1
|
Sarkar M, Sarkar J. Therapeutic drug monitoring in tuberculosis. Eur J Clin Pharmacol 2024; 80:1659-1684. [PMID: 39240337 DOI: 10.1007/s00228-024-03749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) is a standard clinical procedure that uses the pharmacokinetic and pharmacodynamic parameters of the drug in the body to determine the optimal dose. The pharmacokinetic variability of the drug(s) is a significant contributor to poor treatment outcomes, including the development of acquired drug resistance. TDM aids in dose optimization and improves outcomes while lessening drug toxicity. TDM is used to manage patients with tuberculosis (TB) who exhibit a slow response to therapy, despite good compliance and drug-susceptible organisms. Additional indications include patients at risk of malabsorption or delayed absorption of TB drugs and patients with drug-drug interaction and drug toxicity, which confirm compliance with therapy. TDM usually requires two blood samples: the 2 h and the 6 h post-dose. This narrative review will discuss the pharmacokinetics and pharmacodynamics of TB drugs, determinants of poor response to therapy, indications of TDM, methods of performing TDM, and its interpretations. METHODS This is a narrative review. We searched PubMed, Embase, and the CINAHL from inception to April 2024. We used the following search terms: tuberculosis, therapeutic drug monitoring, anti-TB drugs, pharmacokinetics, pharmacodynamics, limited sample strategies, diabetes and TB, HIV and TB, and multidrug-resistant TB. All types of articles were selected. RESULTS TDM is beneficial in managing TB, especially in patients with slow responses, drug-resistance TB, recurrent TB, and comorbidities such as diabetes mellitus and human immunodeficiency virus infection. CONCLUSION TDM is beneficial for improving outcomes, reducing the risk of acquired drug resistance, and avoiding side effects.
Collapse
Affiliation(s)
- M Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, 171001, Himachal Pradesh, India.
| | - J Sarkar
- MRes Neuroscience, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Panda S, Jayasinghe YP, Shinde DD, Bueno E, Stastny A, Bertrand BP, Chaudhari SS, Kielian T, Cava F, Ronning DR, Thomas VC. Staphylococcus aureus counters organic acid anion-mediated inhibition of peptidoglycan cross-linking through robust alanine racemase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575639. [PMID: 38293037 PMCID: PMC10827132 DOI: 10.1101/2024.01.15.575639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Weak organic acids are commonly found in host niches colonized by bacteria, and they can inhibit bacterial growth as the environment becomes acidic. This inhibition is often attributed to the toxicity resulting from the accumulation of high concentrations of organic anions in the cytosol, which disrupts cellular homeostasis. However, the precise cellular targets that organic anions poison and the mechanisms used to counter organic anion intoxication in bacteria have not been elucidated. Here, we utilize acetic acid, a weak organic acid abundantly found in the gut to investigate its impact on the growth of Staphylococcus aureus. We demonstrate that acetate anions bind to and inhibit d-alanyl-d-alanine ligase (Ddl) activity in S. aureus. Ddl inhibition reduces intracellular d-alanyl-d-alanine (d-Ala-d-Ala) levels, compromising staphylococcal peptidoglycan cross-linking and cell wall integrity. To overcome the effects of acetate-mediated Ddl inhibition, S. aureus maintains a substantial intracellular d-Ala pool through alanine racemase (Alr1) activity and additionally limits the flux of d-Ala to d-glutamate by controlling d-alanine aminotransferase (Dat) activity. Surprisingly, the modus operandi of acetate intoxication in S. aureus is common to multiple biologically relevant weak organic acids indicating that Ddl is a conserved target of small organic anions. These findings suggest that S. aureus may have evolved to maintain high intracellular d-Ala concentrations, partly to counter organic anion intoxication.
Collapse
Affiliation(s)
- Sasmita Panda
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Yahani P. Jayasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dhananjay D. Shinde
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Emilio Bueno
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umea SE-90187, Sweden
| | - Amanda Stastny
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Blake P. Bertrand
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Sujata S. Chaudhari
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Tammy Kielian
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umea SE-90187, Sweden
| | - Donald R. Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vinai C. Thomas
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| |
Collapse
|
3
|
Maranchick NF, Peloquin CA. Role of therapeutic drug monitoring in the treatment of multi-drug resistant tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 36:100444. [PMID: 38708036 PMCID: PMC11067344 DOI: 10.1016/j.jctube.2024.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of mortality worldwide, and resistance to anti-tuberculosis drugs is a challenge to effective treatment. Multi-drug resistant TB (MDR-TB) can be difficult to treat, requiring long durations of therapy and the use of second line drugs, increasing a patient's risk for toxicities and treatment failure. Given the challenges treating MDR-TB, clinicians can improve the likelihood of successful outcomes by utilizing therapeutic drug monitoring (TDM). TDM is a clinical technique that utilizes measured drug concentrations from the patient to adjust therapy, increasing likelihood of therapeutic drug concentrations while minimizing the risk of toxic drug concentrations. This review paper provides an overview of the TDM process, pharmacokinetic parameters for MDR-TB drugs, and recommendations for dose adjustments following TDM.
Collapse
Affiliation(s)
- Nicole F. Maranchick
- Infectious Disease Pharmacokinetics Lab, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Charles A. Peloquin
- Infectious Disease Pharmacokinetics Lab, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Xiong XS, Zhang XD, Yan JW, Huang TT, Liu ZZ, Li ZK, Wang L, Li F. Identification of Mycobacterium tuberculosis Resistance to Common Antibiotics: An Overview of Current Methods and Techniques. Infect Drug Resist 2024; 17:1491-1506. [PMID: 38628245 PMCID: PMC11020249 DOI: 10.2147/idr.s457308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is an essential cause of tuberculosis treatment failure and death of tuberculosis patients. The rapid and reliable profiling of Mycobacterium tuberculosis (MTB) drug resistance in the early stage is a critical research area for public health. Then, most traditional approaches for detecting MTB are time-consuming and costly, leading to the inappropriate therapeutic schedule resting on the ambiguous information of MTB drug resistance, increasing patient economic burden, morbidity, and mortality. Therefore, novel diagnosis methods are frequently required to meet the emerging challenges of MTB drug resistance distinguish. Considering the difficulty in treating MDR-TB, it is urgently required for the development of rapid and accurate methods in the identification of drug resistance profiles of MTB in clinical diagnosis. This review discussed recent advances in MTB drug resistance detection, focusing on developing emerging approaches and their applications in tangled clinical situations. In particular, a brief overview of antibiotic resistance to MTB was present, referred to as intrinsic bacterial resistance, consisting of cell wall barriers and efflux pumping action and acquired resistance caused by genetic mutations. Then, different drug susceptibility test (DST) methods were described, including phenotype DST, genotype DST and novel DST methods. The phenotype DST includes nitrate reductase assay, RocheTM solid ratio method, and liquid culture method and genotype DST includes fluorescent PCR, GeneXpert, PCR reverse dot hybridization, ddPCR, next-generation sequencing and gene chips. Then, novel DST methods were described, including metabolism testing, cell-free DNA probe, CRISPR assay, and spectral analysis technique. The limitations, challenges, and perspectives of different techniques for drug resistance are also discussed. These methods significantly improve the detection sensitivity and accuracy of multidrug-resistant tuberculosis (MRT) and can effectively curb the incidence of drug-resistant tuberculosis and accelerate the process of tuberculosis eradication.
Collapse
Affiliation(s)
- Xue-Song Xiong
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China
- Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China
| | - Xue-Di Zhang
- Department of Laboratory Medicine, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China
| | - Jia-Wei Yan
- Department of Laboratory Medicine, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China
| | - Ting-Ting Huang
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China
- Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China
| | - Zhan-Zhong Liu
- Department of Pharmacy, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China
| | - Zheng-Kang Li
- Department of Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Liang Wang
- Department of Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Fen Li
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China
- Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China
| |
Collapse
|
5
|
Nyambo K, Tapfuma KI, Adu-Amankwaah F, Julius L, Baatjies L, Niang IS, Smith L, Govender KK, Ngxande M, Watson DJ, Wiesner L, Mavumengwana V. Molecular docking, molecular dynamics simulations and binding free energy studies of interactions between Mycobacterium tuberculosis Pks13, PknG and bioactive constituents of extremophilic bacteria. Sci Rep 2024; 14:6794. [PMID: 38514663 PMCID: PMC10957976 DOI: 10.1038/s41598-024-57124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Mycobacterial pathogens present a significant challenge to disease control efforts globally due to their inherent resistance to multiple antibiotics. The rise of drug-resistant strains of Mycobacterium tuberculosis has prompted an urgent need for innovative therapeutic solutions. One promising way to discover new tuberculosis drugs is by utilizing natural products from the vast biochemical space. Multidisciplinary methods can used to harness the bioactivity of these natural products. This study aimed to evaluate the antimycobacterial efficacy of functional crude extracts from bacteria isolated from gold mine tailings in South Africa. Bacterial strains were identified using 16S rRNA sequencing. The crude extracts obtained from the bacteria were tested against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. Untargeted HPLC-qTOF and molecular networking were used to identify the functional constituents present in extracts that exhibited inhibitory activity. A virtual screening workflow (VSW) was used to filter compounds that were strong binders to Mycobacterium tuberculosis Pks13 and PknG. The ligands returned from the VSW were subjected to optimization using density functional theory (DFT) at M06-2X/6-311++ (d,p) level of theory and basis set implemented in Gaussian16 Rev.C01. The optimized ligands were re-docked against Mycobacterium tuberculosis Pks13 and PknG. Molecular dynamics simulation and molecular mechanics generalized born surface area were used to evaluate the stability of the protein-ligand complexes formed by the identified hits. The hit that showed promising binding characteristics was virtually modified through multiple synthetic routes using reaction-driven enumeration. Three bacterial isolates showed significant activity against the two strains of Mycobacterium, while only two, Bacillus subtilis and Bacillus licheniformis, exhibited activity against both Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. The tentatively identified compounds from the bacterial crude extracts belonged to various classes of natural compounds associated with antimicrobial activity. Two compounds, cyclo-(L-Pro-4-OH-L-Leu) and vazabitide A, showed strong binding against PknG and Pks13, with pre-MD MM-GBSA values of - 42.8 kcal/mol and - 47.6 kcal/mol, respectively. The DFT-optimized compounds exhibited the same docking scores as the ligands optimized using the OPSL-4 force field. After modifying vazabitide A, its affinity to the Pks13 binding site increased to - 85.8 kcal/mol, as revealed by the post-MD MM-GBSA analysis. This study highlights the potential of bacteria isolates from gold mine tailings as a source of new scaffolds for designing and optimizing anti-Mycobacterium agents. These agents synthesized in-silico can be further tested in-vitro to evaluate their efficacy.
