MZ, Zhang SS, Gu SX, Long J, Zhu YY. Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors (2019-2023). Eur J Med Chem 2024; 280:116973. [PMID: 39432934 DOI: 10.1016/j.ejmech.2024.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a vital cornerstone of highly active antiretroviral therapy (HAART) regimens, owing to their unique antiviral activity, low toxicity and high specificity. Diarylpyrimidines (DAPYs) as the second generation NNRTIs, represented by etravirine and rilpivirine, have attracted extensive attention due to their high anti-HIV potency. However, rapid emergence of resistant mutations, suboptimal pharmacokinetics (PK), and toxicity remain significant challenges. Recent structural modifications of DAPY analogues have focused on improving resistance profiles, optimizing PK properties (such as half-life and bioavailability), diversifying core structures through scaffold hopping, refining side-chain structures to enhance activity and selectivity, and reducing toxicity and side effects. Moreover, developing new DAPY analogues with broad-spectrum antiviral activity has become a key research priority. This review provides a comprehensive overview of the evolution of DAPYs from 2019 to 2023, including scaffold hopping and structural modifications of the right wing, left wing, central pyrimidine core, and linker, affording valuable insights for the future development of effective HIV-1 inhibitors.
Collapse
Affiliation(s)
- Mu-Zi Nie
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
2
|
Gounder L, Khan A, Manasa J, Lessells R, Tomita A, Pillay M, Manyana SC, Govender S, Francois KL, Moodley P, Msomi N, Govender K, Parboosing R, Moyo S, Naidoo K, Chimukangara B. Patterns of HIV-1 Drug Resistance Observed Through Geospatial Analysis of Routine Diagnostic Testing in KwaZulu-Natal, South Africa. Viruses 2024; 16:1634. [PMID: 39459966 PMCID: PMC11512327 DOI: 10.3390/v16101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
HIV-1 drug resistance (HIVDR) impedes treatment and control of HIV-1, especially in high-prevalence settings such as KwaZulu-Natal (KZN) province, South Africa. This study merged routine HIV-1 genotypic resistance test (GRT) data with Geographic Information Systems coordinates to assess patterns and geographic distribution of HIVDR in KZN, among ART-experienced adults with virological failure. We curated 3133 GRT records generated between 1 January 2018 and 30 June 2022, which includes the early phase of dolutegravir (DTG) rollout, of which 2735 (87.30%) had HIVDR. Of the 2735, major protease, nucleoside, and non-nucleoside reverse transcriptase inhibitor mutations were detected in 41.24%, 84.97% and 88.08% of GRTs, respectively. Additional genotyping of HIV-1 integrase for 41/3133 (1.31%) GRTs showed that 17/41 (41.46%) had integrase strand transfer inhibitor resistance. Notably, of 26 patients on DTG with integrase genotyping, 9 (34.62%) had DTG-associated resistance mutations. Dual- or triple-class resistance was observed in four of every five GRTs. The odds of HIVDR increased significantly with age, with ≥60 years having 5 times higher odds of HIVDR compared to 18-29 years (p = 0.001). We identified geospatial differences in the burden of HIVDR, providing proof of concept that this could be used for data-driven public health decision making. Ongoing real-time HIVDR surveillance is essential for evaluating the outcomes of the updated South African HIV treatment programme.
Collapse
Affiliation(s)
- Lilishia Gounder
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (A.K.); (M.P.); (K.-L.F.); (P.M.); (N.M.); (K.G.); (R.P.); (B.C.)
- Department of Virology, National Health Laboratory Service, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa;
| | - Aabida Khan
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (A.K.); (M.P.); (K.-L.F.); (P.M.); (N.M.); (K.G.); (R.P.); (B.C.)
- Department of Virology, National Health Laboratory Service, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa;
| | - Justen Manasa
- Department of Oncology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP 167, Zimbabwe;
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (R.L.); (A.T.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa;
| | - Andrew Tomita
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (R.L.); (A.T.)
- Centre for Rural Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Melendhran Pillay
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (A.K.); (M.P.); (K.-L.F.); (P.M.); (N.M.); (K.G.); (R.P.); (B.C.)
- Department of Virology, National Health Laboratory Service, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa;
| | - Sontaga C. Manyana
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Pretoria 0001, South Africa;
| | - Subitha Govender
- Department of Virology, National Health Laboratory Service, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa;
| | - Kerri-Lee Francois
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (A.K.); (M.P.); (K.-L.F.); (P.M.); (N.M.); (K.G.); (R.P.); (B.C.)
- Department of Virology, National Health Laboratory Service, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa;
| | - Pravi Moodley
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (A.K.); (M.P.); (K.-L.F.); (P.M.); (N.M.); (K.G.); (R.P.); (B.C.)
- Department of Virology, National Health Laboratory Service, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa;
| | - Nokukhanya Msomi
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (A.K.); (M.P.); (K.-L.F.); (P.M.); (N.M.); (K.G.); (R.P.); (B.C.)
- Department of Virology, National Health Laboratory Service, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa;
| | - Kerusha Govender
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (A.K.); (M.P.); (K.-L.F.); (P.M.); (N.M.); (K.G.); (R.P.); (B.C.)
| | - Raveen Parboosing
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (A.K.); (M.P.); (K.-L.F.); (P.M.); (N.M.); (K.G.); (R.P.); (B.C.)
- School of Pathology, University of Witwatersrand & National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Sikhulile Moyo
- Botswana Harvard Health Partnership, Gaborone P.O. Box B0320, Botswana;
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Pathology, Division of Medical Virology, Stellenbosch University, Cape Town 7500, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa;
- CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, South African Medical Research Council (SAMRC), Durban 4001, South Africa
| | - Benjamin Chimukangara
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (A.K.); (M.P.); (K.-L.F.); (P.M.); (N.M.); (K.G.); (R.P.); (B.C.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa;
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Zhang K, Zhang YJ, Li M, Pannecouque C, De Clercq E, Wang S, Chen FE. Deciphering the enigmas of non-nucleoside reverse transcriptase inhibitors (NNRTIs): A medicinal chemistry expedition towards combating HIV drug resistance. Med Res Rev 2024. [PMID: 39188075 DOI: 10.1002/med.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The pivotal involvement of reverse transcriptase activity in the pathogenesis of the progressive HIV virus has stimulated gradual advancements in drug discovery initiatives spanning three decades. Consequently, nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a preeminent category of therapeutic agents for HIV management. Academic institutions and pharmaceutical companies have developed numerous NNRTIs, an essential component of antiretroviral therapy. Six NNRTIs have received Food and Drug Administration approval and are widely used in clinical practice, significantly improving the quality of HIV patients. However, the rapid emergence of drug resistance has limited the effectiveness of these medications, underscoring the necessity for perpetual research and development of novel therapeutic alternatives. To supplement the existing literatures on NNRTIs, a comprehensive review has been compiled to synthesize this extensive dataset into a comprehensible format for the medicinal chemistry community. In this review, a thorough investigation and meticulous analysis were conducted on the progressions achieved in NNRTIs within the past 8 years (2016-2023), and the experiences and insights gained in the development of inhibitors with varying chemical structures were also summarized. The provision of a crucial point of reference for the development of wide-ranging anti-HIV medications is anticipated.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu-Jie Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Li
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Shuai Wang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Fen-Er Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Muccini C, Gianotti N, Diotallevi S, Lolatto R, Spagnuolo V, Canetti D, Bagaglio S, Perez VG, Clemente T, Bottanelli M, Candela C, Nozza S, Castagna A. One Year of Long-Acting Cabotegravir and Rilpivirine in People With Human Immunodeficiency Virus and Long Exposure to Antiretroviral Therapy: Data From the SCohoLART Study. Open Forum Infect Dis 2024; 11:ofae326. [PMID: 38962526 PMCID: PMC11221778 DOI: 10.1093/ofid/ofae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Background The aim of the study was to evaluate the 12-month cumulative probability of treatment discontinuation (TD) in people with human immunodeficiency virus (HIV; PWH) and a long exposure to antiretroviral therapy (ART) switching to long-acting cabotegravir and rilpivirine (CAB/RPV). Methods SCohoLART is a single-center, prospective, cohort study designed to collect both samples and clinical data from PWH with virological suppression who switched to bimonthly long-acting CAB/RPV. TD occurred at switch to another regimen for any reason including virological failure (VF); VF was defined as HIV RNA levels ≥50 copies/mL at 2 consecutive measurements or a single HIV RNA level ≥1000 copies/mL. Results were reported as median (interquartile range [IQR]) or frequency (percentage). Cumulative probabilities of TD were estimated using Kaplan-Meier curves. Results We evaluated 514 participants; 467 (90.9%) were male, and their median age (IQR) was 49 (40-56) years. At the time of switching, the median time from HIV diagnosis and the median duration of ART were 14.0 (IQR, 8.8-20.5) and 11.4 (7.9-17.4) years, respectively; before starting CAB/RPV, the median number of antiretroviral regimens was 3 (2-4). During a median study follow-up (IQR) of 13.1 (9.1-15.5) months, 52 PWH (10.1%) experienced TD, including 4 (0.8%) for VF. The 12-month cumulative probability of TD was 11% (95% confidence interval, 8%-14%). The main cause of TD was injection site reaction (15 participants [28.8%]). Conclusions The 1-year cumulative probability of TD with long-acting CAB/RPV was quite low in this cohort of people with a median exposure to ART of 10 years, in whom injection site reaction was the leading cause of TD. VFs were rare during study follow-up.
Collapse
Affiliation(s)
- Camilla Muccini
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Gianotti
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Diotallevi
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Lolatto
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vincenzo Spagnuolo
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Diana Canetti
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabrina Bagaglio
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Victoria Gordo Perez
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Silvia Nozza
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonella Castagna
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
5
|
Wang Z, Zhang H, Gao Z, Sang Z, De Clercq E, Pannecouque C, Kang D, Zhan P, Liu X. Structure-based design and optimization lead to the identification of novel dihydrothiopyrano[3,2- d]pyrimidine derivatives as potent HIV-1 inhibitors against drug-resistant variants. Acta Pharm Sin B 2024; 14:1257-1282. [PMID: 38486991 PMCID: PMC10935503 DOI: 10.1016/j.apsb.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
With our continuous endeavors in seeking potent anti-HIV-1 agents, we reported here the discovery, biological characterization, and druggability evaluation of a class of nonnucleoside reverse transcriptase inhibitors. To fully explore the chemical space of the NNRTI-binding pocket, novel series of dihydrothiopyrano [3,2-d]pyrimidines were developed by employing the structure-based design strategy. Most of the derivatives were endowed with prominent antiviral activities against HIV-1 wild-type and resistant strains at nanomolar levels. Among them, compound 23h featuring the aminopiperidine moiety was identified as the most potent inhibitor, with EC50 values ranging from 3.43 to 21.4 nmol/L. Especially, for the challenging double-mutants F227L + V106A and K103N + Y181C, 23h exhibited 2.3- to 14.5-fold more potent activity than the first-line drugs efavirenz and etravirine. Besides, the resistance profiles of 23h achieved remarkable improvement compared to efavirenz and etravirine. The binding target of 23h was further confirmed to be HIV-1 reverse transcriptase. Molecular modeling studies were also performed to elucidate the biological evaluation results and give guidance for the optimization campaign. Furthermore, no apparent inhibition of the major CYP450 enzymes and hERG channel was observed for 23h. Most importantly, 23h was characterized by good pharmacokinetic properties and excellent safety in vivo. Collectively, 23h holds great promise as a potential candidate for its effective antiviral efficacy and favorable drug-like profiles.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zihao Sang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| |
Collapse
|
6
|
Planinić A, Begovac J, Rokić F, Šimičić P, Oroz M, Jakovac K, Vugrek O, Zidovec-Lepej S. Characterization of Human Immunodeficiency Virus-1 Transmission Clusters and Transmitted Drug-Resistant Mutations in Croatia from 2019 to 2022. Viruses 2023; 15:2408. [PMID: 38140649 PMCID: PMC10747707 DOI: 10.3390/v15122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Molecular epidemiology of HIV-1 infection is challenging due to the highly diverse HIV-genome. We investigated the genetic diversity and prevalence of transmitted drug resistance (TDR) followed by phylogenetic analysis in 270 HIV-1 infected, treatment-naïve individuals from Croatia in the period 2019-2022. The results of this research confirmed a high overall prevalence of TDR of 16.7%. Resistance to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside RTIs (NNRTIs), and protease inhibitors (PIs) was found in 9.6%, 7.4%, and 1.5% of persons, respectively. No resistance to integrase strand-transfer inhibitors (INSTIs) was found. Phylogenetic analysis revealed that 173/229 sequences (75.5%) were part of transmission clusters, and the largest identified was T215S, consisting of 45 sequences. Forward transmission was confirmed in several clusters. We compared deep sequencing (DS) with Sanger sequencing (SS) on 60 randomly selected samples and identified additional surveillance drug resistance mutations (SDRMs) in 49 of them. Our data highlight the need for baseline resistance testing in treatment-naïve persons. Although no major INSTIs were found, monitoring of SDRMs to INSTIs should be continued due to the extensive use of first- and second-generation INSTIs.
