1
|
Han L, Ji X, Fan S, Shen J, Liang B, Li Z. Secreted protein NFA47630 from Nocardia farcinica IFM10152 induces immunoprotective effects in mice. Trop Dis Travel Med Vaccines 2024; 10:21. [PMID: 39402651 PMCID: PMC11476605 DOI: 10.1186/s40794-024-00229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/08/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Nocardia is emerging as a common and easily neglected cause of both healthcare- and occupation-associated infections worldwide, however, human vaccines for Nocardia prevention are not yet available. In this study, we aimed to evaluate the immunoprotective effect of the NFA47630 protein, a secreted protein abundant in the N. farcinica IFM10152 supernatant. METHODS Conservation and characteristics of nfa47630 were analyzed by PCR and bioinformatics. Then recombinant NFA47630 protein was cloned, expressed and purified for further antigenicity analysis. Subsequently, the ability to activate innate immunity was evaluated by examining the phosphorylation status of the MAPK signaling pathway and cytokine levels. Finally, the protective effect was evaluated on rNFA47630-immunized mice. RESULTS nfa47630 was conserved in N. farcinica strains with good antigenicity. The rNFA47630 protein was expressed under the optimal conditions of 0.2 mM IPTG, 28 °C, and it can be recognized by anti-N. farcinica and anti-N. cyriacigeorgica sera, but not anti-N. asteroids, anti-N. brasiliensis, anti-N. nova and anti-Mycobacterium bovis sera. It can upregulate the phosphorylation status of ERK, JNK, P38 and the cytokine levels of TNF-α, IL-10, IL-12, and IFN-γ. In addition, mice immunized with rNFA47630 protein exhibited higher antibody titers, greater bacterial clearance ability, milder organ infection, and higher survival rates than PBS-immunized mice. CONCLUSIONS Our data demonstrate that NFA47630 is a potential vaccine candidate for defending against N. farcinica infection.
Collapse
Affiliation(s)
- Lichao Han
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, 155 Changbai Road Changping District, 102206, Beiing, People's Republic of China
| | - Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shihong Fan
- Sericulture and Apiculture Research Institute, Yunnan Academy of Agricultural Science, Mengzi, Yunnan, China
| | - Jirao Shen
- Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, 155 Changbai Road Changping District, 102206, Beiing, People's Republic of China
| | - Bin Liang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenjun Li
- Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, 155 Changbai Road Changping District, 102206, Beiing, People's Republic of China.
| |
Collapse
|
2
|
Hershko Y, Levytskyi K, Rannon E, Assous MV, Ken-Dror S, Amit S, Ben-Zvi H, Sagi O, Schwartz O, Sorek N, Szwarcwort M, Barkan D, Burstein D, Adler A. Phenotypic and genotypic analysis of antimicrobial resistance in Nocardia species. J Antimicrob Chemother 2023; 78:2306-2314. [PMID: 37527397 DOI: 10.1093/jac/dkad236] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Antimicrobial resistance is common in Nocardia species but data regarding the molecular mechanisms beyond their resistance traits are limited. Our study aimed to determine the species distribution, the antimicrobial susceptibility profiles, and investigate the associations between the resistance traits and their genotypic determinants. METHODS The study included 138 clinical strains of Nocardia from nine Israeli microbiology laboratories. MIC values of 12 antimicrobial agents were determined using broth microdilution. WGS was performed on 129 isolates of the eight predominant species. Bioinformatic analysis included phylogeny and determination of antimicrobial resistance genes and mutations. RESULTS Among the isolates, Nocardia cyriacigeorgica was the most common species (36%), followed by Nocardia farcinica (16%), Nocardia wallacei (13%), Nocardia abscessus (9%) and Nocardia brasiliensis (8%). Linezolid was active against all isolates, followed by trimethoprim/sulfamethoxazole (93%) and amikacin (91%). Resistance to other antibiotics was species-specific, often associated with the presence of resistance genes or mutations: (1) aph(2″) in N. farcinica and N. wallacei (resistance to tobramycin); (ii) blaAST-1 in N. cyriacigeorgica and Nocardia neocaledoniensis (resistance to amoxicillin/clavulanate); (iii) blaFAR-1 in N. farcinica (resistance to ceftriaxone); (iv) Ser83Ala substitution in the gyrA gene in four species (resistance to ciprofloxacin); and (v) the 16S rRNA m1A1408 methyltransferase in N. wallacei isolates (correlating with amikacin resistance). CONCLUSIONS Our study provides a comprehensive understanding of Nocardia species diversity, antibiotic resistance patterns, and the molecular basis of antimicrobial resistance. Resistance appears to follow species-related patterns, suggesting a lesser role for de novo evolution or transmission of antimicrobial resistance.