Collapse
Affiliation(s)
- Kudakwashe Nyambo
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Kudzanai Ian Tapfuma
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Francis Adu-Amankwaah
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Lauren Julius
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Lucinda Baatjies
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Idah Sithole Niang
- Department of Biotechnology and Biochemistry, University of Zimbabwe, B064, Mount Pleasant, Harare, Zimbabwe
| | - Liezel Smith
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Krishna Kuben Govender
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Cape Town, South Africa
| | - Mkhuseli Ngxande
- Computer Science Division, Department of Mathematical Sciences, Faculty of Science, University of Stellenbosch, Matieland, South Africa
| | - Daniel J Watson
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Vuyo Mavumengwana
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa.
| |
Collapse
|
6
|
Rana HK, Singh AK, Kumar R, Pandey AK. Antitubercular drugs: possible role of natural products acting as antituberculosis medication in overcoming drug resistance and drug-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1251-1273. [PMID: 37665346 DOI: 10.1007/s00210-023-02679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium which causes tuberculosis (TB). TB control programmes are facing threats from drug resistance. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains need longer and more expensive treatment with many medications resulting in more adverse effects and decreased chances of treatment outcomes. The World Health Organization (WHO) has emphasised the development of not just new individual anti-TB drugs, but also novel medication regimens as an alternative treatment option for the drug-resistant Mtb strains. Many plants, as well as marine creatures (sponge; Haliclona sp.) and fungi, have been continuously used to treat TB in various traditional treatment systems around the world, providing an almost limitless supply of active components. Natural products, in addition to their anti-mycobacterial action, can be used as adjuvant therapy to increase the efficacy of conventional anti-mycobacterial medications, reduce their side effects, and reverse MDR Mtb strain due to Mycobacterium's genetic flexibility and environmental adaptation. Several natural compounds such as quercetin, ursolic acid, berberine, thymoquinone, curcumin, phloretin, and propolis have shown potential anti-mycobacterial efficacy and are still being explored in preclinical and clinical investigations for confirmation of their efficacy and safety as anti-TB medication. However, more high-level randomized clinical trials are desperately required. The current review provides an overview of drug-resistant TB along with the latest anti-TB medications, drug-induced hepatotoxicity and oxidative stress. Further, the role and mechanisms of action of first and second-line anti-TB drugs and new drugs have been highlighted. Finally, the role of natural compounds as anti-TB medication and hepatoprotectants have been described and their mechanisms discussed.
Collapse
Affiliation(s)
- Harvesh Kumar Rana
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Zoology, Feroze Gandhi College, Raebareli, 229001, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Botany, BMK Government. Girls College, Balod, Chhattisgarh, 491226, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India.
| |
Collapse
|
7
|
Pederick JL, Woolman JC, Bruning JB. Comparative functional and structural analysis of Pseudomonas aeruginosa d-alanine-d-alanine ligase isoforms as prospective antibiotic targets. FEBS J 2023; 290:5536-5553. [PMID: 37581574 DOI: 10.1111/febs.16932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Pseudomonas aeruginosa is a major human pathogen in the healthcare setting. The emergence of multi-drug-resistant and extensive drug-resistant P. aeruginosa is of great concern, and clearly indicates that new alternatives to current first-line antibiotics are required in the future. Inhibition of d-alanine-d-alanine production presents as a promising avenue as it is a key component in the essential process of cell wall biosynthesis. In P. aeruginosa, d-alanine-d-alanine production is facilitated by two isoforms, d-alanine-d-alanine ligase A (PaDdlA) and d-alanine-d-alanine ligase B (PaDdlA), but neither enzyme has been individually characterised to date. Here, we present the functional and structural characterisation of PaDdlA and PaDdlB, and assess their potential as antibiotic targets. This was achieved using a combination of in vitro enzyme-activity assays and X-ray crystallography. The former revealed that both isoforms effectively catalyse d-alanine-d-alanine production with near identical efficiency, and that this is effectively disrupted by the model d-alanine-d-alanine ligase inhibitor, d-cycloserine. Next, each isoform was co-crystallised with ATP and either d-alanine-d-alanine or d-cycloserine, allowing direct comparison of the key structural features. Both isoforms possess the same structural architecture and share a high level of conservation within the active site. Although residues forming the d-alanine pocket are completely conserved, the ATP-binding pocket possesses several amino acid substitutions resulting in a differing chemical environment around the ATP adenine base. Together, these findings support that the discovery of dual PaDdlA/PaDdlB competitive inhibitors is a viable approach for developing new antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Jordan L Pederick
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, SA, Australia
| | - Jessica C Woolman
- School of Biological Sciences, The University of Adelaide, SA, Australia
| | - John B Bruning
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, SA, Australia
| |
Collapse
|
8
|
Neto NAS, Aguiar TKB, Costa RJP, Mesquita FP, Oliveira LLBD, Moraes MEAD, Montenegro RC, Carneiro RF, Nagano CS, Freitas CDT, Souza PFN. United we stand, divided we fall: in-depth proteomic evaluation of the synergistic effect of Mo-CBP 3-PepI and Ciprofloxacin against Staphylococcus aureus biofilms. BIOFOULING 2023; 39:838-852. [PMID: 37955278 DOI: 10.1080/08927014.2023.2279992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Staphylococcus aureus forms biofilms, a structure that protects bacterial cells, conferring more resistance to difficult treatment. Synthetic peptides surge as an alternative to overcome the biofilm of multidrug-resistant pathogens. Mo-CBP3-PepI, when combined with Ciprofloxacin, reduced preformed S. aureus biofilm by 50% at low concentrations (0.2 and 6.2 μg. mL-1, respectively). The goal of this study was to evaluate the proteomic profile of biofilms after treatment with the Mo-CBP3-PepI combined with ciprofloxacin. Here, proteomic analysis confirmed with more depth previously described mechanisms and revealed changes in the accumulation of proteins related to DNA and protein metabolism, cell wall biosynthesis, redox metabolism, quorum sensing, and biofilm formation. Some proteins related to DNA and protein metabolism were reduced, while other proteins, like redox system proteins, disappeared in Ciprofloxacin+Mo-CBP3-PepI treatment. Our results indicated a synergistic effect of these two molecules with several mechanisms against S. aureus biofilm and opened new doors for combined treatments with other drugs.
Collapse
Affiliation(s)
- Nilton A S Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Tawanny K B Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Rayara J P Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Felipe P Mesquita
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lais L B de Oliveira
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria E A de Moraes
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Raquel C Montenegro
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Rômulo F Carneiro
- Department of Fisheries Engineering, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Celso S Nagano
- Department of Fisheries Engineering, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Pedro F N Souza
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
9
|
Kaur H, Modgil V, Chaudhary N, Mohan B, Taneja N. Computational Guided Drug Targets Identification against Extended-Spectrum Beta-Lactamase-Producing Multi-Drug Resistant Uropathogenic Escherichia coli. Biomedicines 2023; 11:2028. [PMID: 37509666 PMCID: PMC10377140 DOI: 10.3390/biomedicines11072028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Urinary tract infections (UTIs) are one of the most frequent bacterial infections in the world, both in the hospital and community settings. Uropathogenic Escherichia coli (UPEC) are the predominant etiological agents causing UTIs. Extended-spectrum beta-lactamase (ESBL) production is a prominent mechanism of resistance that hinders the antimicrobial treatment of UTIs caused by UPEC and poses a substantial danger to the arsenal of antibiotics now in use. As bacteria have several methods to counteract the effects of antibiotics, identifying new potential drug targets may help in the design of new antimicrobial agents, and in the control of the rising trend of antimicrobial resistance (AMR). The public availability of the entire genome sequences of humans and many disease-causing organisms has accelerated the hunt for viable therapeutic targets. Using a unique, hierarchical, in silico technique using computational tools, we discovered and described potential therapeutic drug targets against the ESBL-producing UPEC strain NA114. Three different sets of proteins (chokepoint, virulence, and resistance genes) were explored in phase 1. In phase 2, proteins shortlisted from phase 1 were analyzed for their essentiality, non-homology to the human genome, and gut flora. In phase 3, the further shortlisted putative drug targets were qualitatively characterized, including their subcellular location, broad-spectrum potential, and druggability evaluations. We found seven distinct targets for the pathogen that showed no similarity to the human proteome. Thus, possibilities for cross-reactivity between a target-specific antibacterial and human proteins were minimized. The subcellular locations of two targets, ECNA114_0085 and ECNA114_1060, were predicted as cytoplasmic and periplasmic, respectively. These proteins play an important role in bacterial peptidoglycan biosynthesis and inositol phosphate metabolism, and can be used in the design of drugs against these bacteria. Inhibition of these proteins will be helpful to combat infections caused by MDR UPEC.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vinay Modgil
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Naveen Chaudhary
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Neelam Taneja
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
10
|
Soni V, Rosenn EH, Venkataraman R. Insights into the central role of N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU) in peptidoglycan metabolism and its potential as a therapeutic target. Biochem J 2023; 480:1147-1164. [PMID: 37498748 DOI: 10.1042/bcj20230173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Several decades after the discovery of the first antibiotic (penicillin) microbes have evolved novel mechanisms of resistance; endangering not only our abilities to combat future bacterial pandemics but many other clinical challenges such as acquired infections during surgeries. Antimicrobial resistance (AMR) is attributed to the mismanagement and overuse of these medications and is complicated by a slower rate of the discovery of novel drugs and targets. Bacterial peptidoglycan (PG), a three-dimensional mesh of glycan units, is the foundation of the cell wall that protects bacteria against environmental insults. A significant percentage of drugs target PG, however, these have been rendered ineffective due to growing drug resistance. Identifying novel druggable targets is, therefore, imperative. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is one of the key building blocks in PG production, biosynthesized by the bifunctional enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU). UDP-GlcNAc metabolism has been studied in many organisms, but it holds some distinctive features in bacteria, especially regarding the bacterial GlmU enzyme. In this review, we provide an overview of different steps in PG biogenesis, discuss the biochemistry of GlmU, and summarize the characteristic structural elements of bacterial GlmU vital to its catalytic function. Finally, we will discuss various studies on the development of GlmU inhibitors and their significance in aiding future drug discoveries.
