1
|
Herrera C, Gomis-Font MA, López-Causapé C, Díez-Aguilar M, Fraile-Ribot PA, Cardeñoso LM, Oliver A. Mechanisms leading to in vivo ceftazidime/avibactam resistance development during treatment of GES-5-producing Pseudomonas aeruginosa infections. Antimicrob Agents Chemother 2024; 68:e0116424. [PMID: 39431817 PMCID: PMC11539206 DOI: 10.1128/aac.01164-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
The mechanisms underlying ceftazidime/avibactam resistance development in four ceftazidime/avibactam susceptible/resistant pairs of GES-5-producing ST235 Pseudomonas aeruginosa clinical isolates were investigated. In three of the cases, ceftazidime/avibactam resistance was driven by a single mutation leading to GES-27 (P162Q), GES-29 (P162A), or the novel GES-60 (N136S), as confirmed through cloning experiments. Moreover, these mutations were associated with increased cefiderocol MICs but reduced carbapenem, particularly imipenem/relebactam, resistance. Understanding the complexity of resistance mechanisms to the growing repertoire of antipseudomonal β-lactams is crucial to guide optimized treatments and antimicrobial stewardship measures.
Collapse
Affiliation(s)
- Cristhian Herrera
- Servicio de Microbiología, Hospital Universitario La Princesa, Madrid, Spain
| | - Maria A. Gomis-Font
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| | - Carla López-Causapé
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| | - María Díez-Aguilar
- Servicio de Microbiología, Hospital Universitario La Princesa, Madrid, Spain
| | - Pablo A. Fraile-Ribot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| | - Laura M. Cardeñoso
- Servicio de Microbiología, Hospital Universitario La Princesa, Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| |
Collapse
|
2
|
Saha U, Jadhav SV, Pathak KN, Saroj SD. Screening of Klebsiella pneumoniae isolates reveals the spread of strong biofilm formers and class 1 integrons. J Appl Microbiol 2024; 135:lxae275. [PMID: 39448367 DOI: 10.1093/jambio/lxae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
AIMS Klebsiella pneumoniae is a Gram-negative bacterium that can colonize, penetrate, and cause infections at several human anatomical locations. The emergence of hypervirulent K. pneumoniae and its ability to evade the immune system and develop antibiotic resistance has made it a key concern in the healthcare industry. The hypervirulent variants are increasingly involved in community-acquired infections. Therefore, it is pertinent to understand the biofilm formation potential among the clinical isolates. METHODS AND RESULTS We acquired 225 isolates of K. pneumoniae from the Department of Microbiology, Symbiosis University Hospital and Research Centre (SUHRC), Pune, India, over 1 year from March 2022 to March 2023, and evaluated antimicrobial susceptibility, hypermucoviscous phenotype, virulence, and antimicrobial-resistant gene distribution in K. pneumoniae isolates and established a correlation between antimicrobial resistance and integrons. Most isolates were strong biofilm formers (76%). The isolates harbored one or more carbapenemase/beta-lactamase-encoding gene combinations. Hypermucoviscous (HMKP) isolates had considerably greater positive rates for iutA, magA, K2 serotype, rmpA, and rmpA2 than non-HMKP isolates. Isolates carrying integrons (43%) showed significantly more antibiotic resistance. CONCLUSION The study reveals spread of strong biofilm formers with extensive virulence and antimicrobial-resistant genes, and integrons responsible for multidrug resistance among the clinical isolates of K. pneumoniae in Pune, India, posing a threat to the public health and necessitating close surveillance, accurate diagnosis, control, and therapeutic management of infections.