Collapse
Affiliation(s)
- Yizhak Hershko
- Koret School of Veterinary Medicine, Robert H. Smith Faculty for Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Katia Levytskyi
- Koret School of Veterinary Medicine, Robert H. Smith Faculty for Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ella Rannon
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Marc V Assous
- Clinical Microbiology Laboratory, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shifra Ken-Dror
- Clalit Health Services, Haifa and Western Galilee District, Israel
| | - Sharon Amit
- Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Haim Ben-Zvi
- Microbiology Laboratory, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Orli Sagi
- Clinical Microbiology Laboratory, Soroka University Medical Center, Beer-Sheva 84105, Israel
| | | | - Nadav Sorek
- Assuta Ashdod University Hospital, Ashdod, Israel
| | - Moran Szwarcwort
- Clinical Microbiology Laboratories, Laboratories Division, Rambam Health Care Campus, Haifa, Israel
| | - Daniel Barkan
- Koret School of Veterinary Medicine, Robert H. Smith Faculty for Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Burstein
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amos Adler
- Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
3
|
Mehta HH, Song X, Shamoo Y. Intracellular Experimental Evolution of Francisella tularensis Subsp. holarctica Live Vaccine Strain (LVS) to Antimicrobial Resistance. ACS Infect Dis 2023; 9:308-321. [PMID: 36662533 PMCID: PMC9996545 DOI: 10.1021/acsinfecdis.2c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In vitro experimental evolution has complemented clinical studies as an excellent tool to identify genetic changes responsible for the de novo evolution of antimicrobial resistance. However, the in vivo context for adaptation contributes to the success of particular evolutionary trajectories, especially in intracellular niches where the adaptive landscape of virulence and resistance are strongly coupled. In this work, we designed an ex vivo evolution approach to identify evolutionary trajectories responsible for antibiotic resistance in the Live Vaccine Strain (LVS) of Francisella tularensis subsp. holarctica while being passaged to increasing ciprofloxacin (CIP) and doxycycline (DOX) concentrations within macrophages. Overall, adaptation within macrophages advanced much slower when compared to previous in vitro evolution studies reflecting a limiting capacity for the expansion of adaptive mutations within the macrophage. Longitudinal genomic analysis identified resistance conferring gyrase mutations outside the Quinolone Resistance Determining Region. Strikingly, FupA/B mutations that are uniquely associated with in vitro CIP resistance in Francisella were not observed ex vivo, reflecting the coupling of intracellular survival and resistance during intracellular adaptation. To our knowledge, this is the first experimental study demonstrating the ability to conduct experimental evolution to antimicrobial resistance within macrophages. The results provide evidence of differences in mutational profiles of populations adapted to the same antibiotic in different environments/cellular compartments and underscore the significance of host mediated stress during resistance evolution.
