1
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
2
|
Chodkowski JL, Shade A. Bioactive exometabolites drive maintenance competition in simple bacterial communities. mSystems 2024; 9:e0006424. [PMID: 38470039 PMCID: PMC11019792 DOI: 10.1128/msystems.00064-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
During prolonged resource limitation, bacterial cells can persist in metabolically active states of non-growth. These maintenance periods, such as those experienced in stationary phase, can include upregulation of secondary metabolism and release of exometabolites into the local environment. As resource limitation is common in many environmental microbial habitats, we hypothesized that neighboring bacterial populations employ exometabolites to compete or cooperate during maintenance and that these exometabolite-facilitated interactions can drive community outcomes. Here, we evaluated the consequences of exometabolite interactions over the stationary phase among three environmental strains: Burkholderia thailandensis E264, Chromobacterium subtsugae ATCC 31532, and Pseudomonas syringae pv. tomato DC3000. We assembled them into synthetic communities that only permitted chemical interactions. We compared the responses (transcripts) and outputs (exometabolites) of each member with and without neighbors. We found that transcriptional dynamics were changed with different neighbors and that some of these changes were coordinated between members. The dominant competitor B. thailandensis consistently upregulated biosynthetic gene clusters to produce bioactive exometabolites for both exploitative and interference competition. These results demonstrate that competition strategies during maintenance can contribute to community-level outcomes. It also suggests that the traditional concept of defining competitiveness by growth outcomes may be narrow and that maintenance competition could be an additional or alternative measure. IMPORTANCE Free-living microbial populations often persist and engage in environments that offer few or inconsistently available resources. Thus, it is important to investigate microbial interactions in this common and ecologically relevant condition of non-growth. This work investigates the consequences of resource limitation for community metabolic output and for population interactions in simple synthetic bacterial communities. Despite non-growth, we observed active, exometabolite-mediated competition among the bacterial populations. Many of these interactions and produced exometabolites were dependent on the community composition but we also observed that one dominant competitor consistently produced interfering exometabolites regardless. These results are important for predicting and understanding microbial interactions in resource-limited environments.
Collapse
Affiliation(s)
- John L. Chodkowski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Ashley Shade
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
| |
Collapse
|
3
|
Wozniak CE, Hughes KT, Liou TG. Mutations in the C-terminal region of the bacteriophage exclusion protein PglX can selectively inactivate restriction in Salmonella. J Bacteriol 2023; 205:e0020723. [PMID: 37730541 PMCID: PMC10601704 DOI: 10.1128/jb.00207-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 09/22/2023] Open
Abstract
Salmonella enterica serovar Typhimurium strain LT2 is protected by two DNA restriction-modification systems (HsdRMS and Mod-Res) and a Type I bacteriophage exclusion (BREX) system (BrxA-L). The LB5000 strain was constructed to inactivate restriction but not methylation in all three systems and has been available for decades (L. R. Bullas and J. I. Ryu, J Bacteriol 156:471-474, 1983, https://doi.org/10.1128/jb.156.1.471-474.1983). However, this strain had been heavily mutagenized and contains hundreds of other mutations, including a few in DNA repair genes. Here, we describe the development of a strain that is only mutated for DNA restriction by the three systems and remains competent for DNA modification. We transferred mutations specific to DNA restriction from LB5000 to a wild-type LT2 background. The hsdR and res mutations affected only restriction in the wild-type background, but the brxC and pglZ mutations for the poorly understood BREX system also reduced modification. Amino acids in an unannotated conserved region of PglX in the BREX system were then randomized. Mutations were identified that specifically affected restriction at 37°C but were found to be temperature sensitive for restriction and methylation when tested at 30°C and 42°C. These mutations in PglX are consistent with a domain that communicates DNA methylation information to other BREX effector proteins. Finally, mutations generated in the specificity domain of PglX may have changed the DNA binding site recognized by the BREX system. IMPORTANCE The restriction system mutants constructed in this study will be useful for cloning DNA and transferring plasmids from other bacterial species into Salmonella. We verified which mutations in strain LB5000 resulted in loss of restriction for each restriction-modification system and the BREX system by moving these mutations to a wild-type Salmonella background. The methylase PglX was then mutagenized, which adds to our knowledge of the BREX system that is found in many bacteria but is not well understood. These PglX mutations affected restriction and methylation at different temperatures, which suggests that the C-terminal region of PglX may coordinate interactions between the methylase and other BREX system proteins.