Collapse
Affiliation(s)
- Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| | - Eric H Rosenn
- Tel Aviv University School of Medicine, Tel Aviv 6997801, Israel
| | - Ramya Venkataraman
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
11
|
Italia A, Shaik MM, Peri F. Emerging Extracellular Molecular Targets for Innovative Pharmacological Approaches to Resistant Mtb Infection. Biomolecules 2023; 13:999. [PMID: 37371579 PMCID: PMC10296423 DOI: 10.3390/biom13060999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Emerging pharmacological strategies that target major virulence factors of antibiotic-resistant Mycobacterium tuberculosis (Mtb) are presented and discussed. This review is divided into three parts corresponding to structures and functions important for Mtb pathogenicity: the cell wall, the lipoarabinomannan, and the secretory proteins. Within the cell wall, we further focus on three biopolymeric sub-components: mycolic acids, arabinogalactan, and peptidoglycan. We present a comprehensive overview of drugs and drug candidates that target cell walls, envelopes, and secretory systems. An understanding at a molecular level of Mtb pathogenesis is provided, and potential future directions in therapeutic strategies are suggested to access new drugs to combat the growing global threat of antibiotic-resistant Mtb infection.
Collapse
Affiliation(s)
| | | | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (A.I.); (M.M.S.)
| |
Collapse
|
12
|
Paymal SB, Barale SS, Supanekar SV, Sonawane KD. Structure based virtual screening, molecular dynamic simulation to identify the oxadiazole derivatives as inhibitors of Enterococcus D-Ala-D-Ser ligase for combating vancomycin resistance. Comput Biol Med 2023; 159:106965. [PMID: 37119552 DOI: 10.1016/j.compbiomed.2023.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Vancomycin resistance in enterococci mainly arises due to alteration in terminal peptidoglycan dipeptide. A comprehensive structural analysis for substrate specificity of dipeptide modifying d-Alanine: d-Serine ligase (Ddls) is essential to screen its inhibitors for combating vancomycin resistance. In this study modeled 3D structure of EgDdls from E. gallinarum was used for structure based virtual screening (SBVS) of oxadiazole derivatives. Initially, fifteen oxadiazole derivatives were identified as inhibitors at the active site of EgDdls from PubChem database. Further, four EgDdls inhibitors were evaluated using pharmacokinetic profile and molecular docking. The results of molecular docking showed that oxadiazole inhibitors could bind preferentially at ATP binding pocket with the lowest binding energy. Further, molecular dynamics simulation results showed stable behavior of EgDdls in complex with screened inhibitors. The residues Phe172, Lys174, Glu217, Phe292, and Asn302 of EgDdls were mainly involved in interactions with screened inhibitors. Furthermore, MM-PBSA calculation showed electrostatic and van der Waals interactions mainly contribute to overall binding energy. The PCA analysis showed motion of central domain and omega loop of EgDdls. This is involved in the formation of native dipeptide and stabilized after binding of 2-(1-(Ethylsulfonyl) piperidin-4-yl)-5-(furan-2-yl)-1,3,4-oxadiazole, which could be reason for the inhibition of EgDdls. Hence, in this study we have screened inhibitors of EgDdls which could be useful to alleviate the vancomycin resistance problem in enterococci, involved in hospital-acquired infections, especially urinary tract infections (UTI).
Collapse
Affiliation(s)
- Sneha B Paymal
- Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India; Rayat Institute of Research and Development (RIRD), Satara, 415001, Maharashtra, India
| | - Sagar S Barale
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| | | | - Kailas D Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India; Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India; Department of Chemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India.
| |
Collapse
|
13
|
Kumar G, Kapoor S. Targeting mycobacterial membranes and membrane proteins: Progress and limitations. Bioorg Med Chem 2023; 81:117212. [PMID: 36804747 DOI: 10.1016/j.bmc.2023.117212] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Among the various bacterial infections, tuberculosis continues to hold center stage. Its causative agent, Mycobacterium tuberculosis, possesses robust defense mechanisms against most front-line antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. It is now well-established that bacteria change their membrane composition to optimize their environment to survive and elude drug action. Thus targeting membrane or membrane components is a promising avenue for exploiting the chemical space focussed on developing novel membrane-centric anti-bacterial small molecules. These approaches are more effective, non-toxic, and can attenuate resistance phenotype. We present the relevance of targeting the mycobacterial membrane as a practical therapeutic approach. The review highlights the direct and indirect targeting of membrane structure and function. Direct membrane targeting agents cause perturbation in the membrane potential and can cause leakage of the cytoplasmic contents. In contrast, indirect membrane targeting agents disrupt the function of membrane-associated proteins involved in cell wall biosynthesis or energy production. We discuss the chronological chemical improvements in various scaffolds targeting specific membrane-associated protein targets, their clinical evaluation, and up-to-date account of their ''mechanisms of action, potency, selectivity'' and limitations. The sources of anti-TB drugs/inhibitors discussed in this work have emerged from target-based identification, cell-based phenotypic screening, drug repurposing, and natural products. We believe this review will inspire the exploration of uncharted chemical space for informing the development of new scaffolds that can inhibit novel mycobacterial membrane targets.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; Departemnt of Natural Products, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad 500037, India.
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan.
| |
Collapse
|
14
|
Anti-Tuberculosis Mur Inhibitors: Structural Insights and the Way Ahead for Development of Novel Agents. Pharmaceuticals (Basel) 2023; 16:ph16030377. [PMID: 36986477 PMCID: PMC10058398 DOI: 10.3390/ph16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Mur enzymes serve as critical molecular devices for the synthesis of UDP-MurNAc-pentapeptide, the main building block of bacterial peptidoglycan polymer. These enzymes have been extensively studied for bacterial pathogens such as Escherichia coli and Staphylococcus aureus. Various selective and mixed Mur inhibitors have been designed and synthesized in the past few years. However, this class of enzymes remains relatively unexplored for Mycobacterium tuberculosis (Mtb), and thus offers a promising approach for drug design to overcome the challenges of battling this global pandemic. This review aims to explore the potential of Mur enzymes of Mtb by systematically scrutinizing the structural aspects of various reported bacterial inhibitors and implications concerning their activity. Diverse chemical scaffolds such as thiazolidinones, pyrazole, thiazole, etc., as well as natural compounds and repurposed compounds, have been reviewed to understand their in silico interactions with the receptor or their enzyme inhibition potential. The structural diversity and wide array of substituents indicate the scope of the research into developing varied analogs and providing valuable information for the purpose of modifying reported inhibitors of other multidrug-resistant microorganisms. Therefore, this provides an opportunity to expand the arsenal against Mtb and overcome multidrug-resistant tuberculosis.
Collapse
|
15
|
Bossù G, Autore G, Bernardi L, Buonsenso D, Migliori GB, Esposito S. Treatment options for children with multi-drug resistant tuberculosis. Expert Rev Clin Pharmacol 2023; 16:5-15. [PMID: 36378271 DOI: 10.1080/17512433.2023.2148653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION According to the latest report from the World Health Organization (WHO), approximately 10.0 million people fell ill with tuberculosis (TB) in 2020, 12% of which were children aged under 15 years. There is very few experience on treatment of multi-drug resistant (MDR)-TB in pediatrics. AREAS COVERED The aim of this review is to analyze and summarize therapeutic options available for children experiencing MDR-TB. We also focused on management of MDR-TB prophylaxis. EXPERT OPINION The therapeutic management of children with MDR-TB or MDR-TB contacts is complicated by a lack of knowledge, and the fact that many potentially useful drugs are not registered for pediatric use and there are no formulations suitable for children in the first years of life. Furthermore, most of the available drugs are burdened by major adverse events that need to be taken into account, particularly in the case of prolonged therapy. A close follow-up with a standardized timeline and a comprehensive assessment of clinical, laboratory, microbiologic and radiologic data is extremely important in these patients. Due to the complexity of their management, pediatric patients with confirmed or suspected MDR-TB should always be referred to a specialized center.
Collapse
Affiliation(s)
- Gianluca Bossù
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giovanni Autore
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Bernardi
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri - IRCCS, Tradate, Italia
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
17
|
Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex Sweet from Kashmir Himalaya. Sci Rep 2022; 12:12547. [PMID: 35869098 PMCID: PMC9307801 DOI: 10.1038/s41598-022-16102-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022] Open
Abstract
Geranium wallichianum D. Don ex Sweet is a well-known medicinal plant in Kashmir Himalya. The evidence for its modern medicinal applications remains majorly unexplored. The present study was undertaken to elucidate the detailed antimicrobial promises of different crude extracts (methanolic, ethanolic, petroleum ether, and ethyl acetate) of G. wallichainum against common human bacterial and fungal pathogens in order to scientifically validate its traditional use. The LC–MS analysis of G. wallichainum yielded 141 bioactive compounds with the vast majority of them having therapeutic applications. Determination of minimum inhibitory concentrations (MICs) by broth microdilution method of G. wallichainum was tested against bacterial and fungal pathogens with MICs ranging from 0.39 to 400 µg/mL. Furthermore, virtual ligands screening yielded elatine, kaempferol, and germacrene-A as medicinally most active constituents and the potential inhibitors of penicillin-binding protein (PBP), dihydropteroate synthase (DHPS), elongation factor-Tu (Eu-Tu), ABC transporter, 1,3 beta glycan, and beta-tubulin. The root mean square deviation (RMSD) graphs obtained through the molecular dynamic simulations (MDS) indicated the true bonding interactions which were further validated using root mean square fluctuation (RMSF) graphs which provided a better understanding of the amino acids present in the proteins responsible for the molecular motions and fluctuations. The effective binding of elatine, kaempferol, and germacrene-A with these proteins provides ground for further research to understand the underlying mechanism that ceases the growth of these microbes.
