1
|
Atanda H, Balogun TA, Alshehri MM, Olivos-Ramirez G, Vilca-Quispe J, Chenet-Zuta M, Cárdenas-Cárdenas R, Delgado Wong H, Ropón-Palacios G, Umar HI. In silico study revealed the inhibitory activity of selected phytomolecules of C. rotundus against VacA implicated in gastric ulcer. J Biomol Struct Dyn 2023; 41:10713-10724. [PMID: 36571437 DOI: 10.1080/07391102.2022.2160814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022]
Abstract
Gastric ulcer is associated with weakening of the mucous coating of the stomach and damages to the intestinal lining. It is caused by H. pylori assisted by enzymes including VacA, which necessitates the need for inhibitors of VacA. Bioactive compounds from Cyperus rotundus have been documented to have anti-inflammatory activities. However, the mechanism of action of the phytochemicals is not characterized. This research aimed to assess, in silico, the potential of selected bioactive compounds against VacA based on the binding to its active sites. VacA and bioactive compounds structures were obtained from protein database and PubChem webserver, respectively. All compounds, including 2 controls, omeprazole and cimetidine were docked against the protein using AutoDock Vina and screened based on the binding energy. The selected complexes were subjected to pharmacokinetics and toxicity screening. Finally, molecular dynamics simulation and MMPBSA were carried out on two best compounds. 17 compounds interacted with the active site of VacA with higher binding affinities, with 7 of them - aureusidine, catechin, chlorogenic acid, isorhamnetin, isovitexin, oreintin, and vitexin having the best behaviours based on ADMET and druglikeness screening. Molecular dynamics and MMPBSA experiments of two of the hits corroborated good stability and binding energy for Ellagic Acid and Scirpusin B (ΔG = -14.38 and -13.20 kcal mol-1, respectively). These phytochemicals showed good pharmacokinetic profiles with respect to the control drugs. This study revealed that the identified compounds of C. rotundus may serve as VacA inhibitors and may be potent candidates for novel drug formulations in gastric ulcer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Halimat Atanda
- Department of Biotechnology, Federal University of Technology, Akure, Ondo State, Nigeria
- Computer-Aided Therapeutic Discovery and Design Group, FUTA, Akure, Ondo State, Nigeria
| | - Toheeb Adewale Balogun
- Computer-Aided Therapeutic Discovery and Design Group, FUTA, Akure, Ondo State, Nigeria
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Mohammed M Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Gustavo Olivos-Ramirez
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas, Brasil
| | - Julissa Vilca-Quispe
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas, Brasil
| | - Manuel Chenet-Zuta
- Universidad Nacional Tecnológica de Lima Sur UNTELS, Villa el Salvador, Perú
| | - Reyna Cárdenas-Cárdenas
- Facultad de Farmacia y Bioquímica, Universidad Nacional de la Amazonía Peruana, Iquitos, Peru
| | - Henry Delgado Wong
- Laboratorio de Farmacología y Toxicología de la Facultad de Farmacia y Bioquímica de la Universidad Nacional de la Amazonia Peruana, Villa el Salvador, Perú
| | - Georcki Ropón-Palacios
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas, Brasil
| | - Haruna Isiyaku Umar
- Computer-Aided Therapeutic Discovery and Design Group, FUTA, Akure, Ondo State, Nigeria
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| |
Collapse
|
2
|
Dongmo KJJ, Tali MBT, Fongang YSF, Taguimjeu PLKT, Kagho DUK, Bitchagno GT, Lenta BN, Boyom FF, Sewald N, Ngouela SA. In vitro antiplasmodial activity and toxicological profile of extracts, fractions and chemical constituents of leaves and stem bark from Dacryodes edulis (Burseraceae). BMC Complement Med Ther 2023; 23:211. [PMID: 37370061 DOI: 10.1186/s12906-023-03957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Dacryodes edulis is a plant that belongs to the Burseraceae family. It is widely used traditionally alone or in association with other plants in Cameroonian folk medicine to cure wounds, fever, headaches, and malaria. The aim of this work was to investigate the leaves and stem bark of D. edulis with an emphasis on the antiplasmodial and cytotoxic effects of extracts, fractions, and isolated compounds. METHODS Extracts, fractions, and some isolated compounds were subjected to antiplasmodial activity screening in vitro against chloroquine-sensitive 3D7 and multidrug resistant Dd2 strains of Plasmodium falciparum using a SyBr Green fluorescence-based assay. The cytotoxicity of active extracts, fractions, and compounds was tested against mammalian Raw cell lines using an in vitro resazurin-based viability assay. The structures of the compounds were determined based on their NMR and MS data. The in vivo toxicity using female BALB/c mice was performed on the most active extract according to the protocol of OECD (2002), guideline 423. RESULTS The hydroethanolic extract from the leaves of D. edulis displayed good antiplasmodial activity with IC50 values of 3.10 and 3.56 μg/mL respectively on sensitive (3D7) and multiresistant (Dd2) strains of P. falciparum. Of the sixteen compounds isolated, 3,3',4-tri-O-methylellagic acid (4) exhibited the highest antiplasmodial activity against PfDd2 strains with an IC50 value of 0.63 μg/mL. All extracts, fractions, and isolated compounds demonstrated no cytotoxicity against Raw cell lines with CC50 > 250 μg/mL. In addition, the most active extract on both strains of P. falciparum was nontoxic in vivo, with a LD50 greater than 2000 and 5000 mg/kg. A phytochemical investigation of the stem bark and leaves of D. edulis afforded sixteen compounds, including two xanthones (1-2), three ellagic acid derivatives (3-5), one phenolic compound (6), one depside (7), one triglyceride (8), one auranthiamide acetate (9), one gallic acid derivative (10), four triterpenoids (11-14), and two steroids (15-16). Compounds 1, 2, 5, 7, 8, and 9 were herein reported for the first time from the Burseraceae family. CONCLUSION This work highlights the good in vitro antiplasmodial potency of the hydroethanolic extract of the leaves of this plant and that of two isolated constituents (3,3',4-tri-O-methylellagic acid and ethylgallate) from the plant. These biological results support the use of D. edulis in traditional medicine against malaria.