Collapse
Affiliation(s)
- Ujjayni Saha
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra 412115, India
| | - Savita V Jadhav
- L.N.C.T Medical College and Sewakunj Hospital, Kanadia Road, Indore, Madhya Pradesh 452016, India
| | - Ketaki N Pathak
- Department of Microbiology, Symbiosis Medical College for Women (SMCW), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra 412115, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra 412115, India
| |
Collapse
|
3
|
Vollenweider V, Roncoroni F, Kümmerli R. Pyoverdine-antibiotic combination treatment: its efficacy and effects on resistance evolution in Escherichia coli. MICROLIFE 2024; 5:uqae021. [PMID: 39502382 PMCID: PMC11536758 DOI: 10.1093/femsml/uqae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 11/08/2024]
Abstract
Antibiotic resistance is a growing concern for global health, demanding innovative and effective strategies to combat pathogenic bacteria. Pyoverdines, iron-chelating siderophores produced by environmental Pseudomonas spp., present a novel class of promising compounds to induce growth arrest in pathogens through iron starvation. While we previously demonstrated the efficacy of pyoverdines as antibacterials, our understanding of how these molecules interact with antibiotics and impact resistance evolution remains unknown. Here, we investigated the propensity of three Escherichia coli strains to evolve resistance against pyoverdine, the cephalosporin antibiotic ceftazidime, and their combination. We used a naive E. coli wildtype strain and two isogenic variants carrying the bla TEM-1 β-lactamase gene on either the chromosome or a costly multicopy plasmid to explore the influence of genetic background on selection for resistance. We found that strong resistance against ceftazidime and weak resistance against pyoverdine evolved in all E. coli variants under single treatment. Ceftazidime resistance was linked to mutations in outer membrane porin genes (envZ and ompF), whereas pyoverdine resistance was associated with mutations in the oligopeptide permease (opp) operon. In contrast, ceftazidime resistance phenotypes were attenuated under combination treatment, especially for the E. coli variant carrying bla TEM-1 on the multicopy plasmid. Altogether, our results show that ceftazidime and pyoverdine interact neutrally and that pyoverdine as an antibacterial is particularly potent against plasmid-carrying E. coli strains, presumably because iron starvation compromises both cellular metabolism and plasmid replication.
Collapse
Affiliation(s)
- Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Flavie Roncoroni
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Krajewska J, Tyski S, Laudy AE. In Vitro Resistance-Predicting Studies and In Vitro Resistance-Related Parameters-A Hit-to-Lead Perspective. Pharmaceuticals (Basel) 2024; 17:1068. [PMID: 39204172 PMCID: PMC11357384 DOI: 10.3390/ph17081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Despite the urgent need for new antibiotics, very few innovative antibiotics have recently entered clinics or clinical trials. To provide a constant supply of new drug candidates optimized in terms of their potential to select for resistance in natural settings, in vitro resistance-predicting studies need to be improved and scaled up. In this review, the following in vitro parameters are presented: frequency of spontaneous mutant selection (FSMS), mutant prevention concentration (MPC), dominant mutant prevention concentration (MPC-D), inferior-mutant prevention concentration (MPC-F), and minimal selective concentration (MSC). The utility of various adaptive laboratory evolution (ALE) approaches (serial transfer, continuous culture, and evolution in spatiotemporal microenvironments) for comparing hits in terms of the level and time required for multistep resistance to emerge is discussed. We also consider how the hit-to-lead stage can benefit from high-throughput ALE setups based on robotic workstations, do-it-yourself (DIY) continuous cultivation systems, microbial evolution and growth arena (MEGA) plates, soft agar gradient evolution (SAGE) plates, microfluidic chips, or microdroplet technology. Finally, approaches for evaluating the fitness of in vitro-generated resistant mutants are presented. This review aims to draw attention to newly emerged ideas on how to improve the in vitro forecasting of the potential of compounds to select for resistance in natural settings.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Environmental Health and Safety, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland;
| | - Stefan Tyski
- Department of Pharmaceutical Microbiology and Laboratory Diagnostic, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Han W, Zhou P, Chen C, Wu C, Shen L, Wan C, Xiao Y, Zhang J, Wang B, Shi J, Yuan X, Gao H, Wang H, Zhou Y, Yu F. Characteristic of KPC-12, a KPC Variant Conferring Resistance to Ceftazidime-Avibactam in the Carbapenem-Resistant Klebsiella pneumoniae ST11-KL47 Clone Background. Infect Drug Resist 2024; 17:2541-2554. [PMID: 38933778 PMCID: PMC11199322 DOI: 10.2147/idr.s465699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Background Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a great threat to public health worldwide. Ceftazidime-avibactam (CZA) is an effective β-lactam/β-lactamase inhibitors against CRKP. However, reports of resistance to CZA, mainly caused by Klebsiella pneumoniae carbapenemase (KPC) variants, have increased in recent years. In this study, we aimed to describe the resistance characteristics of KPC-12, a novel KPC variant identified from a CZA resistant K. pneumoniae. Methods The K. pneumoniae YFKP-97 collected from a patient with respiratory tract infection was performed whole-genome sequencing (WGS) on the Illumina NovaSeq 6000 platform. Genomic characteristics were analyzed using bioinformatics methods. Antimicrobial susceptibility testing was conducted by the broth microdilution method. Induction of resistant strain was carried out in vitro as previously described. The G. mellonella killing assay was used to evaluate the pathogenicity of strains, and the conjugation experiment was performed to evaluate plasmid transfer ability. Results Strain YFKP-97 was a multidrug-resistant clinical ST11-KL47 K. pneumoniae confers high-level resistance to CZA (16/4 μg/mL). WGS revealed that a KPC variant, KPC-12, was carried by the IncFII (pHN7A8) plasmids (pYFKP-97_a and pYFKP-97_b) and showed significantly decreased activity against carbapenems. In addition, there was a dose-dependent effect of bla KPC-12 on its activity against ceftazidime. In vitro inducible resistance assay results demonstrated that the KPC-12 variant was more likely to confer resistance to CZA than the KPC-2 and KPC-3 variants. Discussion Our study revealed that patients who was not treated with CZA are also possible to be infected with CZA-resistant strains harbored a novel KPC variant. Given that the transformant carrying bla KPC-12 was more likely to exhibit a CZA-resistance phenotype. Therefore, it is important to accurately identify the KPC variants as early as possible.