Collapse
|
18
|
Zhou J, Cai Y, Liu Y, An H, Deng K, Ashraf MA, Zou L, Wang J. Breaking down the cell wall: Still an attractive antibacterial strategy. Front Microbiol 2022; 13:952633. [PMID: 36212892 PMCID: PMC9544107 DOI: 10.3389/fmicb.2022.952633] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Since the advent of penicillin, humans have known about and explored the phenomenon of bacterial inhibition via antibiotics. However, with changes in the global environment and the abuse of antibiotics, resistance mechanisms have been selected in bacteria, presenting huge threats and challenges to the global medical and health system. Thus, the study and development of new antimicrobials is of unprecedented urgency and difficulty. Bacteria surround themselves with a cell wall to maintain cell rigidity and protect against environmental insults. Humans have taken advantage of antibiotics to target the bacterial cell wall, yielding some of the most widely used antibiotics to date. The cell wall is essential for bacterial growth and virulence but is absent from humans, remaining a high-priority target for antibiotic screening throughout the antibiotic era. Here, we review the extensively studied targets, i.e., MurA, MurB, MurC, MurD, MurE, MurF, Alr, Ddl, MurI, MurG, lipid A, and BamA in the cell wall, starting from the very beginning to the latest developments to elucidate antimicrobial screening. Furthermore, recent advances, including MraY and MsbA in peptidoglycan and lipopolysaccharide, and tagO, LtaS, LspA, Lgt, Lnt, Tol-Pal, MntC, and OspA in teichoic acid and lipoprotein, have also been profoundly discussed. The review further highlights that the application of new methods such as macromolecular labeling, compound libraries construction, and structure-based drug design will inspire researchers to screen ideal antibiotics.
Collapse
Affiliation(s)
- Jingxuan Zhou
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yi Cai
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Ying Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Haoyue An
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Kaihong Deng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Muhammad Awais Ashraf
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Jun Wang
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China
- *Correspondence: Jun Wang,
| |
Collapse
|
19
|
Li H, Yuan J, Duan S, Pang Y. Resistance and tolerance of Mycobacterium tuberculosis to antimicrobial agents-How M. tuberculosis can escape antibiotics. WIREs Mech Dis 2022; 14:e1573. [PMID: 35753313 DOI: 10.1002/wsbm.1573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) poses a serious threat to public health worldwide since it was discovered. Until now, TB has been one of the top 10 causes of death from a single infectious disease globally. The treatment of active TB cases majorly relies on various anti-tuberculosis drugs. However, under the selection pressure by drugs, the continuous evolution of Mycobacterium tuberculosis (Mtb) facilitates the emergence of drug-resistant strains, further resulting in the accumulation of tubercle bacilli with multiple drug resistance, especially deadly multidrug-resistant TB and extensively drug-resistant TB. Researches on the mechanism of drug action and drug resistance of Mtb provide a new scheme for clinical management of TB patients, and prevention of drug resistance. In this review, we summarized the molecular mechanisms of drug resistance of existing anti-TB drugs to better understand the evolution of drug resistance of Mtb, which will provide more effective strategies against drug-resistant TB, and accelerate the achievement of the EndTB Strategy by 2035. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Haoran Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinfeng Yuan
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shujuan Duan
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
20
|
Morreale FE, Kleine S, Leodolter J, Junker S, Hoi DM, Ovchinnikov S, Okun A, Kley J, Kurzbauer R, Junk L, Guha S, Podlesainski D, Kazmaier U, Boehmelt G, Weinstabl H, Rumpel K, Schmiedel VM, Hartl M, Haselbach D, Meinhart A, Kaiser M, Clausen T. BacPROTACs mediate targeted protein degradation in bacteria. Cell 2022; 185:2338-2353.e18. [PMID: 35662409 PMCID: PMC9240326 DOI: 10.1016/j.cell.2022.05.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022]
Abstract
Hijacking the cellular protein degradation system offers unique opportunities for drug discovery, as exemplified by proteolysis-targeting chimeras. Despite their great promise for medical chemistry, so far, it has not been possible to reprogram the bacterial degradation machinery to interfere with microbial infections. Here, we develop small-molecule degraders, so-called BacPROTACs, that bind to the substrate receptor of the ClpC:ClpP protease, priming neo-substrates for degradation. In addition to their targeting function, BacPROTACs activate ClpC, transforming the resting unfoldase into its functional state. The induced higher-order oligomer was visualized by cryo-EM analysis, providing a structural snapshot of activated ClpC unfolding a protein substrate. Finally, drug susceptibility and degradation assays performed in mycobacteria demonstrate in vivo activity of BacPROTACs, allowing selective targeting of endogenous proteins via fusion to an established degron. In addition to guiding antibiotic discovery, the BacPROTAC technology presents a versatile research tool enabling the inducible degradation of bacterial proteins.
Collapse
Affiliation(s)
- Francesca E Morreale
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Stefan Kleine
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany
| | - Julia Leodolter
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Sabryna Junker
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - David M Hoi
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Stepan Ovchinnikov
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Anastasia Okun
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Juliane Kley
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Robert Kurzbauer
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Lukas Junk
- Saarland University, Organic Chemistry I, 66123 Saarbrücken, Germany
| | - Somraj Guha
- Saarland University, Organic Chemistry I, 66123 Saarbrücken, Germany
| | - David Podlesainski
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany
| | - Uli Kazmaier
- Saarland University, Organic Chemistry I, 66123 Saarbrücken, Germany
| | - Guido Boehmelt
- Boehringer Ingelheim RCV GmbH & Co KG, 1120 Vienna, Austria
| | | | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, 1120 Vienna, Austria
| | | | - Markus Hartl
- Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Markus Kaiser
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany.
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria; Medical University of Vienna, 1030 Vienna, Austria.
| |
Collapse
|
21
|
Antitubercular, Cytotoxicity, and Computational Target Validation of Dihydroquinazolinone Derivatives. Antibiotics (Basel) 2022; 11:antibiotics11070831. [PMID: 35884084 PMCID: PMC9311641 DOI: 10.3390/antibiotics11070831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
A series of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a–3m) was screened for in vitro whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 3l and 3m with di-substituted aryl moiety (halogens) attached to the 2-position of the scaffold showed a minimum inhibitory concentration (MIC) of 2 µg/mL against the MTB strain H37Rv. Compound 3k with an imidazole ring at the 2-position of the dihydroquinazolin-4(1H)-one also showed significant inhibitory action against both the susceptible strain H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively. The computational results revealed the mycobacterial pyridoxal-5′-phosphate (PLP)-dependent aminotransferase (BioA) enzyme as the potential target for the tested compounds. In vitro, ADMET calculations and cytotoxicity studies against the normal human dermal fibroblast cells indicated the safety and tolerability of the test compounds 3k–3m. Thus, compounds 3k–3m warrant further optimization to develop novel BioA inhibitors for the treatment of drug-sensitive H37Rv and drug-resistant MTB.
Collapse
|
22
|
Feng Y, Chang S, Jing Z, Jiang H, Liu Y, Qin G. Transdermal delivery of sinapine thiocyanate by gelatin microspheres and hyaluronic acid microneedles for allergic asthma in guinea pigs. Int J Pharm 2022; 623:121899. [PMID: 35710072 DOI: 10.1016/j.ijpharm.2022.121899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/24/2022] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
Abstract
Dissolving microneedles (MNs) are an efficient, safe, and generally painless method for transdermal distribution of poorly permeable medicines. Here, dissolving composite MNs were prepared from sinapine thiocyanate (ST)-loaded gelatin microspheres (GMS) and hyaluronic acid (HA). To immobilize ST in MNs, we used a two-step centrifuging and molding method. When ST-GMS/ST-HA MNs were placed on the skin, they showed extraordinary mechanical strength and dissolved slowly. In vitro, skin implantation ability was assessed with fluorescein isothiocyanate staining, which revealed progressive penetration from the puncture site into deeper tissues. The feasibility of transdermal delivery of ST-GMS/ST-HA MNs in allergic asthma guinea pigs was then determined through in vivo pharmacodynamic and pharmacokinetic tests. The results indicated that ST-GMS/ST-HA MNs, in comparison with the traditional subcutaneous application approach, achieved both high efficiency and continuous release of ST. Therefore, this device is promising for the delivery ST for allergic asthma therapy.
Collapse
Affiliation(s)
- Yufei Feng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Shuyuan Chang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Zhongxu Jing
- Heilongjiang Provincial Administration of Traditional Chinese Medicine, Harbin 150040, China
| | - Haibo Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yuwei Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Guozhao Qin
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| |
Collapse
|
23
|
Kumar R, Singh N, Chauhan A, Kumar M, Bhatta RS, Singh SK. Mycobacterium tuberculosis survival and biofilm formation studies: effect of D-amino acids, D-cycloserine and its components. J Antibiot (Tokyo) 2022; 75:472-479. [PMID: 35650279 DOI: 10.1038/s41429-022-00534-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022]
Abstract
D-amino acids play an important role in cell wall peptidoglycan biosynthesis. Mycobacterium tuberculosis D-amino acid oxidase deletion led to reduced biofilm-forming ability. Other recent studies also suggest that the accumulation of D-amino acids blocks biofilm formation and could also disperse pre-formed biofilm. Biofilms are communities of bacterial cells protected by extracellular matrix and harbor drug-tolerant as well as persistent bacteria. In Mycobacterium tuberculosis, biofilm formation or its inhibition by D-amino acids is yet to be tested. In the present study, we used selected D-amino acids to study their role in the prevention of biofilm formation and also if D-cycloserine's activity was due to presence of D-Serine as a metabolite. It was observed that D-serine limits biofilm formation in Mycobacterium tuberculosis H37Ra (Mtb-Ra), but it shows no effect on pre-formed biofilm. Also, D-cycloserine and its metabolic product, hydroxylamine, individually and in combination, with D-Serine, limit biofilm formation in Mtb-Ra and also disrupts existing biofilm. In summary, we demonstrated that D-alanine, D-valine, D-phenylalanine, D-serine, and D-threonine had no disruptive effect on pre-formed biofilm of Mtb-Ra, either individually or in combination, and D-cycloserine and its metabolite hydroxylamine have potent anti-biofilm activity.