Collapse
Affiliation(s)
- Ana Planinić
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases Dr. Fran Mihaljević, 10000 Zagreb, Croatia;
| | - Josip Begovac
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Filip Rokić
- Ruđer Bošković Institute, 10000 Zagreb, Croatia; (F.R.); (K.J.); (O.V.)
| | - Petra Šimičić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia;
| | - Maja Oroz
- Cytogenetic Laboratory, Department of Obstetrics and Gynecology, Clinical Hospital Sveti Duh, 10000 Zagreb, Croatia;
| | - Katja Jakovac
- Ruđer Bošković Institute, 10000 Zagreb, Croatia; (F.R.); (K.J.); (O.V.)
| | - Oliver Vugrek
- Ruđer Bošković Institute, 10000 Zagreb, Croatia; (F.R.); (K.J.); (O.V.)
| | - Snjezana Zidovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases Dr. Fran Mihaljević, 10000 Zagreb, Croatia;
| |
Collapse
|
7
|
Kirichenko A, Kireev D, Lapovok I, Shlykova A, Lopatukhin A, Pokrovskaya A, Bobkova M, Antonova A, Kuznetsova A, Ozhmegova E, Shtrek S, Sannikov A, Zaytseva N, Peksheva O, Piterskiy M, Semenov A, Turbina G, Filoniuk N, Shemshura A, Kulagin V, Kolpakov D, Suladze A, Kotova V, Balakhontseva L, Pokrovsky V, Akimkin V. HIV-1 Drug Resistance among Treatment-Naïve Patients in Russia: Analysis of the National Database, 2006-2022. Viruses 2023; 15:v15040991. [PMID: 37112971 PMCID: PMC10141655 DOI: 10.3390/v15040991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
In Russia, antiretroviral therapy (ART) coverage has significantly increased, which, in the absence of routine genotyping testing, could lead to an increase in HIV drug resistance (DR). The aim of this study was to investigate the patterns and temporal trends in HIV DR as well as the prevalence of genetic variants in treatment-naïve patients from 2006 to 2022, using data from the Russian database (4481 protease and reverse transcriptase and 844 integrase gene sequences). HIV genetic variants, and DR and DR mutations (DRMs) were determined using the Stanford Database. The analysis showed high viral diversity, with the predominance of A6 (78.4%), which was the most common in all transmission risk groups. The overall prevalence of surveillance DRMs (SDRMs) was 5.4%, and it reached 10.0% in 2022. Most patients harbored NNRTI SDRMs (3.3%). The prevalence of SDRMs was highest in the Ural (7.9%). Male gender and the CRF63_02A6 variant were association factors with SDRMs. The overall prevalence of DR was 12.7% and increased over time, primarily due to NNRTIs. Because baseline HIV genotyping is unavailable in Russia, it is necessary to conduct surveillance of HIV DR due to the increased ART coverage and DR prevalence. Centralized collection and unified analysis of all received genotypes in the national database can help in understanding the patterns and trends in DR to improve treatment protocols and increase the effectiveness of ART. Moreover, using the national database can help identify regions or transmission risk groups with a high prevalence of HIV DR for epidemiological measures to prevent the spread of HIV DR in the country.
Collapse
Affiliation(s)
- Alina Kirichenko
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Dmitry Kireev
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Ilya Lapovok
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | | | | | - Anastasia Pokrovskaya
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
- Department of Infectious Diseases with Courses of Epidemiology and Phthisiology, Medical Institute, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Marina Bobkova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Anastasiia Antonova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Anna Kuznetsova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Ekaterina Ozhmegova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Sergey Shtrek
- Omsk Research Institute of Natural Focal Infections, 644080 Omsk, Russia
- Department of Microbiology, Virology and Immunology, Omsk State Medical University, 644099 Omsk, Russia
| | - Aleksej Sannikov
- Omsk Research Institute of Natural Focal Infections, 644080 Omsk, Russia
- Department of Microbiology, Virology and Immunology, Omsk State Medical University, 644099 Omsk, Russia
| | - Natalia Zaytseva
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Rospotrebnadzor, 603022 Nizhny Novgorod, Russia
| | - Olga Peksheva
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Rospotrebnadzor, 603022 Nizhny Novgorod, Russia
| | - Michael Piterskiy
- Federal Scientific Research Institute of Viral Infections «Virome» Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Ekaterinburg, Russia
| | - Aleksandr Semenov
- Federal Scientific Research Institute of Viral Infections «Virome» Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Ekaterinburg, Russia
| | - Galina Turbina
- Lipetsk Regional Center for Prevention and Control of AIDS and Infectious Diseases, 398043 Lipetsk, Russia
| | - Natalia Filoniuk
- Lipetsk Regional Center for Prevention and Control of AIDS and Infectious Diseases, 398043 Lipetsk, Russia
| | - Andrey Shemshura
- Clinical Center of HIV/AIDS Treatment and Prevention of the Ministry of Health of Krasnodar Region, 350000 Krasnodar, Russia
- Department of Infectious Diseases and Epidemiology, The Faculty of Advanced Training and Professional Retraining of Specialists, Kuban State Medical University of the Ministry of Health of the Russian Federation, 350063 Krasnodar, Russia
| | - Valeriy Kulagin
- Clinical Center of HIV/AIDS Treatment and Prevention of the Ministry of Health of Krasnodar Region, 350000 Krasnodar, Russia
- Department of Infectious Diseases and Epidemiology, The Faculty of Advanced Training and Professional Retraining of Specialists, Kuban State Medical University of the Ministry of Health of the Russian Federation, 350063 Krasnodar, Russia
| | - Dmitry Kolpakov
- Rostov Research Institute of Microbiology and Parasitology, 344000 Rostov-on-Don, Russia
| | - Aleksandr Suladze
- Rostov Research Institute of Microbiology and Parasitology, 344000 Rostov-on-Don, Russia
| | - Valeriya Kotova
- Khabarovsk Research Institute of Epidemiology and Microbiology of the Rospotrebnadzor, 680610 Khabarovsk, Russia
| | - Lyudmila Balakhontseva
- Khabarovsk Research Institute of Epidemiology and Microbiology of the Rospotrebnadzor, 680610 Khabarovsk, Russia
| | - Vadim Pokrovsky
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Vasiliy Akimkin
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| |
Collapse
|
8
|
Kuznetsova AI, Munchak IM, Lebedev AV, Tumanov AS, Kim KV, Antonova AA, Ozhmegova EN, Pronin AY, Drobyshevskaya EV, Kazennova EV, Bobkova MR. [Genetic diversity of capsid protein (p24) in human immunodeficiency virus type-1 (HIV-1) variants circulating in the Russian Federation]. Vopr Virusol 2023; 68:66-78. [PMID: 36961237 DOI: 10.36233/0507-4088-161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 04/22/2023]
Abstract
INTRODUCTION The human immunodeficiency virus (HIV) protein p24 plays an important role in the life cycle of the virus, and also is a target for diagnostic tests and for new antiretroviral drugs and therapeutic vaccines. The most studied variant of HIV-1 in the world is subtype B. In Russia, the most common variant is A6, the spread of recombinant forms (CRF63_02A6, CRF03_A6B) is observed as well as circulation of G and CRF02_AG variants. However, a detailed study of the p24 protein in these variants has not yet been conducted. The aim was to study the features of the p24 protein in HIV-1 variants circulating in Russia and estimate the frequency of occurrence of pre-existing mutations associated with resistance to lenacapavir, the first antiretroviral drug in the class of capsid inhibitors. MATERIALS AND METHODS The objects of the study were the nucleotide sequences obtained from the Los Alamos international database and clinical samples from HIV infected patients. RESULTS AND DISCUSSION The features of HIV-1 variants circulating in Russia have been determined. V86A, H87Q, I91F are characteristic substitutions in A6 genome. It is shown that the presence of preexisting mutations associated with resistance to lenacapavir is unlikely. CONCLUSION Features of the p24 protein in HIV-1 variants circulating in Russia allow them to be distinguished from others variants and among themselves. The prognosis for the use of lenacapavir in Russia is generally favorable. The results obtained could be taken into account in developing and using antiretroviral drugs and therapeutic vaccines.
Collapse
Affiliation(s)
- A I Kuznetsova
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - I M Munchak
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - A V Lebedev
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - A S Tumanov
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - K V Kim
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - A A Antonova
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - E N Ozhmegova
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - A Y Pronin
- Moscow Regional Center for the Prevention and Control of AIDS and Infectious Diseases
| | - E V Drobyshevskaya
- Moscow Regional Center for the Prevention and Control of AIDS and Infectious Diseases
| | - E V Kazennova
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - M R Bobkova
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| |
Collapse
|
9
|
Sayan M, Sultanoglu N, Sanlidag T. Dynamics of Rilpivirine Resistance-Associated Mutation: E138 in Reverse Transcriptase among Antiretroviral-Naive HIV-1-Infected Individuals in Turkey. AIDS Res Hum Retroviruses 2023; 39:84-90. [PMID: 36301912 DOI: 10.1089/aid.2022.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rilpivirine, one of the non-nucleoside reverse transcriptase inhibitors class anti-HIV agents, is used as an alternative drug to treat HIV-1-positive individuals according to current antiretroviral therapy (ART) guidelines. Mutation in the position E138 in HIV-1 reverse transcriptase (RT) leads to resistance to rilpivirine, alone reducing its susceptibility two to threefolds. The main aim of this study was to determine the dynamics of E138 mutation in the RT domain of the HIV-1 pol gene; in 6398 newly diagnosed and treatment-naive individuals in Turkey from 2013 to 2021. Rilpivirine-associated mutations were found among 424 (6.6%) out of 6398. Individuals with the E138 mutation had significantly higher HIV-1 RNA load than individuals without the E138 mutation (p = .044). The E138 mutation was mainly observed in the B subtype (40%) of HIV-1 compared to the non-B subtypes (26.9%) and the circulating recombinant forms (33.1%) (p < .001). Most E138 mutations were E138A (80%), followed by E138G (16.5%). This study uncovered the dynamics of rilpivirine-associated mutations over a long period and a large patient population. Before administering ART regimens consisting of rilpivirine, resistance monitoring is highly recommended for effective patient management in the treatment-of naive HIV-1-infected individuals.
Collapse
Affiliation(s)
- Murat Sayan
- Clinical Laboratory, PCR Unit, Kocaeli University, Kocaeli, Turkey.,DESAM Research Institute, Near East University, Nicosia, North Cyprus.,Operational Research Center in Healthcare, Near East University, Nicosia, North Cyprus
| | - Nazife Sultanoglu
- DESAM Research Institute, Near East University, Nicosia, North Cyprus.,Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, North Cyprus
| | - Tamer Sanlidag
- DESAM Research Institute, Near East University, Nicosia, North Cyprus
| |
Collapse
|
10
|
Shi Y, Han J, Zhu B, Liu Z, Liang Q, Lan C, Li Z, Li H, Liu Y, Jia L, Li T, Wang X, Li J, Zhang B, Jiang J, Li L. Limited nucleotide changes of HIV-1 subtype B Rev response element in China affect overall Rev-RRE activity and viral replication. Front Microbiol 2022; 13:1044676. [PMID: 36578566 PMCID: PMC9791959 DOI: 10.3389/fmicb.2022.1044676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
The HIV-1 Rev response element (RRE) is a cis-acting RNA element that facilitates the nuclear export of mRNA-containing introns by binding specifically to the Rev protein, enabling a critical step in the viral replication cycle. This study aims to determine the subtype-specific loci of HIV-1 subtype B RRE circulating in China and to analyze their effects on Rev-RRE function and HIV-1 replication. We amplified 71 HIV-1 subtype B RRE full-length sequences from the HIV patients' blood samples collected in China, analyzed the subtype-specific loci on them by comparing them with subtype B in the United States, and predicted their RNA secondary structures. Rev-RRE activity assay was used to test the binding activity of Rev and different RREs. Infectious clones were mutated to test the effect of the subtype-specific loci on replication capacity. In this study, two sites were determined to be the subtype-specific loci of HIV-1 subtype B RRE circulating in China. Both site 186 and site 56-57insAAC can significantly increase the viral mRNA transcription and Rev-RRE activity, but only the site 186 can significantly improve viral replication ability. Collectively, the subtype-specific loci of subtype B RRE circulating in China have a significant effect on the Rev-RRE activity and viral replication. This study investigates the subtype-specific loci of RRE, which are unique to retroviruses and essential for viral replication, and will help to explore the reasons why subtype B circulating in China is more widespread and persistent than American subtype B in China at the genetic level, and will provide theoretical support for the development of more inclusive detection and treatment methods for subtype B circulating in China. At the same time, it will also provide insight into the impact of different subtype HIV-1 genetic characteristics on viral replication.
Collapse
Affiliation(s)
- Yuting Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China,Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bo Zhu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhi Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingmiao Liang
- School of Graduate Studies, Guangxi Medical University, Nanning, China
| | - Chunlin Lan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China,Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhengyang Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Wang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bohan Zhang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China,Junjun Jiang,
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China,*Correspondence: Lin Li,
| |
Collapse
|
11
|
Ismael N, Wilkinson E, Mahumane I, Gemusse H, Giandhari J, Bauhofer A, Vubil A, Mambo P, Singh L, Mabunda N, Bila D, Engelbrecht S, Gudo E, Lessells R, de Oliveira T. Molecular Epidemiology and Trends in HIV-1 Transmitted Drug Resistance in Mozambique 1999–2018. Viruses 2022; 14:v14091992. [PMID: 36146798 PMCID: PMC9505726 DOI: 10.3390/v14091992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
HIV drug resistance (HIVDR) can become a public health concern, especially in low- and middle-income countries where genotypic testing for people initiating antiretroviral therapy (ART) is not available. For first-line regimens to remain effective, levels of transmitted drug resistance (TDR) need to be monitored over time. To determine the temporal trends of TDR in Mozambique, a search for studies in PubMed and sequences in GenBank was performed. Only studies covering the pol region that described HIVDR and genetic diversity from treatment naïve patients were included. A dataset from seven published studies and one novel unpublished study conducted between 1999 and 2018 were included. The Calibrated Population Resistance tool (CPR) and REGA HIV-1 Subtyping Tool version 3 for sequences pooled by sampling year were used to determine resistance mutations and subtypes, respectively. The prevalence of HIVDR amongst treatment-naïve individuals increased over time, reaching 14.4% in 2018. The increase was most prominent for non-nucleoside reverse transcriptase inhibitors (NNRTIs), reaching 12.7% in 2018. Subtype C was predominant in all regions, but a higher genetic variability (19% non-subtype C) was observed in the north region of Mozambique. These findings confirm a higher diversity of HIV in the north of the country and an increased prevalence of NNRTI resistance among treatment naïve individuals over time.
