1
|
Silhan J, Fajtova P, Bartosova J, Hurysz BM, Almaliti J, Miyamoto Y, Eckmann L, Gerwick WH, O'Donoghue AJ, Boura E. Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors. Nat Commun 2024; 15:8621. [PMID: 39366995 PMCID: PMC11452676 DOI: 10.1038/s41467-024-53022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
The proteasome is a proteolytic enzyme complex essential for protein homeostasis in mammalian cells and protozoan parasites like Trichomonas vaginalis (Tv), the cause of the most common, non-viral sexually transmitted disease. Tv and other protozoan 20S proteasomes have been validated as druggable targets for antimicrobials. However, low yields and purity of the native proteasome have hindered studies of the Tv 20S proteasome (Tv20S). We address this challenge by creating a recombinant protozoan proteasome by expressing all seven α and seven β subunits of Tv20S alongside the Ump-1 chaperone in insect cells. The recombinant Tv20S displays biochemical equivalence to its native counterpart, confirmed by various assays. Notably, the marizomib (MZB) inhibits all catalytic subunits of Tv20S, while the peptide inhibitor carmaphycin-17 (CP-17) specifically targets β2 and β5. Cryo-electron microscopy (cryo-EM) unveils the structures of Tv20S bound to MZB and CP-17 at 2.8 Å. These findings explain MZB's low specificity for Tv20S compared to the human proteasome and demonstrate CP-17's higher specificity. Overall, these data provide a structure-based strategy for the development of specific Tv20S inhibitors to treat trichomoniasis.
Collapse
Affiliation(s)
- Jan Silhan
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Jitka Bartosova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic
| | - Brianna M Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jehad Almaliti
- Department Pharmaceutical Sciences, College of Pharmacy, The University of Jordan, Amman, Jordan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Yukiko Miyamoto
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lars Eckmann
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic.
| |
Collapse
|
2
|
Nieskens NM, Miyamoto Y, Hurysz BM, O'Donoghue AJ, Eckmann L. Vaginal Tritrichomonas foetus infection in mice as an in vivo model for drug development against Trichomonas vaginalis. PLoS One 2024; 19:e0308672. [PMID: 39352907 PMCID: PMC11444383 DOI: 10.1371/journal.pone.0308672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Trichomonas vaginalis is the causative agent of the common sexually transmitted disease, trichomoniasis, which affects more than a hundred million people worldwide. Metronidazole and tinidazole, agents belonging to the 5-nitroheterocyclic class of antimicrobials, are most often used to treat infection, but increased resistance has been reported and adverse effects of these drugs can be significant. Consequently, an urgent need exists for the development of novel drug entities against trichomoniasis. Critical for antimicrobial drug development is the demonstration of in vivo efficacy. Murine models of vaginal T. vaginalis infection are unreliable for unknown reasons. Meanwhile, murine infections with the related bovine pathogen, Tritrichomonas foetus, tend to be more robust, although susceptibility to different antimicrobials might differ from T. vaginalis. Here, we explored the utility of T. foetus infection as a surrogate model for drug development against T. vaginalis. Four different T. foetus strains caused robust vaginal infection in young mice, while none of four diverse T. vaginalis strains did. Comparison of drug susceptibility profiles revealed that T. foetus and T. vaginalis were similarly susceptible to a range of 5-nitroheterocyclic and gold(I) compounds. By comparison, proteasome inhibitors were 10- to 15-fold less active against T. foetus than T. vaginalis, although one of the proteasome inhibitors, bortezomib, had low micromolar activity or better against multiple strains of both trichomonads. Different strains of T. foetus were used to demonstrate the utility of the murine vaginal infection models for in vivo efficacy testing, including for bortezomib and a gold(I) compound. The differences in susceptibility to proteasome inhibitors may be partially explained by differences in the proteasome subunit sequences between the two trichomonads, although the functional relevance of the proteasome was similar in both organisms. These findings indicate that T. foetus can serve as a reliable surrogate model for T. vaginalis in vitro and in murine infections in vivo, but caution must be exercised for specific drug classes with targets, such as the proteasome, that may display genetic divergence between the trichomonads.
