1
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
2
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
3
|
Gutierrez-Barbosa H, Medina-Moreno S, Perdomo-Celis F, Davis H, Chua JV, Zapata JC. Evaluation of Four Humanized NOD-Derived Mouse Models for Dengue Virus-2 Infection. Pathogens 2024; 13:639. [PMID: 39204240 PMCID: PMC11357684 DOI: 10.3390/pathogens13080639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Dengue is a significant public health problem with no specific viral treatment. One of the main challenges in studying dengue is the lack of adequate animal models recapitulating human immune responses. Most studies on humanized mice use NOD-scid IL2R gamma null (NSG) mice, which exhibit poor hematopoiesis for some cell populations. This study compares three humanized (hu) NOD-derived mouse models for dengue virus-2 (DENV-2) infection in the context of human cytokine expression. Three mouse strains (hu-NSG, hu-EXL, and hu-SGM3) received xenotransplants of human CD34+ fetal cord blood cells from a single donor, and one mouse strain received human peripheral blood mononuclear cells (hu-SGM3-PBMCs). All models exhibited infectious viruses in blood confirmed by plaque assay, but mice expressing human cytokines showed higher viremia compared to conventional NSG mice. The hu-SGM3-PBMCs model developed lethal infections, showing a significant increase in viremia and clinical signs. A detectable human cytokine response was observed in all the DENV-2-infected humanized mouse models. In conclusion, humanized NOD-derived mouse models expressing human cytokines offer a relevant platform for the study of dengue pathogenesis and antiviral therapies.
Collapse
Affiliation(s)
- Hernando Gutierrez-Barbosa
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (H.G.-B.); (S.M.-M.); (J.V.C.)
- Facultad de Biología, Universidad de Antioquia, Bogotá 050010, Colombia
| | - Sandra Medina-Moreno
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (H.G.-B.); (S.M.-M.); (J.V.C.)
| | - Federico Perdomo-Celis
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Harry Davis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (H.G.-B.); (S.M.-M.); (J.V.C.)
| | - Joel V. Chua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (H.G.-B.); (S.M.-M.); (J.V.C.)
| | - Juan C. Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (H.G.-B.); (S.M.-M.); (J.V.C.)
| |
Collapse
|
4
|
Zhu Y, Chen S, Lurong Q, Qi Z. Recent Advances in Antivirals for Japanese Encephalitis Virus. Viruses 2023; 15:v15051033. [PMID: 37243122 DOI: 10.3390/v15051033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Culex mosquitoes are the primary vectors of the Japanese encephalitis virus (JEV). Since its discovery in 1935, Japanese encephalitis (JE), caused by JEV, has posed a significant threat to human health. Despite the widespread implementation of several JEV vaccines, the transmission chain of JEV in the natural ecosystem has not changed, and the vector of transmission cannot be eradicated. Therefore, JEV is still the focus of attention for flaviviruses. At present, there is no clinically specific drug for JE treatment. JEV infection is a complex interaction between the virus and the host cell, which is the focus of drug design and development. An overview of antivirals that target JEV elements and host factors is presented in this review. In addition, drugs that balance antiviral effects and host protection by regulating innate immunity, inflammation, apoptosis, or necrosis are reviewed to treat JE effectively.
