1
|
Huang C, Jin Y, Fu P, Hu K, Wang M, Zai W, Hua T, Song X, Ye J, Zhang Y, Luo G, Wang H, Liu J, Chen J, Li X, Yuan Z. Discovery of novel small molecules targeting hepatitis B virus core protein from marine natural products with HiBiT-based high-throughput screening. Acta Pharm Sin B 2024; 14:4914-4933. [PMID: 39664428 PMCID: PMC11628845 DOI: 10.1016/j.apsb.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 12/13/2024] Open
Abstract
Due to the limitations of current anti-HBV therapies, the HBV core (HBc or HBcAg) protein assembly modulators (CpAMs) are believed to be potential anti-HBV agents. Therefore, discovering safe and efficient CpAMs is of great value. In this study, we established a HiBiT-based high-throughput screening system targeting HBc and screened novel CpAMs from an in-house marine chemicals library. A novel lead compound 8a, a derivative of the marine natural product naamidine J, has been successfully screened for potential anti-HBV activity. Bioactivity-driven synthesis was then conducted, and the structure‒activity relationship was analyzed, resulting in the discovery of the most effective compound 11a (IC50 = 0.24 μmol/L). Furthermore, 11a was found to significantly inhibit HBV replication in multiple cell models and exhibit a synergistic effect with tenofovir disoproxil fumarate (TDF) and IFNa2 in vitro for anti-HBV activity. Treatment with 11a in a hydrodynamic-injection mouse model demonstrated significant anti-HBV activity without apparent hepatotoxicity. These findings suggest that the naamidine J derivative 11a could be used as the HBV core protein assembly modulator to develop safe and effective anti-HBV therapies.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Jin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Panpan Fu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Mengxue Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Ting Hua
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Xinluo Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Yiqing Zhang
- Guixi Hospital of Chinese Medicine, Guixi 335400, China
| | - Gan Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Haiyu Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Xuwen Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
| |
Collapse
|
2
|
Ali FEM, Abdel-Reheim MA, Hassanein EHM, Abd El-Aziz MK, Althagafy HS, Badran KSA. Exploring the potential of drug repurposing for liver diseases: A comprehensive study. Life Sci 2024; 347:122642. [PMID: 38641047 DOI: 10.1016/j.lfs.2024.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mostafa K Abd El-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khalid S A Badran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
3
|
Zhuang AQ, Chen Y, Chen SM, Liu WC, Li Y, Zhang WJ, Wu YH. Current Status and Challenges in Anti-Hepatitis B Virus Agents Based on Inactivation/Inhibition or Elimination of Hepatitis B Virus Covalently Closed Circular DNA. Viruses 2023; 15:2315. [PMID: 38140556 PMCID: PMC10747957 DOI: 10.3390/v15122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
There has been over half a century since the discovery of hepatitis B virus (HBV) to now, but approximately 300 million patients with chronic hepatitis B (CHB) still live in the world, resulting in about one million deaths every year. Although currently approved antivirals (e.g., nucleoside analogues) are effective at reducing HBV replication, they have almost no impact on the existing HBV covalently closed circular DNA (cccDNA) reservoir. HBV cccDNA is a critical obstacle to the complete elimination of the virus via antiviral therapy. The true cure of HBV infection requires the eradication of viral cccDNA from HBV-infected cells; thus, the development of new agents directly or indirectly targeting HBV cccDNA is urgently needed due to the limitations of current available drugs against HBV infection. In this regard, it is the major focus of current anti-HBV research worldwide via different mechanisms to either inactivate/inhibit (functional cure) or eliminate (complete cure) HBV cccDNA. Therefore, this review discussed and summarized recent advances and challenges in efforts to inactivate/silence or eliminate viral cccDNA using anti-HBV agents from different sources, such as small molecules (including epigenetic drugs) and polypeptides/proteins, and siRNA or gene-editing approaches targeting/attenuating HBV cccDNA via different mechanisms, as well as future directions that may be considered in efforts to truly cure chronic HBV infection. In