Collapse
Affiliation(s)
- Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Peiyao Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Chun Chen
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Chunyang Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Cailing Wan
- School of Public Health, Nanchang University, Nanchang, People’s Republic of China
| | - Yanghua Xiao
- School of Public Health, Nanchang University, Nanchang, People’s Republic of China
| | - Jiao Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xinru Yuan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Haojin Gao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Hongxiu Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Ying Zhou
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Zhu X, Guo C, Xu S, Lv F, Guo Z, Lin S, Yang C, Deng Z, Chen S, Huang Y, Zhao Z, Li L. Clinical distribution of carbapenem genotypes and resistance to ceftazidime-avibactam in Enterobacteriaceae bacteria. Front Cell Infect Microbiol 2024; 14:1345935. [PMID: 38572315 PMCID: PMC10987847 DOI: 10.3389/fcimb.2024.1345935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Bacterial resistance is a major threat to public health worldwide. To gain an understanding of the clinical infection distribution, drug resistance information, and genotype of CRE in Dongguan, China, as well as the resistance of relevant genotypes to CAZ-AVI, this research aims to improve drug resistance monitoring information in Dongguan and provide a reliable basis for the clinical control and treatment of CRE infection. Methods VITEK-2 Compact automatic analyzer was utilized to identify 516 strains of CRE collected from January 2017 to June 2023. To determine drug sensitivity, the K-B method, E-test, and MIC methods were used. From June 2022 to June 2023, 80 CRE strains were selected, and GeneXpert Carba-R was used to detect and identify the genotype of the carbapenemase present in the collected CRE strains. An in-depth analysis was conducted on the CAZ-AVI in vitro drug sensitivity activity of various genotypes of CRE, and the results were statistically evaluated using SPSS 23.0 and WHONET 5.6 software. Results This study identified 516 CRE strains, with the majority (70.16%) being K.pneumoniae, followed by E.coli (18.99%). Respiratory specimens had highest detection rate with 53.77% identified, whereas urine specimens had the second highest detection rate with 17.99%. From June 2022 to June 2023, 95% of the strains tested using the CRE GeneXpert Carba-R assay possessed carbapenemase genes, of which 32.5% were blaNDM strains and 61.25% blaKPC strains. The results showed that CRE strains containing blaKPC had a significantly higher rate of resistance to amikacin, cefepime, and aztreonam than those harboring blaNDM. Conclusions The CRE strains isolated from Dongguan region demonstrated a high resistance rate to various antibiotics used in clinical practice but a low resistance rate to tigecycline. These strains produce Class A serine carbapenemases and Class B metals β-lactamases, with the majority of them carrying blaNDM and blaKPC. Notably, CRE strains with blaKPC and blaNDM had significantly lower resistance rates to tigecycline. CAZ-AVI showed a good sensitivity rate with no resistance to CRE strains carrying blaKPC. Therefore, CAZ-AVI and tigecycline should be used as a guide for rational use of antibiotics in clinical practice to effectively treat CRE.