Collapse
Affiliation(s)
- Yongzhe Zhu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Shenglin Chen
- Department of Clinic Laboratory Diagnostics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Qilin Lurong
- Department of Geriatrics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
An YJ, Choi SM, Choi ER, Nam YE, Seo EW, Ahn SB, Jang Y, Kim M, Cho JH. Synthesis and biological evaluation of new β-D-N 4-hydroxycytidine analogs against SARS-CoV-2, influenza viruses and DENV-2. Bioorg Med Chem Lett 2023; 83:129174. [PMID: 36764470 PMCID: PMC9905048 DOI: 10.1016/j.bmcl.2023.129174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Drug repurposing approach was applied to find a potent antiviral agent against RNA viruses such as SARS-CoV-2, influenza viruses and dengue virus with a concise strategy of small change in parent molecular structure. For this purpose, β-D-N4-hydroxycytidine (NHC, 1) with a broad spectrum of antiviral activity was chosen as the parent molecule. Among the prepared NHC analogs (8a-g, and 9) from uridine, β-D-N4-O-isobutyrylcytidine (8a) showed potent activity against SARS-CoV-2 (EC50 3.50 μM), Flu A (H1N1) (EC50 5.80 μM), Flu A (H3N2) (EC50 7.30 μM), Flu B (EC50 3.40 μM) and DENV-2 (EC50 3.95 μM) in vitro. Furthermore, its potency against SARS-CoV-2 was >5-fold, 3.4-fold, and 3-fold compared to that of NHC (1), MK-4482 (2), and remdesivir (RDV) in vitro, respectively. Ultimately, compound 8a was expected to be a potent inhibitor toward RNA viruses as a viral mutagenic agent like MK-4482.
Collapse
Affiliation(s)
- Yeon Jin An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, South Korea
| | - Se Myeong Choi
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, South Korea
| | - Eun Rang Choi
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, South Korea
| | - Ye Eun Nam
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, South Korea
| | - Eun Woo Seo
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, South Korea
| | - Soo Bin Ahn
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, South Korea.
| | - Jong Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, South Korea; Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, South Korea.
| |
Collapse
|
6
|
Celegato M, Sturlese M, Vasconcelos Costa V, Trevisan M, Lallo Dias AS, Souza Passos IB, Queiroz-Junior CM, Messa L, Favaro A, Moro S, Teixeira MM, Loregian A, Mercorelli B. Small-Molecule Inhibitor of Flaviviral NS3-NS5 Interaction with Broad-Spectrum Activity and Efficacy In Vivo. mBio 2023; 14:e0309722. [PMID: 36622141 PMCID: PMC9973282 DOI: 10.1128/mbio.03097-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 01/10/2023] Open
Abstract
Every year, dengue virus (DENV) causes one hundred million infections worldwide that can result in dengue disease and severe dengue. Two other mosquito-borne flaviviruses, i.e., Zika virus (ZIKV) and West Nile virus (WNV), are responsible of prolonged outbreaks and are associated with severe neurological diseases, congenital defects, and eventually death. These three viruses, despite their importance for global public health, still lack specific drug treatments. Here, we describe the structure-guided discovery of small molecules with pan-flavivirus antiviral potential by a virtual screening of ~1 million structures targeting the NS3-NS5 interaction surface of different flaviviruses. Two molecules inhibited the interaction between DENV NS3 and NS5 in vitro and the replication of all DENV serotypes as well as ZIKV and WNV and exhibited low propensity to select resistant viruses. Remarkably, one molecule demonstrated efficacy in a mouse model of dengue by reducing peak viremia, viral load in target organs, and associated tissue pathology. This study provides the proof of concept that targeting the flaviviral NS3-NS5 interaction is an effective therapeutic strategy able to reduce virus replication in vivo and discloses new chemical scaffolds that could be further developed, thus providing a significant milestone in the development of much awaited broad-spectrum antiflaviviral drugs. IMPORTANCE More than one-third of the human population is at risk of infection by different mosquito-borne flaviviruses. Despite this, no specific antiviral drug is currently available. In this work, using a computational approach based on molecular dynamics simulation and virtual screening of ~1 million small-molecule structures, we identified a compound that targets the interaction between the two sole flaviviral enzymes, i.e., NS3 and NS5. This compound demonstrated pan-serotype anti-DENV activity and pan-flavivirus potential in infected cells, low propensity to select viral resistant mutant viruses, and efficacy in a mouse model of dengue. Broad-spectrum antivirals are much awaited, and this work represents a significant advance toward the development of therapeutic molecules with extended antiflavivirus potential that act by an innovative mechanism and could be used alone or in combination with other antivirals.