Collapse
Affiliation(s)
- Noelle M Nieskens
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Brianna M Hurysz
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Anthony J O'Donoghue
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
3
|
Liu LJ, O'Donoghue AJ, Caffrey CR. The proteasome as a drug target for treatment of parasitic diseases. ADVANCES IN PARASITOLOGY 2024; 126:53-96. [PMID: 39448194 DOI: 10.1016/bs.apar.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The proteasome is a proteolytically active molecular machine comprising many different protein subunits. It is essential for growth and survival in eukaryotic cells and has long been considered a drug target. Here, we summarize the biology of the proteasome, the early research relating to the development of specific proteasome inhibitors (PIs) for treatment of various cancers, and their translation and eventual evolution as exciting therapies for parasitic diseases. We also highlight the development and adaptation of technologies that have allowed for a deep understanding of the idiosyncrasies of individual parasite proteasomes, as well as the preclinical and clinical advancement of PIs with remarkable therapeutic indices.
Collapse
Affiliation(s)
- Lawrence J Liu
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States; Department of Chemistry and Biochemistry, University of California, San Diego, CA, United States.
| | - Anthony J O'Donoghue
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Conor R Caffrey
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
4
|
Liu L, Lucero B, Manriquez-Rodriguez C, Francisco KR, Teixeira TR, Yohannan DJ, Ballatore C, Myers SA, O’Donoghue AJ, Caffrey CR. Clickable Probes for Pathogen Proteasomes: Synthesis and Applications. ACS OMEGA 2024; 9:34829-34840. [PMID: 39157084 PMCID: PMC11325529 DOI: 10.1021/acsomega.4c04316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
The 20S proteasome is a multimeric protease complex that is essential for proteostasis in the cell. Small molecule proteasome inhibitors are approved drugs for various cancers and are advancing clinically as antiparasitics. Although tools and technologies to study the 20S proteasome have advanced, only one probe is commercially available to image proteasome activity. This probe consists of a fluorescently labeled, peptidyl vinyl sulfone that binds to one or more of the catalytic proteasome subunits. Here, we synthesized two, active site-directed epoxyketone probes, LJL-1 and LJL-2, that were based on the peptidyl backbones of the anticancer drugs, carfilzomib and bortezomib, respectively. Each probe was conjugated, via click chemistry, to a bifunctional group comprising 5-carboxytetramethylrhodamine (TAMRA) and biotin to, respectively, visualize and enrich the 20S proteasome from protein extracts of two eukaryotic pathogens, Leishmania donovani and Trichomonas vaginalis. Depending on species, each probe generated a different subunit-binding profile by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and the biotin tag enabled the enrichment of the bound subunits which were then formally identified by proteomics. Species differences in the order of electrophoretic migration by the β subunits were also noted. Finally, both probes reacted specifically with the 20S subunits in contrast to the commercial vinyl sulfone probe that cross reacted with cysteine proteases. LJL-1 and LJL-2 should find general utility in the identification and characterization of pathogen proteasomes, and serve as reagents to evaluate the specificity and mechanism of binding of new antiparasitic proteasome inhibitors.
Collapse
Affiliation(s)
- Lawrence
J. Liu
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Bobby Lucero
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Cindy Manriquez-Rodriguez
- Center
for Autoimmunity and Inflammation, La Jolla
Institute for Immunology, La Jolla, California 92037, United States
- Laboratory
for Immunochemical Circuits, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
| | - Karol R. Francisco
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Thaiz R. Teixeira
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Darius J. Yohannan
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Carlo Ballatore
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Samuel A. Myers
- Center
for Autoimmunity and Inflammation, La Jolla
Institute for Immunology, La Jolla, California 92037, United States
- Laboratory
for Immunochemical Circuits, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
| | - Anthony J. O’Donoghue
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Conor R. Caffrey
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Jiang Z, Silva EB, Liu C, Fajtová P, Liu LJ, El-Sakkary N, Skinner DE, Syed A, Wang SC, Caffrey CR, O’Donoghue AJ. Development of subunit selective proteasome substrates for Schistosoma species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580161. [PMID: 38405969 PMCID: PMC10888821 DOI: 10.1101/2024.02.13.580161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Schistosomiasis, or bilharzia, is a neglected tropical disease caused by Schistosoma spp. blood flukes that infects over 200 million people worldwide. Just one partially effective drug is available, and new drugs and drug targets would be welcome. The 20S proteasome is a validated drug target for many parasitic infections, including those caused by Plasmodium and Leishmania. We previously showed that anticancer proteasome inhibitors that act through the Schistosoma mansoni 20S proteasome (Sm20S) kill the parasite in vitro. To advance these initial findings, we employed Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS) to define the substrate cleavage specificities of the three catalytic β subunits of purified Sm20S. The profiles in turn were used to design and synthesize subunit-specific optimized substrates that performed two to eight fold better than the equivalent substrates used to measure the activity of the constitutive human proteasome (c20S). These specific substrates also eliminated the need to purify Sm20S from parasite extracts - a single step enrichment was sufficient to accurately measure substrate hydrolysis and its inhibition with proteasome inhibitors. Finally, we show that the substrate and inhibition profiles for the 20S proteasome from the three medically important schistosome species are similar, suggesting that data arising from an inhibitor development campaign that focuses on Sm20S can be extrapolated to the other two targets with consequent time and cost savings.
