1
|
Marinescu SC(N, Apetroaei MM, Nedea MI(I, Arsene AL, Velescu BȘ, Hîncu S, Stancu E, Pop AL, Drăgănescu D, Udeanu DI. Dietary Influence on Drug Efficacy: A Comprehensive Review of Ketogenic Diet-Pharmacotherapy Interactions. Nutrients 2024; 16:1213. [PMID: 38674903 PMCID: PMC11054576 DOI: 10.3390/nu16081213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
It is widely acknowledged that the ketogenic diet (KD) has positive physiological effects as well as therapeutic benefits, particularly in the treatment of chronic diseases. Maintaining nutritional ketosis is of utmost importance in the KD, as it provides numerous health advantages such as an enhanced lipid profile, heightened insulin sensitivity, decreased blood glucose levels, and the modulation of diverse neurotransmitters. Nevertheless, the integration of the KD with pharmacotherapeutic regimens necessitates careful consideration. Due to changes in their absorption, distribution, metabolism, or elimination, the KD can impact the pharmacokinetics of various medications, including anti-diabetic, anti-epileptic, and cardiovascular drugs. Furthermore, the KD, which is characterised by the intake of meals rich in fats, has the potential to impact the pharmacokinetics of specific medications with high lipophilicity, hence enhancing their absorption and bioavailability. However, the pharmacodynamic aspects of the KD, in conjunction with various pharmaceutical interventions, can provide either advantageous or detrimental synergistic outcomes. Therefore, it is important to consider the pharmacokinetic and pharmacodynamic interactions that may arise between the KD and various drugs. This assessment is essential not only for ensuring patients' compliance with treatment but also for optimising the overall therapeutic outcome, particularly by mitigating adverse reactions. This highlights the significance and necessity of tailoring pharmacological and dietetic therapies in order to enhance the effectiveness and safety of this comprehensive approach to managing chronic diseases.
Collapse
Affiliation(s)
- Simona Cristina (Nicolescu) Marinescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Amethyst Radiotherapy Center, 42, Drumul Odăi, 075100 Otopeni, Romania
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Marina Ionela (Ilie) Nedea
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Marius Nasta Institute of Pneumophthiology, 90, Viilor Street, 050159 Bucharest, Romania
| | - Bruno Ștefan Velescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Sorina Hîncu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Fundeni Clinical Institute, 258, Fundeni Street, 022328 Bucharest, Romania
| | - Emilia Stancu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Anca Lucia Pop
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Doina Drăgănescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Denisa Ioana Udeanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Marius Nasta Institute of Pneumophthiology, 90, Viilor Street, 050159 Bucharest, Romania
| |
Collapse
|
2
|
Cellular Targets of HIV-1 Protease: Just the Tip of the Iceberg? Viruses 2023; 15:v15030712. [PMID: 36992421 PMCID: PMC10053624 DOI: 10.3390/v15030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) viral protease (PR) is one of the most studied viral enzymes and a crucial antiviral target. Despite its well-characterized role in virion maturation, an increasing body of research is starting to focus on its ability to cleave host cell proteins. Such findings are apparently in contrast with the dogma of HIV-1 PR activity being restricted to the interior of nascent virions and suggest catalytic activity within the host cell environment. Given the limited amount of PR present in the virion at the time of infection, such events mainly occur during late viral gene expression, mediated by newly synthesized Gag-Pol polyprotein precursors, rather than before proviral integration. HIV-1 PR mainly targets proteins involved in three different processes: those involved in translation, those controlling cell survival, and restriction factors responsible for innate/intrinsic antiviral responses. Indeed, by cleaving host cell translation initiation factors, HIV-1 PR can impair cap-dependent translation, thus promoting IRES-mediated translation of late viral transcripts and viral production. By targeting several apoptotic factors, it modulates cell survival, thus promoting immune evasion and viral dissemination. Additionally, HIV-1 PR counteracts restriction factors incorporated in the virion that would otherwise interfere with nascent virus vitality. Thus, HIV-1 PR appears to modulate host cell function at different times and locations during its life cycle, thereby ensuring efficient viral persistency and propagation. However, we are far from having a complete picture of PR-mediated host cell modulation, which is emerging as a field that needs further investigation.