Collapse
Affiliation(s)
- Marta Celegato
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Marta Trevisan
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Angélica Samer Lallo Dias
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Annagiulia Favaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | |
Collapse
|
7
|
Discovery of a 2'-Fluoro,2'-Bromouridine Phosphoramidate Prodrug Exhibiting Anti-Yellow Fever Virus Activity in Culture and in Mice. Microorganisms 2022; 10:microorganisms10112098. [PMID: 36363688 PMCID: PMC9694579 DOI: 10.3390/microorganisms10112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023] Open
Abstract
Yellow fever virus (YFV) is a potentially lethal, zoonotic, blood-borne flavivirus transmitted to humans and non-human primates by mosquitoes. Owing to multiple deadly epidemics, the WHO classifies YFV as a "high impact, high threat disease" with resurgent epidemic potential. At present, there are no approved antiviral therapies to combat YFV infection. Herein we report on 2'-halogen-modified nucleoside analogs as potential anti-YFV agents. Of 11 compounds evaluated, three showed great promise with low toxicity, high intracellular metabolism into the active nucleoside triphosphate form, and sub-micromolar anti-YFV activity. Notably, we investigated a 2'-fluoro,2'-bromouridine phosphate prodrug (C9), a known anti-HCV agent with good stability in human blood and favorable metabolism. Predictive modeling revealed that C9 could readily bind the active site of the YFV RdRp, conferring its anti-YFV activity. C9 displayed potent anti-YFV activity in primary human macrophages, 3D hepatocyte spheroids, and in mice. In an A129 murine model, shortly after infection, C9 significantly reduced YFV replication and protected against YFV-induced liver inflammation and pathology with no adverse effects. Collectively, this work identifies a potent new anti-YFV agent with strong therapeutic promise.
Collapse
|
8
|
Pareek A, Kumar R, Mudgal R, Neetu N, Sharma M, Kumar P, Tomar S. Alphavirus antivirals targeting RNA‐dependent RNA polymerase domain of nsP4 divulged using surface plasmon resonance. FEBS J 2022; 289:4901-4924. [DOI: 10.1111/febs.16397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/13/2022] [Accepted: 02/11/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Akshay Pareek
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Ravi Kumar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Rajat Mudgal
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Neetu Neetu
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Monica Sharma
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| |
Collapse
|
9
|
Costa VV, Sugimoto MA, Hubner J, Bonilha CS, Queiroz-Junior CM, Gonçalves-Pereira MH, Chen J, Gobbetti T, Libanio Rodrigues GO, Bambirra JL, Passos IB, Machado Lopes CE, Moreira TP, Bonjour K, Melo RCN, Oliveira MAP, Andrade MVM, Sousa LP, Souza DG, Santiago HDC, Perretti M, Teixeira MM. Targeting the Annexin A1-FPR2/ALX pathway for host-directed therapy in dengue disease. eLife 2022; 11:73853. [PMID: 35293862 PMCID: PMC8959599 DOI: 10.7554/elife.73853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Host immune responses contribute to dengue's pathogenesis and severity, yet the possibility that failure in endogenous inflammation resolution pathways could characterise the disease has not been contemplated. The pro-resolving protein Annexin A1 (AnxA1) is known to counterbalance overexuberant inflammation and mast cell (MC) activation. We hypothesised that inadequate AnxA1 engagement underlies the cytokine storm and vascular pathologies associated with dengue disease. Levels of AnxA1 were examined in the plasma of dengue patients and infected mice. Immunocompetent, interferon (alpha and beta) receptor one knockout (KO), AnxA1 KO, and formyl peptide receptor 2 (FPR2) KO mice were infected with dengue virus (DENV) and treated with the AnxA1 mimetic peptide Ac2-26 for analysis. In addition, the effect of Ac2-26 on DENV-induced MC degranulation was assessed in vitro and in vivo. We observed that circulating levels of AnxA1 were reduced in dengue patients and DENV-infected mice. Whilst the absence of AnxA1 or its receptor FPR2 aggravated illness in infected mice, treatment with AnxA1 agonistic peptide attenuated disease manifestationsatteanuated the symptoms of the disease. Both clinical outcomes were attributed to modulation of DENV-mediated viral load-independent MC degranulation. We have thereby identified that altered levels of the pro-resolving mediator AnxA1 are of pathological relevance in DENV infection, suggesting FPR2/ALX agonists as a therapeutic target for dengue disease.