Collapse
Affiliation(s)
- Xueyun Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Laboratory Medicine, Dongguan Kanghua Hospital, Dongguan, China
| | - Caixia Guo
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengxi Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Fei Lv
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Zhusheng Guo
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Sisi Lin
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - CongZhu Yang
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Zhuliang Deng
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Shaofeng Chen
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Ya Huang
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Zuguo Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Lu Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
7
|
Parwana D, Gu J, Chen S, Bethel CR, Marshall E, Hujer AM, Bonomo RA, Haider S. The Structural Role of N170 in Substrate-Assisted Deacylation in KPC-2 β-Lactamase. Angew Chem Int Ed Engl 2024; 63:e202317315. [PMID: 38227422 DOI: 10.1002/anie.202317315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
The amino acid substitutions in Klebsiella pneumoniae carbapenemase 2 (KPC-2) that have arisen in the clinic are observed to lead to the development of resistance to ceftazidime-avibactam, a preferred treatment for KPC bearing Gram-negative bacteria. Specific substitutions in the omega loop (R164-D179) result in changes in the structure and function of the enzyme, leading to alterations in substrate specificity, decreased stability, and more recently observed, increased resistance to ceftazidime/avibactam. Using accelerated rare-event sampling well-tempered metadynamics simulations, we explored in detail the structural role of R164 and D179 variants that are described to confer ceftazidime/avibactam resistance. The buried conformation of D179 substitutions produce a pronounced structural disorder in the omega loop - more than R164 mutants, where the crystallographic omega loop structure remains mostly intact. Our findings also reveal that the conformation of N170 plays an underappreciated role impacting drug binding and restricting deacylation. The results further support the hypothesis that KPC-2 D179 variants employ substrate-assisted catalysis for ceftazidime hydrolysis, involving the ring amine of the aminothiazole group to promote deacylation and catalytic turnover. Moreover, the shift in the WT conformation of N170 contributes to reduced deacylation and an altered spectrum of enzymatic activity.
Collapse
Affiliation(s)
| | - Jing Gu
- UCL School of Pharmacy, London, UK
| | | | - Christopher R Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Emma Marshall
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Andrea M Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Pharmacology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Shozeb Haider
- UCL School of Pharmacy, London, UK
- UCL Centre for Advanced Research Computing, London, UK
| |
Collapse
|
8
|
Sanz MB, Pasteran F, de Mendieta JM, Brunetti F, Albornoz E, Rapoport M, Lucero C, Errecalde L, Nuñez MR, Monge R, Pennini M, Power P, Corso A, Gomez SA. KPC-2 allelic variants in Klebsiella pneumoniae isolates resistant to ceftazidime-avibactam from Argentina: blaKPC-80, blaKPC-81, blaKPC-96 and blaKPC-97. Microbiol Spectr 2024; 12:e0411123. [PMID: 38319084 PMCID: PMC10913460 DOI: 10.1128/spectrum.04111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Ceftazidime-avibactam (CZA) therapy has significantly improved survival rates for patients infected by carbapenem-resistant bacteria, including KPC producers. However, resistance to CZA is a growing concern, attributed to multiple mechanisms. In this study, we characterized four clinical CZA-resistant Klebsiella pneumoniae isolates obtained between July 2019 and December 2020. These isolates expressed novel allelic variants of blaKPC-2 resulting from changes in hotspots of the mature protein, particularly in loops surrounding the active site of KPC. Notably, KPC-80 had an K269_D270insPNK mutation near the Lys270-loop, KPC-81 had a del_I173 mutation within the Ω-loop, KPC-96 showed a Y241N substitution within the Val240-loop and KPC-97 had an V277_I278insNSEAV mutation within the Lys270-loop. Three of the four isolates exhibited low-level resistance to imipenem (4 µg/mL), while all remained susceptible to meropenem. Avibactam and relebactam effectively restored carbapenem susceptibility in resistant isolates. Cloning mutant blaKPC genes into pMBLe increased imipenem MICs in recipient Escherichia coli TOP10 for blaKPC-80, blaKPC-96, and blaKPC-97 by two dilutions; again, these MICs were restored by avibactam and relebactam. Frameshift mutations disrupted ompK35 in three isolates. Additional resistance genes, including blaTEM-1, blaOXA-18 and blaOXA-1, were also identified. Interestingly, three isolates belonged to clonal complex 11 (ST258 and ST11) and one to ST629. This study highlights the emergence of CZA resistance including unique allelic variants of blaKPC-2 and impermeability. Comprehensive epidemiological surveillance and in-depth molecular studies are imperative for understanding and monitoring these complex resistance mechanisms, crucial for effective antimicrobial treatment strategies. IMPORTANCE The emergence of ceftazidime-avibactam (CZA) resistance poses a significant threat to the efficacy of this life-saving therapy against carbapenem-resistant bacteria, particularly Klebsiella pneumoniae-producing KPC enzymes. This study investigates four clinical isolates exhibiting resistance to CZA, revealing novel allelic variants of the key resistance gene, blaKPC-2. The mutations identified in hotspots surrounding the active site of KPC, such as K269_D270insPNK, del_I173, Y241N and V277_I278insNSEAV, prove the adaptability of these pathogens. Intriguingly, low-level resistance to imipenem and disruptions in porin genes were observed, emphasizing the complexity of the resistance mechanisms. Interestingly, three of four isolates belonged to clonal complex 11. This research not only sheds light on the clinical significance of CZA resistance but also shows the urgency for comprehensive surveillance and molecular studies to inform effective antimicrobial treatment strategies in the face of evolving bacterial resistance.