Collapse
|
3
|
Specificity of the HIV-1 Protease on Substrates Representing the Cleavage Site in the Proximal Zinc-Finger of HIV-1 Nucleocapsid Protein. Viruses 2021; 13:v13061092. [PMID: 34201134 PMCID: PMC8227227 DOI: 10.3390/v13061092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
To explore the sequence context-dependent nature of the human immunodeficiency virus type 1 (HIV-1) protease’s specificity and to provide a rationale for viral mutagenesis to study the potential role of the nucleocapsid (NC) processing in HIV-1 replication, synthetic oligopeptide substrates representing the wild-type and modified versions of the proximal cleavage site of HIV-1 NC were assayed as substrates of the HIV-1 protease (PR). The S1′ substrate binding site of HIV-1 PR was studied by an in vitro assay using KIVKCF↓NCGK decapeptides having amino acid substitutions of N17 residue of the cleavage site of the first zinc-finger domain, and in silico calculations were also performed to investigate amino acid preferences of S1′ site. Second site substitutions have also been designed to produce “revertant” substrates and convert a non-hydrolysable sequence (having glycine in place of N17) to a substrate. The specificity constants obtained for peptides containing non-charged P1′ substitutions correlated well with the residue volume, while the correlation with the calculated interaction energies showed the importance of hydrophobicity: interaction energies with polar residues were related to substantially lower specificity constants. Cleavable “revertants” showed one residue shift of cleavage position due to an alternative productive binding mode, and surprisingly, a double cleavage of a substrate was also observed. The results revealed the importance of alternative binding possibilities of substrates into the HIV-1 PR. The introduction of the “revertant” mutations into infectious virus clones may provide further insights into the potential role of NC processing in the early phase of the viral life-cycle.
Collapse
|
4
|
Joshi RS, Jagdale SS, Bansode SB, Shankar SS, Tellis MB, Pandya VK, Chugh A, Giri AP, Kulkarni MJ. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J Biomol Struct Dyn 2021; 39:3099-3114. [PMID: 32329408 PMCID: PMC7212545 DOI: 10.1080/07391102.2020.1760137] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the current COVID-19 pandemic. Worldwide this disease has infected over 2.5 million individuals with a mortality rate ranging from 5 to 10%. There are several efforts going on in the drug discovery to control the SARS-CoV-2 viral infection. The main protease (MPro) plays a critical role in viral replication and maturation, thus can serve as the primary drug target. To understand the structural evolution of MPro, we have performed phylogenetic and Sequence Similarity Network analysis, that depicted divergence of Coronaviridae MPro in five clusters specific to viral hosts. This clustering was corroborated with the comparison of MPro structures. Furthermore, it has been observed that backbone and binding site conformations are conserved despite variation in some of the residues. These attributes can be exploited to repurpose available viral protease inhibitors against SARS-CoV-2 MPro. In agreement with this, we performed screening of ∼7100 molecules including active ingredients present in the Ayurvedic anti-tussive medicines, anti-viral phytochemicals and synthetic anti-virals against SARS-CoV-2 MPro as the primary target. We identified several natural molecules like δ-viniferin, myricitrin, taiwanhomoflavone A, lactucopicrin 15-oxalate, nympholide A, afzelin, biorobin, hesperidin and phyllaemblicin B that strongly binds to SARS-CoV-2 MPro. Intrestingly, these molecules also showed strong binding with other potential targets of SARS-CoV-2 infection like viral receptor human angiotensin-converting enzyme 2 (hACE-2) and RNA dependent RNA polymerase (RdRp). We anticipate that our approach for identification of multi-target-directed ligand will provide new avenues for drug discovery against SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rakesh S. Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shounak S. Jagdale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Sneha B. Bansode
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - S. Shiva Shankar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Meenakshi B. Tellis