Collapse
Affiliation(s)
- Zhenze Jiang
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | | | - Chenxi Liu
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Pavla Fajtová
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Lawrence J. Liu
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Nelly El-Sakkary
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Danielle E. Skinner
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Ali Syed
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Steven C Wang
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Anthony J. O’Donoghue
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
6
|
Cock IE, Cheesman MJ. A Review of the Antimicrobial Properties of Cyanobacterial Natural Products. Molecules 2023; 28:7127. [PMID: 37894609 PMCID: PMC10608859 DOI: 10.3390/molecules28207127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The development of multiple-drug-resistant pathogens has prompted medical research toward the development of new and effective antimicrobial therapies. Much research into novel antibiotics has focused on bacterial and fungal compounds, and on chemical modification of existing compounds to increase their efficacy or reactivate their antimicrobial properties. In contrast, cyanobacteria have been relatively overlooked for antibiotic discovery, and much more work is required. This may be because some cyanobacterial species produce environmental toxins, leading to concerns about the safety of cyanobacterial compounds in therapy. Despite this, several cyanobacterial-derived compounds have been identified with noteworthy inhibitory activity against bacterial, fungal and protozoal growth, as well as viral replication. Additionally, many of these compounds have relatively low toxicity and are therefore relevant targets for drug development. Of particular note, several linear and heterocyclic peptides and depsipeptides with potent activity and good safety indexes have been identified and are undergoing development as antimicrobial chemotherapies. However, substantial further studies are required to identify and screen the myriad other cyanobacterial-derived compounds to evaluate their therapeutic potential. This study reviews the known phytochemistry of cyanobacteria, and where relevant, the effects of those compounds against bacterial, fungal, protozoal and viral pathogens, with the aim of highlighting gaps in the literature and focusing future studies in this field.
Collapse
Affiliation(s)
- Ian E. Cock
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, QLD 4111, Australia
| | - Matthew J. Cheesman
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4222, Australia;
| |
Collapse
|
7
|
Silhan J, Fajtova P, Bartosova J, Hurysz BM, Almaliti J, Miyamoto Y, Eckmann L, Gerwick WH, O’Donoghue AJ, Boura E. Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553660. [PMID: 37645851 PMCID: PMC10462138 DOI: 10.1101/2023.08.17.553660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Proteasomes are essential for protein homeostasis in mammalian cells1-4 and in protozoan parasites such as Trichomonas vaginalis (Tv).5 Tv and other protozoan 20S proteasomes have been validated as druggable targets.6-8 However, in the case of Tv 20S proteasome (Tv20S), biochemical and structural studies were impeded by low yields and purity of the native proteasome. We successfully made recombinant Tv20S by expressing all seven α and seven β subunits together with the Ump-1 chaperone in insect cells. We isolated recombinant proteasome and showed that it was biochemically indistinguishable from the native enzyme. We confirmed that the recombinant Tv20S is inhibited by the natural product marizomib (MZB)9 and the recently developed peptide inhibitor carmaphycin-17 (CP-17)8,10. Specifically, MZB binds to the β1, β2 and β5 subunits, while CP-17 binds the β2 and β5 subunits. Next, we obtained cryo-EM structures of Tv20S in complex with these covalent inhibitors at 2.8Å resolution. The structures revealed the overall fold of the Tv20S and the binding mode of MZB and CP-17. Our work explains the low specificity of MZB and higher specificity of CP-17 towards Tv20S as compared to human proteasome and provides the platform for the development of Tv20S inhibitors for treatment of trichomoniasis.