Collapse
Affiliation(s)
- María Belén Sanz
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Fernando Pasteran
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Juan Manuel de Mendieta
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Florencia Brunetti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ezequiel Albornoz
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Melina Rapoport
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Celeste Lucero
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | | | - Maria Rosa Nuñez
- Hospital Provincial Neuquén Dr. Castro Rendón, Neuquén, Argentina
| | | | | | - Pablo Power
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandra Corso
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Sonia A. Gomez
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Kroemer N, Amann LF, Farooq A, Pfaffendorf C, Martens M, Decousser JW, Grégoire N, Nordmann P, Wicha SG. Pharmacokinetic/pharmacodynamic analysis of ceftazidime/avibactam and fosfomycin combinations in an in vitro hollow fiber infection model against multidrug-resistant Escherichia coli. Microbiol Spectr 2024; 12:e0331823. [PMID: 38063387 PMCID: PMC10783110 DOI: 10.1128/spectrum.03318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Mechanistic understanding of pharmacodynamic interactions is key for the development of rational antibiotic combination therapies to increase efficacy and suppress the development of resistances. Potent tools to provide those insights into pharmacodynamic drug interactions are semi-mechanistic modeling and simulation techniques. This study uses those techniques to provide a detailed understanding with regard to the direction and strength of the synergy of ceftazidime-avibactam and ceftazidime-fosfomycin in a clinical Escherichia coli isolate expressing extended spectrum beta-lactamase (CTX-M-15 and TEM-4) and carbapenemase (OXA-244) genes. Enhanced killing effects in combination were identified as a driver of the synergy and were translated from static time-kill experiments into the dynamic hollow fiber infection model. These findings in combination with a suppression of the emergence of resistance in combination emphasize a potential clinical benefit with regard to increased efficacy or to allow for dose reductions with maintained effect sizes to avoid toxicity.
Collapse
Affiliation(s)
- Niklas Kroemer
- Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Lisa F. Amann
- Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Aneeq Farooq
- Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | | | - Miklas Martens
- Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Jean-Winoc Decousser
- Dynamic Team – EA 7380, Faculté de Santé, Université Paris-Est-Créteil Val-De-Marne, Créteil, France
| | - Nicolas Grégoire
- Inserm U1070, Poitiers, France
- UFR de Médecine Pharmacie, Université de Poitiers, Poitiers, France
- Laboratoire de Toxicologie-Pharmacologie, CHU de Poitiers, Poitiers, France
| | - Patrice Nordmann
- Medical and Molecular Microbiology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
10
|
Kalaivani R, Kali A, Surendran R, Sujaritha T, Ganesh Babu CP. Rapid characterization of carbapenem-resistant Enterobacterales by multiplex lateral flow assay and detection of ceftazidime-avibactam-aztreonam synergy. Indian J Med Microbiol 2024; 47:100530. [PMID: 38246242 DOI: 10.1016/j.ijmmb.2024.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/14/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE The choice of antibiotics for treatment of Carbapenem-Resistant Enterobacterales (CRE) is increasing becoming limited due to co-expression of Metallo-beta-lactamases (MBL) along with other carbapenemases in these isolates. The study aimed to investigate the occurrence of CRE and to determine the in-vitro synergy and clinical outcomes of Ceftazidime-Avibactam and Aztreonam combination in CRE infections in adult Intensive Care Units (ICUs). METHODS 79 CRE isolates recovered from adult ICUs during January to March 2023 were tested by O.K.N.V.I. RESIST-5, a lateral flow multiplex assay for rapid detection of OXA-48-like, NDM, IMP, VIM, and KPC carbapenemases. Ceftazidime-Avibactam MIC was determined by microbroth dilution method and in vitro synergy between Ceftazidime-Avibactam and Aztreonam was assessed by Modified E-test/disc diffusion method for these isolates. RESULTS The study revealed 7.5 % occurrence of CRE in our hospital, with high occurrence of NDM (n = 42, 53.1 %) and OXA-48-like (n = 63, 79.7 %) carbapenemase. Production of more than one type of carbapenemases was found in 44 isolates. A total of 57 isolates (72 %) had Ceftazidime-Avibactam resistance and 44 of them displayed Ceftazidime-Avibactam and Aztreonam in-vitro synergy. Successful clinical outcome was observed in two patients who received Ceftazidime-Avibactam and Aztreonam combination therapy for 7 days or more. CONCLUSIONS Despite the preponderance of Ceftazidime-Avibactam resistant CRE expressing NDM and OXA-48-like carbapenemase in our hospital, 77.2 % of them displayed in-vitro synergy of Ceftazidime-Avibactam with Aztreonam. It emphasizes the potential therapeutic utility of this combination in CRE strains showing coproduction of MBL and serine carbapenemases. Greater therapeutic potential of Ceftazidime-Avibactam and Aztreonam combination was observed with extended duration of therapy. However, further clinical evidence is needed to establish the efficacy of this combination and consider other factors that influence treatment outcomes.