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | | | | | - Ashok P. Giri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahesh J. Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Sharma PP, Kumar S, Kaushik K, Singh A, Singh IK, Grishina M, Pandey KC, Singh P, Potemkin V, Poonam, Singh G, Rathi B. In silico validation of novel inhibitors of malarial aspartyl protease, plasmepsin V and antimalarial efficacy prediction. J Biomol Struct Dyn 2021; 40:8352-8364. [PMID: 33870856 DOI: 10.1080/07391102.2021.1911855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Plasmepsin V (Plm V) is an essential aspartic protease required for survival of the malaria parasite, Plasmodium falciparum (Pf). Plm V is required for cleaving the PEXEL motifs of many Pf proteins and its inhibition leads to a knockout effect, indicating its suitability as potential drug target. To decipher new inhibitors of PfPlm V, molecular docking of four HIV-1 protease inhibitors active against PfPlmV was performed on Glide module of Schrödinger suite that supported saquinavir as a lead drug, and therefore, selected as a control. Saquinavir contains an important hydroxyethylamine (HEA) pharmacophore, which was utilized as backbone coupled with piperazine scaffold to build new library of compounds. Newly designed HEA compounds were screened virtually against Plm V. Molecular docking led to a few hits (1 and 3) with higher docking score over the control drug. Notably, compound 1 showed the highest docking score (-11.90 kcal/mol) and XP Gscore (-11.948 kcal/mol). The Prime MMGBSA binding free energy for compound 1 (-60.88 kcal/mol) and 3 (-50.96 kcal/mol) was higher than saquinavir (-37.51 kcal/mol). The binding free energy for the last frame of molecular dynamic simulation supported compound 1 (-92.88 kcal/mol) as potent inhibitor of PfPlm V over saquinavir (-72.77 kcal/mol), and thus, deserves experimental validations in culture and subsequently in animal models.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prem Prakash Sharma
- Department of Biomedical Engineering, Deenbandhu Chhotu Ram, University of Science & Technology, Murthal, Sonepat, Haryana, India.,Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Kumar Kaushik
- Centre for Fire, Explosives & Environment Safety, Fire Chemistry Group, Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Maria Grishina
- Laboratory of Computational Modelling of Drugs, South Ural State University, Russia
| | - Kailash C Pandey
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, New Delhi, India
| | | | - Vladimir Potemkin
- Laboratory of Computational Modelling of Drugs, South Ural State University, Russia
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Geeta Singh
- Department of Biomedical Engineering, Deenbandhu Chhotu Ram, University of Science & Technology, Murthal, Sonepat, Haryana, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India.,Laboratory of Computational Modelling of Drugs, South Ural State University, Russia
| |
Collapse
|
6
|
Herrera C. The Pre-clinical Toolbox of Pharmacokinetics and Pharmacodynamics: in vitro and ex vivo Models. Front Pharmacol 2019; 10:578. [PMID: 31178736 PMCID: PMC6543330 DOI: 10.3389/fphar.2019.00578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
Prevention strategies against sexual transmission of human immunodeficiency virus (HIV) are essential to curb the rate of new infections. In the absence of a correlate of protection against HIV infection, pre-clinical evaluation is fundamental to facilitate and accelerate prioritization of prevention candidates and their formulations in a rapidly evolving clinical landscape. Characterization of pharmacokinetic (PK) and pharmacodynamic (PD) properties for candidate inhibitors is the main objective of pre-clinical evaluation. in vitro and ex vivo systems for pharmacological assessment allow experimental flexibility and adaptability at a relatively low cost without raising as significant ethical concerns as in vivo models. Applications and limitations of pre-clinical PK/PD models and future alternatives are reviewed in the context of HIV prevention.
Collapse
Affiliation(s)
- Carolina Herrera
- Section of Virology, Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Mhlwatika Z, Aderibigbe BA. Application of Dendrimers for the Treatment of Infectious Diseases. Molecules 2018; 23:E2205. [PMID: 30200314 PMCID: PMC6225509 DOI: 10.3390/molecules23092205] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/14/2023] Open
Abstract
Dendrimers are drug delivery systems that are characterized by a three-dimensional, star-shaped, branched macromolecular network. They possess ideal properties such as low polydispersity index, biocompatibility and good water solubility. They are made up of the interior and the exterior layers. The exterior layer consists of functional groups that are useful for conjugation of drugs and targeting moieties. The interior layer exhibits improved drug encapsulation efficiency, reduced drug toxicity, and controlled release mechanisms. These unique properties make them useful for drug delivery. Dendrimers have attracted considerable attention as drug delivery system for the treatment of infectious diseases. The treatment of infectious diseases is hampered severely by drug resistance. Several properties of dendrimers such as their ability to overcome drug resistance, toxicity and control the release mechanism of the encapsulated drugs make them ideal systems for the treatment of infectious disease. The aim of this review is to discuss the potentials of dendrimers for the treatment of viral and parasitic infections.