Collapse
Affiliation(s)
- Heer H Mehta
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Xinhao Song
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Yousif Shamoo
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Zhu F, Tan C, Li C, Ma S, Wen H, Yang H, Rao M, Zhang P, Peng W, Cui Y, Chen J, Pan P. Design of a multi-epitope vaccine against six Nocardia species based on reverse vaccinology combined with immunoinformatics. Front Immunol 2023; 14:1100188. [PMID: 36845087 PMCID: PMC9952739 DOI: 10.3389/fimmu.2023.1100188] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 02/12/2023] Open
Abstract
Background Nocardia genus, a complex group of species classified to be aerobic actinomycete, can lead to severe concurrent infection as well as disseminated infection, typically in immunocompromised patients. With the expansion of the susceptible population, the incidence of Nocardia has been gradually growing, accompanied by increased resistance of the pathogen to existing therapeutics. However, there is no effective vaccine against this pathogen yet. In this study, a multi-epitope vaccine was designed against the Nocardia infection using reverse vaccinology combined with immunoinformatics approaches. Methods First, the proteomes of 6 Nocardia subspecies Nocardia subspecies (Nocardia farcinica, Nocardia cyriacigeorgica, Nocardia abscessus, Nocardia otitidiscaviarum, Nocardia brasiliensis and Nocardia nova) were download NCBI (National Center for Biotechnology Information) database on May 1st, 2022 for the target proteins selection. The essential, virulent-associated or resistant-associated, surface-exposed, antigenic, non-toxic, and non-homologous with the human proteome proteins were selected for epitope identification. The shortlisted T-cell and B-cell epitopes were fused with appropriate adjuvants and linkers to construct vaccines. The physicochemical properties of the designed vaccine were predicted using multiple online servers. The Molecular docking and molecular dynamics (MD) simulation were performed to understand the binding pattern and binding stability between the vaccine candidate and Toll-like receptors (TLRs). The immunogenicity of the designed vaccines was evaluated via immune simulation. Results 3 proteins that are essential, virulent-associated or resistant-associated, surface-exposed, antigenic, non-toxic, and non-homologous with the human proteome were selected from 218 complete proteome sequences of the 6 Nocardia subspecies epitope identification. After screening, only 4 cytotoxic T lymphocyte (CTL) epitopes, 6 helper T lymphocyte (HTL) epitopes, and 8 B cell epitopes that were antigenic, non-allergenic, and non-toxic were included in the final vaccine construct. The results of molecular docking and MD simulation showed that the vaccine candidate has a strong affinity for TLR2 and TLR4 of the host and the vaccine-TLR complexes were dynamically stable in the natural environment. The results of the immune simulation indicated that the designed vaccine had the potential to induce strong protective immune responses in the host. The codon optimization and cloned analysis showed that the vaccine was available for mass production. Conclusion The designed vaccine has the potential to stimulate long-lasting immunity in the host, but further studies are required to validate its safety and efficacy.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China,Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China,Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Caixia Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China,Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhui Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China,Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China,Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China,Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Haicheng Wen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China,Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China,Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Mingjun Rao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China,Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China,Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China,Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China,Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Wenzhong Peng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China,Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China,Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yanhui Cui
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China,Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China,Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China,Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China,Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China,*Correspondence: Jie Chen, ; Pinhua Pan,
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China,Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China,Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China,*Correspondence: Jie Chen, ; Pinhua Pan,
| |
Collapse
|
5
|
Immunoprotective Analysis of the NFA49590 Protein from Nocardia farcinica IFM 10152 Demonstrates Its Potential as a Vaccine Candidate. Pathogens 2022; 11:pathogens11121488. [PMID: 36558822 PMCID: PMC9782307 DOI: 10.3390/pathogens11121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Nocardia is emerging as a serious and easily neglected pathogen in clinical practice with multidrug resistance that extends the treatment period for months or even years. This has led to the investigation of a vaccine approach to prevent Nocardia infections. However, studies on the protective proteins of Nocardia have not yet been carried out. In the present work, over 500 proteins in the supernatant of N. farcinica IFM10152 were identified by LC−MS/MS. In silico analysis of these proteins with a high content (score > 2000) predicted that NFA49590 was one of the conserved proteins in N. farcinica strains with potential antigenicity. After the rNFA49590 protein was cloned and expressed in E. coli (DE3) and purified using a Ni-NTA column, its good antigenicity was confirmed with sera from mice immunized with different Nocardia species by Western blot. Then we confirmed its ability to activate innate immunity by examining the phosphorylation status of ERK1/2, JNK, p38, and p65 and the cytokine levels of IL-6, TNF-α, and IL-10. Finally, we evaluated its immunoprotective effect in BALB/c mice, and we found that mice immunized with rNFA49590 protein exhibited high antibody titers, enhanced bacterial clearance ability, and generated robust protective effects from the N. farcinica challenge. These results offer strong support for the use of NFA49590 protein as a vaccine candidate and open the possibilities for the exploration of a large array of immunoprotective proteins.