Collapse
Affiliation(s)
- Kevine Johane Jumeta Dongmo
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Mariscal Brice Tchatat Tali
- Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | | | | | - Donald Ulrich Kenou Kagho
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | | | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Norbert Sewald
- Department of Chemistry, Bielefeld University, P.O. Box 100131, 33501, Bielefeld, Germany
| | - Silvère Augustin Ngouela
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
3
|
Sarma M, Abdalla M, Zothantluanga JH, Abdullah Thagfan F, Umar AK, Chetia D, Almanaa TN, Al-Shouli ST. Multi-target molecular dynamic simulations reveal glutathione-S-transferase as the most favorable drug target of knipholone in Plasmodium falciparum. J Biomol Struct Dyn 2023; 41:12808-12824. [PMID: 36752355 DOI: 10.1080/07391102.2023.2175378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/07/2023] [Indexed: 02/09/2023]
Abstract
Knipholone is an antiplasmodial phytocompound obtained from the roots of Kniphofia foliosa. Despite several available studies, the molecular drug targets of knipholone in P. falciparum remained unknown. Nowadays, in silico techniques are widely used to study the molecular interactions between compounds and proteins as they provide results quickly with high precision and accuracy. In this study, we aim to identify the potential molecular drug targets of knipholone in P. falciparum. We selected 10 proteins of P. falciparum with unique metabolic functions and we found that knipholone showed better binding affinity than the native ligands of 6 proteins. Out of the 6 proteins, knipholone showed better enzyme inhibitory potential than the native ligands of 4 proteins. We carried out a 100 ns MD simulations for knipholone and the native ligands of four proteins and this was followed by binding free energy calculations. In each step, the performance of knipholone was compared to the native ligands of the proteins. Knipholone outperformed the native ligand of Glutathione-S-Transferase (1OKT) at crucial computational studies as evidence from the lower protein-ligand root mean square deviation value, protein root mean square fluctuation value, and protein-ligand binding free energies. The ligand properties of knipholone provide additional evidence for its stability and it maintains adequate protein-ligand contacts during the entire simulation. The density functional theory study also supported the stability of knipholone at the active binding site of 1OKT. From the studied proteins, we conclude that Glutathione-S-Transferase is the most favorable drug target for knipholone in P. falciparum.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Malita Sarma
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Felwa Abdullah Thagfan
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abd Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samia T Al-Shouli
- Immunology Unit, Pathology department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Tali MBT, Dize D, Njonte Wouamba SC, Tsouh Fokou PV, Keumoe R, Ngansop CN, Nguembou Njionhou MS, Jiatsa Mbouna CD, Yamthe Tchokouaha LR, Maharaj V, Khorommbi NK, Naidoo-Maharaj D, Tchouankeu JC, Boyom FF. In vitro antiplasmodial activity-directed investigation and UPLC-MS fingerprint of promising extracts and fractions from Terminalia ivorensis A. Chev. and Terminalia brownii Fresen. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115512. [PMID: 35788037 DOI: 10.1016/j.jep.2022.115512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE Medicinal plants from the Terminalia genus are widely used as remedies against many infectious diseases, including malaria. As such, Terminalia ivorensis A. Chev. and Terminalia brownii Fresen. are famous due to their usefulness in traditional medicines to treat malaria and yellow fever. However, further information is needed on the extent of anti-Plasmodium potency of extracts and fractions from these plants and their phytochemical profile. AIM OF THE STUDY This study was designed to investigate the in vitro antiplasmodial activity and to determine the chemical profile of promising extracts and fractions from T. ivorensis and T. brownii stem bark. MATERIALS AND METHODS Crude aqueous, ethanolic, methanolic, hydroethanolic and ethyl acetate extracts were prepared by maceration from the stem barks of T. brownii and T. ivorensis. They were subsequently tested against chloroquine-sensitive (Pf3D7) and multidrug-resistant (PfDd2) strains of P. falciparum using the parasite lactate dehydrogenase (PfLDH) assay. Extracts showing very good activity on both plasmodial strains were further fractionated using column chromatography guided by evidence of antiplasmodial activity. All bioactive extracts and fractions were screened for their cytotoxicity on Vero and Raw cell lines using the resazurin-based assay and on erythrocytes using the hemolysis assay. The phytochemical profiles of selected potent extracts and fractions were determined by UPLC-QTOF-MS analysis. RESULTS Of the ten extracts obtained from both plant species, nine showed inhibitory activity against both P. falciparum strains (Pf3D7 and PfDd2), with median inhibitory concentration (IC50) values ranging from 0.13 μg/ml to 10.59 μg/ml. Interestingly, the aqueous extract of T. ivorensis (TiW) and methanolic extract of T. brownii (TbM) displayed higher antiplasmodial activities against both strains (IC50 0.13-1.43 μg/ml) and high selectivity indices (SI > 100). Their fractionation led to two fractions from T. ivorensis and two from T. brownii that showed very promising antiplasmodial activity (IC50 0.15-1.73 μg/mL) and SI greater than 100. The hemolytic assay confirmed the safety of crude extracts and fractions on erythrocytes. UPLC-MS-based phytochemical analysis of the crude aqueous extract of T. ivorensis showed the presence of ellagic acid (1) and leucodelphidin (2), while analysis of the crude methanol extract of T. brownii showed the presence of ellagic acid (1), leucodelphinidin (2), papyriogenin D (3), dihydroactinidiolide (4) and miltiodiol (5). CONCLUSIONS The extracts and fractions from T. ivorensis and T. brownii showed very good antiplasmodial activity, thus supporting the traditional use of the two plants in the treatment of malaria. Chemical profiling of the extracts and fractions led to the identification of chemical markers and the known antimalarial compound ellagic acid. Further isolation and testing of other pure compounds from the active fractions could lead to the identification of potent antiplasmodial compounds.
Collapse
Affiliation(s)
- Mariscal Brice Tchatat Tali
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Darline Dize
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Steven Collins Njonte Wouamba
- Laboratory of Natural Products and Organic Synthesis, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Department of Chemistry, Higher Teacher's Training College, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon.
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Department of Biochemistry, Faculty of Science, University of Bamenda, PO Box 39, Bambili, Bamenda, Cameroon.
| | - Rodrigue Keumoe
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Cyrille Njanpa Ngansop
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Michelle Sidoine Nguembou Njionhou
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Cedric Derick Jiatsa Mbouna
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Lauve Rachel Yamthe Tchokouaha
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Institute for Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, P.O. Box 6163, Yaoundé, Cameroon.
| | - Vinesh Maharaj
- Department of Chemistry, University of Pretoria, Hatfield Campus, Hatfield, 0028, South Africa.
| | | | - Dashnie Naidoo-Maharaj
- Department of Chemistry, University of Pretoria, Hatfield Campus, Hatfield, 0028, South Africa; Agricultural Research Council-Vegetables, Industrial and Medicinal Plants, Private Bag X293, Pretoria, 0001, South Africa.
| | - Jean Claude Tchouankeu
- Laboratory of Natural Products and Organic Synthesis, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
5
|
Heimsch KC, Gertzen CGW, Schuh AK, Nietzel T, Rahlfs S, Przyborski JM, Gohlke H, Schwarzländer M, Becker K, Fritz-Wolf K. Structure and Function of Redox-Sensitive Superfolder Green Fluorescent Protein Variant. Antioxid Redox Signal 2022; 37:1-18. [PMID: 35072524 PMCID: PMC9293687 DOI: 10.1089/ars.2021.0234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aims: Genetically encoded green fluorescent protein (GFP)-based redox biosensors are widely used to monitor specific and dynamic redox processes in living cells. Over the last few years, various biosensors for a variety of applications were engineered and enhanced to match the organism and cellular environments, which should be investigated. In this context, the unicellular intraerythrocytic parasite Plasmodium, the causative agent of malaria, represents a challenge, as the small size of the organism results in weak fluorescence signals that complicate precise measurements, especially for cell compartment-specific observations. To address this, we have functionally and structurally characterized an enhanced redox biosensor superfolder roGFP2 (sfroGFP2). Results: SfroGFP2 retains roGFP2-like behavior, yet with improved fluorescence intensity (FI) in cellulo. SfroGFP2-based redox biosensors are pH insensitive in a physiological pH range and show midpoint potentials comparable with roGFP2-based redox biosensors. Using crystallography and rigidity theory, we identified the superfolding mutations as being responsible for improved structural stability of the biosensor in a redox-sensitive environment, thus explaining the improved FI in cellulo. Innovation: This work provides insight into the structure and function of GFP-based redox biosensors. It describes an improved redox biosensor (sfroGFP2) suitable for measuring oxidizing effects within small cells where applicability of other redox sensor variants is limited. Conclusion: Improved structural stability of sfroGFP2 gives rise to increased FI in cellulo. Fusion to hGrx1 (human glutaredoxin-1) provides the hitherto most suitable biosensor for measuring oxidizing effects in Plasmodium. This sensor is of major interest for studying glutathione redox changes in small cells, as well as subcellular compartments in general. Antioxid. Redox Signal. 37, 1-18.