Collapse
Affiliation(s)
- Jan Silhan
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jitka Bartosova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Brianna M. Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jehad Almaliti
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Yukiko Miyamoto
- Division of Gastroenterology, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Lars Eckmann
- Division of Gastroenterology, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - William H. Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| |
Collapse
|
8
|
Xie Y, Zhong P, Guan W, Zhao Y, Yang S, Shao Y, Li J. Transcriptional profile of Trichomonas vaginalis in response to metronidazole. BMC Genomics 2023; 24:318. [PMID: 37308818 DOI: 10.1186/s12864-023-09339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/26/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Trichomoniasis caused by Trichomonas vaginalis, combined with its complications, has long frequently damaged millions of human health. Metronidazole (MTZ) is the first choice for therapy. Therefore, a better understanding of its trichomonacidal process to ultimately reveal the global mechanism of action is indispensable. To take a step toward this goal, electron microscopy and RNA sequencing were performed to fully reveal the early changes in T. vaginalis at the cellular and transcriptome levels after treatment with MTZ in vitro. RESULTS The results showed that the morphology and subcellular structures of T. vaginalis underwent prominent alterations, characterized by a rough surface with bubbly protrusions, broken holes and deformed nuclei with decreased nuclear membranes, chromatin and organelles. The RNA-seq data revealed a total of 10,937 differentially expressed genes (DEGs), consisting of 4,978 upregulated and 5,959 downregulated genes. Most DEGs for the known MTZ activators, such as pyruvate:ferredoxin oxidoreductase (PFOR) and iron-sulfur binding domain, were significantly downregulated. However, genes for other possible alternative MTZ activators such as thioredoxin reductase, nitroreductase family proteins and flavodoxin-like fold family proteins, were dramatically stimulated. GO and KEGG analyses revealed that genes for basic vital activities, proteostasis, replication and repair were stimulated under MTZ stress, but those for DNA synthesis, more complicated life activities such as the cell cycle, motility, signaling and even virulence were significantly inhibited in T. vaginalis. Meanwhile, increased single nucleotide polymorphism (SNP) and insertions - deletions (indels) were stimulated by MTZ. CONCLUSIONS The current study reveals evident nuclear and cytomembrane damage and multiple variations in T. vaginalis at the transcriptional level. These data will offer a meaningful foundation for a deeper understanding of the MTZ trichomonacidal process and the transcriptional response of T. vaginalis to MTZ-induced stress or even cell death.
Collapse
Affiliation(s)
- Yiting Xie
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China
| | - Ping Zhong
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China
| | - Wei Guan
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China
| | - Yanqing Zhao
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China
| | - Shuguo Yang
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China
| | - Yan Shao
- Department of Outpatient, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Jian Li
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
9
|
Benchimol M, Gadelha AP, de Souza W. Unusual Cell Structures and Organelles in Giardia intestinalis and Trichomonas vaginalis Are Potential Drug Targets. Microorganisms 2022; 10:2176. [PMID: 36363768 PMCID: PMC9698047 DOI: 10.3390/microorganisms10112176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
This review presents the main cell organelles and structures of two important protist parasites, Giardia intestinalis, and Trichomonas vaginalis; many are unusual and are not found in other eukaryotic cells, thus could be good candidates for new drug targets aimed at improvement of the chemotherapy of diseases caused by these eukaryotic protists. For example, in Giardia, the ventral disc is a specific structure to this parasite and is fundamental for the adhesion and pathogenicity to the host. In Trichomonas, the hydrogenosome, a double membrane-bounded organelle that produces ATP, also can be a good target. Other structures include mitosomes, ribosomes, and proteasomes. Metronidazole is the most frequent compound used to kill many anaerobic organisms, including Giardia and Trichomonas. It enters the cell by passive diffusion and needs to find a highly reductive environment to be reduced to the nitro radicals to be active. However, it provokes several side effects, and some strains present metronidazole resistance. Therefore, to improve the quality of the chemotherapy against parasitic protozoa is important to invest in the development of highly specific compounds that interfere with key steps of essential metabolic pathways or in the functional macromolecular complexes which are most often associated with cell structures and organelles.