Collapse
|
6
|
Mehta HH, Ibarra D, Marx CJ, Miller CR, Shamoo Y. Mutational Switch-Backs Can Accelerate Evolution of Francisella to a Combination of Ciprofloxacin and Doxycycline. Front Microbiol 2022; 13:904822. [PMID: 35615518 PMCID: PMC9125183 DOI: 10.3389/fmicb.2022.904822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Combination antimicrobial therapy has been considered a promising strategy to combat the evolution of antimicrobial resistance. Francisella tularensis is the causative agent of tularemia and in addition to being found in the nature, is recognized as a threat agent that requires vigilance. We investigated the evolutionary outcome of adapting the Live Vaccine Strain (LVS) of F. tularensis subsp. holarctica to two non-interacting drugs, ciprofloxacin and doxycycline, individually, sequentially, and in combination. Despite their individual efficacies and independence of mechanisms, evolution to the combination arose on a shorter time scale than evolution to the two drugs sequentially. We conducted a longitudinal mutational analysis of the populations evolving to the drug combination, genetically reconstructed the identified evolutionary pathway, and carried out biochemical validation. We discovered that, after the appearance of an initial weak generalist mutation (FupA/B), each successive mutation alternated between adaptation to one drug or the other. In combination, these mutations allowed the population to more efficiently ascend the fitness peak through a series of evolutionary switch-backs. Clonal interference, weak pleiotropy, and positive epistasis also contributed to combinatorial evolution. This finding suggests that the use of this non-interacting drug pair against F. tularensis may render both drugs ineffective because of mutational switch-backs that accelerate evolution of dual resistance.
Collapse
Affiliation(s)
- Heer H. Mehta
- Department of Biosciences, Rice University, Houston, TX, United States
| | - David Ibarra
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Craig R. Miller
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, TX, United States
- *Correspondence: Yousif Shamoo,
| |
Collapse
|
7
|
Che Y, Xu S, Kang Y, Liu X, Yue Y, Han L, Qiu X, Li D, Lou Y, Li Z. Complete Genome Sequencing of Transposon-Mediated Sulfamethoxazole Resistance Encoded by the Sul1 Gene in Multidrug-Resistant Nocardia farcinica SZ 1509. J Glob Antimicrob Resist 2022; 30:60-65. [DOI: 10.1016/j.jgar.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/02/2022] [Accepted: 03/05/2022] [Indexed: 11/29/2022] Open
|
8
|
Adre E, Durkee H, Arboleda A, Alawa K, Maestre J, Mintz KJ, Leblanc RM, Amescua G, Parel JM, Miller D. Rose Bengal and Riboflavin Mediated Photodynamic Antimicrobial Therapy Against Selected South Florida Nocardia Keratitis Isolates. Transl Vis Sci Technol 2022; 11:29. [PMID: 35044443 PMCID: PMC8787600 DOI: 10.1167/tvst.11.1.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To examine and compare the efficacy of in vitro growth inhibition using rose bengal and riboflavin photodynamic antimicrobial therapy (PDAT) for Nocardia keratitis isolates. Methods Nocardia asteroides complex, Nocardia amikacinitolerans, and Nocardia farcinica species were isolated from patients with confirmed Nocardia keratitis. Isolates were tested against three experimental groups: (1) no photosensitizer/no irradiation, (2) photosensitizer/no irradiation, and (3) photosensitizer/irradiation. Each isolate was prepared in suspension to a concentration of 1.5 × 108 CFU/mL. Bacterial suspensions were mixed with water or prepared 0.1% photosensitizer solution for a final bacterial concentration of 1.5 × 107 CFU/mL. Aliquots of 1 mL were plated on 5% sheep blood agar. Rose bengal and riboflavin PDAT plates were irradiated for 15 minutes with a 525- or 375-nm custom 6-mW/cm2 powered light source for a total fluence of 5.4 J/cm2. All experimental groups were repeated in triplicate. Plates were incubated in a 35°C non-CO2 incubator for 96 hours and photographed. Percent inhibition was evaluated using LabVIEW-based software. Results All strains of Nocardia tested with 0.1% rose bengal and irradiated for 15 minutes demonstrated statistically significant inhibition of growth (P < 0.05). No other experimental groups displayed any bacterial inhibition. Conclusions Rose bengal is superior to riboflavin PDAT against selected Nocardia isolates. In vivo testing is warranted to investigate the utility of rose bengal PDAT for severe Nocardia keratitis. Translational Relevance In vitro results for three clinical strains of Nocardia support the possible use of rose bengal PDAT as a complementary treatment of Nocardia keratitis.