Collapse
Affiliation(s)
- Nalia Ismael
- Instituto Nacional de Saúde (INS), Estrada Nacional N1, Marracuene 3943, Mozambique
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- Correspondence: (N.I.); (T.d.O.)
| | - Eduan Wilkinson
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Isabel Mahumane
- Instituto Nacional de Saúde (INS), Estrada Nacional N1, Marracuene 3943, Mozambique
| | - Hernane Gemusse
- Instituto Nacional de Saúde (INS), Estrada Nacional N1, Marracuene 3943, Mozambique
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Adilson Bauhofer
- Instituto Nacional de Saúde (INS), Estrada Nacional N1, Marracuene 3943, Mozambique
| | - Adolfo Vubil
- Instituto Nacional de Saúde (INS), Estrada Nacional N1, Marracuene 3943, Mozambique
| | - Pirolita Mambo
- Instituto Nacional de Saúde (INS), Estrada Nacional N1, Marracuene 3943, Mozambique
| | - Lavanya Singh
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nédio Mabunda
- Instituto Nacional de Saúde (INS), Estrada Nacional N1, Marracuene 3943, Mozambique
| | - Dulce Bila
- Elizabeth Glaser Pediatric AIDS Foundation in Mozambique, Avenida Agostinho Neto, Maputo 620, Mozambique
| | - Susan Engelbrecht
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Eduardo Gudo
- Instituto Nacional de Saúde (INS), Estrada Nacional N1, Marracuene 3943, Mozambique
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Túlio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7602, South Africa
- Correspondence: (N.I.); (T.d.O.)
| |
Collapse
|
12
|
Cryo-EM structures of wild-type and E138K/M184I mutant HIV-1 RT/DNA complexed with inhibitors doravirine and rilpivirine. Proc Natl Acad Sci U S A 2022; 119:e2203660119. [PMID: 35858448 PMCID: PMC9335299 DOI: 10.1073/pnas.2203660119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The enzyme reverse transcriptase (RT) is a key antiviral target, and nonnucleoside RT inhibitors (NNRTIs) are among the frequently used components of antiretroviral therapy for treating HIV-1 infection. The emergence of drug-resistant mutations continues to pose a challenge in HIV treatment. The RT mutations M184I and E138K emerge in patients receiving rilpivirine. We obtained the structural snapshots of rilpivirine, doravirine, and nevirapine inhibited wild-type and M184I/E138K RT/DNA polymerase complexes by cryo-electron microscopy. Key structural changes observed in the rilpivirine- and doravirine-bound structures have implications for understanding NNRTI drug resistance. Additionally, the cryo-EM structure determination strategy outlined in this study can be adapted to aid drug design targeting smaller and flexible proteins. Structures trapping a variety of functional and conformational states of HIV-1 reverse transcriptase (RT) have been determined by X-ray crystallography. These structures have played important roles in explaining the mechanisms of catalysis, inhibition, and drug resistance and in driving drug design. However, structures of several desired complexes of RT could not be obtained even after many crystallization or crystal soaking experiments. The ternary complexes of doravirine and rilpivirine with RT/DNA are such examples. Structural study of HIV-1 RT by single-particle cryo-electron microscopy (cryo-EM) has been challenging due to the enzyme’s relatively smaller size and higher flexibility. We optimized a protocol for rapid structure determination of RT complexes by cryo-EM and determined six structures of wild-type and E138K/M184I mutant RT/DNA in complexes with the nonnucleoside inhibitors rilpivirine, doravirine, and nevirapine. RT/DNA/rilpivirine and RT/DNA/doravirine complexes have structural differences between them and differ from the typical conformation of nonnucleoside RT inhibitor (NNRTI)–bound RT/double-stranded DNA (dsDNA), RT/RNA–DNA, and RT/dsRNA complexes; the primer grip in RT/DNA/doravirine and the YMDD motif in RT/DNA/rilpivirine have large shifts. The DNA primer 3′-end in the doravirine-bound structure is positioned at the active site, but the complex is in a nonproductive state. In the mutant RT/DNA/rilpivirine structure, I184 is stacked with the DNA such that their relative positioning can influence rilpivirine in the pocket. Simultaneously, E138K mutation opens the NNRTI-binding pocket entrance, potentially contributing to a faster rate of rilpivirine dissociation by E138K/M184I mutant RT, as reported by an earlier kinetic study. These structural differences have implications for understanding molecular mechanisms of drug resistance and for drug design.
Collapse
|
13
|
Parikh UM, Mellors JW. How could HIV-1 drug resistance impact preexposure prophylaxis for HIV prevention? Curr Opin HIV AIDS 2022; 17:213-221. [PMID: 35762376 PMCID: PMC9245149 DOI: 10.1097/coh.0000000000000746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To review current laboratory and clinical data on the frequency and relative risk of drug resistance and range of mutations selected from approved and investigational antiretroviral agents used for preexposure prophylaxis (PrEP) of HIV-1 infection, including tenofovir disproxil fumarate (TDF)-based oral PrEP, dapivirine ring, injectable cabotegravir (CAB), islatravir, lenacapavir and broadly neutralizing antibodies (bNAbs). RECENT FINDINGS The greatest risk of HIV-1 resistance from PrEP with oral TDF/emtricitabine (FTC) or injectable CAB is from starting or continuing PrEP after undiagnosed acute HIV infection. By contrast, the dapivirine intravaginal ring does not appear to select nonnucleoside reverse transcriptase inhibitor resistance in clinical trial settings. Investigational inhibitors including islatravir, lenacapavir, and bNAbs are promising for use as PrEP due to their potential for sustained delivery and low risk of cross-resistance to currently used antiretrovirals, but surveillance for emergence of resistance mutations in more HIV-1 gene regions (gag, env) will be important as the same drugs are being developed for HIV therapy. SUMMARY PrEP is highly effective in preventing HIV infection. Although HIV drug resistance from PrEP use could impact future options in individuals who seroconvert on PrEP, the current risk is low and continued monitoring for the emergence of resistance and cross-resistance during product development, clinical studies, and product roll-out is advised to preserve antiretroviral efficacy for both treatment and prevention.
Collapse
Affiliation(s)
- Urvi M Parikh
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
14
|
The future of long-acting cabotegravir plus rilpivirine therapy: Deeds and misconceptions. Int J Antimicrob Agents 2022; 60:106627. [PMID: 35760225 DOI: 10.1016/j.ijantimicag.2022.106627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 11/23/2022]
Abstract
HIV infection is currently managed as a chronic disease thanks to the improvement of antiretroviral therapy (ART). In this light, treatment is lifelong. Therefore, switch to new regimens is a natural event during long-term therapies to avoid problems related to toxicity, adherence, failure and potential selection of drug resistance. In this context, coformulations of multiple agents in one pill and the development of novel drug classes and drugs with high genetic barrier to resistance are now available. The recent approval of the long-acting once monthly or bimonthly injectable combination of the second-generation strand transfer integrase inhibitor (InSTI) cabotegravir (CAB) together with the non-nucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) represents the most recent achievement along the line of potent and convenient ART. Several pivotal trials (such as LATTE-2, ATLAS, FLAIR, and ATLAS-2M) largely demonstrated the high efficacy and safety of this long-acting formulation used as an induction-maintenance strategy. Few confirmed virological failures (CVF) have been observed. The combination of at least two baseline factors among HIV-1 subtype A6/A1, a body mass index ≥30 kg/m2, and RPV resistance associated mutations, was associated with an increased risk of CVF at week 48. Available data indicate that this long-acting therapeutic strategy is attractive and potent, thus defining the most appropriate patient and how to handle practical issues is warranted.
Collapse
|
15
|
Mortier V, Debaisieux L, Dessilly G, Stoffels K, Vaira D, Vancutsem E, Van Laethem K, Vanroye F, Verhofstede C. Prevalence and evolution of transmitted HIV drug resistance in Belgium between 2013 and 2019. Open Forum Infect Dis 2022; 9:ofac195. [PMID: 35794938 PMCID: PMC9251670 DOI: 10.1093/ofid/ofac195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/08/2022] [Indexed: 11/27/2022] Open
Abstract
Background To assess the prevalence and evolution of transmitted drug resistance (TDR) in Belgium, a total of 3708 baseline human immunodeficiency virus (HIV)-1 polymerase sequences from patients diagnosed between 2013 and 2019 were analyzed. Methods Protease and reverse-transcriptase HIV-1 sequences were collected from the 7 national Aids Reference Laboratories. Subtype determination and drug resistance scoring were performed using the Stanford HIV Drug Resistance Database. Trends over time were assessed using linear regression, and the maximum likelihood approach was used for phylogenetic analysis. Results A total of 17.9% of the patients showed evidence of TDR resulting in at least low-level resistance to 1 drug (Stanford score ≥15). If only the high-level mutations (Stanford score ≥60) were considered, TDR prevalence dropped to 6.3%. The majority of observed resistance mutations impacted the sensitivity for nonnucleoside reverse-transcriptase inhibitors (NNRTIs) (11.4%), followed by nucleoside reverse-transcriptase inhibitors (6.2%) and protease inhibitors (2.4%). Multiclass resistance was observed in 2.4%. Clustered onward transmission was evidenced for 257 of 635 patients (40.5%), spread over 25 phylogenetic clusters. Conclusions The TDR prevalence remained stable between 2013 and 2019 and is comparable to the prevalence in other Western European countries. The high frequency of NNRTI mutations requires special attention and follow-up. Phylogenetic analysis provided evidence for local clustered onward transmission of some frequently detected mutations.
Collapse
Affiliation(s)
- Virginie Mortier
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Laurent Debaisieux
- Aids Reference Laboratory, Université Libre de Bruxelles, CUB Hôpital Erasme, 1070 Brussels, Belgium
| | - Géraldine Dessilly
- Aids Reference Laboratory, Medical Microbiology Unit, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Karolien Stoffels
- Aids Reference Laboratory, Centre Hospitalier Universitaire St. Pierre, 1000 Brussels, Belgium
| | - Dolores Vaira
- Aids Reference Laboratory, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium
| | - Ellen Vancutsem
- Aids Reference Laboratory, Vrije Universiteit Brussel VUB, 1090 Brussels, Belgium
| | - Kristel Van Laethem
- Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium Aids Reference Laboratory, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Fien Vanroye
- Aids Reference Laboratory, Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Chris Verhofstede
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Analytical Assessment of the Vela Diagnostics NGS Assay for HIV Genotyping and Resistance Testing: The Apulian Experience. Int J Mol Sci 2022; 23:ijms23052727. [PMID: 35269868 PMCID: PMC8911269 DOI: 10.3390/ijms23052727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 01/22/2023] Open
Abstract
Drug-resistance monitoring is one of the hardest challenges in HIV management. Next-generation sequencing (NGS) technologies speed up the detection of drug resistance, allowing the adjustment of antiretroviral therapy and enhancing the quality of life of people living with HIV. Recently, the NGS Sentosa® SQ HIV Genotyping Assay (Vela Diagnostics) received approval for in vitro diagnostics use. This work is the first Italian evaluation of the performance of the Vela Diagnostics NGS platform, assessed with 420 HIV-1 clinical samples. A comparison with Sanger sequencing performance is also reported, highlighting the advantages and disadvantages of the Sentosa® NGS assay. The precision of the technology was studied with reference specimens, while intra- and inter-assay reproducibility were evaluated for selected clinical samples. Vela Diagnostics’ NGS assay reached an 87% success rate through 30 runs of analysis in a real-world clinical context. The concordance with Sanger sequencing outcomes was equal to 97.2%. Several detected mismatches were due to NGS’s superior sensitivity to low-frequency variants. A high accuracy was observed in testing reference samples. Repeatability and reproducibility assays highlighted the good performance of the NGS platform. Beyond a few technical issues that call for further optimization, the key improvement will be a better balance between costs and processing speed. Once these issues have been solved, the Sentosa® SQ HIV Genotyping Assay will be the way forward for HIV resistance testing.
Collapse
|
17
|
Kuznetsova A, Lebedev A, Gromov K, Kazennova E, Zazzi M, Incardona F, Sönnerborg A, Bobkova M. Pre-existing singleton E138A mutations in the reverse transcriptase gene do not affect the efficacy of first-line antiretroviral therapy regimens using rilpivirine in human immunodeficiency virus-infected patients. Clin Case Rep 2022; 10:e05373. [PMID: 35140966 PMCID: PMC8813671 DOI: 10.1002/ccr3.5373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/15/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
General consensus suggests that even singleton E138A mutations in HIV reverse transcriptase at baseline are associated with resistance to rilpivirine (RPV). We detected 11 pre-existing E138A carriers treated with RPV in the pan European EuResist database. However, all 11 patients presented with full virological efficacy for first-line RPV-based ART regimens.
Collapse
Affiliation(s)
- Anna Kuznetsova
- Gamaleya Centre for epidemiology and microbiologyMoscowRussia
| | - Aleksey Lebedev
- Gamaleya Centre for epidemiology and microbiologyMoscowRussia
| | | | - Elena Kazennova
- Gamaleya Centre for epidemiology and microbiologyMoscowRussia
| | | | | | | | - Marina Bobkova
- Gamaleya Centre for epidemiology and microbiologyMoscowRussia
| |
Collapse
|
18
|
Parikh UM, Penrose KJ, Heaps AL, Halvas EK, Goetz BJ, Gordon KC, Hardesty R, Sethi R, Schwarzmann W, Szydlo DW, Husnik MJ, Chandran U, Palanee-Phillips T, Baeten JM, Mellors JW. HIV-1 drug resistance among individuals who seroconverted in the ASPIRE dapivirine ring trial. J Int AIDS Soc 2021; 24:e25833. [PMID: 34762770 PMCID: PMC8583424 DOI: 10.1002/jia2.25833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction A potential concern with the use of dapivirine (DPV) for HIV prevention is the selection of a drug‐resistant virus that could spread and reduce the effectiveness of non‐nucleoside reverse transcriptase (NNRTI)‐based first‐line antiretroviral therapy. We evaluated HIV‐1 seroconversions in MTN‐020/ASPIRE for selection of drug resistance and evaluated the genetic basis for observed reductions in susceptibility to DPV. Methods MTN‐020/ASPIRE was a placebo‐controlled, Phase III safety and effectiveness study of DPV ring for HIV‐1 prevention conducted at 15 sites in South Africa, Zimbabwe, Malawi and Uganda between 2012 and 2015. Plasma from individuals who seroconverted in ASPIRE was analysed for HIV‐1 drug resistance using both population Sanger sequencing and next‐generation sequencing (NGS) with unique molecular identifiers to report mutations at ≥1% frequency. DPV susceptibility of plasma‐derived recombinant HIV‐1 containing bulk‐cloned full‐length reverse transcriptase sequences from MTN‐020/ASPIRE seroconversions was determined in TZM‐bl cells. Statistical significance was calculated using the Fisher's exact test. Results Plasma from all 168 HIV seroconversions were successfully tested by Sanger sequencing; 57 of 71 DPV arm and 82 of 97 placebo (PLB) arm participants had NGS results at 1% sensitivity. Overall, 18/168 (11%) had NNRTI mutations including K101E, K103N/S, V106M, V108I, E138A/G, V179D/I/T and H221Y. Five samples from both arms had low‐frequency NNRTI mutations that were not detected by Sanger sequencing. The frequency of NNRTI mutations from the DPV arm (11%) was not different from the PLB arm (10%; p = 0.80). The E138A mutation was detected in both the DPV (3 of 71 [4.2%]) and PLB arm (5 of 97 [5.2%]) and conferred modest reductions in DPV susceptibility in some reverse transcriptase backgrounds but not others. Conclusions HIV‐1 drug resistance including NNRTI resistance did not differ between the DPV and placebo arms of the MTN‐020/ASPIRE study, indicating that drug resistance was not preferentially acquired or selected by the DPV ring and that the preventive benefit of DPV ring outweighs resistance risk.