conclusion, no breakthrough has been made yet in attenuating HBV cccDNA, although a number of candidates have advanced into the phase of clinical trials. Furthermore, the overwhelming majority of the candidates function to indirectly target HBV cccDNA. No outstanding candidate directly targets HBV cccDNA. Relatively speaking, CCC_R08 and nitazoxanide may be some of the most promising agents to clear HBV infection in small molecule compounds. Additionally, CRISPR-Cas9 systems can directly target HBV cccDNA for decay and demonstrate significant anti-HBV activity. Consequently, gene-editing approaches targeting HBV cccDNA may be one of the most promising means to achieve the core goal of anti-HBV therapeutic strategies. In short, more basic studies on HBV infection need to be carried out to overcome these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi-Hang Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Emerging Therapies for Chronic Hepatitis B and the Potential for a Functional Cure. Drugs 2023; 83:367-388. [PMID: 36906663 DOI: 10.1007/s40265-023-01843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 03/13/2023]
Abstract
Worldwide, an estimated 296 million people are living with chronic hepatitis B virus (HBV) infection, with a significant risk of morbidity and mortality. Current therapy with pegylated interferon (Peg-IFN) and indefinite or finite therapy with nucleoside/nucleotide analogues (Nucs) are effective in HBV suppression, hepatitis resolution, and prevention of disease progression. However, few achieve hepatitis B surface antigen (HBsAg) loss (functional cure), and relapse often occurs after the end of therapy (EOT) because these agents have no direct effect on durable template: covalently closed circular DNA (cccDNA) and integrated HBV DNA. Hepatitis B surface antigen loss rate increases slightly by adding or switching to Peg-IFN in Nuc-treated patients and this loss rate greatly increases up to 39% in 5 years with finite Nuc therapy with currently available Nuc(s). For this, great effort has been made to develop novel direct-acting antivirals (DAAs) and immunomodulators. Among the DAAs, entry inhibitors and capsid assembly modulators have little effect on reducing HBsAg levels; small interfering RNA, antisense oligonucleotides, and nucleic acid polymers in combination with Peg-IFN and Nuc may reduce HBsAg levels significantly, even a rate of HBsAg loss sustained for > 24 weeks after EOT up to 40%. Novel immunomodulators, including T-cell receptor agonists, check-point inhibitors, therapeutic vaccines, and monoclonal antibodies may restore HBV-specific T-cell response but not sustained HBsAg loss. The safety issues and the durability of HBsAg loss warrant further investigation. Combining agents of different classes has the potential to enhance HBsAg loss. Compounds directly targeting cccDNA would be more effective but are still in the early stage of development. More effort is required to achieve this goal.
Collapse
|
5
|
Wang G, Xiao B, Deng J, Gong L, Li Y, Li J, Zhong Y. The Role of Cytochrome P450 Enzymes in COVID-19 Pathogenesis and Therapy. Front Pharmacol 2022; 13:791922. [PMID: 35185562 PMCID: PMC8847594 DOI: 10.3389/fphar.2022.791922] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has become a new public health crisis threatening the world. Dysregulated immune responses are the most striking pathophysiological features of patients with severe COVID-19, which can result in multiple-organ failure and death. The cytochrome P450 (CYP) system is the most important drug metabolizing enzyme family, which plays a significant role in the metabolism of endogenous or exogenous substances. Endogenous CYPs participate in the biosynthesis or catabolism of endogenous substances, including steroids, vitamins, eicosanoids, and fatty acids, whilst xenobiotic CYPs are associated with the metabolism of environmental toxins, drugs, and carcinogens. CYP expression and activity are greatly affected by immune response. However, changes in CYP expression and/or function in COVID-19 and their impact on COVID-19 pathophysiology and the metabolism of therapeutic agents in COVID-19, remain unclear. In this analysis, we review current evidence predominantly in the following areas: firstly, the possible changes in CYP expression and/or function in COVID-19; secondly, the effects of CYPs on the metabolism of arachidonic acid, vitamins, and steroid hormones in COVID-19; and thirdly, the effects of CYPs on the metabolism of therapeutic COVID-19 drugs.