Collapse
Affiliation(s)
- Ethan Adre
- Ophthalmic Biophysics Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Heather Durkee
- Ophthalmic Biophysics Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA
| | - Alejandro Arboleda
- Ophthalmic Biophysics Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Karam Alawa
- Ophthalmic Biophysics Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jorge Maestre
- Ocular Microbiology Laboratory, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Keenan J Mintz
- Department of Chemistry, College of Arts and Science, University of Miami, Coral Gables, FL, USA
| | - Roger M Leblanc
- Department of Chemistry, College of Arts and Science, University of Miami, Coral Gables, FL, USA
| | - Guillermo Amescua
- Ophthalmic Biophysics Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Anne Bates Leach Eye Hospital, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jean-Marie Parel
- Ophthalmic Biophysics Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA.,Anne Bates Leach Eye Hospital, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Darlene Miller
- Ocular Microbiology Laboratory, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Anne Bates Leach Eye Hospital, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
9
|
Derungs T, Leo F, Loddenkemper C, Schneider T. Treatment of disseminated nocardiosis: a host-pathogen approach with adjuvant interferon gamma. THE LANCET. INFECTIOUS DISEASES 2021; 21:e334-e340. [PMID: 34425068 DOI: 10.1016/s1473-3099(20)30920-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
Disseminated nocardiosis is a rare, life-threatening disease. Particularly at risk are immunocompromised patients, highlighting the crucial role of host factors. Conventional intensive antibiotic treatment has improved survival rates, but the overall prognosis of patients with disseminated nocardiosis remains unsatisfactory. In this Grand Round, we present a case of severe nocardiosis that did not respond to standard therapy. The patient's condition deteriorated when antibiotic therapy was given alone and improved substantially only after coadministration of interferon gamma. We review the literature relevant to adjuvant interferon gamma therapy of nocardiosis and discuss its potential harms and benefits. Overall, we consider such treatment as beneficial and low risk if the patient is followed-up closely. We conclude that clinicians should consider this regimen in refractory cases of severe Nocardia infection.
Collapse
Affiliation(s)
- Thomas Derungs
- Department of Gastroenterology, Infectious Disease and Rheumatology, Charité Universitätsmedizin Berlin, Germany; Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.
| | - Fabian Leo
- Department of Gastroenterology, Infectious Disease and Rheumatology, Charité Universitätsmedizin Berlin, Germany; Department of Respiratory Medicine, Evangelische Lungenklinik, Berlin, Germany
| | | | - Thomas Schneider
- Department of Gastroenterology, Infectious Disease and Rheumatology, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
10
|
Identification and antimicrobial susceptibility profiles of Nocardia species clinically isolated in Japan. Sci Rep 2021; 11:16742. [PMID: 34408177 PMCID: PMC8373947 DOI: 10.1038/s41598-021-95870-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/02/2021] [Indexed: 01/31/2023] Open
Abstract
The aims of the present study were to profile the antimicrobial susceptibility patterns of a diverse range of Nocardia species isolated in Japan, and to determine the ability of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for species/complex identification. Identification of 153 clinical isolates was performed by full-length 16S rRNA gene sequencing as a reference method to evaluate the usefulness of MALDI-TOF MS identification. Antimicrobial susceptibility testing (AST) for 14 antibiotics was performed using the broth microdilution method against 146 of the isolates. Among the total 153 clinical isolates, Nocardia farcinica complex (25%) was the most common species, followed by Nocardia cyriacigeorgica (18%), Nocardia brasiliensis (9%), Nocardia nova (8%), and Nocardia otitidiscaviarum (7%). Among 150 isolates identified to the species/complex level by 16S rRNA gene sequencing, MALDI-TOF MS with the use of a supplemental Nocardia library (JMLD library ver.ML01) correctly identified 97.3% (n = 146) to the species/complex level and 1.3% (n = 2) to the genus level. Among the 146 Nocardia isolates that underwent AST, the susceptibilities were 100% to linezolid, 96% to amikacin, 94% to trimethoprim-sulfamethoxazole, and 76% to imipenem. None of the trimethoprim-sulfamethoxazole-resistant isolates carried either plasmid-mediated sulfonamide-resistant genes (sul1, sul2) or trimethoprim-resistant genes (dfrA).