Collapse
Affiliation(s)
| | - Kelly T. Hughes
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Theodore G. Liou
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Center for Quantitative Biology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Bai X, Chen H, Ren X, Zhong L, Wang X, Ji X, Zhang Y, Wang Y, Bian X. Heterologous Biosynthesis of Complex Bacterial Natural Products in Burkholderia gladioli. ACS Synth Biol 2023; 12:3072-3081. [PMID: 37708405 DOI: 10.1021/acssynbio.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Bacterial natural products (NPs) are an indispensable source of drugs and biopesticides. Heterologous expression is an essential method for discovering bacterial NPs and the efficient biosynthesis of valuable NPs, but the chassis for Gram-negative bacterial NPs remains inadequate. In this study, we built a Burkholderiales mutant Burkholderia gladioli Δgbn::attB by introducing an integrated site (attB) to inactivate the native gladiolin (gbn) biosynthetic gene cluster, which stabilizes large foreign gene clusters and reduces the native metabolite profile. The growth and successful heterologous production of high-value NPs such as phylogenetically close Burkholderiales-derived antitumor polyketides (PKs) rhizoxins, phylogenetically distant Gammaproteobacteria-derived anti-MRSA (methicillin-resistant Staphylococcus aureus) antibiotics WAP-8294As, and Deltaproteobacteria-derived antitumor PKs disorazols demonstrate that this strain is a potential chassis for Gram-negative bacterial NPs. We further improved the yields of WAP-8294As through promoter insertions and precursor pathway overexpression based on heterologous expression in this strain. This study provides a robust bacterial chassis for genome mining, efficient production, and molecular engineering of bacterial NPs.
Collapse
Affiliation(s)
- Xianping Bai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Hanna Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiangmei Ren
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lin Zhong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoqi Ji
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
5
|
Chodkowski JL, Shade A. A coevolution experiment between Flavobacterium johnsoniae and Burkholderia thailandensis reveals parallel mutations that reduce antibiotic susceptibility. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36724091 DOI: 10.1099/mic.0.001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One interference mechanism of bacterial competition is the production of antibiotics. Bacteria exposed to antibiotics can resist antibiotic inhibition through intrinsic or acquired mechanisms. Here, we performed a coevolution experiment to understand the long-term consequences of antibiotic production and antibiotic susceptibility for two environmental bacterial strains. We grew five independent lines of the antibiotic-producing environmental strain, Burkholderia thailandensis E264, and the antibiotic-inhibited environmental strain, Flavobacterium johnsoniae UW101, together and separately on agar plates for 7.5 months (1.5 month incubations), transferring each line five times to new agar plates. We observed that the F. johnsoniae ancestor could tolerate the B. thailandensis-produced antibiotic through efflux mechanisms, but that the coevolved lines had reduced susceptibility. We then sequenced genomes from the coevolved and monoculture F. johnsoniae lines, and uncovered mutational ramifications for the long-term antibiotic exposure. The coevolved genomes from F. johnsoniae revealed four potential mutational signatures of reduced antibiotic susceptibility that were not observed in the evolved monoculture lines. Two mutations were found in tolC: one corresponding to a 33 bp deletion and the other corresponding to a nonsynonymous mutation. A third mutation was observed as a 1 bp insertion coding for a RagB/SusD nutrient uptake protein. The last mutation was a G83R nonsynonymous mutation in acetyl-coA carboxylayse carboxyltransferase subunit alpha (AccA). Deleting the 33 bp from tolC in the F. johnsoniae ancestor reduced antibiotic susceptibility, but not to the degree observed in coevolved lines. Furthermore, the accA mutation matched a previously described mutation conferring resistance to B. thailandensis-produced thailandamide. Analysis of B. thailandensis transposon mutants for thailandamide production revealed that thailandamide was bioactive against F. johnsoniae, but also suggested that additional B. thailandensis-produced antibiotics were involved in the inhibition of F. johnsoniae. This study reveals how multi-generational interspecies interactions, mediated through chemical exchange, can result in novel interaction-specific mutations, some of which may contribute to reductions in antibiotic susceptibility.