Collapse
Affiliation(s)
- Kim C Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Katharina Schuh
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Nietzel
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Jude M Przyborski
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,John von Neumann Institute of Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Karin Fritz-Wolf
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany.,Max-Planck Institute of Medical Research, Heidelberg, Germany
| |
Collapse
|
6
|
Wong SW, McCarroll J, Hsu K, Geczy CL, Tedla N. Intranasal Delivery of Recombinant S100A8 Protein Delays Lung Cancer Growth by Remodeling the Lung Immune Microenvironment. Front Immunol 2022; 13:826391. [PMID: 35655772 PMCID: PMC9152328 DOI: 10.3389/fimmu.2022.826391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Increasing evidence indicates a critical role for chronic inflammation in lung carcinogenesis. S100A8 is a protein with reported pro- and anti-inflammatory functions. It is highly expressed in myeloid-derived suppressor cells (MDSC) that accumulate in the tumor microenvironment and abrogate effective anti-cancer immune responses. Mechanisms of MDSC-mediated immunosuppression include production of reactive oxygen species and nitric oxide, and depletion of L-arginine required for T cell function. Although S100A8 is expressed in MDSC, its role in the lung tumor microenvironment is largely unknown. To address this, mouse recombinant S100A8 was repeatedly administered intranasally to mice bearing orthotopic lung cancers. S100A8 treatment prolonged survival from 19 days to 28 days (p < 0.001). At midpoint of survival, whole lungs and bronchoalveolar lavage fluid (BALF) were collected and relevant genes/proteins measured. We found that S100A8 significantly lowered expression of cytokine genes and proteins that promote expansion and activation of MDSC in lungs and BALF from cancer-bearing mice. Moreover, S100A8 enhanced activities of antioxidant enzymes and suppressed production of nitrite to create a lung microenvironment conducive to cytotoxic lymphocyte expansion and function. In support of this, we found decreased MDSC numbers, and increased numbers of CD4+ T cells and natural killer T (NK-T) cells in lungs from cancer-bearing mice treated with S100A8. Ex-vivo treatment of splenocytes with S100A8 protein activated NK cells. Our results indicate that treatment with S100A8 may favourably modify the lung microenvironment to promote an effective immune response in lungs, thereby representing a new strategy that could complement current immunotherapies in lung cancer.
Collapse
Affiliation(s)
- Sze Wing Wong
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Joshua McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Kenneth Hsu
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Carolyn L Geczy
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Nicodemus Tedla
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Keumoe R, Koffi JG, Dize D, Fokou PVT, Tchamgoue J, Ayong L, Ndjakou BL, Sewald N, Ngameni B, Boyom FF. Identification of 3,3'-O-dimethylellagic acid and apigenin as the main antiplasmodial constituents of Endodesmia calophylloides Benth and Hymenostegia afzelii (Oliver.) Harms. BMC Complement Med Ther 2021; 21:180. [PMID: 34187456 PMCID: PMC8243547 DOI: 10.1186/s12906-021-03352-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Background Endodesmia calophylloides and Hymenostegia afzelii belong to the Guttiferae and Caesalpiniaceae plant families with known uses in African ethno-medicine to treat malaria and several other diseases. This study aimed at identifying antiplasmodial natural products from selected crude extracts from H. afzelii and E. calophylloides and to assess their cytotoxicity. Methods The extracts from H. afzelii and E. calophylloides were subjected to bioassay-guided fractionation to identify antiplasmodial compounds. The hydroethanol and methanol stem bark crude extracts, fractions and isolated compounds were assessed for antiplasmodial activity against the chloroquine-sensitive 3D7 and multi-drug resistant Dd2 strains of Plasmodium falciparum using the SYBR green I fluorescence-based microdilution assay. Cytotoxicity of active extracts, fractions and compounds was determined on African green monkey normal kidney Vero and murine macrophage Raw 264.7 cell lines using the Resazurin-based viability assay. Results The hydroethanolic extract of H. afzelii stem bark (HasbHE) and the methanolic extract of E. calophylloides stem bark (EcsbM) exhibited the highest potency against both Pf3D7 (EC50 values of 3.32 ± 0.15 μg/mL and 7.40 ± 0.19 μg/mL, respectively) and PfDd2 (EC50 of 3.08 ± 0.21 μg/mL and 7.48 ± 0.07 μg/mL, respectively) strains. Both extracts showed high selectivity toward Plasmodium parasites (SI > 13). The biological activity-guided fractionation led to the identification of five compounds (Compounds 1–5) from HasbHE and one compound (Compound 6) from EcsbM. Of these, Compound 1 corresponding to apigenin (EC50Pf3D7, of 19.01 ± 0.72 μM and EC50PfDd2 of 16.39 ± 0.52 μM), and Compound 6 corresponding to 3,3′-O-dimethylellagic acid (EC50Pf3D7 of 4.27 ± 0.05 μM and EC50PfDd2 of 1.36 ± 0.47 μM) displayed the highest antiplasmodial activities. Interestingly, both compounds exhibited negligible cytotoxicity against both Vero and Raw 264.7 cell lines with selectivity indices greater than 9. Conclusions This study led to the identification of two potent antiplasmodial natural compounds, 3,3′-O-dimethylellagic acid and apigenin that could serve as starting points for further antimalarial drug discovery. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03352-9.
Collapse
Affiliation(s)
- Rodrigue Keumoe
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.,Malaria Research Unit, Centre Pasteur du Cameroun, P.O. Box 1274, Yaoundé, Cameroon
| | - Jean Garba Koffi
- Higher Teachers Training College, University of Yaoundé I, P.O Box 47, Yaounde, Cameroon
| | - Darline Dize
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Patrick Valère Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Joseph Tchamgoue
- Higher Teachers Training College, University of Yaoundé I, P.O Box 47, Yaounde, Cameroon
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, P.O. Box 1274, Yaoundé, Cameroon
| | - Bruno Lenta Ndjakou
- Higher Teachers Training College, University of Yaoundé I, P.O Box 47, Yaounde, Cameroon
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501, Bielefeld, Germany
| | - Bathelemy Ngameni
- Laboratory of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, P.O Box 1364, Yaounde, Cameroon
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
8
|
Kumar S, Mina PR, Kumar R, Pal A, Ahmad A, Tandon S, Darokar MP. 4-Chlorothymol Exerts Antiplasmodial Activity Impeding Redox Defense System in Plasmodium falciparum. Front Pharmacol 2021; 12:628970. [PMID: 33776772 PMCID: PMC7988344 DOI: 10.3389/fphar.2021.628970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria remains one of the major health concerns due to the resistance of Plasmodium species toward the existing drugs warranting an urgent need for new antimalarials. Thymol derivatives were known to exhibit enhanced antimicrobial activities; however, no reports were found against Plasmodium spp. In the present study, the antiplasmodial activity of thymol derivatives was evaluated against chloroquine-sensitive (NF-54) and -resistant (K1) strains of Plasmodium falciparum. Among the thymol derivatives tested, 4-chlorothymol showed potential activity against sensitive and resistant strains of P. falciparum. 4-Chlorothymol was found to increase the reactive oxygen species and reactive nitrogen species level. Furthermore, 4-chlorothymol could perturb the redox balance by modulating the enzyme activity of GST and GR. 4-Chlorothymol also showed synergy with chloroquine against chloroquine-resistant P. falciparum. 4-Chlorothymol was found to significantly suppress the parasitemia and increase the mean survival time in in vivo assays. Interestingly, in in vivo assay, 4-chlorothymol in combination with chloroquine showed higher chemosuppression as well as enhanced mean survival time at a much lower concentration as compared to individual doses of chloroquine and 4-chlorothymol. These observations clearly indicate the potential use of 4-chlorothymol as an antimalarial agent, which may also be effective in combination with the existing antiplasmodial drugs against chloroquine-resistant P. falciparum infection. In vitro cytotoxicity/hemolytic assay evidently suggests that 4-chlorothymol is safe for further exploration of its therapeutic properties.