Collapse
Affiliation(s)
- R Kalaivani
- Department of Microbiology, MGMCRI, Sri Balaji Vidhyapeeth deemed to be University, Pondicherry, India.
| | - Arunava Kali
- Department of Microbiology, MGMCRI, Sri Balaji Vidhyapeeth deemed to be University, Pondicherry, India.
| | - R Surendran
- Department of Infectious Disease, MGMCRI, Sri Balaji Vidhyapeeth deemed to be University, Pondicherry, India.
| | - T Sujaritha
- Department of Critical Care Medicine, MGMCRI, Sri Balaji Vidhyapeeth deemed to be University, Pondicherry, India.
| | - C P Ganesh Babu
- Department of General Surgery, MGMCRI, Sri Balaji Vidhyapeeth deemed to be University, Pondicherry, India.
| |
Collapse
|
11
|
Wang L, Shen W, Cai J. Mobilization of the blaKPC-14 gene among heterogenous plasmids in extensively drug-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol 2023; 14:1261261. [PMID: 38033558 PMCID: PMC10684954 DOI: 10.3389/fmicb.2023.1261261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Ceftazidime/avibactam (CZA) is an effective alternative for the treatment of infections caused by KPC-producing carbapenem-resistant Klebsiella pneumoniae (CRKP). However, KPC variants with CZA resistance have been observed in clinical isolates, further limiting the treatment options of clinical use. Methods In this study, we isolated three KPC-14-producing CRKP from two patients in intensive care units without CZA therapy. The antimicrobial susceptibility was determined using the broth microdilution method. Three CRKP were subjected to whole-genome sequencing to analyze the phylogenetic relatedness and the carriage of antimicrobial resistance genes and virulence factors. Long-read sequencing was also performed to obtain the complete sequences of the plasmids. The horizontal transfer of the blaKPC-14 gene was evaluated by conjugation experiments. Results Three CRKP displayed resistance or reduced susceptibility to ceftazidime/avibactam, colistin, and tigecycline. Single-nucleotide polymorphism (SNP) analysis demonstrated the close phylogenetic distance between these strains. A highly similar IncFII/IncR plasmid encoding blaKPC-14 was shared by three CRKP, with blaKPC-14 located in an NTEKPC-Ib element with the core region of ISKpn27- blaKPC-14-ISKpn6. This structure containing blaKPC-14 was also observed in another tet(A)-carrying plasmid that belonged to an unknown Inc-type in two out of three isolates. The horizontal transferability of these integrated plasmids to Escherichia coli EC600 was confirmed by the cotransmission of tet(A) and blaKPC-14 genes, but the single transfer of blaKPC-14 on the IncFII/IncR plasmid failed. Three CRKP expressed yersiniabactin and carried a hypervirulence plasmid encoding rmpA2 and aerobactin-related genes, and were thus classified as carbapenem-resistant hypervirulent K. pneumoniae (hvKP). Discussion In this study, we reported the evolution of a mosaic plasmid encoding the blaKPC-14 gene via mobile elements in extensively drug-resistant hvKP. The blaKPC-14 gene is prone to integrate into other conjugative plasmids via the NTEKPC-Ib element, further facilitating the spread of ceftazidime/avibactam resistance.