Collapse
Affiliation(s)
- Zandile Mhlwatika
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
8
|
Murphy DJ, Desjardins D, Boyd P, Dereuddre-Bosquet N, Stimmer L, Caldwell A, Le Grand R, Kelly C, van Roey J, Malcolm RK. Impact of ring size and drug loading on the pharmacokinetics of a combination dapivirine-darunavir vaginal ring in cynomolgus macaques. Int J Pharm 2018; 550:300-308. [PMID: 30153490 DOI: 10.1016/j.ijpharm.2018.08.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 01/05/2023]
Abstract
This work investigates the impact of vaginal ring size and drug loading on the in vitro release, safety, ease of fit, and pharmacokinetics in cynomolgus macaques of matrix-type silicone elastomer vaginal rings containing a combination of the non-nucleoside reverse transcriptase inhibitor dapivirine and the protease inhibitor darunavir. Drug-free and drug-loaded vaginal rings having three different geometries were manufactured by reaction injection molding. In vitro drug release was assessed using both a solvent/water mixture and a vaginal fluid simulant. Macaques fitted with drug-free vaginal rings for 28 days were assessed by colposcopy, cytological evaluation of cervico-vaginal lavage and histological evaluation of tissue after ring removal. The 20 × 4.5 mm combination ring, deemed most appropriate for vaginal fit and comfort in the macaques, was evaluated for pharmacokinetics over 28 days. Substantial differences were observed in the in vitro release profiles between the three ring sizes. However, these differences were not manifest in vivo, where measured drug concentrations after 20 × 4.5 mm ring use were not significantly different from those reported previously with a 25 × 6 mm ring. These results suggest that ring placement and fit is an important species-specific study parameter that should be optimised prior to pharmacokinetic testing.
Collapse
Affiliation(s)
- Diarmaid J Murphy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Delphine Desjardins
- Université Paris Sud, INSERM, CEA, DRF-Immunology of Viral Infections and Autoimmune Diseases Department (IMVA), U1184, IDMIT Infrastructure, Fontenay-aux-Roses, France.
| | - Peter Boyd
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Nathalie Dereuddre-Bosquet
- Université Paris Sud, INSERM, CEA, DRF-Immunology of Viral Infections and Autoimmune Diseases Department (IMVA), U1184, IDMIT Infrastructure, Fontenay-aux-Roses, France.
| | - Lev Stimmer
- Molecular Imaging Research Center, CEA-INSERM US27/U1169, 18 route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Anna Caldwell
- Mass Spectrometry Facility, King's College London, London SE1 9NH, UK.
| | - Roger Le Grand
- Université Paris Sud, INSERM, CEA, DRF-Immunology of Viral Infections and Autoimmune Diseases Department (IMVA), U1184, IDMIT Infrastructure, Fontenay-aux-Roses, France.
| | - Charles Kelly
- Dental Institute, Guy's Hospital, King's College London, London SE1 9RT, UK.
| | - Jens van Roey
- Janssen GPH, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
9
|
Tóth F, Kádas J, Mótyán JA, Tőzsér J. Effect of internal cleavage site mutations in human immunodeficiency virus type 1 capsid protein on its structure and function. FEBS Open Bio 2016; 6:847-59. [PMID: 27516963 PMCID: PMC4971840 DOI: 10.1002/2211-5463.12094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/12/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
The capsid protein of the human immunodeficiency virus type 1 has been found to be a substrate of the retroviral protease in vitro, and its processing was predicted to be strongly dependent on a pH‐induced conformational change. Several protease cleavage sites have been identified within the capsid protein, but the importance of its cleavage by the viral protease at the early phase of infection is controversial. To confirm the relevance of this process, we aimed to design, produce, and characterize mutant capsid proteins, in which the protein susceptibility toward HIV‐1 protease is altered without affecting other steps of the viral life cycle. Our results indicate that while the introduced mutations changed the cleavage rate at the mutated sites of the capsid protein by HIV‐1 protease, some of them caused only negligible or moderate structural changes (A78V, L189F, and L189I). However, the effects of other mutations (W23A, A77P, and L189P) were dramatic, as assessed by secondary structure determination or cyclophilin A‐binding assay. Based on our observations, the L189F mutant capsid remains structurally and functionally unchanged and may therefore be the best candidate for use in studies aimed at better understanding the role of the protease in the early postentry events of viral infection or retrovirus‐mediated gene transduction.