Collapse
Affiliation(s)
- Saurabh Kumar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Pooja Rani Mina
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Ravi Kumar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Anirban Pal
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Ateeque Ahmad
- Process Chemistry and Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sudeep Tandon
- Process Chemistry and Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Mahendra P Darokar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
9
|
Tiwari S, Sharma N, Sharma GP, Mishra N. Redox interactome in malaria parasite Plasmodium falciparum. Parasitol Res 2021; 120:423-434. [PMID: 33459846 DOI: 10.1007/s00436-021-07051-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/08/2021] [Indexed: 11/26/2022]
Abstract
The malaria-causing parasite Plasmodium falciparum is a severe threat to human health across the globe. This parasite alone causes the highest morbidity and mortality than any other species of Plasmodium. The parasites dynamically multiply in the erythrocytes of the vertebrate hosts, a large number of reactive oxygen species that damage biological macromolecules are produced in the cell during parasite growth. To relieve this intense oxidative stress, the parasite employs an NADPH-dependent thioredoxin and glutathione system that acts as an antioxidant and maintains redox status in the parasite. The mutual interaction of both redox proteins is involved in various biological functions and the survival of the erythrocytic stage of the parasite. Since the Plasmodium species is deficient in catalase and classical glutathione peroxidase, so their redox balance relies on a complex set of five peroxiredoxins, differentially positioned in the cytosol, mitochondria, apicoplast, and nucleus with partly overlapping substrate preferences. Moreover, Plasmodium falciparum possesses a set of members belonging to the thioredoxin superfamily, such as three thioredoxins, two thioredoxin-like proteins, one dithiol, three monocysteine glutaredoxins, and one redox-active plasmoredoxin with largely redundant functions. This review paper aims to discuss and encapsulate the biological function and current knowledge of the functional redox network of Plasmodium falciparum.
Collapse
Affiliation(s)
- Savitri Tiwari
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Nivedita Sharma
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi, 110077, India
| | | | - Neelima Mishra
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi, 110077, India.
| |
Collapse
|
10
|
Colón-Lorenzo EE, Colón-López DD, Vega-Rodríguez J, Dupin A, Fidock DA, Baerga-Ortiz A, Ortiz JG, Bosch J, Serrano AE. Structure-Based Screening of Plasmodium berghei Glutathione S-Transferase Identifies CB-27 as a Novel Antiplasmodial Compound. Front Pharmacol 2020; 11:246. [PMID: 32256353 PMCID: PMC7090221 DOI: 10.3389/fphar.2020.00246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum parasites are increasingly drug-resistant, requiring the search for novel antimalarials with distinct modes of action. Enzymes in the glutathione pathway, including glutathione S-transferase (GST), show promise as novel antimalarial targets. This study aims to better understand the biological function of Plasmodium GST, assess its potential as a drug target, and identify novel antiplasmodial compounds using the rodent model P. berghei. By using reverse genetics, we provided evidence that GST is essential for survival of P. berghei intra-erythrocytic stages and is a valid target for drug development. A structural model of the P. berghei glutathione S-transferase (PbGST) protein was generated and used in a structure-based screening of 900,000 compounds from the ChemBridge Hit2Lead library. Forty compounds were identified as potential inhibitors and analyzed in parasite in vitro drug susceptibility assays. One compound, CB-27, exhibited antiplasmodial activity with an EC50 of 0.5 μM toward P. berghei and 0.9 μM toward P. falciparum multidrug-resistant Dd2 clone B2 parasites. Moreover, CB-27 showed a concentration-dependent inhibition of the PbGST enzyme without inhibiting the human ortholog. A shape similarity screening using CB-27 as query resulted in the identification of 24 novel chemical scaffolds, with six of them showing antiplasmodial activity ranging from EC50 of 0.6-4.9 μM. Pharmacokinetic and toxicity predictions suggest that the lead compounds have drug-likeness properties. The antiplasmodial potency, the absence of hemolytic activity, and the predicted drug-likeness properties position these compounds for lead optimization and further development as antimalarials.
Collapse
Affiliation(s)
- Emilee E. Colón-Lorenzo
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - Daisy D. Colón-López
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Joel Vega-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - Alice Dupin
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Abel Baerga-Ortiz
- Department of Biochemistry, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - José G. Ortiz
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Division of Pediatric Pulmonology and Allergy/Immunology, Case Western Reserve University, Cleveland, OH, United States
- InterRayBio, LLC, Baltimore, MD, United States
| | - Adelfa E. Serrano
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| |
Collapse
|
11
|
Gubitosa J, Rizzi V, Fini P, Del Sole R, Lopedota A, Laquintana V, Denora N, Agostiano A, Cosma P. Multifunctional green synthetized gold nanoparticles/chitosan/ellagic acid self-assembly: Antioxidant, sun filter and tyrosinase-inhibitor properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110170. [DOI: 10.1016/j.msec.2019.110170] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 02/02/2023]
|
12
|
Haeussler K, Berneburg I, Jortzik E, Hahn J, Rahbari M, Schulz N, Preuss J, Zapol'skii VA, Bode L, Pinkerton AB, Kaufmann DE, Rahlfs S, Becker K. Glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase: characterization of the Plasmodium vivax enzyme and inhibitor studies. Malar J 2019; 18:22. [PMID: 30683097 PMCID: PMC6346587 DOI: 10.1186/s12936-019-2651-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Since malaria parasites highly depend on ribose 5-phosphate for DNA and RNA synthesis and on NADPH as a source of reducing equivalents, the pentose phosphate pathway (PPP) is considered an excellent anti-malarial drug target. In Plasmodium, a bifunctional enzyme named glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase (GluPho) catalyzes the first two steps of the PPP. PfGluPho has been shown to be essential for the growth of blood stage Plasmodium falciparum parasites. METHODS Plasmodium vivax glucose 6-phosphate dehydrogenase (PvG6PD) was cloned, recombinantly produced in Escherichia coli, purified, and characterized via enzyme kinetics and inhibitor studies. The effects of post-translational cysteine modifications were assessed via western blotting and enzyme activity assays. Genetically encoded probes were employed to study the effects of G6PD inhibitors on the cytosolic redox potential of Plasmodium. RESULTS Here the recombinant production and characterization of PvG6PD, the C-terminal and NADPH-producing part of PvGluPho, is described. A comparison with PfG6PD (the NADPH-producing part of PfGluPho) indicates that the P. vivax enzyme has higher KM values for the substrate and cofactor. Like the P. falciparum enzyme, PvG6PD is hardly affected by S-glutathionylation and moderately by S-nitrosation. Since there are several naturally occurring variants of PfGluPho, the impact of these mutations on the kinetic properties of the enzyme was analysed. Notably, in contrast to many human G6PD variants, the mutations resulted in only minor changes in enzyme activity. Moreover, nanomolar IC50 values of several compounds were determined on P. vivax G6PD (including ellagic acid, flavellagic acid, and coruleoellagic acid), inhibitors that had been previously characterized on PfGluPho. ML304, a recently developed PfGluPho inhibitor, was verified to also be active on PvG6PD. Using genetically encoded probes, ML304 was confirmed to disturb the cytosolic glutathione-dependent redox potential of P. falciparum blood stage parasites. Finally, a new series of novel small molecules with the potential to inhibit the falciparum and vivax enzymes were synthesized, resulting in two compounds with nanomolar activity. CONCLUSION The characterization of PvG6PD makes this enzyme accessible to further drug discovery activities. In contrast to naturally occurring G6PD variants in the human host that can alter the kinetic properties of the enzyme and thus the redox homeostasis of the cells, the naturally occurring PfGluPho variants studied here are unlikely to have a major impact on the parasites' redox homeostasis. Several classes of inhibitors have been successfully tested and are presently being followed up.