Collapse
Affiliation(s)
- Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A Sugimoto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Josy Hubner
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caio S Bonilha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcela Helena Gonçalves-Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jianmin Chen
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gisele Olinto Libanio Rodrigues
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jordana L Bambirra
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ingredy B Passos
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carla Elizabeth Machado Lopes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaiane P Moreira
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kennedy Bonjour
- Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rossana C N Melo
- Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Milton A P Oliveira
- Tropical Pathology and Public Health Institute, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Lirlândia Pires Sousa
- Department of Clinical and Toxicological Analyses, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danielle Gloria Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Carbohydrate Ligands for COVID-19 Spike Proteins. Viruses 2022; 14:v14020330. [PMID: 35215921 PMCID: PMC8880561 DOI: 10.3390/v14020330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
An outbreak of SARS-CoV-2 coronavirus (COVID-19) first detected in Wuhan, China, has created a public health emergency all over the world. The pandemic has caused more than 340 million confirmed cases and 5.57 million deaths as of 23 January 2022. Although carbohydrates have been found to play a role in coronavirus binding and infection, the role of cell surface glycans in SARS-CoV-2 infection and pathogenesis is still not understood. Herein, we report that the SARS-CoV-2 spike protein S1 subunit binds specifically to blood group A and B antigens, and that the spike protein S2 subunit has a binding preference for Lea antigens. Further examination of the binding preference for different types of red blood cells (RBCs) indicated that the spike protein S1 subunit preferentially binds with blood group A RBCs, whereas the spike protein S2 subunit prefers to interact with blood group Lea RBCs. Angiotensin converting enzyme 2 (ACE2), a known target of SARS-CoV-2 spike proteins, was identified to be a blood group A antigen-containing glycoprotein. Additionally, 6-sulfo N-acetyllactosamine was found to inhibit the binding of the spike protein S1 subunit with blood group A RBCs and reduce the interaction between the spike protein S1 subunit and ACE2.
Collapse
|
11
|
Byrne AB, García CC, Damonte EB, Talarico LB. Murine models of dengue virus infection for novel drug discovery. Expert Opin Drug Discov 2022; 17:397-412. [PMID: 35098849 DOI: 10.1080/17460441.2022.2033205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Dengue virus (DENV) is the causative agent of the most prevalent human disease transmitted by mosquitoes in tropical and subtropical regions worldwide. At present, no antiviral drug is available and the difficulties to develop highly protective vaccines against the four DENV serotypes maintain the requirement of effective options for dengue chemotherapy. AREAS COVERED The availability of animal models that reproduce human disease is a very valuable tool for the preclinical evaluation of potential antivirals. Here, the main murine models of dengue infection are described, including immunocompetent wild-type mice, immunocompromised mice deficient in diverse components of the interferon (IFN) pathway and humanized mice. The main findings in antiviral testing of DENV inhibitory compounds in murine models are also presented. EXPERT OPINION At present, there is no murine model that fully recapitulates human disease. However, immunocompromised mice deficient in IFN-α/β and -γ receptors, with their limitations, have shown to be the most suitable system for antiviral preclinical testing. In fact, the AG129 mouse model allowed the identification of celgosivir, an inhibitor of cellular glucosidases, as a promising option for DENV therapy. However, clinical trials still were not successful, emphasizing the difficulties in the transition from preclinical testing to human treatment.