Collapse
Affiliation(s)
- Ferenc Tóth
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - János Kádas
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| |
Collapse
|
10
|
Animal and human mucosal tissue models to study HIV biomedical interventions: can we predict success? J Int AIDS Soc 2015; 18:20301. [PMID: 26530077 PMCID: PMC4631705 DOI: 10.7448/ias.18.1.20301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction Preclinical testing plays an integral role in the development of HIV prevention modalities. Several models are used including humanized mice, non-human primates and human mucosal tissue cultures. Discussion Pharmaceutical development traditionally uses preclinical models to evaluate product safety. The HIV prevention field has extended this paradigm to include models of efficacy, encompassing humanized mice, non-human primates (typically Asian macaques) and human mucosal tissue (such as cervical and colorectal). As our understanding of the biology of HIV transmission improves and includes the influence of human behaviour/biology and co-pathogens, these models have evolved as well to address more complex questions. These three models have demonstrated the effectiveness of systemic (oral) and topical use of antiretroviral drugs. Importantly, pharmacokinetic/pharmacodynamic relationships are being developed and linked to information gathered from human clinical trials. The models are incorporating co-pathogens (bacterial and viral) and the effects of coitus (mucosal fluids) on drug distribution and efficacy. Humanized mice are being tailored in their immune reconstitution to better represent humans. Importantly, human mucosal tissue cultures are now being used in early clinical trials to provide information on product efficacy to more accurately characterize efficacious products to advance to larger clinical trials. While all of these models have made advancements in product development, each has limitations and the data need to be interpreted by keeping these limitations in mind. Conclusions Development and refinement of each of these models has been an iterative process and linkages to data generated among each of them and from human clinical trials are needed to determine their reliability. Preclinical testing has evolved from simply identifying products that demonstrate efficacy prior to clinical trials to defining essential pharmacokinetic/pharmacodynamic relationships under a variety of conditions and has the potential to improve product selection prior to the initiation of large-scale human clinical trials. The goal is to provide researchers with ample information to make conversant decisions that guide optimized and efficient product development.
Collapse
|
11
|
Sánchez-Rodríguez J, Vacas-Córdoba E, Gómez R, De La Mata FJ, Muñoz-Fernández MÁ. Nanotech-derived topical microbicides for HIV prevention: the road to clinical development. Antiviral Res 2014; 113:33-48. [PMID: 25446339 DOI: 10.1016/j.antiviral.2014.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/29/2014] [Indexed: 11/15/2022]
Abstract
More than three decades since its discovery, HIV infection remains one of the most aggressive epidemics worldwide, with more than 35 million people infected. In sub-Saharan Africa, heterosexual transmissions represent nearly 80% of new infections, with 50% of these occurring in women. In an effort to stop the dramatic spread of the HIV epidemic, new preventive treatments, such as microbicides, have been developed. Nanotechnology has revolutionized this field by designing and engineering novel highly effective nano-sized materials as microbicide candidates. This review illustrates the most recent advances in nanotech-derived HIV prevention strategies, as well as the main steps required to translate promising in vitro results into clinical trials.
Collapse
Affiliation(s)
- Javier Sánchez-Rodríguez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - F Javier De La Mata
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
12
|
Nunes R, Sarmento B, das Neves J. Formulation and delivery of anti-HIV rectal microbicides: advances and challenges. J Control Release 2014; 194:278-94. [PMID: 25229988 DOI: 10.1016/j.jconrel.2014.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/08/2014] [Indexed: 12/24/2022]
Abstract
Men and women engaged in unprotected receptive anal intercourse (RAI) are at higher risk of acquiring HIV from infected partners. The implementation of preventive strategies is urgent and rectal microbicides may be a useful tool in reducing the sexual transmission of HIV. However, pre-clinical and first clinical trials have been able to identify limitations of candidate products, mostly related with safety issues, which can in turn enhance viral infection. Indeed, the development of suitable formulations for the rectal delivery of promising antiretroviral drugs is not an easy task, and has been mostly based on products specifically intended for vaginal delivery, but these have been shown to provide sub-optimal outcomes when administered rectally. Research and development in the rectal microbicide field are now charting their own path and important information is now available. In particular, specific formulation requirements of rectal microbicide products that need to be met have just recently been acknowledged despite additional work being still required. Desirable rectal microbicide product features regarding characteristics such as pH, osmolality, excipients, dosage forms, volume to be administered and the need for applicator use have been studied and defined in recent years, and specific guidance is now possible. This review provides a synopsis of the field of rectal microbicides, namely past and ongoing clinical studies, and details on formulation and drug delivery issues regarding the specific development of rectal microbicide products. Also, future work, as required for the advancement of the field, is discussed.