Collapse
Affiliation(s)
- Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Xiao
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Linmei Gong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Li Y, Yang X, Plummer R, Hayashi Y, Deng XS, Nie YZ, Taniguchi H. Human Pluripotent Stem Cell-Derived Hepatocyte-Like Cells and Organoids for Liver Disease and Therapy. Int J Mol Sci 2021; 22:ijms221910471. [PMID: 34638810 PMCID: PMC8508923 DOI: 10.3390/ijms221910471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disease is a global health issue that has caused an economic burden worldwide. Organ transplantation is the only effective therapy for end-stage liver disease; however, it has been hampered by a shortage of donors. Human pluripotent stem cells (hPSCs) have been widely used for studying liver biology and pathology as well as facilitating the development of alternative therapies. hPSCs can differentiate into multiple types of cells, which enables the generation of various models that can be applied to investigate and recapitulate a range of biological activities in vitro. Here, we summarize the recent development of hPSC-derived hepatocytes and their applications in disease modeling, cell therapy, and drug discovery. We also discuss the advantages and limitations of these applications and critical challenges for further development.
Collapse
Affiliation(s)
- Yang Li
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Xia Yang
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Richie Plummer
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshihito Hayashi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Xiao-Shan Deng
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yun-Zhong Nie
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: (Y.-Z.N.); (H.T.); Tel.: +81-03-5449-5698 (H.T.)
| | - Hideki Taniguchi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: (Y.-Z.N.); (H.T.); Tel.: +81-03-5449-5698 (H.T.)
| |
Collapse
|
7
|
Qu B, Brown RJP. Strategies to Inhibit Hepatitis B Virus at the Transcript Level. Viruses 2021; 13:v13071327. [PMID: 34372533 PMCID: PMC8310268 DOI: 10.3390/v13071327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Approximately 240 million people are chronically infected with hepatitis B virus (HBV), despite four decades of effective HBV vaccination. During chronic infection, HBV forms two distinct templates responsible for viral transcription: (1) episomal covalently closed circular (ccc)DNA and (2) host genome-integrated viral templates. Multiple ubiquitous and liver-specific transcription factors are recruited onto these templates and modulate viral gene transcription. This review details the latest developments in antivirals that inhibit HBV gene transcription or destabilize viral transcripts. Notably, nuclear receptor agonists exhibit potent inhibition of viral gene transcription from cccDNA. Small molecule inhibitors repress HBV X protein-mediated transcription from cccDNA, while small interfering RNAs and single-stranded oligonucleotides result in transcript degradation from both cccDNA and integrated templates. These antivirals mediate their effects by reducing viral transcripts abundance, some leading to a loss of surface antigen expression, and they can potentially be added to the arsenal of drugs with demonstrable anti-HBV activity. Thus, these candidates deserve special attention for future repurposing or further development as anti-HBV therapeutics.
Collapse
Affiliation(s)
- Bingqian Qu
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| | - Richard J. P. Brown
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| |
Collapse
|
8
|
Fiorino S, Zippi M, Gallo C, Sifo D, Sabbatani S, Manfredi R, Rasciti E, Rasciti L, Giampieri E, Corazza I, Leandri P, de Biase D. The rationale for a multi-step therapeutic approach based on antivirals, drugs and nutrients with immunomodulatory activity in patients with coronavirus-SARS2-induced disease of different severities. Br J Nutr 2021; 125:275-293. [PMID: 32703328 PMCID: PMC7431858 DOI: 10.1017/s0007114520002913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
In December 2019, a novel human-infecting coronavirus, named Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), was recognised to cause a pneumonia epidemic outbreak with different degrees of severity in Wuhan, Hubei Province in China. Since then, this epidemic has spread worldwide; in Europe, Italy has been involved. Effective preventive and therapeutic strategies are absolutely required to block this serious public health concern. Unfortunately, few studies about SARS-CoV-2 concerning its immunopathogenesis and treatment are available. On the basis of the assumption that the SARS-CoV-2 is genetically related to SARS-CoV (about 82 % of genome homology) and that its characteristics, like the modality of transmission or the type of the immune response it may stimulate, are still poorly known, a literature search was performed to identify the reports assessing these elements in patients with SARS-CoV-induced infection. Therefore, we have analysed: (1) the structure of SARS-CoV-2 and SARS-CoV; (2) the clinical signs and symptoms and pathogenic mechanisms observed during the development of acute respiratory syndrome and the cytokine release syndrome; (3) the modification of the cell microRNome and of the immune response in patients with SARS infection; and (4) the possible role of some fat-soluble compounds (such as vitamins A, D and E) in modulating directly or indirectly the replication ability of SARS-CoV-2 and host immune response.