Collapse
Affiliation(s)
- Marlene Benchimol
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Centro de Ciêcias da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Rio de Janeiro 96200-000, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ana Paula Gadelha
- Diretoria de Metrologia Aplicada as Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro 25250-020, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- CMABio, Escola Superior de Saúde, Universidade do Estado do Amazonas-UEA, Manaus 69850-000, Brazil
| |
Collapse
|
10
|
Santos HLC, Rebello KM. An Overview of Mucosa-Associated Protozoa: Challenges in Chemotherapy and Future Perspectives. Front Cell Infect Microbiol 2022; 12:860442. [PMID: 35548465 PMCID: PMC9084232 DOI: 10.3389/fcimb.2022.860442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections caused by protozoans that infect the mucosal surfaces are widely neglected worldwide. Collectively, Entamoeba histolytica, Giardia lamblia, Cryptosporidium spp. and Trichomonas vaginalis infect more than a billion people in the world, being a public health problem mainly in developing countries. However, the exact incidence and prevalence data depend on the population examined. These parasites ultimately cause pathologies that culminate in liver abscesses, malabsorption syndrome, vaginitis, and urethritis, respectively. Despite this, the antimicrobial agents currently used to treat these diseases are limited and often associated with adverse side effects and refractory cases due to the development of resistant parasites. The paucity of drug treatments, absence of vaccines and increasing problems of drug resistance are major concerns for their control and eradication. Herein, potential candidates are reviewed with the overall aim of determining the knowledge gaps and suggest future perspectives for research. This review focuses on this public health problem and focuses on the progress of drug repositioning as a potential strategy for the treatment of mucosal parasites.
Collapse
Affiliation(s)
- Helena Lucia Carneiro Santos
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|
11
|
Abstract
Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Friedman M, Tam CC, Cheng LW, Land KM. Anti-trichomonad activities of different compounds from foods, marine products, and medicinal plants: a review. BMC Complement Med Ther 2020; 20:271. [PMID: 32907567 PMCID: PMC7479404 DOI: 10.1186/s12906-020-03061-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Human trichomoniasis, caused by the pathogenic parasitic protozoan Trichomonas vaginalis, is the most common non-viral sexually transmitted disease that contributes to reproductive morbidity in affected women and possibly to prostate cancer in men. Tritrichomonas foetus strains cause the disease trichomoniasis in farm animals (cattle, bulls, pigs) and diarrhea in domestic animals (cats and dogs). Because some T. vaginalis strains have become resistant to the widely used drug metronidazole, there is a need to develop alternative treatments, based on safe natural products that have the potential to replace and/or enhance the activity of lower doses of metronidazole. To help meet this need, this overview collates and interprets worldwide reported studies on the efficacy of structurally different classes of food, marine, and medicinal plant extracts and some of their bioactive pure compounds against T. vaginalis and T. foetus in vitro and in infected mice and women. Active food extracts include potato peels and their glycoalkaloids α-chaconine and α-solanine, caffeic and chlorogenic acids, and quercetin; the tomato glycoalkaloid α-tomatine; theaflavin-rich black tea extracts and bioactive theaflavins; plant essential oils and their compounds (+)-α-bisabolol and eugenol; the grape skin compound resveratrol; the kidney bean lectin, marine extracts from algae, seaweeds, and fungi and compounds that are derived from fungi; medicinal extracts and about 30 isolated pure compounds. Also covered are the inactivation of drug-resistant T. vaginalis and T. foetus strains by sensitized light; anti-trichomonad effects in mice and women; beneficial effects of probiotics in women; and mechanisms that govern cell death. The summarized findings will hopefully stimulate additional research, including molecular-mechanism-guided inactivations and human clinical studies, that will help ameliorate adverse effects of pathogenic protozoa.
Collapse
Affiliation(s)
- Mendel Friedman
- United States Department of Agriculture, Healthy Processed Foods Research Unit, Agricultural Research Service, Albany, CA, 94710, USA.
| | - Christina C Tam
- United States Department of Agriculture, Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, Albany, California, 94710, USA
| | - Luisa W Cheng
- United States Department of Agriculture, Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, Albany, California, 94710, USA
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
13
|
Ghosh S, Farr L, Singh A, Leaton LA, Padalia J, Shirley DA, Sullivan D, Moonah S. COP9 signalosome is an essential and druggable parasite target that regulates protein degradation. PLoS Pathog 2020; 16:e1008952. [PMID: 32960936 PMCID: PMC7531848 DOI: 10.1371/journal.ppat.1008952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/02/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding how the protozoan protein degradation pathway is regulated could uncover new parasite biology for drug discovery. We found the COP9 signalosome (CSN) conserved in multiple pathogens such as Leishmania, Trypanosoma, Toxoplasma, and used the severe diarrhea-causing Entamoeba histolytica to study its function in medically significant protozoa. We show that CSN is an essential upstream regulator of parasite protein degradation. Genetic disruption of E. histolytica CSN by two distinct approaches inhibited cell proliferation and viability. Both CSN5 knockdown and dominant negative mutation trapped cullin in a neddylated state, disrupting UPS activity and protein degradation. In addition, zinc ditiocarb (ZnDTC), a main metabolite of the inexpensive FDA-approved globally-available drug disulfiram, was active against parasites acting in a COP9-dependent manner. ZnDTC, given as disulfiram-zinc, had oral efficacy in clearing parasites in vivo. Our findings provide insights into the regulation of parasite protein degradation, and supports the significant therapeutic potential of COP9 inhibition.