Collapse
Affiliation(s)
- Rute Nunes
- INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal
| | - José das Neves
- INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal.
| |
Collapse
|
13
|
Vacas-Córdoba E, Galán M, de la Mata FJ, Gómez R, Pion M, Muñoz-Fernández MÁ. Enhanced activity of carbosilane dendrimers against HIV when combined with reverse transcriptase inhibitor drugs: searching for more potent microbicides. Int J Nanomedicine 2014; 9:3591-600. [PMID: 25114528 PMCID: PMC4122581 DOI: 10.2147/ijn.s62673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Self-administered topical microbicides or oral preexposure prophylaxis could be very helpful tools for all risk groups to decrease the human immunodeficiency virus (HIV)-1 infection rates. Up until now, antiretrovirals (ARVs) have been the most advanced microbicide candidates. Nevertheless, the majority of clinical trials has failed in HIV-1 patients. Nanotechnology offers suitable approaches to develop novel antiviral agents. Thereby, new nanosystems, such as carbosilane dendrimers, have been shown to be safe and effective compounds against HIV with great potential as topical microbicides. In addition, because most of the attempts to develop effective topical microbicides were unsuccessful, combinatorial strategies could be a valid approach when designing new microbicides. We evaluated various combinations of anionic carbosilane dendrimers with sulfated (G3-S16) and naphthyl sulfonated (G2-NF16) ended groups with different ARVs against HIV-1 infection. The G3-S16 and G2-NF16 dendrimers showed a synergistic or additive activity profile with zidovudine, efavirenz, and tenofovir in the majority of the combinations tested against the X4 and R5 tropic HIV-1 in cell lines, as well as in human primary cells. Therefore, the combination of ARVs and polyanionic carbosilane dendrimers enhances the antiviral potency of the individual compounds, and our findings support further clinical research on combinational approaches as potential microbicides to block the sexual transmission of HIV-1.
Collapse
Affiliation(s)
- Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain ; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain ; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Madrid, Spain
| | - Marta Galán
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Madrid, Spain ; Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Madrid, Spain
| | - Francisco J de la Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Madrid, Spain ; Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Madrid, Spain
| | - Rafael Gómez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Madrid, Spain ; Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Madrid, Spain
| | - Marjorie Pion
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain ; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain ; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Madrid, Spain
| | - M Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain ; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain ; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Madrid, Spain
| |
Collapse
|
14
|
Abstract
The last few years have seen important progress in demonstrating the efficacy of oral pre-exposure prophylaxis, vaginal microbicides, and treatment as prevention as effective strategies for reducing the risk of acquiring or transmitting HIV infection. There has also been significant progress in the development of rectal microbicides. Preclinical non-human primate studies have demonstrated that antiretroviral microbicides can provide significant protection from rectal challenge with SIV or SHIV. Recent Phase 1 rectal microbicide studies have characterized the safety, acceptability, compartmental pharmacokinetics (PK), and pharmacodynamics (PD) of both UC781 and tenofovir gels. The tenofovir gel formulation used in vaginal studies was not well tolerated in the rectum and newer rectal-specific formulations have been developed and evaluated in Phase 1 studies. The PK/PD data generated in these Phase 1 studies may reduce the risk of advancing ineffective candidate rectal microbicides into late stage development. Tenofovir gel is currently poised to move into Phase 2 evaluation and it is possible that a Phase 2B/3 effectiveness study with this product could be initiated in the next 2-3 years.
Collapse
Affiliation(s)
- Ian McGowan
- University of Pittsburgh School of Medicine, 204 Craft Ave Room B621, Pittsburgh, PA, 15213, USA,
| | | |
Collapse
|
15
|
Abstract
INTRODUCTION Individuals practicing unprotected receptive anal intercourse are at particularly high risk of HIV infection. Men who have sex with men in the developed and developing world continue to have disproportionate and increasing levels of HIV infection. The last few years have seen important progress in demonstrating the efficacy of oral antiretroviral pre-exposure prophylaxis, vaginal microbicides, and treatment as prevention, but there has also been significant progress in the development of rectal microbicides for HIV prevention. AREAS COVERED The purpose of this review is to summarize the status of rectal microbicide research and to identify opportunities, challenges, and future directions in this important field of HIV prevention research. The design of completed and ongoing Phase I rectal microbicide studies that include the generation of comprehensive pharmacokinetic/pharmacodynamic data may allow for more rational decisions about which rectal microbicides should be advanced to later stage development. EXPERT OPINION There is a strong rationale for the development of rectal microbicides for HIV prevention. Preclinical data provide supportive evidence for the feasibility of this approach, and there is significant interest in rectal microbicide development from communities at risk of HIV acquisition through unprotected receptive anal intercourse in both the developed and developing world. Demonstration of sustained safety, acceptability, and product adherence in the MTN-017 Phase II study of tenofovir 1% gel will be an important step in rectal microbicide development and will hopefully lead to Phase III effectiveness testing of this novel HIV prevention strategy.