Collapse
Affiliation(s)
- Sirio Fiorino
- Medicine Department, Internal Medicine Unit, Budrio Hospital Azienda USL, Budrio, 40054 Bologna, Italy
- Medicine Department, Internal Medicine Unit C, Maggiore Hospital Azienda USL, 40100 Bologna, Italy
| | - Maddalena Zippi
- Gastroenterology and Hepatology Department, Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, 00100 Rome, Italy
| | - Claudio Gallo
- Medicine Department, Internal Medicine Unit, Budrio Hospital Azienda USL, Budrio, 40054 Bologna, Italy
| | - Debora Sifo
- Medicine Department, Internal Medicine Unit, Budrio Hospital Azienda USL, Budrio, 40054 Bologna, Italy
| | - Sergio Sabbatani
- Gastroenterology and Hepatology Department, Infective Disease Unit, Policlinico S. Orsola-Malpighi, University of Bologna, 40100 Bologna, Italy
| | - Roberto Manfredi
- Gastroenterology and Hepatology Department, Infective Disease Unit, Policlinico S. Orsola-Malpighi, University of Bologna, 40100 Bologna, Italy
| | - Edoardo Rasciti
- Unit of Radiodiagnostics, Ospedale degli Infermi, 48018 Faenza, AUSL Romagna, Italy
| | - Leonardo Rasciti
- Medicine Department, Internal Medicine Unit, Budrio Hospital Azienda USL, Budrio, 40054 Bologna, Italy
| | - Enrico Giampieri
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, 40100 Bologna, Italy
| | - Ivan Corazza
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, 40100 Bologna, Italy
| | - Paolo Leandri
- Medicine Department, Internal Medicine Unit C, Maggiore Hospital Azienda USL, 40100 Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
9
|
Zeng J, Wu D, Hu H, Young JAT, Yan Z, Gao L. Activation of the Liver X Receptor Pathway Inhibits HBV Replication in Primary Human Hepatocytes. Hepatology 2020; 72:1935-1948. [PMID: 32145089 DOI: 10.1002/hep.31217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/19/2019] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) infection is ranked among the top health priorities worldwide. Accumulating evidence suggests that HBV infection and replication are closely associated with liver metabolism. The liver X receptors (LXRs), which belong to the superfamily of nuclear hormone receptors, are important physiological regulators of lipid and cholesterol metabolism. However, the association between the LXR pathway and HBV infection remains largely unclear. APPROACH AND RESULTS In this study, the antiviral activity of LXR agonists was investigated using multiple HBV cellular models. We observed that in HBV-infected primary human hepatocytes (PHHs), synthetic LXR agonists (T0901317, GW3965, and LXR-623), but not an LXR antagonist (SR9238), potently inhibited HBV replication and gene expression, as demonstrated by substantial reductions in viral RNA, DNA, and antigen production following agonist treatment. However, covalently closed circular DNA (cccDNA) levels were not significantly reduced by the agonists. In addition, no rebound in viral replication was observed after treatment withdrawal, indicating a long-lasting inhibitory effect. These results suggest that LXR agonists decrease the transcriptional activity of cccDNA. In contrast, no significant anti-HBV effect was observed in HepG2-derived cell lines. Interestingly, LXR agonist treatment strongly reduced cholesterol 7α-hydroxylase 1 (CYP7A1) mRNA levels. Knockdown of CYP7A1 gene expression with small interfering RNA inhibited HBV activity in PHHs, suggesting CYP7A1 as a potential factor contributing to the antiviral effects of LXR agonists. CONCLUSIONS We found that activation of the LXR pathway with synthetic LXR agonists could elicit potent anti-HBV activity in PHHs, possibly through sustained suppression of cccDNA transcription. Our work highlights the therapeutic potential of targeting the LXR pathway for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Jing Zeng
- Roche Innovation Center Shanghai, Shanghai, China
| | - Daitze Wu
- Roche Innovation Center Shanghai, Shanghai, China
| | - Hui Hu