Collapse
Affiliation(s)
- Ram Kumar
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Jawaharlal Nehru University, New Mehrauli Road, JNU Ring Rd, New Delhi, 110067, India
| | - Nirbhay Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Jawaharlal Nehru University, New Mehrauli Road, JNU Ring Rd, New Delhi, 110067, India
| | - Anu Chauhan
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mukesh Kumar
- Jawaharlal Nehru University, New Mehrauli Road, JNU Ring Rd, New Delhi, 110067, India.,Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sudheer Kumar Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
24
|
Oda K, Sakaguchi T, Matoba Y. Catalytic mechanism of
DcsB
: Arginase framework used for hydrolyzing its inhibitor. Protein Sci 2022; 31:e4338. [DOI: 10.1002/pro.4338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Kosuke Oda
- Department of Virology Institute of Biomedical and Health Sciences, Hiroshima University Hiroshima Japan
| | - Takemasa Sakaguchi
- Department of Virology Institute of Biomedical and Health Sciences, Hiroshima University Hiroshima Japan
| | - Yasuyuki Matoba
- Faculty of Pharmacy Yasuda Women's University Hiroshima Japan
| |
Collapse
|
25
|
Subedi K, Wall D. Conditional and Synthetic Type IV Pili-Dependent Motility Phenotypes in Myxococcus xanthus. Front Microbiol 2022; 13:879090. [PMID: 35586861 PMCID: PMC9108774 DOI: 10.3389/fmicb.2022.879090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Myxobacteria exhibit a variety of complex social behaviors that all depend on coordinated movement of cells on solid surfaces. The cooperative nature of cell movements is known as social (S)-motility. This system is powered by cycles of type IV pili (Tfp) extension and retraction. Exopolysaccharide (EPS) also serves as a matrix to hold cells together. Here, we characterized a new S-motility gene in Myxococcus xanthus. This mutant is temperature-sensitive (Ts–) for S-motility; however, Tfp and EPS are made. A 1 bp deletion was mapped to the MXAN_4099 locus and the gene was named sglS. Null mutations in sglS exhibit a synthetic enhanced phenotype with a null sglT mutation, a previously characterized S-motility gene that exhibits a similar Ts– phenotype. Our results suggest that SglS and SglT contribute toward Tfp function at high temperatures in redundant pathways. However, at low temperatures only one pathway is necessary for wild-type S-motility, while in the double mutant, motility is nearly abolished at low temperatures. Interestingly, the few cells that do move do so with a high reversal frequency. We suggest SglS and SglT play conditional roles facilitating Tfp retraction and hence motility in M. xanthus.
Collapse
Affiliation(s)
- Kalpana Subedi
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
- Department of Chemistry, University of Wyoming, Laramie, WY, United States
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
- *Correspondence: Daniel Wall,
| |
Collapse
|
26
|
Júnior JRP, Caruso ÍP, de Sá JM, Mezalira TS, de Souza Lima D, Pilau EJ, Roper D, Fernandez MA, Vicente Seixas FA. Characterization of Secondary Structure and Thermal Stability by
Biophysical Methods of the D-alanyl,D-alanine Ligase B Protein from
Escherichia coli. Protein Pept Lett 2022; 29:448-459. [DOI: 10.2174/0929866529666220405104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
Background:
Peptidoglycan (PG) is a key structural component of the bacterial cell wall and interruption of its biosynthesis is a validated target for antimicrobials. Of the enzymes involved in PG biosynthesis, D-alanyl,D-alanine ligase B (DdlB), is responsible for the condensation of two alanines, forming D-Ala-D-Ala, which is required for subsequent extracellular transpeptidase crosslinking of the mature peptidoglycan polymer.
Objectives:
We aimed the biophysical characterization of recombinant Escherichia coli DdlB (EcDdlB), regarding parameters of melting temperature (Tm), calorimetry and van’t Hoff enthalpy changes of denaturation ( and ), as well as characterization of elements of secondary structure at three different pHs.
Methods:
DdlB was overexpressed in E. coli BL21 and purified by affinity chromatography. Thermal stability and structural characteristics of the purified enzyme were analyzed by circular dichroism (CD), differential scanning calorimetry and fluorescence spectroscopy.
Results:
The stability of EcDdlB increased with proximity to its pI of 5.0, reaching the maximum at pH 5.4 with Tm and of 52.68 ºC and 484 kJ.mol-1, respectively. Deconvolutions of the CD spectra at 20 ºC showed a majority percentage of α-helix at pH 5.4 and 9.4, whereas for pH 7.4, an equal contribution of β-structures and α-helices was calculated. Thermal denaturation process of EcDdlB proved to be irreversible with an increase in β-structures that can contribute to the formation of protein aggregates.
Conclutions:
Such results will be useful for energy minimization of structural models aimed at virtual screening simulations, providing useful information in the search for drugs that inhibit peptidoglycan synthesis.
Collapse
Affiliation(s)
| | - Ícaro Putinhon Caruso
- Department of Physics,
Instituto de Biociências, Letras e Ciências Exatas - Universidade Estadual Paulista “Júlio de Mesquita Filho”, São
José do Rio Preto, SP, Brazil
- National Center for Nuclear Magnetic Resonance of Macromolecules, Institute of Medical Biochemistry and National Center for Structure Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Jéssica Maróstica de Sá
- Department of Physics,
Instituto de Biociências, Letras e Ciências Exatas - Universidade Estadual Paulista “Júlio de Mesquita Filho”, São
José do Rio Preto, SP, Brazil
| | | | - Diego de Souza Lima
- Departament of Technology, Universidade Estadual de Maringá, Umuarama, PR, Brazil
| | - Eduardo Jorge Pilau
- Departament of Chemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - David Roper
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Maria Aparecida Fernandez
- Departament of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | |
Collapse
|
27
|
Mir WR, Bhat BA, Almilaibary A, Asdaq SMB, Mir MA. Evaluation of the In Vitro Antimicrobial Activities of Delphinium roylei: An Insight from Molecular Docking and MD-Simulation Studies. Med Chem 2022; 18:1109-1121. [PMID: 35507782 DOI: 10.2174/1573406418666220429093956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The burden of antimicrobial resistance demands a continued search for new antimicrobial drugs. The synthetic drugs which are used clinically have serious side effects. Natural products or compounds derived from natural sources show diversity in structure and play an essential role in drug discovery and development. OBJECTIVE Delphinium roylei is an important medicinal herb of Kashmir Himalaya, India. Traditionally this medicinal plant treats liver infections, skin problems, and chronic lower back pain. The current study evaluates the antimicrobial potential by various in -vitro and in -silico parameters. METHODS Three extracts and 168 bioactive compounds analysed through LC-MS data, with the vast majority of them having therapeutic applications of D. roylei, have been screened for the antimicrobial activity against bacteria (E. coli, M. luteus, K. pneumoniae, Streptococcus pneumonia, Haemophilus influenzae, Neisseria mucosa) and fungi (Candida albicans, Candida glabrata, Candida Paropsilosis) species through molecular docking using autodock Vina, MD simulation and broth microdilution method for minimum inhibitory concentration (MIC) evaluation. RESULTS The extracts, as well as the compounds analyzed through the LC-MS technique of Delphinium roylie showed significant antimicrobial activity. CONCLUSION Our study established that the leaf extracts of Delphinium roylei exhibit antimicrobial activity and thus confirm its importance in traditional medicine.
Collapse
Affiliation(s)
- Wajahat Rashid Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Albaha University, Albaha-65511, KSA
| | | | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|
28
|
Mayank, Sidhu JS, Joshi G, Sindhu J, Kaur N, Singh N. Structural Diversity of D‐Alanine: D‐Alanine Ligase and Its Exploration in Development of Antibacterial Agents Against the Multi‐Variant Bacterial Infections. ChemistrySelect 2022. [DOI: 10.1002/slct.202104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mayank
- Department of Chemistry Indian Institute of Technology Ropar Punjab 140001 India
- School of Pharmaceutical Sciences Lovely Professional University Phagwara India
| | - Jagpreet Singh Sidhu
- Department of Pharmaceutical Sciences and Natural Products School of Health Science Central University of Punjab Bathinda 151 001 India
| | - Gaurav Joshi
- School of Pharmacy Graphic Era Hill University Dehradun Uttarakhand India
| | - Jayant Sindhu
- Department of Chemistry COBS&H CCS Haryana Agricultural University Hisar 125004 India
| | - Navneet Kaur
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Narinder Singh
- Department of Chemistry Indian Institute of Technology Ropar Punjab 140001 India
| |
Collapse
|
29
|
Singh Dewhare S. Drug resistant tuberculosis: Current scenario and impending challenges. Indian J Tuberc 2022; 69:227-233. [PMID: 35379406 DOI: 10.1016/j.ijtb.2021.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/05/2021] [Indexed: 06/14/2023]
Abstract
Tuberculosis is still one of the ten leading causes for death worldwide. In spite of the latest medical and health advance gained over a period of time, tuberculosis effectively evades the successful targeting by drugs. The persistence abilities demonstrated by the mycobacteria had surprised the global community, since its discovery and pathogenesis in humans. Emergence and detection of drug resistant mycobacteria (MDR-TB, XDR-TB) had further complicated the treatment regime. Under the aegis of WHO, there is a concerted understanding and effort by the global community to eradicate TB. Towards this goal, novel drug molecules, new vaccine and treatment regime are being developed. Here, our current understanding pertaining to mode of action, molecular mechanisms of novel as well as traditional drug molecules and possible drug resistance mechanism in M. Tuberculosis is reviewed. Recent advances on new vaccination regime are also reviewed as it demonstrated huge potential in containing TB. This knowledge is essential for the development of more effective drug molecules, vaccines and may help in devising new strategy for containing and eradicating TB.