Collapse
Affiliation(s)
- Ian McGowan
- University of Pittsburgh, Department of Medicine , Pittsburgh , USA
| |
Collapse
|
16
|
Rectal pre-exposure prophylaxis (PrEP). Antiviral Res 2013; 100 Suppl:S17-24. [PMID: 24188705 DOI: 10.1016/j.antiviral.2013.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/09/2013] [Accepted: 09/21/2013] [Indexed: 01/19/2023]
Abstract
Rectal pre-exposure prophylaxis (PrEP) will be a critical component of HIV prevention products due to the prevalence of unprotected receptive anal intercourse among men who have sex with men and heterosexual couples. Given the biological considerations of this compartment and the complexity of HIV infection, design of a successful rectal microbicide product faces a number of challenges. Important information is being compiled to begin to address deficits in knowledge toward design of rectal PrEP products for men and women. Aspects of formulation development and preclinical and clinical evaluation of rectal products studied to date are summarized in this review. This article is based on a presentation at the "Product Development Workshop 2013: HIV and Multipurpose Prevention Technologies," held in Arlington, Virginia on February 21-22, 2013. It forms part of a special supplement to Antiviral Research.
Collapse
|
17
|
Moss JA, Malone AM, Smith TJ, Kennedy S, Nguyen C, Vincent KL, Motamedi M, Baum MM. Pharmacokinetics of a multipurpose pod-intravaginal ring simultaneously delivering five drugs in an ovine model. Antimicrob Agents Chemother 2013; 57:3994-7. [PMID: 23752507 PMCID: PMC3719699 DOI: 10.1128/aac.00547-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/01/2013] [Indexed: 02/03/2023] Open
Abstract
Multipurpose technologies that simultaneously protect from sexually transmitted infections and unintended pregnancy are urgently needed. Pod-intravaginal rings (IVRs) formulated with the antiretroviral agents (ARVs) tenofovir, nevirapine, and saquinavir and the contraceptives etonogestrel and estradiol were evaluated in sheep. Steady-state concentrations were maintained for 28 days with controlled, sustained delivery. This proof-of-principle study demonstrates that pod IVRs can deliver three ARVs from different mechanistic classes and a progestin-estrogen combination over the wide range needed for putative preventative efficacy.
Collapse
Affiliation(s)
- John A. Moss
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California, USA
| | | | - Thomas J. Smith
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California, USA
- Auritec Pharmaceuticals, Inc., Santa Monica, California, USA
| | - Sean Kennedy
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California, USA
| | - Cali Nguyen
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California, USA
- Auritec Pharmaceuticals, Inc., Santa Monica, California, USA
| | - Kathleen L. Vincent
- Center for Biomedical Engineering, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Marc M. Baum
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California, USA
| |
Collapse
|
18
|
Desimmie BA, Schrijvers R, Demeulemeester J, Borrenberghs D, Weydert C, Thys W, Vets S, Van Remoortel B, Hofkens J, De Rijck J, Hendrix J, Bannert N, Gijsbers R, Christ F, Debyser Z. LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 2013; 10:57. [PMID: 23721378 PMCID: PMC3671127 DOI: 10.1186/1742-4690-10-57] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND LEDGINs are novel allosteric HIV integrase (IN) inhibitors that target the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. They block HIV-1 integration by abrogating the interaction between LEDGF/p75 and IN as well as by allosterically inhibiting the catalytic activity of IN. RESULTS Here we demonstrate that LEDGINs reduce the replication capacity of HIV particles produced in their presence. We systematically studied the molecular basis of this late effect of LEDGINs and demonstrate that HIV virions produced in their presence display a severe replication defect. Both the late effect and the previously described, early effect on integration contribute to LEDGIN antiviral activity as shown by time-of-addition, qPCR and infectivity assays. The late effect phenotype requires binding of LEDGINs to integrase without influencing proteolytic cleavage or production of viral particles. LEDGINs augment IN multimerization during virion assembly or in the released viral particles and severely hamper the infectivity of progeny virions. About 70% of the particles produced in LEDGIN-treated cells do not form a core or display aberrant empty cores with a mislocalized electron-dense ribonucleoprotein. The LEDGIN-treated virus displays defective reverse transcription and nuclear import steps in the target cells. The LEDGIN effect is possibly exerted at the level of the Pol precursor polyprotein. CONCLUSION Our results suggest that LEDGINs modulate IN multimerization in progeny virions and impair the formation of regular cores during the maturation step, resulting in a decreased infectivity of the viral particles in the target cells. LEDGINs thus profile as unique antivirals with combined early (integration) and late (IN assembly) effects on the HIV replication cycle.