Collapse
Affiliation(s)
- John L Chodkowski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.,Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.,Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA.,Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully cedex, France
| |
Collapse
|
6
|
Abstract
Antibiotic resistance is a serious public health concern, and new drugs are needed to ensure effective treatment of many bacterial infections. Bacterial type II fatty acid synthesis (FASII) is a vital aspect of bacterial physiology, not only for the formation of membranes but also to produce intermediates used in vitamin production. Nature has evolved a repertoire of antibiotics inhibiting different aspects of FASII, validating these enzymes as potential targets for new antibiotic discovery and development. However, significant obstacles have been encountered in the development of FASII antibiotics, and few FASII drugs have advanced beyond the discovery stage. Most bacteria are capable of assimilating exogenous fatty acids. In some cases they can dispense with FASII if fatty acids are present in the environment, making the prospects for identifying broad-spectrum drugs against FASII targets unlikely. Single-target, pathogen-specific FASII drugs appear the best option, but a major drawback to this approach is the rapid acquisition of resistance via target missense mutations. This complication can be mitigated during drug development by optimizing the compound design to reduce the potential impact of on-target missense mutations at an early stage in antibiotic discovery. The lessons learned from the difficulties in FASII drug discovery that have come to light over the last decade suggest that a refocused approach to designing FASII inhibitors has the potential to add to our arsenal of weapons to combat resistance to existing antibiotics.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| |
Collapse
|
7
|
Aiosa N, Sinha A, Jaiyesimi OA, da Silva RR, Branda SS, Garg N. Metabolomics Analysis of Bacterial Pathogen Burkholderia thailandensis and Mammalian Host Cells in Co-culture. ACS Infect Dis 2022; 8:1646-1662. [PMID: 35767828 DOI: 10.1021/acsinfecdis.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Tier 1 HHS/USDA Select Agent Burkholderia pseudomallei is a bacterial pathogen that is highly virulent when introduced into the respiratory tract and intrinsically resistant to many antibiotics. Transcriptomic- and proteomic-based methodologies have been used to investigate mechanisms of virulence employed by B. pseudomallei and Burkholderia thailandensis, a convenient surrogate; however, analysis of the pathogen and host metabolomes during infection is lacking. Changes in the metabolites produced can be a result of altered gene expression and/or post-transcriptional processes. Thus, metabolomics complements transcriptomics and proteomics by providing a chemical readout of a biological phenotype, which serves as a snapshot of an organism's physiological state. However, the poor signal from bacterial metabolites in the context of infection poses a challenge in their detection and robust annotation. In this study, we coupled mammalian cell culture-based metabolomics with feature-based molecular networking of mono- and co-cultures to annotate the pathogen's secondary metabolome during infection of mammalian cells. These methods enabled us to identify several key secondary metabolites produced by B. thailandensis during infection of airway epithelial and macrophage cell lines. Additionally, the use of in silico approaches provided insights into shifts in host biochemical pathways relevant to defense against infection. Using chemical class enrichment analysis, for example, we identified changes in a number of host-derived compounds including immune lipids such as prostaglandins, which were detected exclusively upon pathogen challenge. Taken together, our findings indicate that co-culture of B. thailandensis with mammalian cells alters the metabolome of both pathogen and host and provides a new dimension of information for in-depth analysis of the host-pathogen interactions underlying Burkholderia infection.
Collapse
Affiliation(s)
- Nicole Aiosa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Anupama Sinha
- Biotechnology & Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Olakunle A Jaiyesimi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Ricardo R da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café─Vila Monte Alegre, 14040-903 Ribeirão Preto-SP, Brazil
| | - Steven S Branda
- Systems Biology, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the proposed review, the pharmacological profile of unique, rare, and unusual fatty acids derived from natural amides is considered. These amides are produced by various microorganisms, lichens, and fungi. The biological activity of some natural fatty acid amides has been determined by their isolation from natural sources, but the biological activity of fatty acids has not been practically studied. According to QSAR data, the biological activity of fatty acids is shown, which demonstrated strong antifungal, antibacterial, antiviral, antineoplastic, anti-inflammatory activities. Moreover, some fatty acids have shown rare activities such as antidiabetic, anti-infective, anti-eczematic, antimutagenic, and anti-psoriatic activities. For some fatty acids that have pronounced biological properties, 3D graphs are shown that show a graphical representation of unique activities. These data are undoubtedly of both theoretical and practical interest for chemists, pharmacologists, as well as for the pharmaceutical industry, which is engaged in the synthesis of biologically active drugs.