Collapse
Affiliation(s)
- Urvi M Parikh
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kerri J Penrose
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy L Heaps
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elias K Halvas
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - B Jay Goetz
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kelley C Gordon
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Russell Hardesty
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rahil Sethi
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William Schwarzmann
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel W Szydlo
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Marla J Husnik
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Uma Chandran
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Jared M Baeten
- Departments of Global Health, Medicine, Epidemiology, University of Washington, Seattle, Washington, USA
| | - John W Mellors
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
19
|
Farinacci D, Ciccullo A, Lombardi F, Moschese D, D’Angelillo A, Iannone V, Lamanna F, Passerotto RA, Giambenedetto SD. Evaluation of doravirine-based regimen population target in a large Italian clinical center. Antivir Ther 2021; 26:79-83. [DOI: 10.1177/13596535211056556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Doravirine (DOR) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) approved for HIV-1 infection treatment. Because of its genetic barrier, DOR appears to be a good alternative in switch strategies compared to other NNRTI. Our aim was to evaluate the percentage of people living with HIV (PLWHIV) followed in our center who could be eligible to a DOR-based regimen. Methods We collected data from all treatment-experienced PLWHIV, never exposed to DOR and with a demonstrated virological suppression. We analyzed previous genotypic analyses, clinical history, and previous exposure to NNRTIs. Results We analyzed data from 653 patients, whose characteristics are shown in Table 1. 59% of them presented no resistance mutation (RAM) at genotypic analysis. The most common DOR-related RAM were V106A, Y181V, and Y188L. We also analyzed RAM that can possibly interfere with combination therapy (mostly K65R and M184V). In the end, 81.8% of our patients results to be eligible for a DOR-based therapy regimen. Conclusions DOR represents a good option for switch strategies in virological suppressed PLWHIV. It seems to have a higher genetic barrier and a lower risk for resistance mutation development compared to other NNRTI. In our cohort, we found 81.8% of patients who could be eligible for a regimen containing DOR and almost 2/3 of patients who can be treated with the fixed-dose combination DOR/3TC/TDF.
Collapse
Affiliation(s)
- Damiano Farinacci
- Istituto Clinica di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Arturo Ciccullo
- UOC Malattie Infettive, Ospedale S. Salvatore, L’Aquila, Rome, Italy
| | - Francesca Lombardi
- Istituto Clinica di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Davide Moschese
- UOC Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna D’Angelillo
- Istituto Clinica di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Iannone
- Istituto Clinica di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Lamanna
- Istituto Clinica di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rosa Anna Passerotto
- Istituto Clinica di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Di Giambenedetto
- Istituto Clinica di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
20
|
Charpentier C, Storto A, Soulié C, Ferré VM, Wirden M, Joly V, Lambert-Niclot S, Palich R, Morand-Joubert L, Landman R, Lacombe K, Katlama C, Ghosn J, Marcelin AG, Calvez V, Descamps D. Prevalence of genotypic baseline risk factors for cabotegravir + rilpivirine failure among ARV-naive patients. J Antimicrob Chemother 2021; 76:2983-2987. [PMID: 34015097 DOI: 10.1093/jac/dkab161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/23/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Multivariable baseline factor analysis across cabotegravir + rilpivirine clinical trials showed that HIV-1 subtypes A6/A1 and the presence of rilpivirine resistance-associated mutations (RAMs) were associated with an increased risk of virological failure of this dual therapy. The aim of this study was to describe the prevalence of genotypic baseline risk factors for cabotegravir + rilpivirine failure among ARV-naive patients. PATIENTS AND METHODS From 2010 to 2020, 4212 sequences from ARV-naive patients were collected from three large Parisian academic hospital genotypic databases. Cabotegravir and rilpivirine RAMs were defined according to the ANRS algorithm. RESULTS Among 4212 ARV-naive patients, 38.6% were infected with subtype B, 32.4% with CRF02_AG (32.4%) and 5.1% with subtype A (85.5% being A6/A1 subtype). Overall, the presence of at least one cabotegravir or rilpivirine RAM was 16.2% and 14.3%, respectively. Considering genotypic resistance interpretation, using the ANRS algorithm, 0.74% (n = 31), 7.3% (n = 306) and 0.09% (n = 4) of sequences were resistant to cabotegravir, rilpivirine or both, respectively. The overall prevalence of L74I in integrase and E138A in RT was 13.0% and 3.2%, respectively, and stable over the decade. Thus, adding 183 subtype A6/A1 sequences to 244 sequences interpreted as resistant to rilpivirine led to 427 (10.1%) sequences combining both baseline virological risk factors for cabotegravir + rilpivirine dual-therapy failure. CONCLUSIONS Among large sequence databases, when adding prevalence of rilpivirine-resistant viruses and HIV-1 subtype A6/A1 sequences, 10.1% of patients would not be eligible for cabotegravir + rilpivirine dual therapy. These data re-emphasize the need for a pre-therapeutic genotypic resistance test to detect polymorphisms and transmitted drug resistance and to define HIV-1 subtype.
Collapse
Affiliation(s)
- Charlotte Charpentier
- Service de Virologie, Université de Paris, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Alexandre Storto
- Service de Virologie, Université de Paris, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Cathia Soulié
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| | - Valentine Marie Ferré
- Service de Virologie, Université de Paris, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Marc Wirden
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| | - Véronique Joly
- Service de Maladies Infectieuses et Tropicales, Université de Paris, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Sidonie Lambert-Niclot
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Saint-Antoine Hospital, Laboratoire de Virologie, INSERM-Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Paris, France
| | - Romain Palich
- AP-HP, Hôpital Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, INSERM-Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Paris, France
| | - Laurence Morand-Joubert
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Saint-Antoine Hospital, Laboratoire de Virologie, INSERM-Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Paris, France
| | - Roland Landman
- Service de Maladies Infectieuses et Tropicales, Université de Paris, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Karine Lacombe
- AP-HP, CHU Saint-Antoine, Service de Maladies Infectieuses et Tropicales, INSERM-Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Christine Katlama
- AP-HP, Hôpital Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, INSERM-Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Paris, France
| | - Jade Ghosn
- Service de Maladies Infectieuses et Tropicales, Université de Paris, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| | - Diane Descamps
- Service de Virologie, Université de Paris, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| |
Collapse
|
21
|
Cilento ME, Kirby KA, Sarafianos SG. Avoiding Drug Resistance in HIV Reverse Transcriptase. Chem Rev 2021; 121:3271-3296. [PMID: 33507067 DOI: 10.1021/acs.chemrev.0c00967] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV reverse transcriptase (RT) is an enzyme that plays a major role in the replication cycle of HIV and has been a key target of anti-HIV drug development efforts. Because of the high genetic diversity of the virus, mutations in RT can impart resistance to various RT inhibitors. As the prevalence of drug resistance mutations is on the rise, it is necessary to design strategies that will lead to drugs less susceptible to resistance. Here we provide an in-depth review of HIV reverse transcriptase, current RT inhibitors, novel RT inhibitors, and mechanisms of drug resistance. We also present novel strategies that can be useful to overcome RT's ability to escape therapies through drug resistance. While resistance may not be completely avoidable, designing drugs based on the strategies and principles discussed in this review could decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Maria E Cilento
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| |
Collapse
|
22
|
Soeria‐Atmadja S, Amuge P, Nanzigu S, Bbuye D, Rubin J, Eriksen J, Kekitiinwa A, Obua C, Gustafsson LL, Navér L. Pretreatment HIV drug resistance predicts accumulation of new mutations in ART-naïve Ugandan children. Acta Paediatr 2020; 109:2706-2716. [PMID: 32304595 DOI: 10.1111/apa.15320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 11/27/2022]
Abstract
AIM To assess the prevalence of pretreatment drug resistance (PDR) and its association with virologic outcomes after 24 weeks of antiretroviral therapy (ART), within an urban cohort of Ugandan children. METHODS Prospective observational study. Baseline and 24-week assessments of viral load (VL) and genotypic drug resistance to nucleoside reverse transcriptase inhibitors (NRTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) were performed. RESULTS Ninety-nine ART-naïve children (3-12 years) initiated efavirenz-based ART 2015-2016 and 18/90 (20%) had baseline NRTI/NNRTI associated drug resistance mutations (DRMs). By 24 weeks, 72/93 (77%) children had VL < 40 copies/mL and a total of 23 children had DRMs. Children with PDR accumulated new DRMs with a mean number (SD) of 1.4 (2.35) new mutations compared to 0.26 (0.98) in 67 children with wild-type virus (P = .003). High pretreatment VL and PDR (number of baseline DRMs) predicted viremia (P = .003; P = .023) as well as acquired drug resistance (P = .02; P = .04). CONCLUSION Pretreatment drug resistance to NNRTI/NRTI was common among ART-naïve Ugandan children and predicted viremia and new resistance mutations after only 24 weeks of efavirenz-based therapy. PDR may compromise long-term ART outcomes-especially when access to resistance testing and VL monitoring is poor. The long-term importance of PDR for non-NNRTI-based regimens needs further evaluation.
Collapse
Affiliation(s)
- Sandra Soeria‐Atmadja
- Department of Clinical Science, Intervention and Technology Division of Paediatrics Karolinska Institutet Stockholm Sweden
- Department of Paediatrics Karolinska University Hospital Stockholm Sweden
| | - Pauline Amuge
- Baylor College of Medicine Children’s Foundation‐Uganda Kampala Uganda
| | - Sarah Nanzigu
- Department of Clinical Pharmacology & Therapeutics Makerere University Kampala Uganda
| | - Dickson Bbuye
- Baylor College of Medicine Children’s Foundation‐Uganda Kampala Uganda
| | - Johanna Rubin
- Department of Clinical Science, Intervention and Technology Division of Paediatrics Karolinska Institutet Stockholm Sweden
| | - Jaran Eriksen
- Department of Laboratory Science Division of Clinical Pharmacology Karolinska Institutet Stockholm Sweden
- Department of Public Health Karolinska Institutet Stockholm Sweden
| | | | - Celestino Obua
- College of Health Sciences Mbarara University of Science and Technology Mbarara Uganda
| | - Lars L. Gustafsson
- Department of Laboratory Science Division of Clinical Pharmacology Karolinska Institutet Stockholm Sweden
| | - Lars Navér
- Department of Clinical Science, Intervention and Technology Division of Paediatrics Karolinska Institutet Stockholm Sweden
- Department of Paediatrics Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
23
|
High nonnucleoside reverse transcriptase inhibitor resistance levels in HIV-1-infected Zambian mother-infant pairs. AIDS 2020; 34:1833-1842. [PMID: 32889853 DOI: 10.1097/qad.0000000000002614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE(S) To elucidate relationships in antiretroviral resistance between HIV-1-infected mother-infant pairs by defining the resistance profiles in the mothers and infants and quantifying drug resistance prevalence in the pairs post-Option B+ implementation. DESIGN Collection of dried blood spots from mother-infant pairs during routine HIV-1 screens in Lusaka, Zambia from 2015 to 2018. METHODS DNA was extracted from the dried blood spots, the HIV-1 pol region was amplified, and the purified proviral DNA was sequenced using Sanger sequencing. Drug resistance mutations (DRM) were identified in sequenced DNA using the Stanford HIVdb (https://hivdb.stanford.edu/). RESULTS DRM were detected in 45% (44/97) of samples, and these samples were found to harbor resistance to at least two antiretrovirals. The prevalence of nonnucleoside reverse transcriptase inhibitor resistance was significantly higher than that of other antiretroviral classes. DRM were detected disproportionately in infants (67%; 33/49) compared with mothers (23%; 11/48), but the magnitude of resistance did not differ when resistance was detected. The disparity in drug resistance profiles was reinforced in pairwise comparison of resistance profiles in mother-infant pairs. CONCLUSION While Option B+ is effective in reducing mother-to-child transmission, in cases where this regimen fails, high-level nonnucleoside reverse transcriptase inhibitor resistance is frequently detected in infants. This underscores the importance of pretreatment drug resistance screening in both mothers and infants and emphasizes the necessary change to protease inhibitor-based and integrase inhibitor-based regimens for treatment of HIV-1-infected infants and mothers.
Collapse
|
24
|
Zhuang C, Pannecouque C, De Clercq E, Chen F. Development of non-nucleoside reverse transcriptase inhibitors (NNRTIs): our past twenty years. Acta Pharm Sin B 2020; 10:961-978. [PMID: 32642405 PMCID: PMC7332669 DOI: 10.1016/j.apsb.2019.11.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/08/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus (HIV) is the primary infectious agent of acquired immunodeficiency syndrome (AIDS), and non-nucleoside reverse transcriptase inhibitors (NNRTIs) are the cornerstone of HIV treatment. In the last 20 years, our medicinal chemistry group has made great strides in developing several distinct novel NNRTIs, including 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT), thio-dihydro-alkoxy-benzyl-oxopyrimidine (S-DABO), diaryltriazine (DATA), diarylpyrimidine (DAPY) analogues, and their hybrid derivatives. Application of integrated modern medicinal strategies, including structure-based drug design, fragment-based optimization, scaffold/fragment hopping, molecular/fragment hybridization, and bioisosterism, led to the development of several highly potent analogues for further evaluations. In this paper, we review the development of NNRTIs in the last two decades using the above optimization strategies, including their structure–activity relationships, molecular modeling, and their binding modes with HIV-1 reverse transcriptase (RT). Future directions and perspectives on the design and associated challenges are also discussed.