Collapse
Affiliation(s)
- Kristina Haeussler
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Isabell Berneburg
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Julia Hahn
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Mahsa Rahbari
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Norma Schulz
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Janina Preuss
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.,Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.,Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Viktor A Zapol'skii
- Institute of Organic Chemistry, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany
| | - Lars Bode
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Dieter E Kaufmann
- Institute of Organic Chemistry, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
13
|
Zhang H, Zhao Y, Ying X, Peng Z, Guo Y, Yao X, Chen W. Ellagic Acid Nanoemulsion in Cosmetics: The Preparation and Evaluation of a New Nanoemulsion Method as a Whitening and Antiaging Agent. IEEE NANOTECHNOLOGY MAGAZINE 2018. [DOI: 10.1109/mnano.2017.2780859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hua Zhang
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Yiqian Zhao
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Xue Ying
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Zhengchun Peng
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yake Guo
- School of Medicine, The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Xincheng Yao
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Wen Chen
- School of Pharmacy, Shihezi University, Shihezi, China
| |
Collapse
|
14
|
Hydrogen peroxide dynamics in subcellular compartments of malaria parasites using genetically encoded redox probes. Sci Rep 2017; 7:10449. [PMID: 28874682 PMCID: PMC5585161 DOI: 10.1038/s41598-017-10093-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/03/2017] [Indexed: 11/23/2022] Open
Abstract
Redox balance is essential for the survival, growth and multiplication of malaria parasites and oxidative stress is involved in the mechanism of action of many antimalarial drugs. Hydrogen peroxide (H2O2) plays an important role in redox signalling and pathogen-host cell interactions. For monitoring intra- and subcellular redox events, highly sensitive and specific probes are required. Here, we stably expressed the ratiometric H2O2 redox sensor roGFP2-Orp1 in the cytosol and the mitochondria of Plasmodium falciparum (P. falciparum) NF54-attB blood-stage parasites and evaluated its sensitivity towards oxidative stress, selected antimalarial drugs, and novel lead compounds. In both compartments, the sensor showed reproducible sensitivity towards H2O2 in the low micromolar range and towards antimalarial compounds at pharmacologically relevant concentrations. Upon short-term exposure (4 h), artemisinin derivatives, quinine and mefloquine impacted H2O2 levels in mitochondria, whereas chloroquine and a glucose-6-phosphate dehydrogenase (G6PD) inhibitor affected the cytosol; 24 h exposure to arylmethylamino steroids and G6PD inhibitors revealed oxidation of mitochondria and cytosol, respectively. Genomic integration of an H2O2 sensor expressed in subcellular compartments of P. falciparum provides the basis for studying complex parasite-host cell interactions or drug effects with spatio-temporal resolution while preserving cell integrity, and sets the stage for high-throughput approaches to identify antimalarial agents perturbing redox equilibrium.
Collapse
|
15
|
H2O2 dynamics in the malaria parasite Plasmodium falciparum. PLoS One 2017; 12:e0174837. [PMID: 28369083 PMCID: PMC5378400 DOI: 10.1371/journal.pone.0174837] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/15/2017] [Indexed: 12/04/2022] Open
Abstract
Hydrogen peroxide is an important antimicrobial agent but is also crucially involved in redox signaling and pathogen-host cell interactions. As a basis for systematically investigating intracellular H2O2 dynamics and regulation in living malaria parasites, we established the genetically encoded fluorescent H2O2 sensors roGFP2-Orp1 and HyPer-3 in Plasmodium falciparum. Both ratiometric redox probes as well as the pH control SypHer were expressed in the cytosol of blood-stage parasites. Both redox sensors showed reproducible sensitivity towards H2O2 in the lower micromolar range in vitro and in the parasites. Due to the pH sensitivity of HyPer-3, we used parasites expressing roGFP2-Orp1 for evaluation of short-, medium-, and long-term effects of antimalarial drugs on H2O2 levels and detoxification in Plasmodium. None of the quinolines or artemisinins tested had detectable direct effects on the H2O2 homeostasis at pharmacologically relevant concentrations. However, pre-treatment of the cells with antimalarial drugs or heat shock led to a higher tolerance towards exogenous H2O2. The systematic evaluation and comparison of the two genetically encoded cytosolic H2O2 probes in malaria parasites provides a basis for studying parasite-host cell interactions or drug effects with spatio-temporal resolution while preserving cell integrity.
Collapse
|
16
|
Mohring F, Rahbari M, Zechmann B, Rahlfs S, Przyborski JM, Meyer AJ, Becker K. Determination of glutathione redox potential and pH value in subcellular compartments of malaria parasites. Free Radic Biol Med 2017; 104:104-117. [PMID: 28062360 DOI: 10.1016/j.freeradbiomed.2017.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/16/2016] [Accepted: 01/02/2017] [Indexed: 12/26/2022]
Abstract
The malaria parasite Plasmodium falciparum is exposed to multiple sources of oxidative challenge during its complex life cycle in the Anopheles vector and its human host. In order to further elucidate redox-based parasite host cell interactions and mechanisms of drug action, we targeted the genetically encoded glutathione redox sensor roGFP2 coupled to human glutaredoxin 1 (roGFP2-hGrx1) as well as the ratiometric pH sensor pHluorin to the apicoplast and the mitochondrion of P. falciparum. Using live cell imaging, this allowed for the first time the determination of the pH values of the apicoplast (7.12±0.40) and mitochondrion (7.37±0.09) in the intraerythrocytic asexual stages of the parasite. Based on the roGFP2-hGrx1 signals, glutathione-dependent redox potentials of -267mV and -328mV, respectively, were obtained. Employing these novel tools, initial studies on the effects of redox-active agents and clinically employed antimalarial drugs were carried out on both organelles.
Collapse
Affiliation(s)
- Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Mahsa Rahbari
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, 101 Bagby Ave., Waco, TX 76706, USA
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Jude M Przyborski
- Parasitology, Philipps University Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
17
|
Bahamontes-Rosa N, Alejandre AR, Gomez V, Viera S, Gomez-Lorenzo MG, Sanz-Alonso LM, Mendoza-Losana A. New molecular settings to support in vivo anti-malarial assays. Malar J 2016; 15:147. [PMID: 26955872 PMCID: PMC4784371 DOI: 10.1186/s12936-016-1205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/01/2016] [Indexed: 11/27/2022] Open
Abstract
Background Quantitative real-time PCR (qPCR) is now commonly used as a method to confirm diagnosis of malaria and to differentiate recrudescence from re-infection, especially in clinical trials and in reference laboratories where precise quantification is critical. Although anti-malarial drug discovery is based on in vivo murine efficacy models, use of molecular analysis has been limited. The aim of this study was to develop qPCR as a valid methodology to support pre-clinical anti-malarial models by using filter papers to maintain material for qPCR and to compare this with traditional methods. Methods FTA technology (Whatman) is a rapid and safe method for extracting nucleic acids from blood. Peripheral blood samples from mice infected with Plasmodium berghei, P. yoelii, or P. falciparum were kept as frozen samples or as spots on FTA cards. The extracted genetic material from both types of samples was assessed for quantification by qPCR using sets of specific primers specifically designed for Plasmodium 18S rRNA, LDH, and CytB genes. Results The optimal conditions for nucleic acid extraction from FTA cards and qPCR amplification were set up, and were confirmed to be suitable for parasite quantification using DNA as template after storage at room temperature for as long as 26 months in the case of P. berghei samples and 52 months for P. falciparum and P. yoelii. The quality of DNA extracted from the FTA cards for gene sequencing and microsatellite amplification was also assessed. Conclusions This is the first study to report the suitability of FTA cards and qPCR assay to quantify parasite load in samples from in vivo efficacy models to support the drug discovery process.
Collapse
|
18
|
Starkl Renar K, Iskra J, Križaj I. Understanding malarial toxins. Toxicon 2016; 119:319-29. [PMID: 27353131 DOI: 10.1016/j.toxicon.2016.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/26/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Recognized since antiquity, malaria is one of the most infamous and widespread infectious diseases in humans and, although the death rate during the last century has been diminishing, it still accounts for more than a half million deaths annually. It is caused by the Plasmodium parasite and typical symptoms include fever, shivering, headache, diaphoresis and nausea, all resulting from an excessive inflammatory response induced by malarial toxins released into the victim's bloodstream. These toxins are hemozoin and glycosylphosphatidylinositols. The former is the final product of the parasite's detoxification of haeme, a by-product of haemoglobin catabolism, while the latter anchor proteins to the Plasmodium cell surface or occur as free molecules. Currently, only two groups of antimalarial toxin drugs exist on the market, quinolines and artemisinins. As we describe, they both target biosynthesis of hemozoin. Other substances, currently in various phases of clinical trials, are directed towards biosynthesis of glycosylphosphatidylinositol, formation of hemozoin, or attenuation of the inflammatory response of the patient. Among the innovative approaches to alleviating the effects of malarial toxins, is the development of antimalarial toxin vaccines. In this review the most important lessons learned from the use of treatments directed against the action of malarial toxins in antimalarial therapy are emphasized and the most relevant and promising directions for future research in obtaining novel antimalarial agents acting on malarial toxins are discussed.