Collapse
|
9
|
Bach E, Passaglia LMP, Jiao J, Gross H. Burkholderia in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Crit Rev Microbiol 2021; 48:121-160. [PMID: 34346791 DOI: 10.1080/1040841x.2021.1946009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Species of Burkholderia are highly versatile being found not only abundantly in soil, but also as plants and animals' commensals or pathogens. Their complex multireplicon genomes harbour an impressive number of polyketide synthase (PKS) and nonribosomal peptide-synthetase (NRPS) genes coding for the production of antimicrobial secondary metabolites (SMs), which have been successfully deciphered by genome-guided tools. Moreover, genome metrics supported the split of this genus into Burkholderia sensu stricto (s.s.) and five new other genera. Here, we show that the successful antimicrobial SMs producers belong to Burkholderia s.s. Additionally, we reviewed the occurrence, bioactivities, modes of action, structural, and biosynthetic information of thirty-eight Burkholderia antimicrobial SMs shedding light on their diversity, complexity, and uniqueness as well as the importance of genome-guided strategies to facilitate their discovery. Several Burkholderia NRPS and PKS display unusual features, which are reflected in their structural diversity, important bioactivities, and varied modes of action. Up to now, it is possible to observe a general tendency of Burkholderia SMs being more active against fungi. Although the modes of action and biosynthetic gene clusters of many SMs remain unknown, we highlight the potential of Burkholderia SMs as alternatives to fight against new diseases and antibiotic resistance.
Collapse
Affiliation(s)
- Evelise Bach
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Junjing Jiao
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Mungan MD, Alanjary M, Blin K, Weber T, Medema MH, Ziemert N. ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Res 2020; 48:W546-W552. [PMID: 32427317 PMCID: PMC7319560 DOI: 10.1093/nar/gkaa374] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 01/21/2023] Open
Abstract
Multi-drug resistant pathogens have become a major threat to human health and new antibiotics are urgently needed. Most antibiotics are derived from secondary metabolites produced by bacteria. In order to avoid suicide, these bacteria usually encode resistance genes, in some cases within the biosynthetic gene cluster (BGC) of the respective antibiotic compound. Modern genome mining tools enable researchers to computationally detect and predict BGCs that encode the biosynthesis of secondary metabolites. The major challenge now is the prioritization of the most promising BGCs encoding antibiotics with novel modes of action. A recently developed target-directed genome mining approach allows researchers to predict the mode of action of the encoded compound of an uncharacterized BGC based on the presence of resistant target genes. In 2017, we introduced the ‘Antibiotic Resistant Target Seeker’ (ARTS). ARTS allows for specific and efficient genome mining for antibiotics with interesting and novel targets by rapidly linking housekeeping and known resistance genes to BGC proximity, duplication and horizontal gene transfer (HGT) events. Here, we present ARTS 2.0 available at http://arts.ziemertlab.com. ARTS 2.0 now includes options for automated target directed genome mining in all bacterial taxa as well as metagenomic data. Furthermore, it enables comparison of similar BGCs from different genomes and their putative resistance genes.
Collapse
Affiliation(s)
- Mehmet Direnç Mungan
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany
| | - Mohammad Alanjary
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany
| |
Collapse
|
11
|
Larson EC, Lim AL, Pond CD, Craft M, Čavužić M, Waldrop GL, Schmidt EW, Barrows LR. Pyrrolocin C and equisetin inhibit bacterial acetyl-CoA carboxylase. PLoS One 2020; 15:e0233485. [PMID: 32470050 PMCID: PMC7259786 DOI: 10.1371/journal.pone.0233485] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/06/2020] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial resistance is a growing global health and economic concern. Current antimicrobial agents are becoming less effective against common bacterial infections. We previously identified pyrrolocins A and C, which showed activity against a variety of Gram-positive bacteria. Structurally similar compounds, known as pyrrolidinediones (e.g., TA-289, equisetin), also display antibacterial activity. However, the mechanism of action of these compounds against bacteria was undetermined. Here, we show that pyrrolocin C and equisetin inhibit bacterial acetyl-CoA carboxylase (ACC), the first step in fatty acid synthesis. We used transcriptomic data, metabolomic analysis, fatty acid rescue and acetate incorporation experiments to show that a major mechanism of action of the pyrrolidinediones is inhibition of fatty acid biosynthesis, identifying ACC as the probable molecular target. This hypothesis was further supported using purified proteins, demonstrating that biotin carboxylase is the inhibited component of ACC. There are few known antibiotics that target this pathway and, therefore, we believe that these compounds may provide the basis for alternatives to current antimicrobial therapy.