- Roche Innovation Center Shanghai, Shanghai, China
| | | | - Zhipeng Yan
- Roche Innovation Center Shanghai, Shanghai, China
| | - Lu Gao
- Roche Innovation Center Shanghai, Shanghai, China
| |
Collapse
|
10
|
Trasino SE. A role for retinoids in the treatment of COVID-19? Clin Exp Pharmacol Physiol 2020; 47:1765-1767. [PMID: 32459003 DOI: 10.1111/1440-1681.13354] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
The 2020 global outbreak of the novel coronavirus (SARS-CoV-2 or COVID-19) is a serious threat to international health, and thus, there is an urgent need for discovery of novel therapies or use of repurposed drugs that can make a significant impact on slowing the spread of the virus. Type 1 interferons (IFN-I) are a family cytokines of the early innate immune response to viruses that are being tested against SARS-CoV-2. However, coronaviruses similar to SARS-CoV-2 can suppress host IFN-I antiviral responses. Retinoids are a family molecules related to vitamin A that possess robust immune-modulating properties, including the ability to increase and potentiate the actions of IFN-I. Therefore, adjuvants such as retinoids, capable of increasing IFN-I-mediated antiviral responses, should be tested in combinations of IFN-I and antiviral drugs in pre-clinical studies of SARS-CoV-2.
Collapse
Affiliation(s)
- Steven E Trasino
- School of Urban Public Health, Hunter College, City University of New York, New York, NY, USA
| |
Collapse
|
11
|
Nkongolo S, Nußbaum L, Lempp FA, Wodrich H, Urban S, Ni Y. The retinoic acid receptor (RAR) α-specific agonist Am80 (tamibarotene) and other RAR agonists potently inhibit hepatitis B virus transcription from cccDNA. Antiviral Res 2019; 168:146-155. [PMID: 31018112 DOI: 10.1016/j.antiviral.2019.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Chronic infection with the human Hepatitis B virus (HBV) is a major global health problem. Hepatitis D virus (HDV) is a satellite of HBV that uses HBV envelope proteins for cell egress and entry. Using infection systems encoding the HBV/HDV receptor human sodium taurocholate co-transporting polypeptide (NTCP), we screened 1181 FDA-approved drugs applying markers for interference for HBV and HDV infection. As one primary hit we identified Acitretin, a retinoid, as an inhibitor of HBV replication and HDV release. Based on this, other retinoic acid receptor (RAR) agonists with different specificities were found to interfere with HBV replication, verifying that the retinoic acid receptor pathway regulates replication. Of the eight agonists investigated, RARα-specific agonist Am80 (tamibarotene) was most active. Am80 reduced secretion of HBeAg and HBsAg with IC50s < 10 nM in differentiated HepaRG-NTCP cells. Similar effects were observed in primary human hepatocytes. In HepG2-NTCP cells, profound Am80-mediated inhibition required prolonged treatment of up to 35 days. Am80 treatment of cells with an established HBV cccDNA pool resulted in a reduction of secreted HBsAg and HBeAg, which correlated with reduced intracellular viral RNA levels, but not cccDNA copy numbers. The effect lasted for >12 days after removal of the drug. HBV genotypes B, D, and E were equally inhibited. By contrast, Am80 did not affect HBV replication in transfected cells or HepG2.2.15 cells, which carry an integrated HBV genome. In conclusion, our results indicate a persistent inhibition of HBV transcription by Am80, which might be used for drug repositioning.
Collapse
Affiliation(s)
- Shirin Nkongolo
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany.
| | - Lea Nußbaum
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany.
| | - Florian A Lempp
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany.
| | - Harald Wodrich
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, University of Bordeaux, France.
| | - Stephan Urban
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany.
| | - Yi Ni
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany.
| |
Collapse
|