Collapse
|
11
|
Chhatwal P, Woltemate S, Ziesing S, Welte T, Schlüter D, Vital M. Molecular characterization and improved diagnostics of Nocardia strains isolated over the last two decades at a German tertiary care center. EXCLI JOURNAL 2021; 20:851-862. [PMID: 34177407 PMCID: PMC8222631 DOI: 10.17179/excli2021-3787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023]
Abstract
Nocardiosis is a rare but life-threatening infection caused by aerobic Actinomycetes of the genus Nocardia particularly affecting immunocompromised hosts. The identification of Nocardia ssp. and antibiotic susceptibility testing by standard microbiological methods are incomplete and molecular techniques may improve diagnostics. We studied 39 Nocardia strains isolated from 33 patients between 2000 and 2018. Twenty-four patients (72.7 %) were immunocompromised. Whole genome sequencing (WGS) revealed a broad taxonomic range of those isolates spanning 13 different species, including four strains that belonged to three novel species based on average nucleotide identity (ANI < 95 % with currently available genome sequences). 16S rRNA gene analyses mirrored WGS results. Conventional MALDI-TOF analysis correctly identified 29 isolates at the species level (74.4 %). Our advanced protocol with formic acid and acetonitrile treatment increased identification to 35 isolates (89.7 %). Antibiotic resistance was tested using both a microdilution method and MIC strip testing. Results were in good concordance with an overall trimethoprim-sulfamethoxazole (SXT) resistance rate of 13.5 %. WGS of a SXT resistant N. farcinica isolate showed a deletion of several amino acids in a homolog of dihydropteroate synthase (FolP2) that was not seen in sensitive members of this species. Diversity of Nocardia isolates was high and involved many different species, suggesting that this taxon has broadly distributed mechanisms for infecting individuals. Widely applicable diagnostic methods including MALDI-TOF and 16S rRNA gene analyses correctly identified most strains. WGS additionally revealed molecular insights into SXT resistance mechanisms of clinical Nocardia isolates highlighting the potential application of (meta)genomic-based diagnostics in the future.
Collapse
Affiliation(s)
- Patrick Chhatwal
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Sabrina Woltemate
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Stefan Ziesing
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Tobias Welte
- Department of Pneumology and German Center for Lung Research, Hannover Medical School (MHH), Hannover, Germany
| | - Dirk Schlüter
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
12
|
Daptomycin Resistance in Enterococcus faecium Can Be Delayed by Disruption of the LiaFSR Stress Response Pathway. Antimicrob Agents Chemother 2021; 65:AAC.01317-20. [PMID: 33468468 DOI: 10.1128/aac.01317-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/08/2021] [Indexed: 01/01/2023] Open
Abstract
LiaFSR signaling plays a major role in mediating daptomycin (DAP) resistance in enterococci, and the lack of a functional LiaFSR pathway leads to DAP hypersusceptibility. Using in vitro experimental evolution, we evaluated how Enterococcus faecium with a liaR response regulator gene deletion evolved DAP resistance. We found that knocking out LiaFSR signaling significantly delayed the onset of resistance, but resistance could emerge eventually through various alternate mechanisms that were influenced by the environment.
Collapse
|
13
|
Lenskaya V, DeChavez V, Kaufman B, Caplivski D. Primary cutaneous nocardiosis caused by Nocardia nova with possible Apremilast contribution. IDCases 2021; 24:e01078. [PMID: 33850720 PMCID: PMC8024659 DOI: 10.1016/j.idcr.2021.e01078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Primary cutaneous nocardiosis accounts for 5-8 % of all nocardiosis cases and represents a diagnostic dilemma among immunocompetent and immunocompromised hosts. Herein, we present a case of a 30-year-old male with history of psoriasis with recent addition of Apremilast. Patient received intralesional triamcinolone injections for psoriatic plaques on the hands and abdomen prior to traveling to warm climate vacation. While on vacation, patient developed hand swelling and painful, red nodules on the dorsal hands and abdomen, sites where he received intralesional injections. Patient was empirically given doxycycline, but continued to develop new nodules. An abdominal lesion was biopsied for H&E and tissue culture. Tissue culture revealed beaded gram-positive rods identified as Nocardia nova by MALDI-TOF. Patient was switched to trimethoprim-sulfamethoxazole with significant improvement. This case represents an atypical primary cutaneous nocardiosis with Nocardia nova most likely in the setting of intralesional steroid injections and possible contribution of Apremilast.