Collapse
Affiliation(s)
- Swagata Ghosh
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Laura Farr
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Aditya Singh
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Laura-Ann Leaton
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States of America
| | - Jay Padalia
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Debbie-Ann Shirley
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - David Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Shannon Moonah
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| |
Collapse
|
14
|
Guzmán-Téllez P, Martínez-Valencia D, Silva-Olivares A, Del Ángel RM, Serrano-Luna J, Shibayama M. Naegleria fowleri and Naegleria gruberi 20S proteasome: identification and characterization. Eur J Cell Biol 2020; 99:151085. [PMID: 32646643 DOI: 10.1016/j.ejcb.2020.151085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022] Open
Abstract
The Naegleria are ubiquitous free-living amoebae and are characterized by the presence of three phases in their biological cycle: trophozoite, cyst and flagellate. Of this genus, only Naegleria fowleri has been reported as pathogenic to humans. The proteasome is a multi-catalytic complex and is considered to be the most important structure responsible for the degradation of intracellular proteins. This structure is related to the maintenance of cellular homeostasis and, in pathogenic microorganisms, to the modulation of their virulence. Until now, the proteasome and its function have not been described for the Naegleria genus. In the current study, using bioinformatic analysis, protein sequences homologous to those reported for the subunits of the 20S proteasome in other organisms were found, and virtual modelling was used to determine their three-dimensional structure. The presence of structural and catalytic subunits of the 20S proteasome was detected by Western and dot blot assays. Its localization was observed by immunofluorescence microscopy to be mainly in the cytoplasm, and a leading role of the chymotrypsin-like catalytic activity was determined using fluorogenic peptidase assays and specific proteasome inhibitors. Finally, the role of the 20S proteasome in the proliferation and differentiation of Naegleria genus trophozoites was demonstrated.
Collapse
Affiliation(s)
- Paula Guzmán-Téllez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Diana Martínez-Valencia
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Angélica Silva-Olivares
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Rosa M Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico.
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico.
| |
Collapse
|
15
|
Al-Awadhi FH, Luesch H. Targeting eukaryotic proteases for natural products-based drug development. Nat Prod Rep 2020; 37:827-860. [PMID: 32519686 PMCID: PMC7406119 DOI: 10.1039/c9np00060g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to April 2020 Proteases are involved in the regulation of many physiological processes. Their overexpression and dysregulated activity are linked to diseases such as hypertension, diabetes, viral infections, blood clotting disorders, respiratory diseases, and cancer. Therefore, they represent an important class of therapeutic targets. Several protease inhibitors have reached the market and >60% of them are directly related to natural products, even when excluding synthetic natural product mimics. Historically, natural products have been a valuable and validated source of therapeutic agents, as over half of the marketed drugs across targets and diseases are inspired by natural product structures. In the past two decades the number of new protease inhibitors discovered from nature has sharply increased. Additionally, the availability of 3D structural information for proteases has permitted structure-based design and accelerated the synthesis of optimized lead structures with improved potency and selectivity profiles, resulting in some of the most-potent-in-class inhibitors. These discoveries were oftentimes maximized by in-depth biological assessments of lead inhibitors, linking them to a relevant disease state. This review will discuss some of the current and emerging drug targets and their involvement in various disease processes, highlighting selected success stories behind several FDA-approved protease inhibitors that have natural products scaffolds as well as recent selected pharmacologically well-characterized inhibitors derived from marine or terrestrial sources.