Collapse
Affiliation(s)
| | | | - Jiachang Cai
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Venuti F, Romani L, De Luca M, Tripiciano C, Palma P, Chiriaco M, Finocchi A, Lancella L. Novel Beta Lactam Antibiotics for the Treatment of Multidrug-Resistant Gram-Negative Infections in Children: A Narrative Review. Microorganisms 2023; 11:1798. [PMID: 37512970 PMCID: PMC10385558 DOI: 10.3390/microorganisms11071798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Infections due to carbapenem-resistant Enterobacterales (CRE) are increasingly prevalent in children and are associated with poor clinical outcomes, especially in critically ill patients. Novel beta lactam antibiotics, including ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, and cefiderocol, have been released in recent years to face the emerging challenge of multidrug-resistant (MDR) Gram-negative bacteria. Nonetheless, several novel agents lack pediatric indications approved by the Food and Drug Administration (FDA) and the European Medicine Agency (EMA), leading to uncertain pediatric-specific treatment strategies and uncertain dosing regimens in the pediatric population. In this narrative review we have summarized the available clinical and pharmacological data, current limitations and future prospects of novel beta lactam antibiotics in the pediatric population.
Collapse
Affiliation(s)
- Francesco Venuti
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy
| | - Lorenza Romani
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Maia De Luca
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Costanza Tripiciano
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Paolo Palma
- Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Chiriaco
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Laura Lancella
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
13
|
Oliva A, Campogiani L, Savelloni G, Vitale P, Lodi A, Sacco F, Imeneo A, Volpicelli L, Polani R, Raponi G, Sarmati L, Venditti M. Clinical Characteristics and Outcome of Ceftazidime/Avibactam-Resistant Klebsiella pneumoniae Carbapenemase-Producing Klebsiella pneumoniae Infections: A Retrospective, Observational, 2-Center Clinical Study. Open Forum Infect Dis 2023; 10:ofad327. [PMID: 37476077 PMCID: PMC10354859 DOI: 10.1093/ofid/ofad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Background Recently, Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPC-Kp) with resistance to ceftazidime/avibactam (CZA-R) has been described, including KPC variants that restore carbapenem susceptibility. The aim of the study was to analyze the clinical characteristics and outcomes of infections caused by CZA-R KPC-Kp. Methods From 2019 to 2021, a retrospective 2-center study including patients with infections due to CZA-R KPC-Kp hospitalized at 2 academic hospitals in Rome was conducted. Demographic and clinical characteristics were collected. Principal outcome was 30-day all-cause mortality. Statistical analyses were performed with Stata-IC17 software. Results Overall, 59 patients were included (mean age, 64.4 ± 14.6 years; mean Charlson comorbidity index score, 4.5 ± 2.7). Thirty-four patients (57.6%) had infections caused by CZA-R and meropenem (MEM)-susceptible strains. A previous CZA therapy was observed in 40 patients (67.8%), mostly in patients with MEM-susceptible KPC variant (79.4% vs 52%, P = .026). Primary bacteremia was observed in 28.8%, followed by urinary tract infections and pneumonia. At infection onset, septic shock was present in 15 subjects (25.4%). After adjustment for confounders, only the presence of septic shock was independently associated with mortality (P = .006). Conclusions Infections due to CZA-R KPC-Kp often occur in patients who had previously received CZA, especially in the presence of strains susceptible to MEM. Nevertheless, one-third of patients had never received CZA before KPC-Kp CZA-R. Since the major driver for mortality was infection severity, understanding the optimal therapy in patients with KPC-Kp CZA-R infections is of crucial importance.
Collapse
Affiliation(s)
- Alessandra Oliva
- Correspondence: Assistant Professor Oliva Alessandra, MD, PhD, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy. ()
| | - Laura Campogiani
- Infectious Disease Clinic, Policlinico Tor Vergata, Rome, Italy
- Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Giulia Savelloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Pietro Vitale
- Infectious Disease Clinic, Policlinico Tor Vergata, Rome, Italy
| | - Alessandra Lodi
- Infectious Disease Clinic, Policlinico Tor Vergata, Rome, Italy
| | - Frederica Sacco
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Lorenzo Volpicelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Riccardo Polani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Loredana Sarmati
- Infectious Disease Clinic, Policlinico Tor Vergata, Rome, Italy
- Department of System Medicine, Tor Vergata University, Rome, Italy
| | | |
Collapse
|
14
|
Venuti F, Trunfio M, Martson AG, Lipani F, Audagnotto S, Di Perri G, Calcagno A. Extended and Continuous Infusion of Novel Protected β-Lactam Antibiotics: A Narrative Review. Drugs 2023:10.1007/s40265-023-01893-6. [PMID: 37314633 DOI: 10.1007/s40265-023-01893-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/15/2023]
Abstract
Consolidated data from pharmacokinetic and pharmacodynamic studies support the administration of β-lactam antibiotics in prolonged infusion (i.e., extended or continuous) to optimize therapeutic efficacy by increasing the probability of attaining maximal bactericidal activity. This is the longest possible time during which the free drug concentrations are approximately four-fold the minimum inhibitory concentration between dosing intervals. In the context of antimicrobial stewardship strategies, achieving aggressive pharmacokinetic and pharmacodynamic targets is an important tool in the management of multi-drug resistant (MDR) bacterial infections and in the attainment of mutant preventing concentrations. However, prolonged infusion remains an unexploited resource. Novel β-lactam/β-lactamase inhibitor (βL/βLI) combinations (ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-relebactam) have been released in recent years to face the emerging challenge of MDR Gram-negative bacteria. Pre-clinical and real-life evidence has confirmed the promising role of prolonged infusion of these molecules in specific settings and clinical populations. In this narrative review we have summarized available pharmacological and clinical data, future perspectives, and current limitations of prolonged infusion of the novel protected β-lactams, their application in hospital settings and in the context of outpatient parenteral antimicrobial therapy.