Collapse
Affiliation(s)
- Erica C. Larson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, United States of America
| | - Albebson L. Lim
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, United States of America
| | - Christopher D. Pond
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew Craft
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mirela Čavužić
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Grover L. Waldrop
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
12
|
Park JD, Moon K, Miller C, Rose J, Xu F, Ebmeier CC, Jacobsen JR, Mao D, Old WM, DeShazer D, Seyedsayamdost MR. Thailandenes, Cryptic Polyene Natural Products Isolated from Burkholderia thailandensis Using Phenotype-Guided Transposon Mutagenesis. ACS Chem Biol 2020; 15:1195-1203. [PMID: 31816232 DOI: 10.1021/acschembio.9b00883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Burkholderia thailandensis has emerged as a model organism for investigating the production and regulation of diverse secondary metabolites. Most of the biosynthetic gene clusters encoded in B. thailandensis are silent, motivating the development of new methods for accessing their products. In the current work, we add to the canon of available approaches using phenotype-guided transposon mutagenesis to characterize a silent biosynthetic gene cluster. Because secondary metabolite biosynthesis is often associated with phenotypic changes, we carried out random transposon mutagenesis followed by phenotypic inspection of the resulting colonies. Several mutants exhibited intense pigmentation and enhanced expression of an iterative type I polyketide synthase cluster that we term org. Disruptions of orgA, orgB, and orgC abolished the biosynthesis of the diffusible pigment, thus linking it to the org operon. Isolation and structural elucidation by HR-MS and 1D/2D NMR spectroscopy revealed three novel, cryptic metabolites, thailandene A-C. Thailandenes are linear formylated or acidic polyenes containing a combination of cis and trans double bonds. Variants A and B exhibited potent antibiotic activity against Staphylococcus aureus and Saccharomyces cerevisiae but not against Escherichia coli. One of the transposon mutants that exhibited an enhanced expression of org contained an insertion upstream of a σ54-dependent transcription factor. Closer inspection of the org operon uncovered a σ54 promoter consensus sequence upstream of orgA, providing clues regarding its regulation. Our results showcase the utility of phenotype-guided transposon mutagenesis in uncovering cryptic metabolites encoded in bacterial genomes.
Collapse
Affiliation(s)
- Jong-Duk Park
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kyuho Moon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Cheryl Miller
- Molecular and Translational Science Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Jessica Rose
- Biotechnology Program, Hagerstown Community College, Hagerstown, Maryland 21742, United States
| | - Fei Xu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Christopher C. Ebmeier
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Jeremy R. Jacobsen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Dainan Mao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - William M. Old
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - David DeShazer
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | | |
Collapse
|
13
|
Thapa SS, Grove A. Do Global Regulators Hold the Key to Production of Bacterial Secondary Metabolites? Antibiotics (Basel) 2019; 8:antibiotics8040160. [PMID: 31547528 PMCID: PMC6963729 DOI: 10.3390/antibiotics8040160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
The emergence of multiple antibiotic resistant bacteria has pushed the available pool of antibiotics to the brink. Bacterial secondary metabolites have long been a valuable resource in the development of antibiotics, and the genus Burkholderia has recently emerged as a source of novel compounds with antibacterial, antifungal, and anti-cancer activities. Genome mining has contributed to the identification of biosynthetic gene clusters, which encode enzymes that are responsible for synthesis of such secondary metabolites. Unfortunately, these large gene clusters generally remain silent or cryptic under normal laboratory settings, which creates a hurdle in identification and isolation of these compounds. Various strategies, such as changes in growth conditions and antibiotic stress, have been applied to elicit the expression of these cryptic gene clusters. Although a number of compounds have been isolated from different Burkholderia species, the mechanisms by which the corresponding gene clusters are regulated remain poorly understood. This review summarizes the activity of well characterized secondary metabolites from Burkholderia species and the role of local regulators in their synthesis, and it highlights recent evidence for the role of global regulators in controlling production of secondary metabolites. We suggest that targeting global regulators holds great promise for the awakening of cryptic gene clusters and for developing better strategies for discovery of novel antibiotics.