Collapse
Affiliation(s)
- Katarina Starkl Renar
- Laboratory of Organic and Bioorganic Chemistry, Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Jernej Iskra
- Laboratory of Organic and Bioorganic Chemistry, Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Cebula M, Schmidt EE, Arnér ESJ. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal 2015; 23:823-53. [PMID: 26058897 PMCID: PMC4589110 DOI: 10.1089/ars.2015.6378] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE All cells must maintain a balance between oxidants and reductants, while allowing for fluctuations in redox states triggered by signaling, altered metabolic flow, or extracellular stimuli. Furthermore, they must be able to rapidly sense and react to various challenges that would disrupt the redox homeostasis. RECENT ADVANCES Many studies have identified Keap1 as a key sensor for oxidative or electrophilic stress, with modification of Keap1 by oxidation or electrophiles triggering Nrf2-mediated transcriptional induction of enzymes supporting reductive and detoxification pathways. However, additional mechanisms for Nrf2 regulation are likely to exist upstream of, or in parallel with, Keap1. CRITICAL ISSUES Here, we propose that the mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a potent regulator of Nrf2. A high chemical reactivity of TrxR1 and its vital role for the thioredoxin (Trx) system distinguishes TrxR1 as a prime target for electrophilic challenges. Chemical modification of the selenocysteine (Sec) in TrxR1 by electrophiles leads to rapid inhibition of thioredoxin disulfide reductase activity, often combined with induction of NADPH oxidase activity of the derivatized enzyme, thereby affecting many downstream redox pathways. The notion of TrxR1 as a regulator of Nrf2 is supported by many publications on effects in human cells of selenium deficiency, oxidative stress or electrophile exposure, as well as the phenotypes of genetic mouse models. FUTURE DIRECTIONS Investigation of the role of TrxR1 as a regulator of Nrf2 activation will facilitate further studies of redox control in diverse cells and tissues of mammals, and possibly also in animals of other classes.
Collapse
Affiliation(s)
- Marcus Cebula
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Edward E Schmidt
- 2 Microbiology and Immunology, Montana State University , Bozeman, Montana
| | - Elias S J Arnér
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
20
|
Allen SM, Lim EE, Jortzik E, Preuss J, Chua HH, MacRae JI, Rahlfs S, Haeussler K, Downton MT, McConville MJ, Becker K, Ralph SA. Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase is a potential drug target. FEBS J 2015. [PMID: 26198663 DOI: 10.1111/febs.13380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The malarial parasite Plasmodium falciparum is exposed to substantial redox challenges during its complex life cycle. In intraerythrocytic parasites, haemoglobin breakdown is a major source of reactive oxygen species. Deficiencies in human glucose-6-phosphate dehydrogenase, the initial enzyme in the pentose phosphate pathway (PPP), lead to a disturbed redox equilibrium in infected erythrocytes and partial protection against severe malaria. In P. falciparum, the first two reactions of the PPP are catalysed by the bifunctional enzyme glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase (PfGluPho). This enzyme differs structurally from its human counterparts and represents a potential target for drugs. In the present study we used epitope tagging of endogenous PfGluPho to verify that the enzyme localises to the parasite cytosol. Furthermore, attempted double crossover disruption of the PfGluPho gene indicates that the enzyme is essential for the growth of blood stage parasites. As a further step towards targeting PfGluPho pharmacologically, ellagic acid was characterised as a potent PfGluPho inhibitor with an IC50 of 76 nM. Interestingly, pro-oxidative drugs or treatment of the parasites with H2O2 only slightly altered PfGluPho expression or activity under the conditions tested. Furthermore, metabolic profiling suggested that pro-oxidative drugs do not significantly perturb the abundance of PPP intermediates. These data indicate that PfGluPho is essential in asexual parasites, but that the oxidative arm of the PPP is not strongly regulated in response to oxidative challenge.
Collapse
Affiliation(s)
- Stacey M Allen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - Erin E Lim
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Janina Preuss
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Hwa Huat Chua
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - James I MacRae
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Kristina Haeussler
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | | | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| |
Collapse
|
21
|
Role and Regulation of Glutathione Metabolism in Plasmodium falciparum. Molecules 2015; 20:10511-34. [PMID: 26060916 PMCID: PMC6272303 DOI: 10.3390/molecules200610511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022] Open
Abstract
Malaria in humans is caused by one of five species of obligate intracellular protozoan parasites of the genus Plasmodium. P. falciparum causes the most severe disease and is responsible for 600,000 deaths annually, primarily in Sub-Saharan Africa. It has long been suggested that during their development, malaria parasites are exposed to environmental and metabolic stresses. One strategy to drug discovery was to increase these stresses by interfering with the parasites’ antioxidant and redox systems, which may be a valuable approach to disease intervention. Plasmodium possesses two redox systems—the thioredoxin and the glutathione system—with overlapping but also distinct functions. Glutathione is the most abundant low molecular weight redox active thiol in the parasites existing primarily in its reduced form representing an excellent thiol redox buffer. This allows for an efficient maintenance of the intracellular reducing environment of the parasite cytoplasm and its organelles. This review will highlight the mechanisms that are responsible for sustaining an adequate concentration of glutathione and maintaining its redox state in Plasmodium. It will provide a summary of the functions of the tripeptide and will discuss the potential of glutathione metabolism for drug discovery against human malaria parasites.
Collapse
|
22
|
Dalai SK, Yadav N, Patidar M, Patel H, Singh AP. Liver-Stage Specific Response among Endemic Populations: Diet and Immunity. Front Immunol 2015; 6:125. [PMID: 25852693 PMCID: PMC4367437 DOI: 10.3389/fimmu.2015.00125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/06/2015] [Indexed: 11/22/2022] Open
Abstract
Developing effective anti-malarial vaccine has been a challenge for long. Various factors including complex life cycle of parasite and lack of knowledge of stage specific critical antigens are some of the reasons. Moreover, inadequate understanding of the immune responses vis-à-vis sterile protection induced naturally by Plasmodia infection has further compounded the problem. It has been shown that people living in endemic areas take years to develop protective immunity to blood stage infection. But hardly anyone believes that immunity to liver-stage infection could be developed. Various experimental model studies using attenuated parasite suggest that liver-stage immunity might exist among endemic populations. This could be induced because of the attenuation of parasite in liver by various compounds present in the diet of endemic populations.