Collapse
Key Words
- AIDS, acquired immunodeficiency syndrome
- Bioisosterism
- DAPY, diarylpyrimidine
- DAPYs
- DATA, diaryltriazine
- DATAs
- DLV, delavirdine
- DOR, doravirine
- ECD, electronic circular dichroism
- EFV, efavirenz
- ETR, etravirine
- FDA, U.S. Food and Drug Administration
- Fragment-based drug design
- HAART, highly active antiretroviral therapy
- HENT, napthyl-HEPT
- HENTs
- HEPT, 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine
- HIV, human immunodeficiency virus
- HIV-1
- INSTI, integrase inhibitor
- Molecular hybridization
- NNIBP, NNRTI binding pocket
- NNRTI, non-nucleoside reverse transcriptase inhibitor
- NNRTIs
- NRTI, nucleoside reverse transcriptase inhibitor
- NVP, nevirapine
- PI, protease inhibitor
- PK, pharmacokinetic
- PROTAC, proteolysis targeting chimera
- RPV, rilpivirine
- RT, reverse transcriptase
- S-DABO, thio-dihydro-alkoxy-benzyl-oxopyrimidine
- S-DABOs
- SAR, structure–activity relationship
- SBDD, structure-based drug design
- SFC, supercritical fluid chromatography
- SI, selectivity index
- Structure-based optimization
- UNAIDS, the Joint United Nations Programme on HIV/AIDS
- ee, enantiomeric excess
Collapse
Affiliation(s)
- Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Leuven B-3000, Belgium
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Corresponding author.
| |
Collapse
|
25
|
Han S, Sang Y, Wu Y, Tao Y, Pannecouque C, De Clercq E, Zhuang C, Chen FE. Molecular Hybridization-Inspired Optimization of Diarylbenzopyrimidines as HIV-1 Nonnucleoside Reverse Transcriptase Inhibitors with Improved Activity against K103N and E138K Mutants and Pharmacokinetic Profiles. ACS Infect Dis 2020; 6:787-801. [PMID: 31599568 DOI: 10.1021/acsinfecdis.9b00229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular hybridization is a powerful strategy in drug discovery. A series of novel diarylbenzopyrimidine (DABP) analogues were developed by the hybridization of FDA-approved drugs etravirine (ETR) and efavirenz (EFV) as potential HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs). Substituent modifications resulted in the identification of new DABPs with the combination of the strengths of the two drugs, especially compound 12d, which showed promising activity toward the EFV-resistant K103N mutant. 12d also had a favorable pharmacokinetic (PK) profile with liver microsome clearances of 14.4 μL/min/mg (human) and 33.2 μL/min/mg (rat) and an oral bioavailability of 15.5% in rat. However, its activity against the E138K mutant was still unsatisfactory; E138K is the most prevalent NNRTI resistance-associated mutant in ETR treatment. Further optimizations resulted in a highly potent compound (12z) with no substituents on the phenyl ring and a 2-methyl-6-nitro substitution pattern on the 4-cyanovinyl-2,6-disubstitued phenyl motif. The antiviral activity of this compound was much higher than those of ETR and EFV against the WT, E138K, and K103N variants (EC50 = 3.4, 4.3, and 3.6 nM, respectively), and the cytotoxicity was decreased while the selectivity index (SI) was increased. In particular, this compound exhibited acceptable intrinsic liver microsome stability (human, 34.5 μL/min/mg; rat, 33.2 μL/min/mg) and maintained the good PK profile of its parent compound EFV and showed an oral bioavailability of 16.5% in rat. Molecular docking and structure-activity relationship (SAR) analysis provided further insights into the binding of the DABPs with HIV-1 reverse transcriptase and provided a deeper understanding of the key structural features responsible for their interactions.
Collapse
Affiliation(s)
- Sheng Han
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Yali Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Yan Wu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Yuan Tao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| |
Collapse
|
26
|
Liu Y, Zhang Y, Li H, Wang X, Jia L, Han J, Li T, Li J, Li L. Natural presence of the V179D and K103R/V179D mutations associated with resistance to nonnucleoside reverse transcriptase inhibitors in HIV-1 CRF65_cpx strains. BMC Infect Dis 2020; 20:313. [PMID: 32345262 PMCID: PMC7189696 DOI: 10.1186/s12879-020-05007-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 03/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is increasing evidence that HIV-1 genetic diversity can have an impact on drug resistance. The aim of this study is to investigate the epidemiological situation of CRF65_cpx and the impact of natural polymorphisms of this variant on genotypic resistance. METHODS We used the BLAST search program followed by phylogenetic analysis to identify additional CRF65_cpx pol sequences from the Los Alamos HIV Sequence Database. Maximum likelihood phylogeny was estimated to clarify the epidemiological relationship of CRF65_cpx strains. Genotypic resistance was determined by submitting sequences to the Stanford HIV Drug Resistance Database. RESULTS A total of 32 CRF65_cpx pol sequences were obtained. The CRF65_cpx strains were detected in seven provinces with large geographic distance. Yunnan CRF65_cpx sequences were mainly derived from a heterosexual risk group, whereas the CRF65_cpx sequences in other provinces were almost exclusively derived from an MSM population. With one exception of V179E, the other 31 strains harbored V179D mutation. The combination of V179D and K103R, conferring intermediate resistance to EFV and NVP, was detected in seven treatment-naive MSM patients. CONCLUSIONS This study confirmed the expansion CRF65_cpx in China. Furthermore, we found the natural presence of the V179D and K103R/V179D mutations associated with resistance to NNRTIs in HIV-1 CRF65_cpx. Our findings highlight the contribution of polymorphic mutations to drug resistance and underscore the challenges in treating patients harboring CRF65_cpx strains.
Collapse
Affiliation(s)
- Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yu Zhang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xiaolin Wang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
27
|
McCormick KD, Penrose KJ, Brumme CJ, Harrigan PR, Viana RV, Mellors JW, Parikh UM, Wallis CL. Discordance between Etravirine Phenotype and Genotype-Based Predicted Phenotype for Subtype C HIV-1 from First-Line Antiretroviral Therapy Failures in South Africa. Antimicrob Agents Chemother 2020; 64:e02101-19. [PMID: 32071061 PMCID: PMC7179637 DOI: 10.1128/aac.02101-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Etravirine (ETR) is a nonnucleoside reverse transcriptase inhibitor (NNRTI) used in treatment-experienced individuals. Genotypic resistance test-interpretation systems can predict ETR resistance; however, genotype-based algorithms are derived primarily from HIV-1 subtype B and may not accurately predict resistance in non-B subtypes. The frequency of ETR resistance among recombinant subtype C HIV-1 and the accuracy of genotypic interpretation systems were investigated. HIV-1LAI containing full-length RT from HIV-1 subtype C-positive individuals experiencing virologic failure (>10,000 copies/ml and >1 NNRTI resistance-associated mutation) were phenotyped for ETR susceptibility. Fold change (FC) was calculated against a composite 50% effective concentration (EC50) from treatment-naive individuals and three classifications were assigned: (i) <2.9-FC, susceptible; (ii) ≥2.9- to 10-FC, partially resistant; and (iii) >10-FC, fully resistant. The Stanford HIVdb-v8.4 was used for genotype predictions merging the susceptible/potential low-level and low-level/intermediate groups for 3 × 3 comparison. Fifty-four of a hundred samples had reduced ETR susceptibility (≥2.9-FC). The FC correlated with HIVdb-v8.4 (Spearman's rho = 0.62; P < 0.0001); however, 44% of samples were partially (1 resistance classification difference) and 4% completely discordant (2 resistance classification differences). Of the 34 samples with an FC of >10, 26 were HIVdb-v8.4 classified as low-intermediate resistant. Mutations L100I, Y181C, or M230L were present in 27/34 (79%) of samples with an FC of >10 but only in 2/46 (4%) of samples with an FC of <2.9. No other mutations were associated with ETR resistance. Viruses containing the mutation K65R were associated with reduced ETR susceptibility, but 65R reversions did not increase ETR susceptibility. Therefore, genotypic interpretation systems were found to misclassify ETR susceptibility in HIV-1 subtype C samples. Modifications to genotypic algorithms are needed to improve the prediction of ETR resistance for the HIV-1 subtype C.
Collapse
Affiliation(s)
| | | | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - P Richard Harrigan
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raquel V Viana
- BARC-SA and Lancet Laboratories, Johannesburg, South Africa
| | | | - Urvi M Parikh
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
28
|
Long-Acting Rilpivirine (RPV) Preexposure Prophylaxis Does Not Inhibit Vaginal Transmission of RPV-Resistant HIV-1 or Select for High-Frequency Drug Resistance in Humanized Mice. J Virol 2020; 94:JVI.01912-19. [PMID: 31969438 PMCID: PMC7108851 DOI: 10.1128/jvi.01912-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/12/2020] [Indexed: 11/20/2022] Open
Abstract
The antiretroviral drug rilpivirine was developed into a long-acting formulation (RPV LA) to improve adherence for preexposure prophylaxis (PrEP) to prevent HIV-1 transmission. A concern is that RPV LA will not inhibit transmission of drug-resistant HIV-1 and may select for drug-resistant virus. In female humanized mice, we found that RPV LA inhibited vaginal transmission of WT or 3-fold RPV-resistant HIV-1 but not virus with 30-fold RPV resistance. In animals that became infected despite RPV LA PrEP, WT HIV-1 dissemination was delayed until genital and plasma RPV concentrations waned. RPV resistance was detected at similar low frequencies in untreated and PrEP-treated mice that became infected. These results indicate the importance of maintaining RPV at a sustained threshold after virus exposure to prevent dissemination of HIV-1 after vaginal infection and low-frequency resistance mutations conferred low-level resistance, suggesting that RPV resistance is difficult to develop after HIV-1 infection during RPV LA PrEP. As a long-acting formulation of the nonnucleoside reverse transcriptase inhibitor rilpivirine (RPV LA) has been proposed for use as preexposure prophylaxis (PrEP) and the prevalence of transmitted RPV-resistant viruses can be relatively high, we evaluated the efficacy of RPV LA to inhibit vaginal transmission of RPV-resistant HIV-1 in humanized mice. Vaginal challenges of wild-type (WT), Y181C, and Y181V HIV-1 were performed in mice left untreated or after RPV PrEP. Plasma viremia was measured for 7 to 10 weeks, and single-genome sequencing was performed on plasma HIV-1 RNA in mice infected during PrEP. RPV LA significantly prevented vaginal transmission of WT HIV-1 and Y181C HIV-1, which is 3-fold resistant to RPV. However, it did not prevent transmission of Y181V HIV-1, which has 30-fold RPV resistance in the viruses used for this study. RPV LA did delay WT HIV-1 dissemination in infected animals until genital and plasma RPV concentrations waned. Animals that became infected despite RPV LA PrEP did not acquire new RPV-resistant mutations above frequencies in untreated mice or untreated people living with HIV-1, and the mutations detected conferred low-level resistance. These data suggest that high, sustained concentrations of RPV were required to inhibit vaginal transmission of HIV-1 with little or no resistance to RPV but could not inhibit virus with high resistance. HIV-1 did not develop high-level or high-frequency RPV resistance in the majority of mice infected after RPV LA treatment. However, the impact of low-frequency RPV resistance on virologic outcome during subsequent antiretroviral therapy still is unclear. IMPORTANCE The antiretroviral drug rilpivirine was developed into a long-acting formulation (RPV LA) to improve adherence for preexposure prophylaxis (PrEP) to prevent HIV-1 transmission. A concern is that RPV LA will not inhibit transmission of drug-resistant HIV-1 and may select for drug-resistant virus. In female humanized mice, we found that RPV LA inhibited vaginal transmission of WT or 3-fold RPV-resistant HIV-1 but not virus with 30-fold RPV resistance. In animals that became infected despite RPV LA PrEP, WT HIV-1 dissemination was delayed until genital and plasma RPV concentrations waned. RPV resistance was detected at similar low frequencies in untreated and PrEP-treated mice that became infected. These results indicate the importance of maintaining RPV at a sustained threshold after virus exposure to prevent dissemination of HIV-1 after vaginal infection and low-frequency resistance mutations conferred low-level resistance, suggesting that RPV resistance is difficult to develop after HIV-1 infection during RPV LA PrEP.
Collapse
|
29
|
Liu Y, Li H, Wang X, Han J, Jia L, Li T, Li J, Li L. Natural presence of V179E and rising prevalence of E138G in HIV-1 reverse transcriptase in CRF55_01B viruses. INFECTION GENETICS AND EVOLUTION 2019; 77:104098. [PMID: 31678241 DOI: 10.1016/j.meegid.2019.104098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that naturally occurring HIV-1 genetic diversity can have an impact on drug resistance. Recently, our previous study has demonstrated the natural presence of the V179D and K103R/V179D mutations associated with resistance to nonnucleoside reverse transcriptase inhibitors (NNRTIs) in HIV-1 CRF65_cpx strains. The aim of this study is to investigate the presence of natural drug-resistance mutations (DRMs) in other HIV-1 subtypes or CRFs circulating in China. A total of 14,403 pol sequences from China were retrieved from the Los Alamos HIV Sequence Database, 10,041 of which were treatment naïve and presented substantial genetic diversity. Besides the natural presence of V179D and K103R/V179D in CRF65_cpx, the natural presence of V179E was found in CRF55_01B. In all but one of the 228 patients infected with CRF55_01B, NNRTI resistance mutation V179E was present and the combination of V179E and E138G was detected in 14 treatment-naïve patients, with a rate of 6.2%. A significant trend for increasing prevalence of E138G mutation in CRF55_01B strains over time was observed (p < .001). Phylogenetic analysis was conducted to clarify the epidemiological relationship of CRF55_01B strains. Most of the sequences containing E138G mutation scattered in the big CRF55_01B cluster, which indicated the rising prevalence of E138G was mainly due to multiple mutation events rather than local transmission clusters of a particular variant containing E138G mutation. Our findings highlight the importance of molecular surveillance of CRF55_01B strains and the urgent need for implementation of effective preventive measures to reduce the transmission of CRF55_01B.
Collapse
Affiliation(s)
- Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaolin Wang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
30
|
Paneth A, Płonka W, Paneth P. Assessment of Nonnucleoside Inhibitors Binding to HIV-1 Reverse Transcriptase Using HYDE Scoring. Pharmaceuticals (Basel) 2019; 12:ph12020064. [PMID: 31022835 PMCID: PMC6631718 DOI: 10.3390/ph12020064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 11/24/2022] Open
Abstract
In this study, 48 inhibitors were docked to 107 allosteric centers of human immunodeficiency virus 1 (HIV-1) reverse transcriptase from the Protein Data Bank (PDB). Based on the average binding scores, quantitative structure-activity relationship (QSAR) equations were constructed in order to elucidate directions of further development in the design of inhibitors. Such developments, informed by structural data, must have a focus on activity against mutated forms of the enzyme, which are the cause of the emergence of multidrug-resistant viral strains. Docking studies employed the HYDE scoring function. Two types of QSARs have been considered: One based on topological descriptors and the other on structural fragments of the inhibitors. Both methods gave similar results, indicating substructures favoring binding to mutated forms of the enzyme.