Collapse
Affiliation(s)
- Alana B Byrne
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cybele C García
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica-IQUIBICEN (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elsa B Damonte
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica-IQUIBICEN (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura B Talarico
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Nakamura M, Uemura K, Saito-Tarashima N, Sato A, Orba Y, Sawa H, Matsuda A, Maenaka K, Minakawa N. Synthesis and anti-dengue virus activity of 5-ethynylimidazole-4-carboxamide (EICA) nucleotide prodrugs. Chem Pharm Bull (Tokyo) 2021; 70:220-225. [PMID: 34955490 DOI: 10.1248/cpb.c21-01038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that 5-ethynyl-(1-β-D-ribofuranosyl)imidazole-4-carboxamide (1; EICAR) is a potent anti-dengue virus (DENV) compound but is cytotoxic to some cell lines, while its 4-thio derivative, 5-ethynyl-(4-thio-1-β-D-ribofuranosyl)imidazole-4-carboxamide (2; 4'-thioEICAR), has less cytotoxicity but also less anti-DENV activity. Based on the hypothesis that the lower anti-DENV activity of 2 is due to reduced susceptibility to phosphorylation by cellular kinase(s), we investigated whether a monophosphate prodrug of 2 can improve its activity. Here, we first prepared two types of prodrug of 1, which revealed that the S-acyl-2-thioethyl (SATE) prodrug had stronger anti-DENV activity than the aryloxyphosphoramidate (so-called ProTide) prodrug. Based on these findings, we next prepared the SATE prodrug of 4'-thioEICAR 18. As expected, the resulting 18 showed potent anti-DENV activity, which was comparable to that of 1; however, its cytotoxicity was also increased relative to 2. Our findings suggest that prodrugs of 4'-thioribonucleoside derivatives such as EICAR (1) represent an effective approach to developing potent biologically active compounds; however, the balance between antiviral activity and cytotoxicity remains to be addressed.
Collapse
Affiliation(s)
- Motoki Nakamura
- Graduate School of Pharmaceutical Science, Tokushima University
| | - Kentaro Uemura
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd.,Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University.,Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University
| | | | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd.,Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University.,One Health Research Center, Hokkaido University
| | - Akira Matsuda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University
| | | |
Collapse
|
13
|
Low ZX, OuYong BM, Hassandarvish P, Poh CL, Ramanathan B. Antiviral activity of silymarin and baicalein against dengue virus. Sci Rep 2021; 11:21221. [PMID: 34707245 PMCID: PMC8551334 DOI: 10.1038/s41598-021-98949-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Dengue is an arthropod-borne viral disease that has become endemic and a global threat in many countries with no effective antiviral drug available currently. This study showed that flavonoids: silymarin and baicalein could inhibit the dengue virus in vitro and were well tolerated in Vero cells with a half-maximum cytotoxic concentration (CC50) of 749.70 µg/mL and 271.03 µg/mL, respectively. Silymarin and baicalein exerted virucidal effects against DENV-3, with a selective index (SI) of 10.87 and 21.34, respectively. Baicalein showed a better inhibition of intracellular DENV-3 progeny with a SI of 7.82 compared to silymarin. Baicalein effectively blocked DENV-3 attachment (95.59%) to the Vero cells, while silymarin prevented the viral entry (72.46%) into the cells, thus reducing viral infectivity. Both flavonoids showed promising antiviral activity against all four dengue serotypes. The in silico molecular docking showed that silymarin could bind to the viral envelope (E) protein with a binding affinity of - 8.5 kcal/mol and form hydrogen bonds with the amino acids GLN120, TRP229, ASN89, and THR223 of the E protein. Overall, this study showed that silymarin and baicalein exhibited potential anti-DENV activity and could serve as promising antiviral agents for further development against dengue infection.
Collapse
Affiliation(s)
- Zhao Xuan Low
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Kuala Lumpur, Malaysia
| | - Brian Ming OuYong
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Centre, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Kuala Lumpur, Malaysia
| | - Babu Ramanathan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Chen RE, Diamond MS. Dengue mouse models for evaluating pathogenesis and countermeasures. Curr Opin Virol 2020; 43:50-58. [PMID: 32950933 PMCID: PMC7774505 DOI: 10.1016/j.coviro.2020.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Dengue virus (DENV) causes the most prevalent arbovirus illness worldwide and is responsible for many debilitating epidemics. The four circulating DENV serotypes infect humans and can cause asymptomatic, mild, moderate, or severe Dengue. Because of the global morbidity and mortality due to Dengue, deployment of a safe and effective tetravalent vaccine has been a high priority, and to date, a partially realized goal. The study of pathogenesis and development of DENV therapeutics and vaccines has been limited by few animal models that recapitulate key features of human disease. Over the past two decades, mouse models of DENV infection have evolved with increasing success. Here, we review the utilization and limitations of mice for studying DENV pathogenesis and evaluating countermeasures.