Collapse
Affiliation(s)
- Fatma H Al-Awadhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| |
Collapse
|
16
|
Tan LT, Phyo MY. Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets. Molecules 2020; 25:E2197. [PMID: 32397127 PMCID: PMC7249205 DOI: 10.3390/molecules25092197] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prokaryotic filamentous marine cyanobacteria are photosynthetic microbes that are found in diverse marine habitats, ranging from epiphytic to endolithic communities. Their successful colonization in nature is largely attributed to genetic diversity as well as the production of ecologically important natural products. These cyanobacterial natural products are also a source of potential drug leads for the development of therapeutic agents used in the treatment of diseases, such as cancer, parasitic infections and inflammation. Major sources of these biomedically important natural compounds are found predominately from marine cyanobacterial orders Oscillatoriales, Nostocales, Chroococcales and Synechococcales. Moreover, technological advances in genomic and metabolomics approaches, such as mass spectrometry and NMR spectroscopy, revealed that marine cyanobacteria are a treasure trove of structurally unique natural products. The high potency of a number of natural products are due to their specific interference with validated drug targets, such as proteasomes, proteases, histone deacetylases, microtubules, actin filaments and membrane receptors/channels. In this review, the chemistry and biology of selected potent cyanobacterial compounds as well as their synthetic analogues are presented based on their molecular targets. These molecules are discussed to reflect current research trends in drug discovery from marine cyanobacterial natural products.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore;
| | | |
Collapse
|
17
|
Zhan W, Hsu HC, Morgan T, Ouellette T, Burns-Huang K, Hara R, Wright AG, Imaeda T, Okamoto R, Sato K, Michino M, Ramjee M, Aso K, Meinke PT, Foley M, Nathan CF, Li H, Lin G. Selective Phenylimidazole-Based Inhibitors of the Mycobacterium tuberculosis Proteasome. J Med Chem 2019; 62:9246-9253. [PMID: 31560200 DOI: 10.1021/acs.jmedchem.9b01187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteasomes of pathogenic microbes have become attractive targets for anti-infectives. Coevolving with its human host, Mycobacterium tuberculosis (Mtb) has developed mechanisms to resist host-imposed nitrosative and oxidative stresses. Genetic deletion or pharmacological inhibition of the Mtb proteasome (Mtb20S) renders nonreplicating Mtb susceptible to reactive nitrogen species in vitro and unable to survive in the lungs of mice, validating the Mtb proteasome as a promising target for anti-Mtb agents. Using a structure-guided and flow chemistry-enabled study of structure-activity relationships, we developed phenylimidazole-based peptidomimetics that are highly potent for Mtb20S. X-ray structures of selected compounds with Mtb20S shed light on their selectivity for mycobacterial over human proteasomes.
Collapse
Affiliation(s)
- Wenhu Zhan
- Department of Microbiology & Immunology , Weill Cornell Medicine , 1300 York Avenue , New York , New York 10065 , United States
| | - Hao-Chi Hsu
- Structural Biology Program , Van Andel Institute , 333 Bostwick Avenue Northeast , Grand Rapids , Michigan 49503 , United States
| | - Trevor Morgan
- Cyclofluidic Limited , Biopark Broadwater Road , Welwyn Garden City AL7 3AX , U.K
| | - Tierra Ouellette
- Department of Microbiology & Immunology , Weill Cornell Medicine , 1300 York Avenue , New York , New York 10065 , United States
| | - Kristin Burns-Huang
- Department of Microbiology & Immunology , Weill Cornell Medicine , 1300 York Avenue , New York , New York 10065 , United States
| | - Ryoma Hara
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Adrian G Wright
- Cyclofluidic Limited , Biopark Broadwater Road , Welwyn Garden City AL7 3AX , U.K
| | - Toshihiro Imaeda
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Rei Okamoto
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Kenjiro Sato
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Mayako Michino
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Manoj Ramjee
- Cyclofluidic Limited , Biopark Broadwater Road , Welwyn Garden City AL7 3AX , U.K
| | - Kazuyoshi Aso
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Peter T Meinke
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Michael Foley
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Carl F Nathan
- Department of Microbiology & Immunology , Weill Cornell Medicine , 1300 York Avenue , New York , New York 10065 , United States
| | - Huilin Li
- Structural Biology Program , Van Andel Institute , 333 Bostwick Avenue Northeast , Grand Rapids , Michigan 49503 , United States
| | - Gang Lin
- Department of Microbiology & Immunology , Weill Cornell Medicine , 1300 York Avenue , New York , New York 10065 , United States
| |
Collapse
|