Collapse
Affiliation(s)
- Volha Lenskaya
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, 10129, NY, United States
- Corresponding author at: 1468 Madison Ave, Annenberg, 15th floor, New York, NY, 10029, United States.
| | - Vincent DeChavez
- Division of Infectious Disease, Icahn School of Medicine at Mount Sinai, New York, 10129, NY, United States
| | - Bridget Kaufman
- Department of Dermatopathology, Icahn School of Medicine at Mount Sinai, New York, 10129, NY, United States
| | - Daniel Caplivski
- Division of Infectious Disease, Icahn School of Medicine at Mount Sinai, New York, 10129, NY, United States
| |
Collapse
|
14
|
Alshammari K, Al Hothaly B, Alrabiah F. Case of Nocardia Cyriacigeorgica Infection of the Eye in a Granulomatosis With Polyangiitis Patient. Cureus 2020; 12:e11178. [PMID: 33133800 PMCID: PMC7593125 DOI: 10.7759/cureus.11178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Nocardiosis is an infectious disease caused by a group of organisms that are often found in soil and has a very rare incidence of infecting immunocompromised patients. Granulomatosis with polyangiitis patients are often susceptible to being infected with many atypical organisms such as Nocardia cyriacigeorgica. We present a case of a 35-year-old male who is a known case of granulomatosis with polyangiitis and has a repeated history of farm visits. The patient presented with progressive early morning right eye secretions followed by dryness throughout the day with no history of trauma or allergy of seven months duration. An eye swab for culture and sensitivity showed an isolated Nocardia cyriacigeorgica and was treated by trimethoprim/sulfamethoxazole (Bactrim) for one year but was lost to follow-up. Early detection of Nocardia cyriacigeorgica is crucial in those groups of patients, as it can prevent further complicated outcomes while proper hygiene education is important.
Collapse
Affiliation(s)
| | - Bushra Al Hothaly
- Infectious Diseases, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Fahad Alrabiah
- Infectious Diseases, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| |
Collapse
|
15
|
Mehta HH, Shamoo Y. Pathogenic Nocardia: A diverse genus of emerging pathogens or just poorly recognized? PLoS Pathog 2020; 16:e1008280. [PMID: 32134995 PMCID: PMC7058287 DOI: 10.1371/journal.ppat.1008280] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Heer H. Mehta
- Department of BioSciences, Rice University, Houston, Texas, United States of America
- * E-mail:
| | - Yousif Shamoo
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
16
|
Han L, Ji X, Xu S, Fan S, Wang C, Wei K, Wang X, Song H, Zheng N, Sun L, Qiu X, Hou X, Li Z. Microbiological profile of distinct virulence of Nocardia cyriacigeorgica strains in vivo and in vitro. Microb Pathog 2020; 142:104042. [PMID: 32045646 DOI: 10.1016/j.micpath.2020.104042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 01/08/2023]
Abstract
There are significant differences between different Nocardia species regarding geographical distribution, biochemical features, phenotypic characterization, and drug sensitivity. In this study, we explored the differences in virulence and pathogenic mechanisms of two Nocardia cyriacigeorgica strains. We examined the difference in virulence between N. cyriacigeorgica ATCC14759 and N. cyriacigeorgica GUH-2 by measuring cytotoxicity, animal survival after infection, the ability of host cell invasion, and viability in host cells. Western blotting was used to compare the differences in activation of MAPKs, including p38, ERK, and JNK, the NF-κB signaling pathway, and the PI3K/Akt signaling pathway in A549 and RAW264.7 cells. We measured the difference in stimulatory effects on production of the cytokines IL-6, IL-10, and TNF-α by ELISA. We found that N. cyriacigeorgica ATCC14759 causes higher cytotoxicity in cultured cells and higher lethality in mice, and exhibits superior invasion ability and viability in host cells compared with N. cyriacigeorgica GUH-2. Moreover, these two strains show marked differences in activation of the expression of cytokines and signaling pathways. N. cyriacigeorgica ATCC14759 is more virulent than N. cyriacigeorgica GUH-2. Furthermore, there is a significant difference in pathogenesis between the two strains. Our results provide a theoretical basis for the prevention and treatment of Nocardia infection.