Collapse
Affiliation(s)
- Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Shanmugam A, Ramakrishnan C, Velmurugan D, Gromiha MM. Identification of Potential Inhibitors for Targets Involved in Dengue Fever. Curr Top Med Chem 2020; 20:1742-1760. [PMID: 32552652 DOI: 10.2174/1568026620666200618123026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/05/2019] [Accepted: 01/10/2020] [Indexed: 01/16/2023]
Abstract
Lethality due to dengue infection is a global threat. Nearly 400 million people are affected every year, which approximately costs 500 million dollars for surveillance and vector control itself. Many investigations on the structure-function relationship of proteins expressed by the dengue virus are being made for more than a decade and had come up with many reports on small molecule drug discovery. In this review, we present a detailed note on viral proteins and their functions as well as the inhibitors discovered/designed so far using experimental and computational methods. Further, the phytoconstituents from medicinal plants, specifically the extract of the papaya leaves, neem and bael, which combat dengue infection via dengue protease, helicase, methyl transferase and polymerase are summarized.
Collapse
Affiliation(s)
- Anusuya Shanmugam
- Department of Pharmaceutical Engineering, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem - 636308, India
| | - Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai - 600036, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai - 600025, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai - 600036, India
| |
Collapse
|
16
|
Win AYN, Wai KT, Harries AD, Kyaw NTT, Oo T, Than WP, Lin HH, Lin Z. The burden of Japanese encephalitis, the catch-up vaccination campaign, and health service providers' perceptions in Myanmar: 2012-2017. Trop Med Health 2020; 48:13. [PMID: 32161512 PMCID: PMC7059723 DOI: 10.1186/s41182-020-00200-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/27/2020] [Indexed: 01/28/2023] Open
Abstract
Background Myanmar is endemic for Japanese encephalitis (JE) and has experienced several outbreaks in recent years. The vector-borne disease control (VBDC) program has collected hospital-based surveillance data since 1974. There is an urgent need to collate, analyze, and interpret the most recent information. The study aimed to describe (i) hospital-based JE cases and deaths between 2012 and 2017, (ii) a catch-up vaccination campaign in children in 2017, and (iii) health service provider perceptions about JE in one township in 2018. Methods This was a cross-sectional study of cases, deaths, and catch-up childhood vaccinations using secondary data from program records and a survey database of health service provider perceptions. Results Between 2012 and 2017, there were 872 JE cases and 79 deaths with a case fatality rate of 91 per 1000; 2016 was the year with most cases and deaths. Most cases (n = 324) and deaths (n = 37) occurred in children aged 5–9 years. Large case numbers were reported in delta and lowland regions (n = 550) and during the wet season (n = 580). The highest case fatality rates were observed in the hills and coastal regions (120 and 112 per 1000, respectively). Nationwide coverage of the catch-up JE vaccination campaign among 13.7 million eligible children was 92%, with coverage lower in the hills and coastal regions (84%) compared with delta and lowland regions and plains (94%). More vaccinations (65%) occurred through school-based campaigns with the remainder (35%) vaccinated through community-based campaigns. Structured interviews in one township showed that service providers (n = 47) had good perceptions about various aspects of JE, although perceived benefits of specific vector control measures were poor: spraying/fumigation (38%), garbage removal (36%), larvicide use (36%), and drainage of standing/stagnant water (32%). Conclusion The catch-up vaccination campaign was a successful response to high JE case numbers and deaths in children. However, ongoing surveillance for JE needs to continue and be strengthened to ensure comprehensive reporting of all cases, more knowledge is needed on disability in JE survivors, and all attempts must be made to ensure high percentage coverage of vaccination through routine and catch-up campaigns.