Collapse
Affiliation(s)
- Shivendra Singh Dewhare
- School of Studies in Life Science, Pt. RavishankarShukla University, Raipur, 492010, Chhattisgarh, India.
| |
Collapse
|
30
|
Wang YT, Wang XL, Feng ST, Chen NH, Wang ZZ, Zhang Y. Novel rapid-acting glutamatergic modulators: Targeting the synaptic plasticity in depression. Pharmacol Res 2021; 171:105761. [PMID: 34242798 DOI: 10.1016/j.phrs.2021.105761] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) is severely prevalent, and conventional monoaminergic antidepressants gradually exhibit low therapeutic efficiency, especially for patients with treatment-resistant depression. A neuroplasticity hypothesis is an emerging advancement in the mechanism of depression, mainly expressed in the glutamate system, e.g., glutamate receptors and signaling. Dysfunctional glutamatergic neurotransmission is currently considered to be closely associated with the pathophysiology of MDD. Biological function, pharmacological action, and signal attributes in the glutamate system both regulate the neural process. Specific functional subunits could be therapeutic targets to explore the novel glutamatergic modulators, which have fast-acting, and relatively sustained antidepressant effects. Here, the present review summarizes the pathophysiology of MDD found in the glutamate system, exploring the role of glutamate receptors and their downstream effects. These convergent mechanisms have prompted the development of other modulators targeting on glutamate system, including N-methyl-d-aspartate receptor antagonists, selective GluN2B-specific antagonists, glycine binding site agents, and regulators of metabotropic glutamate receptors. Relevant researches underly the putative mechanisms of these drugs, which reverse the damage of depression by regulating glutamatergic neurotransmission. It also provides further insight into the mechanism of depression and exploring potential targets for novel agent development.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
31
|
Han J, Liu X, Zhang L, Quinn RJ, Feng Y. Anti-mycobacterial natural products and mechanisms of action. Nat Prod Rep 2021; 39:77-89. [PMID: 34226909 DOI: 10.1039/d1np00011j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to June, 2020Tuberculosis (TB) continues to be a major disease with high mortality and morbidity globally. Drug resistance and long duration of treatment make antituberculosis drug discovery more challenging. In this review, we summarize recent advances on anti-TB natural products (NPs) and their potential molecular targets in cell wall synthesis, protein production, energy generation, nucleic acid synthesis and other emerging areas. We highlight compounds with activity against drug-resistant TB, and reveal several novel targets including Mtb biotin synthase, ATP synthase, 1,4-dihydroxy-2-naphthoate prenyltransferase and biofilms. These anti-TB NPs and their targets could facilitate target-based screening and accelerate TB drug discovery.
Collapse
Affiliation(s)
- Jianying Han
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
32
|
Qin Y, Xu L, Teng Y, Wang Y, Ma P. Discovery of novel antibacterial agents: Recent developments in D-alanyl-D-alanine ligase inhibitors. Chem Biol Drug Des 2021; 98:305-322. [PMID: 34047462 DOI: 10.1111/cbdd.13899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/09/2021] [Accepted: 05/23/2021] [Indexed: 01/14/2023]
Abstract
Bacterial infections can cause serious problems that threaten public health over a long period of time. Moreover, the continuous emergence of drug-resistant bacteria necessitates the development of novel antibacterial agents. D-alanyl-D-alanine ligase (Ddl) is an indispensable adenosine triphosphate-dependent bacterial enzyme involved in the biosynthesis of peptidoglycan precursor, which catalyzes the ligation of two D-alanine molecules into one D-alanyl-D-alanine dipeptide. This dipeptide is an essential component of the intracellular peptidoglycan precursor, uridine diphospho-N-acetylmuramic acid (UDP-MurNAc)-pentapeptide, that maintains the integrity of the bacterial cell wall by cross-linking the peptidoglycan chain, and is crucial for the survival of pathogens. Consequently, Ddl is expected to be a promising target for the development of antibacterial agents. In this review, we present a brief introduction regarding the structure and function of Ddl, as well as an overview of the various Ddl inhibitors currently being used as antibacterial agents, specifically highlighting their inhibitory activities, structure-activity relationships and mechanisms of action.
Collapse
Affiliation(s)
- Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Linlin Xu
- Department of Pharmacy, Taian City Central Hospital, Taian, China
| | - Yuetai Teng
- Department of Pharmacy, Jinan Vocational College of Nursing, Jinan, China
| | - Yinhu Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
33
|
Wei X, Zhang C, Freddolino PL, Zhang Y. Detecting Gene Ontology misannotations using taxon-specific rate ratio comparisons. Bioinformatics 2021; 36:4383-4388. [PMID: 32470107 DOI: 10.1093/bioinformatics/btaa548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 02/05/2023] Open
Abstract
MOTIVATION Many protein function databases are built on automated or semi-automated curations and can contain various annotation errors. The correction of such misannotations is critical to improving the accuracy and reliability of the databases. RESULTS We proposed a new approach to detect potentially incorrect Gene Ontology (GO) annotations by comparing the ratio of annotation rates (RAR) for the same GO term across different taxonomic groups, where those with a relatively low RAR usually correspond to incorrect annotations. As an illustration, we applied the approach to 20 commonly studied species in two recent UniProt-GOA releases and identified 250 potential misannotations in the 2018-11-6 release, where only 25% of them were corrected in the 2019-6-3 release. Importantly, 56% of the misannotations are 'Inferred from Biological aspect of Ancestor (IBA)' which is in contradiction with previous observations that attributed misannotations mainly to 'Inferred from Sequence or structural Similarity (ISS)', probably reflecting an error source shift due to the new developments of function annotation databases. The results demonstrated a simple but efficient misannotation detection approach that is useful for large-scale comparative protein function studies. AVAILABILITY AND IMPLEMENTATION https://zhanglab.ccmb.med.umich.edu/RAR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xiaoqiong Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Computational Medicine and Bioinformatics
| | | | - Peter L Freddolino
- Department of Computational Medicine and Bioinformatics.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Srivastava S, Chapagain M, van Zyl J, Deshpande D, Gumbo T. Potency of vancomycin against Mycobacterium tuberculosis in the hollow fiber system model. J Glob Antimicrob Resist 2021; 24:403-410. [PMID: 33508482 DOI: 10.1016/j.jgar.2021.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To determine whether an inhaled vancomycin formulation resulting in high intrapulmonary 24-h area under the concentration-time curve (AUC0-24) could be optimised for tuberculosis treatment. We also explored vancomycin synergy and antagonism with d-cycloserine and benzylpenicillin. METHODS We determined MICs of two Mycobacterium tuberculosis (Mtb) laboratory strains (H37Ra and H37Rv) and two drug-susceptible and nine multidrug resistant clinical strains. Second, in the hollow fiber system model of TB [HFS-TB] using Mtb H37Ra strain, we recapitulated vancomycin intrapulmonary pharmacokinetics of eight doses administered twice daily over 28 days, mimicking a 6-h half-life. Using the HFS-TB, vancomycin was tested in combination with d-cycloserine and benzylpenicillin to determine synergy or antagonism between drugs targeting the same pathway. RESULTS Vancomycin MICs were 12 and 48 mg/L in drug-susceptible clinical isolates but >96 mg/L in all MDR isolates.In the HFS-TB, vancomycin killed 3.9 ± 0.6 log10 CFU/mL Mtb. The EC50 was calculated as AUC0-24/MIC of 184.6 ± 106.5. Compared with day 0, 1.0 and 2.0 log10 CFU/mL kill was achieved by AUC0-24/MIC of 168 and 685, respectively. Acquired vancomycin resistance developed to all vancomycin doses tested in the HFS-TB. In the HFS-TB, vancomycin was antagonistic to benzylpenicillin, which works downstream to glycopeptides in peptidoglycan synthesis, but synergistic with d-cycloserine, which inhibits upstream d-Ala-d-Ala ligase and alanine racemase. CONCLUSION Our proof-of-concept studies show that vancomycin optimal exposure target for Mtb kill could be achieved via inhalational drug delivery. Addition of drugs synergistic with vancomycin, e.g. d-cycloserine, may lower the vancomycin concentrations required to kill Mtb.
Collapse
Affiliation(s)
- Shashikant Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA; Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Moti Chapagain
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA; Quantitative Preclinical and Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA
| | - Johanna van Zyl
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Devyani Deshpande
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Tawanda Gumbo
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA; Quantitative Preclinical and Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA; Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
35
|
Pant R, Joshi A, Joshi T, Maiti P, Nand M, Joshi T, Pande V, Chandra S. Identification of potent Antigen 85C inhibitors of Mycobacterium tuberculosis via in-house lichen library and binding free energy studies Part-II. J Mol Graph Model 2020; 103:107822. [PMID: 33333421 DOI: 10.1016/j.jmgm.2020.107822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
Tuberculosis remains the cause of mortality throughout the world. Currently, the available anti-tubercular drugs are not effective because of the existence of Multi-Drug resistant tuberculosis (MDR-TB) and Extensively-Drug resistant tuberculosis (XDR-TB). It has, therefore, become necessary to develop novel drugs that inhibit the activity of drug-resistant Mycobacterium tuberculosis. Due to the existence of MDR and XDR-TB, Mtb Ag85C has risen out as a propitious molecular drug target as it has importance in the synthesis of main components of the Mtb cell envelope which are essential for the virulence and survival of Mtb. In a previous paper, we studied a potential drug target by virtual high throughput screening of compounds and in continuation of the study on Mtb Ag85C, we further studied the role of lichen compounds in the inhibition of Ag85C. In the current research work, virtual screening of a lichen compounds library was performed against Ag85C. Further, ADMET analysis was employed to filter out the screened lichen compounds. Bioactivity score and toxicity prediction finalized four lichen compounds i.e. Portentol, Aspicilin, Parietinic acid and Polyporic acid as potential inhibitors of Ag85C. The stability and dynamic behavior of four compounds were analyzed by using Molecular dynamics simulation which indicated that they may be potential inhibitors of Ag85C. Therefore, based on the above results, Portentol, Aspicilin, Parietinic acid and Polyporic acid may be potential drug candidates against Mtb. We suggest that the use of these compounds can minimize the treatment time-period and the various side effects associated with the currently available anti-tubercular drugs.
Collapse
Affiliation(s)
- Ragini Pant
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Uttarakhand, India
| | - Amit Joshi
- Department of Mechanical Engineering, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand, India
| | - Tanuja Joshi
- Department of Botany, Kumaun University, S.S.J Campus, Almora, Uttarakhand, India
| | - Priyanka Maiti
- Department of Botany, Kumaun University, S.S.J Campus, Almora, Uttarakhand, India
| | - Mahesha Nand
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Uttarakhand, India
| | - Tushar Joshi
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Uttarakhand, India
| | - Subhash Chandra
- Department of Botany, Kumaun University, S.S.J Campus, Almora, Uttarakhand, India.
| |
Collapse
|
36
|
Batt SM, Burke CE, Moorey AR, Besra GS. Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Cell Surf 2020; 6:100044. [PMID: 32995684 PMCID: PMC7502851 DOI: 10.1016/j.tcsw.2020.100044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, is the global leading cause of mortality from an infectious agent. Part of this success relies on the unique cell wall, which consists of a thick waxy coat with tightly packed layers of complexed sugars, lipids and peptides. This coat provides a protective hydrophobic barrier to antibiotics and the host's defences, while enabling the bacterium to spread efficiently through sputum to infect and survive within the macrophages of new hosts. However, part of this success comes at a cost, with many of the current first- and second-line drugs targeting the enzymes involved in cell wall biosynthesis. The flip side of this coin is that resistance to these drugs develops either in the target enzymes or the activation pathways of the drugs, paving the way for new resistant clinical strains. This review provides a synopsis of the structure and synthesis of the cell wall and the major current drugs and targets, along with any mechanisms of resistance.