Collapse
Affiliation(s)
- Belete Ayele Desimmie
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Rik Schrijvers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Jonas Demeulemeester
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Heverlee, Flanders, 3001, Belgium
| | - Caroline Weydert
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Wannes Thys
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Sofie Vets
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Barbara Van Remoortel
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Heverlee, Flanders, 3001, Belgium
| | - Jan De Rijck
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Heverlee, Flanders, 3001, Belgium
| | - Norbert Bannert
- Robert Koch Institute, Centre for HIV and Retrovirology, Nordufer 20, Berlin, 13353, Germany
| | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Frauke Christ
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Zeger Debyser
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| |
Collapse
|
19
|
Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. SCIENTIFICA 2013; 2013:164203. [PMID: 24278768 PMCID: PMC3820354 DOI: 10.1155/2013/164203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4(+) T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection.
Collapse
Affiliation(s)
- Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
20
|
De Clercq E. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:317-58. [PMID: 23886005 DOI: 10.1016/b978-0-12-405880-4.00009-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The majority of the drugs currently used for the treatment of HIV infections (AIDS) belong to either of the following three classes: nucleoside reverse transcriptase inhibitors (NRTIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs). At present, there are 7 NRTIs, 5 NNRTIs, and 10 PIs approved for clinical use. They are discussed from the following viewpoints: (i) chemical formulae; (ii) mechanism of action; (iii) drug combinations; (iv) clinical aspects; (v) preexposure prophylaxis; (vi) prevention of mother-to-child transmission; (vii) their use in children; (viii) toxicity; (ix) adherence (compliance); (x) resistance; (xi) new NRTIs, NNRTIs, or PIs in (pre)clinical development; and (xii) the prospects for a "cure" of the disease.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Kiser PF, Mesquita PM, Herold BC. A perspective on progress and gaps in HIV prevention science. AIDS Res Hum Retroviruses 2012; 28:1373-8. [PMID: 22966871 DOI: 10.1089/aid.2012.0277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the past few years, the transdisciplinary field of HIV prevention has reached several milestones. Topically applied tenofovir gel provided significant protection from sexual transmission of HIV in a large-scale clinical trial and oral Truvada (emtricitabine/tenofovir disoproxil fumarate) was recently approved for preexposure prophylaxis (PrEP) following two successful clinical trials in men and women. These achievements are tempered by the disappointing results of other clinical trials, which highlight the complexities of prevention research. In this perspective, we discuss scientific and developmental gaps for topical chemoprophylaxis of the sexual transmission of HIV, which depends on the complex interactions between the pharmacokinetics and pharmacodynamics of drugs, formulation and delivery systems, anatomic site of transmission, and host mucosal immune defenses. Despite the considerable time and resources devoted to unraveling the initial steps in sexual transmission of HIV, current knowledge is based on animal models and human explanted tissue, which may not fully recapitulate what happens clinically. Understanding these events, including the role that sex hormones, semen, and mucosal secretions play in transmission, and the interplay between innate immunity, the mucosal environment, and drug efficacy is paramount. This drives some of the most pressing questions in the field.
Collapse
Affiliation(s)
- Patrick F. Kiser
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Pedro M.M. Mesquita
- Departments of Pediatrics and Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Betsy C. Herold
- Departments of Pediatrics and Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Individuals practicing unprotected receptive anal intercourse are at particularly high risk of HIV infection. Men who have sex with men (MSM) in the developed and developing world continue to have disproportionate and increasing levels of HIV infection. The past few years have seen important progress in demonstrating the efficacy of oral pre-exposure prophylaxis (PrEP), vaginal microbicides, and treatment as prevention, but there has also been significant progress in the development of rectal microbicides. The purpose of this review is to summarize the status of rectal microbicide research and to identify opportunities, challenges, and future directions in this important field of HIV prevention. RECENT FINDINGS Recent phase 1 rectal microbicide studies have characterized the safety, acceptability, compartmental pharmacokinetics, and pharmacodynamics of both UC781 and tenofovir gels. The tenofovir gel formulation used in vaginal studies was not well tolerated in the rectum and newer rectal-specific formulations have been developed and evaluated in phase 1 studies. SUMMARY Complex phase 1 studies have provided important data on candidate rectal microbicides. Tenofovir gel is poised to move into phase 2 evaluation and it is possible that a phase 2B/3 effectiveness study could be initiated in the next 2-3 years.
Collapse
Affiliation(s)
- Ian McGowan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|