Collapse
Affiliation(s)
- Lichao Han
- Department of Medical, Tibet University, Lhasa, China
| | - Xingzhao Ji
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shihong Fan
- Department of Medical, Tibet University, Lhasa, China
| | | | - Kongjiao Wei
- Department of Medical, Tibet University, Lhasa, China
| | - Xuebing Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Han Song
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ningwei Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lina Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaotong Qiu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuexin Hou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenjun Li
- Department of Medical, Tibet University, Lhasa, China; State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
17
|
Environment Shapes the Accessible Daptomycin Resistance Mechanisms in Enterococcus faecium. Antimicrob Agents Chemother 2019; 63:AAC.00790-19. [PMID: 31332078 DOI: 10.1128/aac.00790-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Daptomycin binds to bacterial cell membranes and disrupts essential cell envelope processes, leading to cell death. Bacteria respond to daptomycin by altering their cell envelopes to either decrease antibiotic binding to the membrane or by diverting binding away from septal targets. In Enterococcus faecalis, daptomycin resistance is typically coordinated by the three-component cell envelope stress response system, LiaFSR. Here, studying a clinical strain of multidrug-resistant Enterococcus faecium containing alleles associated with activation of the LiaFSR signaling pathway, we found that specific environments selected for different evolutionary trajectories, leading to high-level daptomycin resistance. Planktonic environments favored pathways that increased cell surface charge via yvcRS upregulation of dltABCD and mprF, causing a reduction in daptomycin binding. Alternatively, environments favoring complex structured communities, including biofilms, evolved both diversion and repulsion strategies via divIVA and oatA mutations, respectively. Both environments subsequently converged on cardiolipin synthase (cls) mutations, suggesting the importance of membrane modification across strategies. Our findings indicate that E. faecium can evolve diverse evolutionary trajectories to daptomycin resistance that are shaped by the environment to produce a combination of resistance strategies. The accessibility of multiple and different biochemical pathways simultaneously suggests that the outcome of daptomycin exposure results in a polymorphic population of resistant phenotypes, making E. faecium a recalcitrant nosocomial pathogen.
Collapse
|
18
|
The Essential Role of Hypermutation in Rapid Adaptation to Antibiotic Stress. Antimicrob Agents Chemother 2019; 63:AAC.00744-19. [PMID: 31036684 DOI: 10.1128/aac.00744-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022] Open
Abstract
A common outcome of antibiotic exposure in patients and in vitro is the evolution of a hypermutator phenotype that enables rapid adaptation by pathogens. While hypermutation is a robust mechanism for rapid adaptation, it requires trade-offs between the adaptive mutations and the more common "hitchhiker" mutations that accumulate from the increased mutation rate. Using quantitative experimental evolution, we examined the role of hypermutation in driving the adaptation of Pseudomonas aeruginosa to colistin. Metagenomic deep sequencing revealed 2,657 mutations at ≥5% frequency in 1,197 genes and 761 mutations in 29 endpoint isolates. By combining genomic information, phylogenetic analyses, and statistical tests, we showed that evolutionary trajectories leading to resistance could be reliably discerned. In addition to known alleles such as pmrB, hypermutation allowed identification of additional adaptive alleles with epistatic relationships. Although hypermutation provided a short-term fitness benefit, it was detrimental to overall fitness. Alarmingly, a small fraction of the colistin-adapted population remained colistin susceptible and escaped hypermutation. In a clinical population, such cells could play a role in reestablishing infection upon withdrawal of colistin. We present here a framework for evaluating the complex evolutionary trajectories of hypermutators that applies to both current and emerging pathogen populations.
Collapse
|