Collapse
Affiliation(s)
- Sarah M. Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher E. Burke
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alice R. Moorey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
37
|
Integron gene cassettes harboring novel variants of D-alanine-D-alanine ligase confer high-level resistance to D-cycloserine. Sci Rep 2020; 10:20709. [PMID: 33244063 PMCID: PMC7691350 DOI: 10.1038/s41598-020-77377-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/10/2020] [Indexed: 11/08/2022] Open
Abstract
Antibiotic resistance poses an increasing threat to global health. To tackle this problem, the identification of principal reservoirs of antibiotic resistance genes (ARGs) plus an understanding of drivers for their evolutionary selection are important. During a PCR-based screen of ARGs associated with integrons in saliva-derived metagenomic DNA of healthy human volunteers, two novel variants of genes encoding a d-alanine-d-alanine ligase (ddl6 and ddl7) located within gene cassettes in the first position of a reverse integron were identified. Treponema denticola was identified as the likely host of the ddl cassettes. Both ddl6 and ddl7 conferred high level resistance to d-cycloserine when expressed in Escherichia coli with ddl7 conferring four-fold higher resistance to D-cycloserine compared to ddl6. A SNP was found to be responsible for this difference in resistance phenotype between the two ddl variants. Molecular dynamics simulations were used to explain the mechanism of this phenotypic change at the atomic scale. A hypothesis for the evolutionary selection of ddl containing integron gene cassettes is proposed, based on molecular docking of plant metabolites within the ATP and d-cycloserine binding pockets of Ddl.
Collapse
|
38
|
Kaur H, Kalia M, Taneja N. Identification of novel non-homologous drug targets against Acinetobacter baumannii using subtractive genomics and comparative metabolic pathway analysis. Microb Pathog 2020; 152:104608. [PMID: 33166618 DOI: 10.1016/j.micpath.2020.104608] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 11/19/2022]
Abstract
Lack of effective antibiotics and the development of multidrug resistance in clinical isolates of nosocomial pathogen Acinetobacter baumanni has necessitated the identification of novel drug targets. The study is divided into three phases, in phase I, four different sets of proteins were subjected to a chokepoint, plasmid, resistance genes, and virulence factors analysis. After phase 1 analysis we obtained two hundred twenty-two proteins which were analyzed further in the phase II for essentiality and homology. Fifty-eight proteins identified as target candidates were studied for qualitative characteristics. Among them, 32 were identified as cytoplasmic membrane, 17 as cytoplasmic, one as periplasmic, one as outer membrane, two as extracellular, and location of 5 was not known. Druggability analysis revealed that 18 proteins were druggable, and 40 were novel. Drug targets obtained in the present study can be utilized for the identification of novel antimicrobials for the treatment of infections caused by multidrug-resistant A. baumannii. Predicted drug targets can be evaluated for their binding affinity by molecular docking studies and thus accelerating the process of drug discovery.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manmohit Kalia
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
39
|
Ashokcoomar S, Reedoy KS, Senzani S, Loots DT, Beukes D, van Reenen M, Pillay B, Pillay M. Mycobacterium tuberculosis curli pili (MTP) deficiency is associated with alterations in cell wall biogenesis, fatty acid metabolism and amino acid synthesis. Metabolomics 2020; 16:97. [PMID: 32914199 DOI: 10.1007/s11306-020-01720-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In an effort to find alternative therapeutic interventions to combat tuberculosis, a better understanding of the pathophysiology of Mycobacterium tuberculosis is required. The Mycobacterium tuberculosis curli pili (MTP) adhesin, present on the surface of this pathogen, has previously been shown using functional genomics and global transcriptomics, to play an important role in establishing infection, bacterial aggregation, and modulating host response in vitro and in vivo. OBJECTIVE This investigation aimed to determine the role of MTP in modulating the metabolism of M. tuberculosis, using mtp gene-knockout mutant and complemented strains. METHODS Untargeted two-dimensional gas chromatography time-of-flight mass spectrometry, and bioinformatic analyses, were used to identify significant differences in the metabolite profiles among the wild-type, ∆mtp mutant and mtp-complemented strains, and validated with results generated by real-time quantitative PCR. RESULTS A total of 28 metabolites were found to be significantly altered when comparing the ∆mtp mutant and the wild-type strains indicating a decreased utilisation of metabolites in cell wall biogenesis, a reduced efficiency in the breakdown of fatty acids, and decreased amino acid biosynthesis in the former strain. Comparison of the wild-type to mtp-complement, and ∆mtp to mtp-complemented strains revealed 10 and 16 metabolite differences, respectively. Real-time quantitative PCR results supported the metabolomics findings. Complementation of the ∆mtp mutant resulted in a partial restoration of MTP function. CONCLUSION The lack of the MTP adhesin resulted in various bacterial cell wall alterations and related metabolic changes. This study highlights the importance of MTP as a virulence factor and further substantiates its potential use as a suitable biomarker for the development of diagnostic tools and intervention therapeutics against TB.
Collapse
Affiliation(s)
- S Ashokcoomar
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st Floor Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban, 4013, South Africa
| | - K S Reedoy
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st Floor Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban, 4013, South Africa
| | - S Senzani
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st Floor Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban, 4013, South Africa
| | - D T Loots
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - D Beukes
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - M van Reenen
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - B Pillay
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - M Pillay
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st Floor Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban, 4013, South Africa.
| |
Collapse
|
40
|
Smith TC, Pullen KM, Olson MC, McNellis ME, Richardson I, Hu S, Larkins-Ford J, Wang X, Freundlich JS, Ando DM, Aldridge BB. Morphological profiling of tubercle bacilli identifies drug pathways of action. Proc Natl Acad Sci U S A 2020; 117:18744-18753. [PMID: 32680963 PMCID: PMC7414088 DOI: 10.1073/pnas.2002738117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Morphological profiling is a method to classify target pathways of antibacterials based on how bacteria respond to treatment through changes to cellular shape and spatial organization. Here we utilized the cell-to-cell variation in morphological features of Mycobacterium tuberculosis bacilli to develop a rapid profiling platform called Morphological Evaluation and Understanding of Stress (MorphEUS). MorphEUS classified 94% of tested drugs correctly into broad categories according to modes of action previously identified in the literature. In the other 6%, MorphEUS pointed to key off-target activities. We observed cell wall damage induced by bedaquiline and moxifloxacin through secondary effects downstream from their main target pathways. We implemented MorphEUS to correctly classify three compounds in a blinded study and identified an off-target effect for one compound that was not readily apparent in previous studies. We anticipate that the ability of MorphEUS to rapidly identify pathways of drug action and the proximal cause of cellular damage in tubercle bacilli will make it applicable to other pathogens and cell types where morphological responses are subtle and heterogeneous.
Collapse
Affiliation(s)
- Trever C Smith
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
- Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA 02111
| | - Krista M Pullen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Michaela C Olson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Morgan E McNellis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Ian Richardson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
- Roxbury Latin School, West Roxbury, MA 02132
| | - Sophia Hu
- Department of Bioinformatics and Computational Biology, University of Maryland, Baltimore County, Baltimore, MD 21250
| | - Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
- Tufts University School of Graduate Biomedical Sciences, Boston, MA 02111
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ 07103
| | - Joel S Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ 07103
- Division of Infectious Disease, Department of Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103
- Ruy V. Lourenco Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ 07103
| | - D Michael Ando
- Applied Science Team, Google Research, Mountain View, CA 94043
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111;
- Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA 02111
- Tufts University School of Graduate Biomedical Sciences, Boston, MA 02111
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155
| |
Collapse
|
41
|
Shao M, McNeil M, Cook GM, Lu X. MmpL3 inhibitors as antituberculosis drugs. Eur J Med Chem 2020; 200:112390. [DOI: 10.1016/j.ejmech.2020.112390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
|
42
|
Kaur M, Yusuf M, Malhi DS, Sohal HS. Bis-dihydroisoxazolines: Synthesis, Structural Elucidation, Antimicrobial Evaluation, and DNA Photocleavage Assay. Curr Org Synth 2020; 17:671-678. [PMID: 32660404 DOI: 10.2174/1570179417666200713181959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Isoxazole is an active core found in many drugs. The aim of this work was to synthesize bis-isoxazoline compounds and to analyze the effect of linker chain length on biological activities. MATERIAL AND METHODS A simple, convenient, and efficient method for the conversion of bischalcones to new bis(4,5-dihydroisoxazole) derivatives was developed by using hydroxylamine hydrochloride under basic medium. Synthesized moieties were also evaluated for their antimicrobial potencies and DNA photocleavage assay. RESULTS AND DISCUSSION The synthesized compounds were more active than their chalcone precursors and the long-chain linkers (4e&4f) were more potent in antimicrobial, as well as in DNA photocleavage activity. CONCLUSION It was found that many of the tested bischalcones and bis-isoxazolines exhibited moderate to significant antimicrobial activity against various strains. Furthermore, the present study also provides significant information and interesting outcomes regarding cyclization, increasing the length of linker chains, and their effects on the DNA photocleavage and antimicrobial activities.
Collapse
Affiliation(s)
- Manvinder Kaur
- Department of Chemistry, Chandigarh University, Gharuan-140413, Punjab, India,Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India
| | - Mohamad Yusuf
- Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India
| | | | | |
Collapse
|
43
|
Zhang Y, Gong S, Wang X, Muhammad M, Li Y, Meng S, Li Q, Liu D, Zhang H. Insights into the Inhibition of Aeromonas hydrophila d-Alanine-d-Alanine Ligase by Integration of Kinetics and Structural Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7509-7519. [PMID: 32609505 DOI: 10.1021/acs.jafc.0c00682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aeromonas hydrophila, a pathogenic bacterium, is harmful to humans, domestic animals, and fishes and, moreover, of public health concern due to the emergence of multiple drug-resistant strains. The cell wall has been discovered as a novel and efficient drug target against bacteria, and d-alanine-d-alanine ligase (Ddl) is considered as an essential enzyme in bacterial cell wall biosynthesis. Herein, we studied the A. hydrophila HBNUAh01 Ddl (AhDdl) enzyme activity and kinetics and determined the crystal structure of AhDdl/d-Ala complex at 2.7 Å resolution. An enzymatic assay showed that AhDdl exhibited higher affinity to ATP (Km: 54.1 ± 9.1 μM) compared to d-alanine (Km: 1.01 ± 0.19 mM). The kinetic studies indicated a competitive inhibition of AhDdl by d-cycloserine (DCS), with an inhibition constant (Ki) of 120 μM and the 50% inhibitory concentrations (IC50) value of 0.5 mM. Meanwhile, structural analysis indicated that the AhDdl/d-Ala complex structure adopted a semi-closed conformation form, and the active site was extremely conserved. Noteworthy is that the substrate d-Ala occupied the second d-Ala position, not the first d-Ala position. These results provided more insights for understanding the details of the catalytic mechanism and resources for the development of novel drugs against the diseases caused by A. hydrophila.