Collapse
Affiliation(s)
- Sudarshan Singh Thapa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
14
|
An in situ high-throughput screen identifies inhibitors of intracellular Burkholderia pseudomallei with therapeutic efficacy. Proc Natl Acad Sci U S A 2019; 116:18597-18606. [PMID: 31439817 PMCID: PMC6744847 DOI: 10.1073/pnas.1906388116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, is an environmental organism that inhabits tropical soils and kills an estimated 90,000 people each year. Caused by an intracellular and often drug-resistant pathogen, melioidosis is notoriously difficult to treat, with mortality rates approaching 50% in some settings despite appropriate diagnosis and clinical management. Using a high-throughput, cell-based phenotypic screen we have discovered 2 antibiotic candidates with improved in vivo efficacy compared to the current standard of care: a fluoroquinolone analog, burkfloxacin, and an FDA-approved antifungal drug, flucytosine. As a widely used antifungal with a well-known safety profile, the potential to repurpose flucytosine for treating melioidosis may represent a rapid route to clinical translation. Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) are Tier-1 Select Agents that cause melioidosis and glanders, respectively. These are highly lethal human infections with limited therapeutic options. Intercellular spread is a hallmark of Burkholderia pathogenesis, and its prominent ties to virulence make it an attractive therapeutic target. We developed a high-throughput cell-based phenotypic assay and screened ∼220,000 small molecules for their ability to disrupt intercellular spread by Burkholderia thailandensis, a closely related BSL-2 surrogate. We identified 268 hits, and cross-species validation found 32 hits that also disrupt intercellular spread by Bp and/or Bm. Among these were a fluoroquinolone analog, which we named burkfloxacin (BFX), which potently inhibits growth of intracellular Burkholderia, and flucytosine (5-FC), an FDA-approved antifungal drug. We found that 5-FC blocks the intracellular life cycle at the point of type VI secretion system 5 (T6SS-5)-mediated cell–cell spread. Bacterial conversion of 5-FC to 5-fluorouracil and subsequently to fluorouridine monophosphate is required for potent and selective activity against intracellular Burkholderia. In a murine model of fulminant respiratory melioidosis, treatment with BFX or 5-FC was significantly more effective than ceftazidime, the current antibiotic of choice, for improving survival and decreasing bacterial counts in major organs. Our results demonstrate the utility of cell-based phenotypic screening for Select Agent drug discovery and warrant the advancement of BFX and 5-FC as candidate therapeutics for melioidosis in humans.
Collapse
|
15
|
Abstract
Burkholderia bacteria are multifaceted organisms that are ecologically and metabolically diverse. The Burkholderia genus has gained prominence because it includes human pathogens; however, many strains are nonpathogenic and have desirable characteristics such as beneficial plant associations and degradation of pollutants. The diversity of the Burkholderia genus is reflected within the large genomes that feature multiple replicons. Burkholderia genomes encode a plethora of natural products with potential therapeutic relevance and biotechnological applications. This review highlights Burkholderia as an emerging source of natural products. An overview of the taxonomy of the Burkholderia genus, which is currently being revised, is provided. We then present a curated compilation of natural products isolated from Burkholderia sensu lato and analyze their characteristics in terms of biosynthetic class, discovery method, and bioactivity. Finally, we describe and discuss genome characteristics and highlight the biosynthesis of a select number of natural products that are encoded in unusual biosynthetic gene clusters. The availability of >1000 Burkholderia genomes in public databases provides an opportunity to realize the genetic potential of this underexplored taxon for natural product discovery.
Collapse
Affiliation(s)
- Sylvia Kunakom
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
16
|
Wu Y, Seyedsayamdost MR. The Polyene Natural Product Thailandamide A Inhibits Fatty Acid Biosynthesis in Gram-Positive and Gram-Negative Bacteria. Biochemistry 2018; 57:4247-4251. [DOI: 10.1021/acs.biochem.8b00678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yihan Wu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|