Collapse
Affiliation(s)
- Agata Paneth
- Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland.
| | | | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| |
Collapse
|
31
|
Huang B, Chen W, Zhao T, Li Z, Jiang X, Ginex T, Vílchez D, Luque FJ, Kang D, Gao P, Zhang J, Tian Y, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Exploiting the Tolerant Region I of the Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) Binding Pocket: Discovery of Potent Diarylpyrimidine-Typed HIV-1 NNRTIs against Wild-Type and E138K Mutant Virus with Significantly Improved Water Solubility and Favorable Safety Profiles. J Med Chem 2019; 62:2083-2098. [PMID: 30721060 DOI: 10.1021/acs.jmedchem.8b01729] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Wenmin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021 Shandong, China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - David Vílchez
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Francisco Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Dirk Daelemans
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| |
Collapse
|
32
|
Machnowska P, Meixenberger K, Schmidt D, Jessen H, Hillenbrand H, Gunsenheimer-Bartmeyer B, Hamouda O, Kücherer C, Bannert N. Prevalence and persistence of transmitted drug resistance mutations in the German HIV-1 Seroconverter Study Cohort. PLoS One 2019; 14:e0209605. [PMID: 30650082 PMCID: PMC6334938 DOI: 10.1371/journal.pone.0209605] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/07/2018] [Indexed: 02/03/2023] Open
Abstract
The prevalence of transmitted drug resistance (TDR) in antiretroviral therapy (ART)-naïve individuals remains stable in most developed countries despite a decrease in the prevalence of acquired drug resistance. This suggests that persistence and further transmission of HIV-1 that encodes transmitted drug resistance mutations (TDRMs) is occurring in ART-naïve individuals. In this study, we analysed the prevalence and persistence of TDRMs in the protease and reverse transcriptase-sequences of ART-naïve patients within the German HIV-1 Seroconverter Study Cohort who were infected between 1996 and 2017. The prevalence of TDRMs and baseline susceptibility to antiretroviral drugs were assessed using the Stanford HIVdb list and algorithm. Mean survival times of TDRMs were calculated by Kaplan-Meier analysis. The overall prevalence of TDR was 17.2% (95% CI 15.7–18.6, N = 466/2715). Transmitted NNRTI resistance was observed most frequently with 7.8% (95% CI 6.8–8.8), followed by NRTI resistance (5.0%, 95% CI 4.2–5.9) and PI resistance (2.8%, 95% CI 2.2–3.4). Total TDR (OR = 0.89, p = 0.034) and transmitted NRTI resistance (OR = 0.65, p = 0.000) decreased between 1996 and 2017 but has remained stable during the last decade. Viral susceptibility to NNRTIs (6.5%-6.9% for individual drugs) was mainly reduced, while <3% of the recommended NRTIs and PIs were affected. The longest mean survival times were calculated for the NNRTI mutations K103N (5.3 years, 95% CI 4.2–5.6) and E138A/G/K (8.0 years, 95% CI 5.8–10.2 / 7.9 years, 95% CI 5.4–10.3 / 6.7 years, 95% CI 6.7–6.7) and for the NRTI mutation M41L (6.4 years, 95% CI 6.0–6.7).The long persistence of single TDRMs indicates that onward transmission from ART-naïve individuals is the main cause for TDR in Germany. Transmitted NNRTI resistance was the most frequent TDR, showing simultaneously the highest impact on baseline ART susceptibility and on TDRMs with prolonged persistence. These results give cause for concern regarding the use of NNRTI in first-line regimens.
Collapse
Affiliation(s)
- Patrycja Machnowska
- Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
- * E-mail: (NB); (PM)
| | | | - Daniel Schmidt
- Division of HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Berlin, Germany
| | | | | | | | - Osamah Hamouda
- Division of HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Berlin, Germany
| | - Claudia Kücherer
- Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Norbert Bannert
- Division of HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (NB); (PM)
| | | |
Collapse
|
33
|
Yang Y, Kang D, Nguyen LA, Smithline ZB, Pannecouque C, Zhan P, Liu X, Steitz TA. Structural basis for potent and broad inhibition of HIV-1 RT by thiophene[3,2- d]pyrimidine non-nucleoside inhibitors. eLife 2018; 7:e36340. [PMID: 30044217 PMCID: PMC6080946 DOI: 10.7554/elife.36340] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022] Open
Abstract
Rapid generation of drug-resistant mutations in HIV-1 reverse transcriptase (RT), a prime target for anti-HIV therapy, poses a major impediment to effective anti-HIV treatment. Our previous efforts have led to the development of two novel non-nucleoside reverse transcriptase inhibitors (NNRTIs) with piperidine-substituted thiophene[3,2-d]pyrimidine scaffolds, compounds K-5a2 and 25a, which demonstrate highly potent anti-HIV-1 activities and improved resistance profiles compared with etravirine and rilpivirine, respectively. Here, we have determined the crystal structures of HIV-1 wild-type (WT) RT and seven RT variants bearing prevalent drug-resistant mutations in complex with K-5a2 or 25a at ~2 Å resolution. These high-resolution structures illustrate the molecular details of the extensive hydrophobic interactions and the network of main chain hydrogen bonds formed between the NNRTIs and the RT inhibitor-binding pocket, and provide valuable insights into the favorable structural features that can be employed for designing NNRTIs that are broadly active against drug-resistant HIV-1 variants.
Collapse
Affiliation(s)
- Yang Yang
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Howard Hughes Medical InstituteYale UniversityNew HavenUnited States
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Laura A Nguyen
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | - Zachary B Smithline
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | | | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Thomas A Steitz
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Howard Hughes Medical InstituteYale UniversityNew HavenUnited States
- Department of ChemistryYale UniversityNew HavenUnited States
| |
Collapse
|
34
|
Chiang RZH, Gan SKE, Su CTT. A computational study for rational HIV-1 non-nucleoside reverse transcriptase inhibitor selection and the discovery of novel allosteric pockets for inhibitor design. Biosci Rep 2018; 38:BSR20171113. [PMID: 29437904 PMCID: PMC5835713 DOI: 10.1042/bsr20171113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/15/2022] Open
Abstract
HIV drug resistant mutations that render the current Highly Active Anti-Retroviral Therapy (HAART) cocktail drugs ineffective are increasingly reported. To study the mechanisms of these mutations in conferring drug resistance, we computationally analyzed 14 reverse transcriptase (RT) structures of HIV-1 on the following parameters: drug-binding pocket volume, allosteric effects caused by the mutations, and structural thermal stability. We constructed structural correlation-based networks of the mutant RT-drug complexes and the analyses support the use of efavirenz (EFZ) as the first-line drug, given that cross-resistance is least likely to develop from EFZ-resistant mutations. On the other hand, rilpivirine (RPV)-resistant mutations showed the highest cross-resistance to the other non-nucleoside RT inhibitors. With significant drug cross-resistance associated with the known allosteric drug-binding site, there is a need to identify new allosteric druggable sites in the structure of RT. Through computational analyses, we found such a novel druggable pocket on the HIV-1 RT structure that is comparable with the original allosteric drug site, opening the possibility to the design of new inhibitors.
Collapse
Affiliation(s)
- Ron Zhi-Hui Chiang
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore 138671
| | - Samuel Ken-En Gan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore 138671
- p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), Singapore 138648
| | - Chinh Tran-To Su
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore 138671
| |
Collapse
|
35
|
Capetti AF, Cossu MV, Paladini L, Rizzardini G. Dolutegravir plus rilpivirine dual therapy in treating HIV-1 infection. Expert Opin Pharmacother 2017; 19:65-77. [PMID: 29246084 DOI: 10.1080/14656566.2017.1417984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The HIV-infected population is aging and comorbidities and polypharmacological regimens are increasing. To reduce toxicity and drug burden researchers are evaluating the efficacy, safety and durability of dual therapies as a switch option in subjects who have achieved stable virologic suppression. Initially effective dual combinations relied on protease inhibitors but when dolutegravir, the first integrase inhibitor to display a high genetic barrier, became commercially available, many physicians began to use it in a variety of dual regimens, generating several observational cohorts. Areas covered: This review covers the most recent data from observational cohorts and randomized clinical trials concerning the switch to the dual combination of dolutegravir plus rilpivirine and the reasons that lead to consider this option. Also, viral failures, due to poor adherence or to other factors, and drug resistance are investigated. Articles which are searchable on MEDLINE/PubMed and from the main national/international congresses in the field of HIV therapy are reviewed. Expert opinion: The observation period for this regimen is getting longer and data showing its efficacy in maintaining HIV-1 RNA < 50 copies/mL are now consolidated. Metabolic data suggest some benefit in the lipid profile, improvement in bone mineral density and reduced bone reabsorption.
Collapse
Affiliation(s)
- Amedeo F Capetti
- a First Division of Infectious Diseases , ASST Fatebenefratelli-Sacco , Milano , Italy
| | - Maria V Cossu
- a First Division of Infectious Diseases , ASST Fatebenefratelli-Sacco , Milano , Italy
| | - Laura Paladini
- a First Division of Infectious Diseases , ASST Fatebenefratelli-Sacco , Milano , Italy
| | - Giuliano Rizzardini
- a First Division of Infectious Diseases , ASST Fatebenefratelli-Sacco , Milano , Italy.,b School of Clinical Medicine, Faculty of Health Sciences , Whitwaterstrand University , Johannesburg , South Africa
| |
Collapse
|
36
|
Kang D, Ding X, Wu G, Huo Z, Zhou Z, Zhao T, Feng D, Wang Z, Tian Y, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Discovery of Thiophene[3,2- d]pyrimidine Derivatives as Potent HIV-1 NNRTIs Targeting the Tolerant Region I of NNIBP. ACS Med Chem Lett 2017; 8:1188-1193. [PMID: 29152052 DOI: 10.1021/acsmedchemlett.7b00361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Our previous studies led us to conclude that thiophene[3,2-d]pyrimidine is a promising scaffold for diarylpyrimidine (DAPY)-type anti-HIV agents with potent activity against resistance-associated human immunodeficiency virus (HIV) variants (J. Med. Chem. 2016, 59, 7991-8007; J. Med. Chem. 2017, 60, 4424-4443). In the present study, we designed and synthesized a series of thiophenepyrimidine derivatives with various substituents in the right wing region of the structure with the aim of developing new interactions with the tolerant region I of the binding pocket of the HIV-1 non-nucleoside reverse transcriptase (NNRTI), and we evaluated their activity against a panel of mutant HIV-1 strains. All the derivatives exhibited moderate to excellent potency against wild-type (WT) HIV-1 in MT-4 cells. Among them, sulfonamide compounds 9b and 9d were single-figure-nanomolar inhibitors with EC50 values of 9.2 and 7.1 nM, respectively. Indeed, 9a and 9d were effective against the whole viral panel except RES056. Notably, both compounds showed potent antiviral activity against K103N (EC50 = 0.032 and 0.070 μM) and E138K (EC50 = 0.035 and 0.045 μM, respectively). Furthermore, 9a and 9d exhibited high affinity for WT HIV-1 RT (IC50 = 1.041 and 1.138 μM, respectively) and acted as classical NNRT inhibitors (NNRTIs). These results are expected to be helpful in the design of thiophenepyrimidine-based NNRTIs with more potent activity against HIV strains with RT mutations.
Collapse
Affiliation(s)
- Dongwei Kang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Xiao Ding
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Gaochan Wu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhipeng Huo
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhongxia Zhou
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Tong Zhao
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Da Feng
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhao Wang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Ye Tian
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Dirk Daelemans
- Rega
Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega
Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega
Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Xinyong Liu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| |
Collapse
|
37
|
Paneth A, Płonka W, Paneth P. What do docking and QSAR tell us about the design of HIV-1 reverse transcriptase nonnucleoside inhibitors? J Mol Model 2017; 23:317. [PMID: 29046967 PMCID: PMC5655543 DOI: 10.1007/s00894-017-3489-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/25/2017] [Indexed: 11/30/2022]
Abstract
Despite vigorous studies, effective nonnucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) are still in demand, not only due to toxicity and detrimental side effects of currently used drugs but also because of the emergence of multidrug-resistant viral strains. In this contribution, we present results of docking of 47 inhibitors to 107 allosteric centers of HIV-1 reverse transcriptase. Based on the average binding scores, we have constructed QSAR equations to elucidate directions of further developments in the inhibitor design that come from this structural data.
Collapse
Affiliation(s)
- Agata Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
- Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | | | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland.
| |
Collapse
|
38
|
Allavena C, Rodallec A, Leplat A, Hall N, Luco C, Le Guen L, Bernaud C, Bouchez S, André-Garnier E, Boutoille D, Ferré V, Raffi F. Interest of proviral HIV-1 DNA genotypic resistance testing in virologically suppressed patients candidate for maintenance therapy. J Virol Methods 2017; 251:106-110. [PMID: 29042218 DOI: 10.1016/j.jviromet.2017.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 01/08/2023]
Abstract
Switch of antiretroviral therapy in virologically suppressed HIV-infected patients is frequent, to prevent toxicities, for simplification or convenience reasons. Pretherapeutic genotypic resistance testing on RNA can be lacking in some patients, which could enhance the risk of virologic failure, if resistance-associated mutations of the new regimen are not taken into account. Proviral DNA resistance testing in 69 virologically suppressed patients on antiretroviral treatment with no history of virological failure were pair-wised compared with pre-ART plasma RNA resistance testing. The median time between plasma (RNA testing) and whole blood (proviral DNA testing) was 47 months (IQR 29-63). A stop codon was evidenced in 23% (16/69) of proviral DNA sequences; these strains were considered as defective, non-replicative, and not taken into consideration. Within the non defective strains, concordance rate between plasma RNA and non-defective proviral DNA was high both on protease (194/220 concordant resistance-associated mutations=88%) and reverse transcriptase (28/37 concordant resistance-associated mutations=76%) genes. This study supports that proviral DNA testing might be an informative tool before switching antiretrovirals in virologically suppressed patients with no history of virological failure, but the interpretation should be restricted to non-defective viruses.