Collapse
Affiliation(s)
- Yingli Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Siyu Gong
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Xuan Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Murtala Muhammad
- Department of Biochemistry, Kano University of Science and Technology, Wudil 713281, Nigeria
| | - Yangyang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Shuaishuai Meng
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Qin Li
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Dong Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Huaidong Zhang
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| |
Collapse
|
44
|
Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev 2020; 43:548-575. [PMID: 31183501 PMCID: PMC6736417 DOI: 10.1093/femsre/fuz016] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Jess Healy
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
45
|
Oda K, Shimotani N, Kuroda T, Matoba Y. Crystal structure of an N ω-hydroxy-L-arginine hydrolase found in the D-cycloserine biosynthetic pathway. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:506-514. [PMID: 32496212 DOI: 10.1107/s2059798320004908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 11/10/2022]
Abstract
DcsB, one of the enzymes encoded in the D-cycloserine (D-CS) biosynthetic gene cluster, displays a high sequence homology to arginase, which contains two manganese ions in the active site. However, DcsB hydrolyzes Nω-hydroxy-L-arginine, but not L-arginine, to supply hydroxyurea for the biosynthesis of D-CS. Here, the crystal structure of DcsB was determined at a resolution of 1.5 Å using anomalous scattering from the manganese ions. In the crystal structure, DscB generates an artificial dimer created by the open and closed forms. Gel-filtration analysis demonstrated that DcsB is a monomeric protein, unlike arginase, which forms a trimeric structure. The active center containing the binuclear manganese cluster differs between DcsB and arginase. In DcsB, one of the ligands of the MnA ion is a cysteine, while the corresponding residue in arginase is a histidine. In addition, DcsB has no counterpart to the histidine residue that acts as a general acid/base during the catalytic reaction of arginase. The present study demonstrates that DcsB has a unique active site that differs from that of arginase.
Collapse
Affiliation(s)
- Kosuke Oda
- Department of Virology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Natsuki Shimotani
- Department of Microbiology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Teruo Kuroda
- Department of Microbiology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yasuyuki Matoba
- Department of Microbiology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
46
|
Shahbaaz M, Potemkin V, Bisetty K, Hassan MI, Hussien MA. Classification and functional analyses of putative virulence factors of Mycobacterium tuberculosis: A combined sequence and structure based study. Comput Biol Chem 2020; 87:107270. [PMID: 32438116 DOI: 10.1016/j.compbiolchem.2020.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 11/17/2022]
Abstract
The emergence of the drug-resistant mechanisms in Mycobacterium tuberculosis poses the biggest challenges to the current therapeutic measures, which necessitates the identification of new drug targets. The Hypothetical Proteins (HPs), a class of functionally uncharacterized proteins, may provide a new class of undiscovered therapeutic targets. The genome of M. tuberculosis contains 1000 HPs with their sequences were analyzed using a variety of bioinformatics tools and the functional annotations were performed. The functions of 662 HPs were successfully predicted and further classified 483 HPs as enzymes, 141 HPs were predicted to be involved in the diverse cellular mechanisms and 38 HPs may function as transporters and carriers proteins. Furthermore, 28 HPs were predicted to be virulent in nature. Amongst them, the HP P95201, HP P9WM79, HP I6WZ30, HP I6 × 9T8, HP P9WKP3, and HP P9WK89 showed the highest virulence scores. Therefore, these proteins were subjected to extensive structure analyses and dynamics of their conformations were investigated using the principles of molecular dynamics simulations, each for a 150 ns time scale. This study provides a deeper understanding of the undiscovered drug targets and the generated outputs will facilitate the process of drug design and discovery against the infection of M. tuberculosis.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa; Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin prospekt, 454080 Chelyabinsk, Russia
| | - Vladimir Potemkin
- Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin prospekt, 454080 Chelyabinsk, Russia
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, Durban, 4000, South Africa
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mostafa A Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, Saudi Arabia; Department of Chemistry, Faculty of Science, Port Said University, Port Said, 42521, Egypt
| |
Collapse
|
47
|
Alnoman RB, Hagar M, Parveen S, Ahmed HA, Knight JG. Computational and molecular docking approaches of a New axially chiral BODIPY fluorescent dye. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Jelińska A, Zając M, Dadej A, Tomczak S, Geszke-Moritz M, Muszalska-Kolos I. Tuberculosis - Present Medication and Therapeutic Prospects. Curr Med Chem 2020; 27:630-656. [PMID: 30457045 DOI: 10.2174/0929867325666181120100025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tuberculosis (TB) has been present in the history of human civilization since time immemorial and has caused more deaths than any other infectious disease. It is still considered one of the ten most common epidemiologic causes of death in the world. As a transmissible disease, it is initiated by rod-shaped (bacillus) mycobacteria. The management of tuberculosis became possible owing to several discoveries beginning in 1882 with the isolation of the TB bacillus by Robert Koch. The diagnosis of TB was enabled by finding a staining method for TB bacteria identification (1883). It was soon realized that a large-scale policy for the treatment and prevention of tuberculosis was necessary, which resulted in the foundation of International Union against Tuberculosis and Lung Diseases (1902). An antituberculosis vaccine was developed in 1921 and has been in therapeutic use since then. TB treatment regimens have changed over the decades and the latest recommendations are known as Directly Observed Treatment Short-course (DOTS, WHO 1993). METHODS A search of bibliographic databases was performed for peer-reviewed research literature. A focused review question and inclusion criteria were applied. Standard tools were used to assess the quality of retrieved papers. RESULTS A total of 112 papers were included comprising original publications and reviews. The paper overviews anti-TB drugs according to their mechanism of action. The chemical structure, metabolism and unwanted effects of such drugs have been discussed. The most recent treatment regimens and new drugs, including those in clinical trials, are also presented. CONCLUSION Despite a 22% decrease in the tuberculosis fatality rate observed between 2000 and 2015, the disease remains one of the ten prime causes of death worldwide. Increasing bacterial resistance and expensive, prolonged therapies are the main reasons for efforts to find effective drugs or antituberculosis regimens, especially to cure multidrug-resistant tuberculosis.
Collapse
Affiliation(s)
- Anna Jelińska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Marianna Zając
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Adrianna Dadej
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Szymon Tomczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Małgorzata Geszke-Moritz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Izabela Muszalska-Kolos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| |
Collapse
|
49
|
Meng J, Gao P, Wang X, Guan Y, Liu Y, Xiao C. Digging Deeper to Save the Old Anti-tuberculosis Target: D-Alanine-D-Alanine Ligase With a Novel Inhibitor, IMB-0283. Front Microbiol 2020; 10:3017. [PMID: 32010089 PMCID: PMC6974524 DOI: 10.3389/fmicb.2019.03017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023] Open
Abstract
The emergence of drug-resistant Mycobacterium tuberculosis (Mtb) has hampered treatments for tuberculosis, which consequently now require novel agents to overcome such drug resistance. The genetically stable D-alanine-D-alanine ligase A (DdlA) has been deemed as an excellent therapeutic target for tuberculosis. In the present study, a competitive inhibitor (IMB-0283) of DdlA was obtained via high-throughput screening. The minimum inhibitory concentrations (MIC) of IMB-0283 for the standard and clinical drug-resistant Mtb strains ranged from 0.25 to 4.00 μg/mL, whereas the conventional inhibitor of DdlA, D-cycloserine (DCS), only inhibited the growth of the standard Mtb strain at 16 μg/mL. The lethal effect of IMB-0283 on Mtb was found to act intracellularly in a DdlA-dependent manner. Specifically, IMB-0283 prevented the synthesis of neonatal cell walls but did not damage mature cell walls. Compared with those of DCS, IMB-0283 exhibited lower cytotoxicity and a higher selective index (SI). At the same dosages of treatment, IMB-0283 reduced bacterial load (log CFU/mL) in an acute animal model from 5.58 to 4.40, while DCS did not yield any such treatment efficacy. Taken together, the lower cytotoxicity and more efficacious in vivo activity of IMB-0283 suggest that it is a promising lead compound for antituberculosis drug development.
Collapse
Affiliation(s)
- Jianzhou Meng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Gao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Guan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yishuang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunling Xiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Matoba Y, Uda N, Kudo M, Sugiyama M. Cyclization mechanism catalyzed by an ATP-grasp enzyme essential for d-cycloserine biosynthesis. FEBS J 2019; 287:2763-2778. [PMID: 31793174 DOI: 10.1111/febs.15163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 11/26/2022]
Abstract
In the biosynthetic pathway of an antitubercular antibiotic d-cycloserine (d-CS), O-ureido-d-serine (d-OUS) is converted to d-CS. We have previously demonstrated that DcsG, classified into the ATP-grasp superfamily enzyme, catalyzes the ring formation to generate d-CS, which is accompanied by the cleavage of a bond in the urea moiety of d-OUS to remove a carbamoyl group. Although the general ATP-grasp enzymes catalyze an ATP-dependent ligation reaction between two substrates, DcsG catalyzes specifically the generation of an intramolecular covalent bond. In the present study, cyanate was found in the reaction mixture, suggesting that carbamoyl group is eliminated as an isocyanic acid during the reaction. By the crystallographic and mutational investigations of DcsG, we anticipate the residues necessary for the binding of d-OUS. An acylphosphate intermediate must be bound at the narrow pocket of DcsG in a folded conformation, inducing the bond cleavage and the new bond formation to generate cyanate and d-CS, respectively. DATABASE: Structural data are available in Protein Data Bank database under the accession number 6JIL.
Collapse
Affiliation(s)
- Yasuyuki Matoba
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Narutoshi Uda
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Mako Kudo
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Masanori Sugiyama
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| |
Collapse
|