Collapse
Affiliation(s)
| | - Naveen Yadav
- Institute of Science, Nirma University , Ahmedabad , India
| | - Manoj Patidar
- Institute of Science, Nirma University , Ahmedabad , India
| | - Hardik Patel
- Institute of Science, Nirma University , Ahmedabad , India
| | - Agam Prasad Singh
- Infectious Diseases Laboratory, National Institute of Immunology , New Delhi , India
| |
Collapse
|
23
|
Żesławska E, Oleksyn B, Fabre A, Benoit-Vical F. Influence of Amodiaquine on the Antimalarial Activity of Ellagic Acid: Crystallographic and Biological Studies. Chem Biol Drug Des 2014; 84:669-75. [DOI: 10.1111/cbdd.12359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/16/2014] [Accepted: 05/17/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Ewa Żesławska
- Department of Chemistry; Pedagogical University; ul. Podchorążych 2 30-084 Kraków Poland
| | - Barbara Oleksyn
- Faculty of Chemistry; Jagiellonian University; ul. Ingardena 3 30-060 Kraków Poland
| | - Aude Fabre
- Laboratoire de Chimie de Coordination (LCC); CNRS; 205 route de Narbonne BP 44099 F-31077 Toulouse Cedex France
- UPS; INPT; Université de Toulouse III; F-31077 Toulouse Cedex 4 France
- Service de Parasitologie-Mycologie; Centre Hospitalier Universitaire; 31059 Toulouse France
| | - Françoise Benoit-Vical
- Laboratoire de Chimie de Coordination (LCC); CNRS; 205 route de Narbonne BP 44099 F-31077 Toulouse Cedex France
- UPS; INPT; Université de Toulouse III; F-31077 Toulouse Cedex 4 France
- Service de Parasitologie-Mycologie; Centre Hospitalier Universitaire; 31059 Toulouse France
| |
Collapse
|
24
|
Abstract
The potential of flavoproteins as targets of pharmacological treatments is immense. In this review we present an overview of the current research progress on medical interventions based on flavoproteins with a special emphasis on cancer, infectious diseases, and neurological disorders.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
25
|
Mothana RA, Al-Musayeib NM, Matheeussen A, Cos P, Maes L. Assessment of the in vitro antiprotozoal and cytotoxic potential of 20 selected medicinal plants from the island of Soqotra. Molecules 2012; 17:14349-60. [PMID: 23208469 PMCID: PMC6268263 DOI: 10.3390/molecules171214349] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/18/2012] [Accepted: 11/30/2012] [Indexed: 11/18/2022] Open
Abstract
Malaria, leishmaniasis and human African trypanosomiasis continue to be major public health problems in need of new and more effective drugs. The aim of this study was to evaluate in vitro antiprotozoal activity of twenty endemic medicinal plants collected from the island of Soqotra in the Indian Ocean. The plant materials were extracted with methanol and tested for antiplasmodial activity against erythrocytic schizonts of Plasmodium falciparum, for antileishmanial activity against intracellular amastigotes of Leishmania infantum and for antitrypanosomal activity against intracellular amastigotes of Trypanosoma cruzi and free trypomastigotes of T. brucei. To assess selectivity, cytotoxicity was determined against MRC-5 fibroblasts. Selective activity was obtained for Punica protopunica against Plasmodium (IC₅₀ 2.2 µg/mL) while Eureiandra balfourii and Hypoestes pubescens displayed activity against the three kinetoplastid parasites (IC₅₀ < 10 µg/mL). Acridocarpus socotranus showed activity against T. brucei and T. cruzi (IC₅₀ 3.5 and 8.4 µg/mL). Ballochia atrovirgata, Dendrosicycos socotrana, Dracaena cinnabari and Euphorbia socotrana displayed non-specific inhibition of the parasites related to high cytotoxicity.
Collapse
Affiliation(s)
- Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; E-Mail:
- Department of Pharmacognosy, Faculty of Pharmacy, Sana’a University, P.O. Box 33039, Sana’a, Yemen
| | - Nawal M. Al-Musayeib
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; E-Mail:
| | - An Matheeussen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; E-Mails: (A.M.); (P.C.); (L.M.)
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; E-Mails: (A.M.); (P.C.); (L.M.)
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; E-Mails: (A.M.); (P.C.); (L.M.)
| |
Collapse
|
26
|
|
27
|
Njomnang Soh P, Witkowski B, Gales A, Huyghe E, Berry A, Pipy B, Benoit-Vical F. Implication of glutathione in the in vitro antiplasmodial mechanism of action of ellagic acid. PLoS One 2012; 7:e45906. [PMID: 23029306 PMCID: PMC3461036 DOI: 10.1371/journal.pone.0045906] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/23/2012] [Indexed: 12/05/2022] Open
Abstract
The search for new antimalarial chemotherapy has become increasingly urgent due to parasite resistance to current drugs. Ellagic acid (EA) is a polyphenol, recently found in various plant products, that has effective antimalarial activity in vitro and in vivo without toxicity. To further understand the antimalarial mechanism of action of EA in vitro, we evaluated the effects of EA, ascorbic acid and N-acetyl-L-cysteine (NAC), alone and/or in combination on the production of reactive oxygen species (ROS) during the trophozoite and schizonte stages of the erythrocytic cycle of P. falciparum. The parasitized erythrocytes were pre-labelled with DCFDA (dichlorofluorescein diacetate). We showed that NAC had no effect on ROS production, contrary to ascorbic acid and EA, which considerably reduced ROS production. Surprisingly, EA reduced the production of the ROS with concentrations (6.6×10−9 − 6.6×10−6 M) ten-fold lower than ascorbic acid (113×10−6 M). Additionally, the in vitro drug sensitivity of EA with antioxidants showed that antiplasmodial activity is independent of the ROS production inside parasites, which was confirmed by the additive activity of EA and desferrioxamine. Finally, EA could act by reducing the glutathione content inside the Plasmodium parasite. This was consolidated by the decrease in the antiplasmodial efficacy of EA in the murine model Plasmodium yoelii- high GSH strain, known for its high glutathione content. Given its low toxicity and now known mechanism of action, EA appears as a promising antiplasmodial compound.
Collapse
|
28
|
Furlanetto V, Zagotto G, Pasquale R, Moro S, Gatto B. Ellagic acid and polyhydroxylated urolithins are potent catalytic inhibitors of human topoisomerase II: an in vitro study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9162-9170. [PMID: 22924519 DOI: 10.1021/jf302600q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ellagic acid (EA), a natural polyphenol abundant in fruits and common in our diet, is under intense investigation for its chemopreventive activity resulting from multiple effects. EA inhibits topoisomerase II, but the effects on the human enzyme of urolithins, its monolactone metabolites, are not known. Therefore, the action of several synthetic urolithins toward topoisomerases II was evaluated, showing that polyhydroxylated urolithins, EA, and EA-related compounds are potent inhibitors of the α and β isoforms of human topoisomerase II at submicromolar concentrations. Competition tests demonstrate a dose-dependent relationship between ATP and the inhibition of the enzyme. Docking experiments show that the active compounds bind the ATP pocket of the human enzyme, thus supporting the hypothesis that EA and polyhydroxylated urolithins act as ATP-competitive inhibitors of human topoisomerase II.
Collapse
Affiliation(s)
- Valentina Furlanetto
- Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
29
|
Ndjonka D, Bergmann B, Agyare C, Zimbres FM, Lüersen K, Hensel A, Wrenger C, Liebau E. In vitro activity of extracts and isolated polyphenols from West African medicinal plants against Plasmodium falciparum. Parasitol Res 2012; 111:827-34. [DOI: 10.1007/s00436-012-2905-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/19/2012] [Indexed: 11/28/2022]
|
30
|
Cai W, Zhang L, Song Y, Wang B, Zhang B, Cui X, Hu G, Liu Y, Wu J, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase. Free Radic Biol Med 2012; 52:257-65. [PMID: 22064364 DOI: 10.1016/j.freeradbiomed.2011.10.447] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 10/16/2022]
Abstract
Mammalian thioredoxin reductases (TrxRs) are a family of NADPH-dependent flavoproteins with a penultimate selenocysteine residue at the carboxy-terminus. Besides their native substrate thioredoxins (Trx), the enzymes show a broad substrate specificity, at least partially, because of the C-terminal redox-active site that is easily accessible in the reduced form. TrxRs are ubiquitous in all kinds of cells and have a critical role in regulating intracellular redox signaling. In recent years, a wealth of evidence has revealed that overactivation/dysfunction of TrxRs is closely related to various diseases, especially in tumor development, and thus the past decades have witnessed an expanding interest in finding TrxRs inhibitors, which might be promising agents for cancer chemotherapy. Herein we reviewed the small molecule inhibitors of mammalian TrxRs, with an emphasis on those that have potential anticancer activity. This review includes the nonpatent references up to 2010 that deal with mammalian TrxR inhibitors.