Collapse
Affiliation(s)
- C Allavena
- Infectious Diseases Department, CHU Hotel Dieu, University Hospital, Nantes, France; UIC 1413, INSERM, Nantes, France.
| | - A Rodallec
- Virology, CHU Hotel Dieu, University Hospital, Nantes, France; UIC 1413, INSERM, Nantes, France
| | - A Leplat
- Virology, CHU Hotel Dieu, University Hospital, Nantes, France
| | - N Hall
- Infectious Diseases Department, CHU Hotel Dieu, University Hospital, Nantes, France; UIC 1413, INSERM, Nantes, France
| | - C Luco
- Virology, CHU Hotel Dieu, University Hospital, Nantes, France
| | - L Le Guen
- Virology, CHU Hotel Dieu, University Hospital, Nantes, France
| | - C Bernaud
- Infectious Diseases Department, CHU Hotel Dieu, University Hospital, Nantes, France; UIC 1413, INSERM, Nantes, France
| | - S Bouchez
- Infectious Diseases Department, CHU Hotel Dieu, University Hospital, Nantes, France; UIC 1413, INSERM, Nantes, France
| | - E André-Garnier
- Virology, CHU Hotel Dieu, University Hospital, Nantes, France; UIC 1413, INSERM, Nantes, France
| | - D Boutoille
- Infectious Diseases Department, CHU Hotel Dieu, University Hospital, Nantes, France; UIC 1413, INSERM, Nantes, France
| | - V Ferré
- Virology, CHU Hotel Dieu, University Hospital, Nantes, France; UIC 1413, INSERM, Nantes, France
| | - F Raffi
- Infectious Diseases Department, CHU Hotel Dieu, University Hospital, Nantes, France; UIC 1413, INSERM, Nantes, France
| |
Collapse
|
39
|
Kang D, Fang Z, Huang B, Lu X, Zhang H, Xu H, Huo Z, Zhou Z, Yu Z, Meng Q, Wu G, Ding X, Tian Y, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Structure-Based Optimization of Thiophene[3,2-d]pyrimidine Derivatives as Potent HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Improved Potency against Resistance-Associated Variants. J Med Chem 2017; 60:4424-4443. [PMID: 28481112 DOI: 10.1021/acs.jmedchem.7b00332] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work follows on from our initial discovery of a series of piperidine-substituted thiophene[3,2-d]pyrimidine HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) ( J. Med. Chem. 2016 , 59 , 7991 - 8007 ). In the present study, we designed, synthesized, and biologically tested several series of new derivatives in order to investigate previously unexplored chemical space. Some of the synthesized compounds displayed single-digit nanomolar anti-HIV potencies against wild-type (WT) virus and a panel of NNRTI-resistant mutant viruses in MT-4 cells. Compound 25a was exceptionally potent against the whole viral panel, affording 3-4-fold enhancement of in vitro antiviral potency against WT, L100I, K103N, Y181C, Y188L, E138K, and K103N+Y181C and 10-fold enhancement against F227L+V106A relative to the reference drug etravirine (ETV) in the same cellular assay. The structure-activity relationships, pharmacokinetics, acute toxicity, and cardiotoxicity were also examined. Overall, the results indicate that 25a is a promising new drug candidate for treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Zengjun Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China.,The Second Hospital of Shandong University , no. 247 Beiyuan Avenue, Jinan 250033, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Xueyi Lu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Haoran Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Zhipeng Huo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Zhao Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Qing Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| |
Collapse
|
40
|
Smoleń-Dzirba J, Rosińska M, Kruszyński P, Bratosiewicz-Wąsik J, Wojtyczka R, Janiec J, Szetela B, Beniowski M, Bociąga-Jasik M, Jabłonowska E, Wąsik TJ, The Cascade Collaboration In EuroCoord A. Prevalence of Transmitted Drug-Resistance Mutations and Polymorphisms in HIV-1 Reverse Transcriptase, Protease, and gp41 Sequences Among Recent Seroconverters in Southern Poland. Med Sci Monit 2017; 23:682-694. [PMID: 28167814 PMCID: PMC5310230 DOI: 10.12659/msm.898656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Monitoring of drug resistance-related mutations among patients with recent HIV-1 infection offers an opportunity to describe current patterns of transmitted drug resistance (TDR) mutations. Material/Methods Of 298 individuals newly diagnosed from March 2008 to February 2014 in southern Poland, 47 were deemed to have recent HIV-1 infection by the limiting antigen avidity immunoassay. Proviral DNA was amplified and sequenced in the reverse transcriptase, protease, and gp41 coding regions. Mutations were interpreted according to the Stanford Database algorithm and/or the International Antiviral Society USA guidelines. TDR mutations were defined according to the WHO surveillance list. Results Among 47 patients with recent HIV-1 infection only 1 (2%) had evidence of TDR mutation. No major resistance mutations were found, but the frequency of strains with ≥1 accessory resistance-associated mutations was high, at 98%. Accessory mutations were present in 11% of reverse transcriptase, 96% of protease, and 27% of gp41 sequences. Mean number of accessory resistance mutations in the reverse transcriptase and protease sequences was higher in viruses with no compensatory mutations in the gp41 HR2 domain than in strains with such mutations (p=0.031). Conclusions Despite the low prevalence of strains with TDR mutations, the frequency of accessory mutations was considerable, which may reflect the history of drug pressure among transmitters or natural viral genetic diversity, and may be relevant for future clinical outcomes. The accumulation of the accessory resistance mutations within the pol gene may restrict the occurrence of compensatory mutations related to enfuvirtide resistance or vice versa.
Collapse
Affiliation(s)
- Joanna Smoleń-Dzirba
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Magdalena Rosińska
- Department of Epidemiology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Piotr Kruszyński
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Jolanta Bratosiewicz-Wąsik
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Robert Wojtyczka
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Janusz Janiec
- Department of Epidemiology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Bartosz Szetela
- Department of Infectious Diseases, Hepatology, and Acquired Immune Deficiencies, Wrocław Medical University, Wrocław, Poland
| | - Marek Beniowski
- Outpatient Clinic for AIDS Diagnostics and Therapy, Specialistic Hospital in Chorzów, Chorzów, Poland
| | - Monika Bociąga-Jasik
- Department of Infectious Diseases, Jagiellonian University Medical College, Cracow, Poland
| | - Elżbieta Jabłonowska
- Department of Infectious Diseases and Hepatology, Medical University of Łódź, Łódź, Poland
| | - Tomasz J Wąsik
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
41
|
Calvez V, Marcelin AG, Vingerhoets J, Hill A, Hadacek B, Moecklinghoff C. Systematic review to determine the prevalence of transmitted drug resistance mutations to rilpivirine in HIV-infected treatment-naive persons. Antivir Ther 2016; 21:405-12. [PMID: 26761642 DOI: 10.3851/imp3024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Transmitted drug resistance to antiretrovirals in HIV-1-infected individuals is rising in some regions and could compromise the effectiveness of first-line treatment. It is important to understand the prevalence of resistance to rilpivirine to inform treatment provision. METHODS A PUBMED/EMBASE search identified analyses of transmitted genotypic resistance to specific non-nucleoside reverse transcriptase inhibitor mutations worldwide. Patients were to be HIV-1-infected and antiretroviral-naive. Rilpivirine mutations assessed were: L100I, K101E/P, E138A/G/K/Q/R, V179L, Y181C/I/V, Y188L, H221Y, F227C and M230I/L. Additionally, frequency of resistance mutations were extracted and pooled by HIV subtype from the Stanford HIV drug resistance database. RESULTS 138 eligible articles from 65 countries were identified (n=64,466). Among these 64,466 samples, 7 of the 9 genotypic rilpivirine mutations had a prevalence <0.1%. Two mutations were more prevalent: E138A/G/K/Q/R (0.7%, 95% CI 0.2, 1.3) and Y181C/I/V (0.3%, 95% CI 0.2, 0.4). Prevalence of E138 rilpivirine-related mutations varied between regions: highest in Latin America/Caribbean (3.6%, 95% CI 1.0, 7.6) and in Europe (3.2%, 95% CI 0.7, 6.9). Pooled results from the Stanford database (n=52,680) correlated with these findings indicating a low prevalence of 8/9 rilpivirine mutations (<0.1%), except for E138A/G/K/Q/R (2.9%, 95% CI 1.8, 4.4). Prevalence of the mutations at E138 varied significantly by HIV subtype and was highest for subtype-C (6.1%), subtype-F (5.1%) and subtype-A (3.3%). CONCLUSIONS The prevalence of most transmitted rilpivirine-related HIV mutations is generally low in treatment-naive HIV-1-infected individuals (<0.1%). The prevalence of E138A/G/K/Q/R mutations is higher (0.7%) and varies according to geographical region and HIV subtype.
Collapse
Affiliation(s)
- Vincent Calvez
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, INSERM, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris, F-75013, France
| | | | | | | | | | | |
Collapse
|
42
|
Hofstra LM, Sauvageot N, Albert J, Alexiev I, Garcia F, Struck D, Van de Vijver DAMC, Åsjö B, Beshkov D, Coughlan S, Descamps D, Griskevicius A, Hamouda O, Horban A, Van Kasteren M, Kolupajeva T, Kostrikis LG, Liitsola K, Linka M, Mor O, Nielsen C, Otelea D, Paraskevis D, Paredes R, Poljak M, Puchhammer-Stöckl E, Sönnerborg A, Staneková D, Stanojevic M, Van Laethem K, Zazzi M, Zidovec Lepej S, Boucher CAB, Schmit JC, Wensing AMJ, Puchhammer-Stockl E, Sarcletti M, Schmied B, Geit M, Balluch G, Vandamme AM, Vercauteren J, Derdelinckx I, Sasse A, Bogaert M, Ceunen H, De Roo A, De Wit S, Echahidi F, Fransen K, Goffard JC, Goubau P, Goudeseune E, Yombi JC, Lacor P, Liesnard C, Moutschen M, Pierard D, Rens R, Schrooten Y, Vaira D, Vandekerckhove LPR, Van den Heuvel A, Van Der Gucht B, Van Ranst M, Van Wijngaerden E, Vandercam B, Vekemans M, Verhofstede C, Clumeck N, Van Laethem K, Beshkov D, Alexiev I, Lepej SZ, Begovac J, Kostrikis L, Demetriades I, Kousiappa I, Demetriou V, Hezka J, Linka M, Maly M, Machala L, Nielsen C, Jørgensen LB, Gerstoft J, Mathiesen L, Pedersen C, Nielsen H, Laursen A, Kvinesdal B, Liitsola K, Ristola M, Suni J, Sutinen J, Descamps D, Assoumou L, Castor G, Grude M, Flandre P, Storto A, Hamouda O, Kücherer C, Berg T, Braun P, Poggensee G, Däumer M, Eberle J, Heiken H, Kaiser R, Knechten H, Korn K, Müller H, Neifer S, Schmidt B, Walter H, Gunsenheimer-Bartmeyer B, Harrer T, Paraskevis D, Hatzakis A, Zavitsanou A, Vassilakis A, Lazanas M, Chini M, Lioni A, Sakka V, Kourkounti S, Paparizos V, Antoniadou A, Papadopoulos A, Poulakou G, Katsarolis I, Protopapas K, Chryssos G, Drimis S, Gargalianos P, Xylomenos G, Lourida G, Psichogiou M, Daikos GL, Sipsas NV, Kontos A, Gamaletsou MN, Koratzanis G, Sambatakou H, Mariolis H, Skoutelis A, Papastamopoulos V, Georgiou O, Panagopoulos P, Maltezos E, Coughlan S, De Gascun C, Byrne C, Duffy M, Bergin C, Reidy D, Farrell G, Lambert J, O'Connor E, Rochford A, Low J, Coakely P, O'Dea S, Hall W, Mor O, Levi I, Chemtob D, Grossman Z, Zazzi M, de Luca A, Balotta C, Riva C, Mussini C, Caramma I, Capetti A, Colombo MC, Rossi C, Prati F, Tramuto F, Vitale F, Ciccozzi M, Angarano G, Rezza G, Kolupajeva T, Vasins O, Griskevicius A, Lipnickiene V, Schmit JC, Struck D, Sauvageot N, Hemmer R, Arendt V, Michaux C, Staub T, Sequin-Devaux C, Wensing AMJ, Boucher CAB, van de Vijver DAMC, van Kessel A, van Bentum PHM, Brinkman K, Connell BJ, van der Ende ME, Hoepelman IM, van Kasteren M, Kuipers M, Langebeek N, Richter C, Santegoets RMWJ, Schrijnders-Gudde L, Schuurman R, van de Ven BJM, Åsjö B, Kran AMB, Ormaasen V, Aavitsland P, Horban A, Stanczak JJ, Stanczak GP, Firlag-Burkacka E, Wiercinska-Drapalo A, Jablonowska E, Maolepsza E, Leszczyszyn-Pynka M, Szata W, Camacho R, Palma C, Borges F, Paixão T, Duque V, Araújo F, Otelea D, Paraschiv S, Tudor AM, Cernat R, Chiriac C, Dumitrescu F, Prisecariu LJ, Stanojevic M, Jevtovic D, Salemovic D, Stanekova D, Habekova M, Chabadová Z, Drobkova T, Bukovinova P, Shunnar A, Truska P, Poljak M, Lunar M, Babic D, Tomazic J, Vidmar L, Vovko T, Karner P, Garcia F, Paredes R, Monge S, Moreno S, Del Amo J, Asensi V, Sirvent JL, de Mendoza C, Delgado R, Gutiérrez F, Berenguer J, Garcia-Bujalance S, Stella N, de Los Santos I, Blanco JR, Dalmau D, Rivero M, Segura F, Elías MJP, Alvarez M, Chueca N, Rodríguez-Martín C, Vidal C, Palomares JC, Viciana I, Viciana P, Cordoba J, Aguilera A, Domingo P, Galindo MJ, Miralles C, Del Pozo MA, Ribera E, Iribarren JA, Ruiz L, de la Torre J, Vidal F, Clotet B, Albert J, Heidarian A, Aperia-Peipke K, Axelsson M, Mild M, Karlsson A, Sönnerborg A, Thalme A, Navér L, Bratt G, Karlsson A, Blaxhult A, Gisslén M, Svennerholm B, Bergbrant I, Björkman P, Säll C, Mellgren Å, Lindholm A, Kuylenstierna N, Montelius R, Azimi F, Johansson B, Carlsson M, Johansson E, Ljungberg B, Ekvall H, Strand A, Mäkitalo S, Öberg S, Holmblad P, Höfer M, Holmberg H, Josefson P, Ryding U. Transmission of HIV Drug Resistance and the Predicted Effect on Current First-line Regimens in Europe. Clin Infect Dis 2015; 62:655-663. [PMID: 26620652 PMCID: PMC4741360 DOI: 10.1093/cid/civ963] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/06/2015] [Indexed: 11/13/2022] Open
Abstract
Transmitted human immunodeficiency virus drug resistance in Europe is stable at around 8%. The impact of baseline mutation patterns on susceptibility to antiretroviral drugs should be addressed using clinical guidelines. The impact on baseline susceptibility is largest for nonnucleoside reverse transcriptase inhibitors. Background. Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, these baseline resistance data enable transmitted drug resistance (TDR) to be surveyed for public health purposes. The SPREAD program systematically collects data to gain insight into TDR occurring in Europe since 2001. Methods. Demographic, clinical, and virological data from 4140 antiretroviral-naive human immunodeficiency virus (HIV)–infected individuals from 26 countries who were newly diagnosed between 2008 and 2010 were analyzed. Evidence of TDR was defined using the WHO list for surveillance of drug resistance mutations. Prevalence of TDR was assessed over time by comparing the results to SPREAD data from 2002 to 2007. Baseline susceptibility to antiretroviral drugs was predicted using the Stanford HIVdb program version 7.0. Results. The overall prevalence of TDR did not change significantly over time and was 8.3% (95% confidence interval, 7.2%–9.5%) in 2008–2010. The most frequent indicators of TDR were nucleoside reverse transcriptase inhibitor (NRTI) mutations (4.5%), followed by nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations (2.9%) and protease inhibitor mutations (2.0%). Baseline mutations were most predictive of reduced susceptibility to initial NNRTI-based regimens: 4.5% and 6.5% of patient isolates were predicted to have resistance to regimens containing efavirenz or rilpivirine, respectively, independent of current NRTI backbones. Conclusions. Although TDR was highest for NRTIs, the impact of baseline drug resistance patterns on susceptibility was largest for NNRTIs. The prevalence of TDR assessed by epidemiological surveys does not clearly indicate to what degree susceptibility to different drug classes is affected.