Collapse
Affiliation(s)
- Aung Ye Naung Win
- 1Epidemiology Research Division, Department of Medical Research, Ministry of Health and Sports, No. 5, Ziwaka Road, Dagon Township, Yangon, 11191 Myanmar
| | - Khin Thet Wai
- 1Epidemiology Research Division, Department of Medical Research, Ministry of Health and Sports, No. 5, Ziwaka Road, Dagon Township, Yangon, 11191 Myanmar
| | - Anthony D Harries
- 2International Union against Tuberculosis and Lung Disease, Paris, France.,3London School of Hygiene and Tropical Medicine, London, UK
| | - Nang Thu Thu Kyaw
- 2International Union against Tuberculosis and Lung Disease, Paris, France
| | - Tin Oo
- 1Epidemiology Research Division, Department of Medical Research, Ministry of Health and Sports, No. 5, Ziwaka Road, Dagon Township, Yangon, 11191 Myanmar
| | - Wint Phyo Than
- 4Vector Borne Disease Control Program, Ministry of Health and Sports, Naypyitaw, Myanmar
| | - Htar Htar Lin
- 5Expanded Program on Immunization, Ministry of Health and Sports, Naypyitaw, Myanmar
| | - Zaw Lin
- 6WHO South East Asia Regional Office, New Delhi, India
| |
Collapse
|
17
|
Au CC, Hon KL, Leung AKC, Torres AR. Childhood Infectious Encephalitis: An Overview of Clinical Features, Investigations, Treatment, and Recent Patents. RECENT PATENTS ON INFLAMMATION & ALLERGY DRUG DISCOVERY 2020; 14:156-165. [PMID: 33238854 DOI: 10.2174/1872213x14999201124195724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Infectious encephalitis is a serious and challenging condition to manage. This overview summarizes the current literature regarding the etiology, clinical manifestations, diagnosis, management, and recent patents of acute childhood infectious encephalitis. METHODS We used PubMed Clinical Queries as a search engine and used keywords of "encephalitis" AND "childhood" Patents were searched using the key term "encephalitis" in google.patents.- com and patentsonline.com. RESULTS Viral encephalitis is the most common cause of acute infectious encephalitis in children. In young children, the clinical manifestations can be non-specific. Provision of empiric antimicrobial therapy until a specific infectious organism has been identified, which in most cases includes acyclovir, is the cornerstone of therapy. Advanced investigation tools, including nucleic acid-based test panel and metagenomic next-generation sequencing, improve the diagnostic yield of identifying an infectious organism. Supportive therapy includes adequate airway and oxygenation, fluid and electrolyte balance, cerebral perfusion pressure support, and seizure control. Recent patents are related to the diagnosis, treatment, and prevention of acute infectious encephalitis. CONCLUSION Viral encephalitis is the most common cause of acute infectious encephalitis in children and is associated with significant morbidity. Recent advances in understanding the genetic basis and immunological correlation of infectious encephalitis may improve treatment. Third-tier diagnostic tests may be incorporated into clinical practice. Treatment is targeted at the infectious process but remains mostly supportive. However, specific antimicrobial agents and vaccines development is ongoing.
Collapse
Affiliation(s)
- Cheuk C Au
- Department of Paediatrics and Adolescent Medicine, The Hong Kong Children's Hospital, Kowloon Bay, Kowloon, Hong Kong
| | - Kam L Hon
- Department of Paediatrics and Adolescent Medicine, The Hong Kong Children's Hospital, Kowloon Bay, Kowloon, Hong Kong
| | - Alexander K C Leung
- Department of Pediatrics, The University of Calgary and The Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Alcy R Torres
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Traumatic Brain Injury Program, Associate Professor of Pediatrics and Neurology, Boston University, School of Medicine, Boston, MA, United States
| |
Collapse
|