Collapse
Affiliation(s)
- Wenqing Cai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Calderón AI, Simithy-Williams J, Gupta MP. Antimalarial natural products drug discovery in Panama. PHARMACEUTICAL BIOLOGY 2012; 50:61-71. [PMID: 22196582 DOI: 10.3109/13880209.2011.602417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Malaria is still a major public health problem. The biodiversity of the tropics is extremely rich and represents an invaluable source of novel bioactive molecules. For screening of this diversity more sensitive and economical in vitro methods are needed, Flora of Panama has been studied based on ethnomedical uses for discovering antimalarial compounds. OBJECTIVE This review aims to provide an overview of in vitro screening methodologies for antimalarial drug discovery and to present results of this effort in Panama during the last quarter century. METHODS A literature search in SciFinder and PubMed and original publications of Panamanian scientists was performed to gather all the information on antimalarial drug discovery from the Panamanian flora and in vitro screening methods. RESULTS AND CONCLUSIONS A variety of colorimetric, staining, fluorometric, and mass spectrometry and radioactivity-based methods have been provided. The advantages and limitations of these methods are also discussed. Plants used in ethnomedicine for symptoms of malaria by three native Panamanian groups of Amerindians, Kuna, Ngöbe Buglé and Teribes are provided. Seven most active plants with IC(50) values < 10 μg/mL were identified Talisia nervosa Radlk. (Sapindaceae), Topobea parasitica Aubl.(Melastomataceae), Monochaetum myrtoideum Naudin (Melastomataceae), Bourreria spathulata (Miers) Hemsl.(Boraginaceae), Polygonum acuminatum Kunth (Polygonaceae), Clematis campestris A. St.-Hil. (Ranunculaceae) and Terminalia triflora (Griseb.) Lillo (Combretaceae). Thirty bioactive compounds belonging to a variety of chemical classes such as spermine and isoquinoline alkaloids, glycosylflavones, phenylethanoid glycosides, ecdysteroids, quercetin arabinofuranosides, clerodane-type diterpenoids, sipandinolid, galloylquercetin derivatives, gallates, oleamide and mangiferin derivatives.
Collapse
Affiliation(s)
- Angela I Calderón
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, AL, USA
| | | | | |
Collapse
|
32
|
Kasozi DM, Gromer S, Adler H, Zocher K, Rahlfs S, Wittlin S, Fritz-Wolf K, Schirmer RH, Becker K. The bacterial redox signaller pyocyanin as an antiplasmodial agent: comparisons with its thioanalog methylene blue. Redox Rep 2011; 16:154-65. [PMID: 21888766 DOI: 10.1179/174329211x13049558293678] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The quorum sensor and signalling molecule pyocyanin (PYO) contributes significantly to the pathophysiology of Pseudomonas aeruginosa infections. Comparison to phenothiazine drugs suggests that the antimalarial compound methylene blue (MB) can be regarded as a sulfur analog of PYO. This working hypothesis would explain why the synthetic drug MB behaves as a compound shaped in biological evolution. Here we report on redox-associated biological and biochemical properties of PYO in direct comparison to its synthetic analog MB. We quantitatively describe the reactivity of both compounds toward cellular reductants, the reactivity of their reduced leuco-forms towards O2, and their interactions with FAD-containing disulfide reductases. Furthermore, the interaction of PYO with human glutathione reductase was studied in structural detail by x-ray crystallography, showing that a single PYO molecule binds to the intersubunit cavity of the enzyme. Like MB, also PYO was also found to be active against blood schizonts of the malaria parasite P. falciparum in vitro. Furthermore, both compounds were active against the disease transmitting gametocyte forms of the parasites, which was systematically studied in vitro. As shown for mice, PYO is too toxic to be used as a drug. It may, however, have antimalarial activity in numerous human patients with concomitant Pseudomonas infections. MB, in contrast to PYO, is well tolerated and represents a promising agent for MB-based combination therapies against malaria. Current and future clinical studies can be guided by the comparisons between MB and PYO reported here. Additionally, it is of interest to study if and to what extent the protection from malaria in patients with cystic fibrosis or with severe wound infections is based on PYO produced by Pseudomonas species.
Collapse
Affiliation(s)
- D M Kasozi
- Interdisciplinary Research Center, Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dell'agli M, Galli GV, Bulgari M, Basilico N, Romeo S, Bhattacharya D, Taramelli D, Bosisio E. Ellagitannins of the fruit rind of pomegranate (Punica granatum) antagonize in vitro the host inflammatory response mechanisms involved in the onset of malaria. Malar J 2010; 9:208. [PMID: 20642847 PMCID: PMC2912927 DOI: 10.1186/1475-2875-9-208] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/19/2010] [Indexed: 11/30/2022] Open
Abstract
Background The sun-dried rind of the immature fruit of pomegranate (Punica granatum) is presently used as a herbal formulation (OMARIA, Orissa Malaria Research Indigenous Attempt) in Orissa, India, for the therapy and prophylaxis of malaria. The pathogenesis of cerebral malaria, a complication of the infection by Plasmodium falciparum, is an inflammatory cytokine-driven disease associated to an up-regulation and activity of metalloproteinase-9 and to the increase of TNF production. The in vitro anti-plasmodial activity of Punica granatum (Pg) was recently described. The aim of the present study was to explore whether the anti-malarial effect of OMARIA could also be sustained via other mechanisms among those associated to the host immune response. Methods From the methanolic extract of the fruit rind, a fraction enriched in tannins (Pg-FET) was prepared. MMP-9 secretion and expression were evaluated in THP-1 cells stimulated with haemozoin or TNF. The assays were conducted in the presence of the Pg-FET and its chemical constituents ellagic acid and punicalagin. The effect of urolithins, the ellagitannin metabolites formed by human intestinal microflora, was also investigated. Results Pg-FET and its constituents inhibited the secretion of MMP-9 induced by haemozoin or TNF. The effect occurred at transcriptional level since MMP-9 mRNA levels were lower in the presence of the tested compounds. Urolithins as well inhibited MMP-9 secretion and expression. Pg-FET and pure compounds also inhibited MMP-9 promoter activity and NF-kB-driven transcription. Conclusions The beneficial effect of the fruit rind of Punica granatum for the treatment of malarial disease may be attributed to the anti-parasitic activity and the inhibition of the pro-inflammatory mechanisms involved in the onset of cerebral malaria.
Collapse
Affiliation(s)
- Mario Dell'agli
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Via Balzaretti, 9 - 20133 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dell'Agli M, Galli GV, Corbett Y, Taramelli D, Lucantoni L, Habluetzel A, Maschi O, Caruso D, Giavarini F, Romeo S, Bhattacharya D, Bosisio E. Antiplasmodial activity of Punica granatum L. fruit rind. JOURNAL OF ETHNOPHARMACOLOGY 2009; 125:279-285. [PMID: 19577622 DOI: 10.1016/j.jep.2009.06.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY Sun-dried rind of the immature fruit of Punica granatum L. (Punicaceae) (Pg) is presently used as a herbal formulation (OMARIA) in Orissa, India, for the therapy and prophylaxis of malaria. The aims of this study were (i) to assess in vitro the antiplasmodial activity of the methanolic extract, of a tannin enriched fraction and of compounds/metabolites of the antimalarial plant, (ii) to estimate the curative efficacy of the Pg extracts and (iii) to explore the mechanism of action of the antiplasmodial compounds. Urolithins, the ellagitannin metabolites, were also investigated for antiplasmodial activity. MATERIALS AND METHODS Chloroquine-susceptible (D10) and -resistant (W2) strains of Pf were used for in vitro studies and the rodent malaria model Plasmodium berghei-BALB/c mice was used for in vivo assessments. Recombinant plasmepsins 2 and 4 were used to investigate the interference of Pg compounds with the metabolism of haemoglobin by malaria parasites. RESULTS The Pg methanolic extract (Pg-MeOH) inhibited parasite growth in vitro with a IC(50) of 4.5 and 2.8 microg/ml, for D10 and W2 strain, respectively. The activity was found to be associated to the fraction enriched with tannins (Pg-FET, IC(50) 2.9 and 1.5 microg/ml) in which punicalagins (29.1%), punicalins, ellagic acid (13.4%) and its glycoside could be identified. Plasmepsin 2 was inhibited by Pg-MeOH extract and by Pg-FET (IC(50) 7.3 and 3.0 microg/ml), which could partly explain the antiparasitic effect. On the contrary, urolithins were inactive. Both Pg-MeOH extract and Pg-FET did not show any in vivo efficacy in the murine model. CONCLUSIONS The in vitro studies support the use of Pg as antimalarial remedy. Possible explanations for the negative in vivo results are discussed.
Collapse
Affiliation(s)
- Mario Dell'Agli
- Department of Pharmacological Sciences, University of Camerino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|