Collapse
Affiliation(s)
- L Marije Hofstra
- Luxembourg Institute of Health, Luxembourg.,Department of Virology, University Medical Center Utrecht, The Netherlands
| | | | - Jan Albert
- Karolinska Institute, Solna.,Karolinska University Hospital, Stockholm, Sweden
| | - Ivailo Alexiev
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Federico Garcia
- Complejo Hospitalario Universitario de Granada, Instituto de Investigación IBS Granada; on behalf of Cohorte de Adultos de la Red de Investigación en SIDA, Spain
| | | | | | | | - Danail Beshkov
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Diane Descamps
- AP-HP Groupe hospitalier Bichat-Claude Bernard, IAME INSERM UMR 1137, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | | | | - Kirsi Liitsola
- Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Marek Linka
- National Reference Laboratory for HIV/AIDS, National Institute of Public Health, Prague, Czech Republic
| | - Orna Mor
- National HIV Reference Laboratory, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Dan Otelea
- National Institute for Infectious Diseases "Prof. dr. Matei Bals", Bucharest, Romania
| | | | | | - Mario Poljak
- Faculty of Medicine, Slovenian HIV/AIDS Reference Centre, University of Ljubljana, Slovenia
| | | | - Anders Sönnerborg
- Karolinska Institute, Solna.,Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Frey KM. Structure-enhanced methods in the development of non-nucleoside inhibitors targeting HIV reverse transcriptase variants. Future Microbiol 2015; 10:1767-72. [PMID: 26517310 DOI: 10.2217/fmb.15.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Resistance continues to emerge as a leading cause for antiretroviral treatment failure. Several mutations in HIV reverse transcriptase (RT) confer resistance to non-nucleoside inhibitors (NNRTIs), vital components of antiretroviral combination therapies. Since the majority of mutations are located in the NNRTI binding pocket, crystal structures of RT variants in complex with NNRTIs have provided ideas for new drug design strategies. This article reviews the impact of RT crystal structures on the multidisciplinary design and development of new inhibitors with improved resistance profiles.
Collapse
Affiliation(s)
- Kathleen M Frey
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy & Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA
| |
Collapse
|
44
|
Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC. DOCK 6: Impact of new features and current docking performance. J Comput Chem 2015; 36:1132-56. [PMID: 25914306 DOI: 10.1002/jcc.23905] [Citation(s) in RCA: 474] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 03/01/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022]
Abstract
This manuscript presents the latest algorithmic and methodological developments to the structure-based design program DOCK 6.7 focused on an updated internal energy function, new anchor selection control, enhanced minimization options, a footprint similarity scoring function, a symmetry-corrected root-mean-square deviation algorithm, a database filter, and docking forensic tools. An important strategy during development involved use of three orthogonal metrics for assessment and validation: pose reproduction over a large database of 1043 protein-ligand complexes (SB2012 test set), cross-docking to 24 drug-target protein families, and database enrichment using large active and decoy datasets (Directory of Useful Decoys [DUD]-E test set) for five important proteins including HIV protease and IGF-1R. Relative to earlier versions, a key outcome of the work is a significant increase in pose reproduction success in going from DOCK 4.0.2 (51.4%) → 5.4 (65.2%) → 6.7 (73.3%) as a result of significant decreases in failure arising from both sampling 24.1% → 13.6% → 9.1% and scoring 24.4% → 21.1% → 17.5%. Companion cross-docking and enrichment studies with the new version highlight other strengths and remaining areas for improvement, especially for systems containing metal ions. The source code for DOCK 6.7 is available for download and free for academic users at http://dock.compbio.ucsf.edu/.
Collapse
Affiliation(s)
- William J Allen
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York, 11794
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Low Frequency of Drug-Resistant Variants Selected by Long-Acting Rilpivirine in Macaques Infected with Simian Immunodeficiency Virus Containing HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2015; 59:7762-70. [PMID: 26438501 DOI: 10.1128/aac.01937-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022] Open
Abstract
Preexposure prophylaxis (PrEP) using antiretroviral drugs is effective in reducing the risk of human immunodeficiency virus type 1 (HIV-1) infection, but adherence to the PrEP regimen is needed. To improve adherence, a long-acting injectable formulation of the nonnucleoside reverse transcriptase (RT) inhibitor rilpivirine (RPV LA) has been developed. However, there are concerns that PrEP may select for drug-resistant mutations during preexisting or breakthrough infections, which could promote the spread of drug resistance and limit options for antiretroviral therapy. To address this concern, we administered RPV LA to macaques infected with simian immunodeficiency virus containing HIV-1 RT (RT-SHIV). Peak plasma RPV levels were equivalent to those reported in human trials and waned over time after dosing. RPV LA resulted in a 2-log decrease in plasma viremia, and the therapeutic effect was maintained for 15 weeks, until plasma drug concentrations dropped below 25 ng/ml. RT mutations E138G and E138Q were detected in single clones from plasma virus in separate animals only at one time point, and no resistance mutations were detected in viral RNA isolated from tissues. Wild-type and E138Q RT-SHIV displayed similar RPV susceptibilities in vitro, whereas E138G conferred 2-fold resistance to RPV. Overall, selection of RPV-resistant variants was rare in an RT-SHIV macaque model despite prolonged exposure to slowly decreasing RPV concentrations following injection of RPV LA.
Collapse
|
46
|
Floris-Moore MA, Mollan K, Wilkin AM, Johnson MA, Kashuba AD, Wohl DA, Patterson KB, Francis O, Kronk C, Eron JJ. Antiretroviral activity and safety of once-daily etravirine in treatment-naive HIV-infected adults: 48-week results. Antivir Ther 2015; 21:55-64. [PMID: 26263403 DOI: 10.3851/imp2982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Etravirine (ETR), a non-nucleoside reverse transcriptase inhibitor approved for 200 mg twice-daily dosing in conjunction with other antiretrovirals (ARVs), has pharmacokinetic properties which support once-daily dosing. METHODS In this single-arm, open-label study, 79 treatment-naive HIV-infected adults were assigned to receive ETR 400 mg plus tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) 300/200 mg once daily to assess antiviral activity, safety and tolerability. ARV activity at 48 weeks was determined by proportion of subjects with HIV-1 RNA<50 copies/ml (intention-to-treat, missing = failure). RESULTS Of 79 eligible subjects, 90% were men, 62% African-American and 29% Caucasian. At baseline, median (Q1, Q3) age was 29 years (23, 44) and HIV-1 RNA 4.52 log10 copies/ml (4.07, 5.04). A total of 69 (87%) completed a week 48 visit and 61 (77%, 95% CI 66%, 86%) achieved HIV-1 RNA<50 copies/ml at week 48. At time of virological failure, genotypic resistance-associated mutations were detected in three participants, two with E138K (one alone and one with additional mutations). Median (95% CI) CD4(+) cell count increase was 163 (136, 203) cells/µl. Fifteen (19.0%) participants reported a new sign/symptom or lab abnormality ≥ Grade 3 and three participants (3.8%) permanently discontinued ETR due to toxicity. Two participants had psychiatric symptoms of any grade. There were no deaths. CONCLUSIONS In this study of ARV-naive HIV-positive adults, once-daily ETR with TDF/FTC had acceptable antiviral activity and was well-tolerated. Once-daily ETR may be a plausible option as part of a combination ARV regimen for treatment-naive individuals. ClinicalTrials.gov NCT00959894.
Collapse
Affiliation(s)
- Michelle A Floris-Moore
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This review discusses recent changes in HIV treatment guidelines, focussing on the optimal time for starting antiretroviral therapy (ART) in chronic asymptomatic infection, and treatment options for ART-naïve patients. RECENT FINDINGS Understanding of HIV pathogenesis has progressed significantly, with a growing appreciation of the role of HIV replication in causing inflammation and promoting both AIDS and non-AIDS diseases. Early suppression of HIV replication with ART benefits the individual, and by reducing transmission and promoting engagement with care also brings public health benefits. For years, efavirenz-based ART was favoured by treatment guidelines, reflecting unsurpassed performance in clinical trials. New treatment options show high efficacy and safety and include single-tablet coformulations for once-daily dosing to improve convenience. Recent data have demonstrated superiority over efavirenz of regimens based on rilpivirine in patients with low pre-ART HIV-1 RNA load and raltegravir or dolutegravir regardless of the viral load. SUMMARY Some guidelines now recommend starting ART regardless of CD4 cell counts, whereas others take a more cautious approach pending results from studies that are testing the clinical benefit of early therapy. New treatment options allow therapy to be tailored to the patient's circumstances and are suitable for early ART initiation.
Collapse
|
48
|
Wu H, Zhang XM, Zhang HJ, Zhang Q, Chen Z, Huang JD, Lee SS, Zheng BJ. In vitro selection of HIV-1 CRF08_BC variants resistant to reverse transcriptase inhibitors. AIDS Res Hum Retroviruses 2015; 31:260-70. [PMID: 25482475 DOI: 10.1089/aid.2013.0211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) circulating recombinant form 08_BC (CRF08_BC), carrying the recombinant reverse transcriptase (RT) gene from subtypes B and C, has recently become highly prevalent in Southern China. As the number of patients increases, it is important to characterize the drug resistance mutations of CRF08_BC, especially against widely used antiretrovirals. In this study, clinically isolated virus (2007CNGX-HK), confirmed to be CRF08_BC with its sequence deposited in GenBank (KF312642), was propagated in human peripheral blood mononuclear cells (PBMCs) with increasing concentrations of nevirapine (NVP), efavirenz (EFV), or lamivudine (3TC). Three different resistance patterns led by initial mutations of Y181C, E138G, and Y188C were detected after the selection with NVP. Initial mutations, in combination with other previously reported substitutions (K20R, D67N, V90I, K101R/E, V106I/A, V108I, F116L, E138R, A139V, V189I, G190A, D218E, E203K, H221Y, F227L, N348I, and T369I) or novel mutations (V8I, S134N, C162Y, L228I, Y232H, E396G, and D404N), developed during NVP selection. EFV-associated variations contained two initial mutations (L100I and Y188C) and three other mutations (V106L, F116Y, and A139V). Phenotypic analyses showed that E138R, Y181C, and G190A contributed high-level resistance to NVP, while L100I and V106L significantly reduced virus susceptibility to EFV. Y188C was 20-fold less sensitive to both NVP and EFV. As expected, M184I alone, or with V90I or D67N, decreased 3TC susceptibility by over 1,000-fold. Although the mutation profile obtained in culture may be different from the patients, these results may still provide useful information to monitor and optimize the antiretroviral regimens.
Collapse
Affiliation(s)
- Hao Wu
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Min Zhang
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Hao-Jie Zhang
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Qiwei Zhang
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhiwei Chen
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Jian-Dong Huang
- Department of Biochemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shui-Shan Lee
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bo-Jian Zheng
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
49
|
Impact of drug resistance-associated amino acid changes in HIV-1 subtype C on susceptibility to newer nonnucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 2014; 59:960-71. [PMID: 25421485 DOI: 10.1128/aac.04215-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to assess the phenotypic susceptibility of HIV-1 subtype C isolates, with nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance-associated amino acid changes, to newer NNRTIs. A panel of 52 site-directed mutants and 38 clinically derived HIV-1 subtype C clones was created, and the isolates were assessed for phenotypic susceptibility to etravirine (ETR), rilpivirine (RPV), efavirenz (EFV), and nevirapine (NVP) in an in vitro single-cycle phenotypic assay. The amino acid substitutions E138Q/R, Y181I/V, and M230L conferred high-level resistance to ETR, while K101P and Y181I/V conferred high-level resistance to RPV. Y181C, a major NNRTI resistance-associated amino acid substitution, caused decreased susceptibility to ETR and, to a lesser extent, RPV when combined with other mutations. These included N348I and T369I, amino acid changes in the connection domain that are not generally assessed during resistance testing. However, the prevalence of these genotypes among subtype C sequences was, in most cases, <1%. The more common EFV/NVP resistance-associated substitutions, such as K103N, V106M, and G190A, had no major impact on ETR or RPV susceptibility. The low-level resistance to RPV and ETR conferred by E138K was not significantly enhanced in the presence of M184V/I, unlike for EFV and NVP. Among patient samples, 97% were resistant to EFV and/or NVP, while only 24% and 16% were resistant to ETR and RPV, respectively. Overall, only a few, relatively rare NNRTI resistance-associated amino acid substitutions caused resistance to ETR and/or RPV in an HIV-1 subtype C background, suggesting that these newer NNRTIs would be effective in NVP/EFV-experienced HIV-1 subtype C-infected patients.
Collapse
|
50
|
In vitro resistance selection with doravirine (MK-1439), a novel nonnucleoside reverse transcriptase inhibitor with distinct mutation development pathways. Antimicrob Agents Chemother 2014; 59:590-8. [PMID: 25385110 DOI: 10.1128/aac.04201-14] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Doravirine (DOR, formerly known as MK-1439) is a human immunodeficiency type 1 virus (HIV-1) nonnucleoside reverse transcriptase inhibitor (NNRTI) that is currently in phase 2b clinical trials. In vitro resistance selection of subtype B virus (MT4-green fluorescent protein [GFP] cells), as well as subtype A and C viruses (MT4-GFP/CCR5 cells) was conducted with DOR, rilpivirine (RPV), and efavirine (EFV) under low-multiplicity-of-infection conditions in a 96-well format. Resistance selection was performed with escalating concentrations of the NNRTIs ranging from the 95% effective concentration (1 × EC(95)) to 1,000 × EC(95) in the presence of 10% fetal bovine serum. In the resistance selection of subtype B virus with DOR, a V106A mutant virus led to two mutation pathways, followed by the emergence separately of either F227L or L234I. In the resistance selection of subtype A and C viruses, similar mutation development pathways were detected, in which a V106A or V106M mutant was also the starting virus in the pathways. Mutations that are commonly associated with RPV and EFV in clinical settings were also identified in subtype B viruses such as the E138K and K103N mutants, respectively, in this in vitro resistance selection study. The susceptibility of subtype B mutant viruses selected by DOR, RPV, and EFV to NNRTIs was evaluated. Results suggest that mutant viruses selected by DOR are susceptible to RPV and EFV and mutants selected by RPV and EFV are susceptible to DOR. When the replication capacity of the V106A mutant was compared with that of the wild-type (WT) virus, the mutant virus was 4-fold less fit than the WT virus.
Collapse
|