Collapse
Affiliation(s)
- Francesco Venuti
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Corso Svizzera 164, 10149, Turin, Italy.
| | - Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Corso Svizzera 164, 10149, Turin, Italy
| | - Anne-Grete Martson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool, UK
| | - Filippo Lipani
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Corso Svizzera 164, 10149, Turin, Italy
| | - Sabrina Audagnotto
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Corso Svizzera 164, 10149, Turin, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Corso Svizzera 164, 10149, Turin, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Corso Svizzera 164, 10149, Turin, Italy
| |
Collapse
|
15
|
Molecular Mechanisms of Resistance to Ceftazidime/Avibactam in Clinical Isolates of Enterobacterales and Pseudomonas aeruginosa in Latin American Hospitals. mSphere 2023; 8:e0065122. [PMID: 36877058 PMCID: PMC10117078 DOI: 10.1128/msphere.00651-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Ceftazidime-avibactam (CZA) is the combination of a third-generation cephalosporin and a new non-β-lactam β-lactamase inhibitor capable of inactivating class A, C, and some D β-lactamases. From a collection of 2,727 clinical isolates of Enterobacterales (n = 2,235) and P. aeruginosa (n = 492) that were collected between 2016 and 2017 from five Latin American countries, we investigated the molecular resistance mechanisms to CZA of 127 (18/2,235 [0.8%] Enterobacterales and 109/492 [22.1%] P. aeruginosa). First, by qPCR for the presence of genes encoding KPC, NDM, VIM, IMP, OXA-48-like, and SPM-1 carbapenemases, and second, by whole-genome sequencing (WGS). From the CZA-resistant isolates, MBL-encoding genes were detected in all 18 Enterobacterales and 42/109 P. aeruginosa isolates, explaining their resistant phenotype. Resistant isolates that yielded a negative qPCR result for any of the MBL encoding genes were subjected to WGS. The WGS analysis of the 67 remaining P. aeruginosa isolates showed mutations in genes previously associated with reduced susceptibility to CZA, such as those involved in the MexAB-OprM efflux pump and AmpC (PDC) hyperproduction, PoxB (blaOXA-50-like), FtsI (PBP3), DacB (PBP4), and OprD. The results presented here offer a snapshot of the molecular epidemiological landscape for CZA resistance before the introduction of this antibiotic into the Latin American market. Therefore, these results serve as a valuable comparison tool to trace the evolution of the resistance to CZA in this carbapenemase-endemic geographical region. IMPORTANCE In this manuscript, we determine the molecular mechanisms of ceftazidime-avibactam resistance in Enterobacterales and P. aeruginosa isolates from five Latin American countries. Our results reveal a low rate of resistance to ceftazidime-avibactam among Enterobacterales; in contrast, resistance in P. aeruginosa has proven to be more complex, as it might involve multiple known and possibly unknown resistance mechanisms.
Collapse
|
16
|
Nichols WW, Lahiri SD, Bradford PA, Stone GG. The primary pharmacology of ceftazidime/avibactam: resistance in vitro. J Antimicrob Chemother 2023; 78:569-585. [PMID: 36702744 DOI: 10.1093/jac/dkac449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This article reviews resistance to ceftazidime/avibactam as an aspect of its primary pharmacology, linked thematically with recent reviews of the basic in vitro and in vivo translational biology of the combination (J Antimicrob Chemother 2022; 77: 2321-40 and 2341-52). In Enterobacterales or Pseudomonas aeruginosa, single-step exposures to 8× MIC of ceftazidime/avibactam yielded frequencies of resistance from <∼0.5 × 10-9 to 2-8 × 10-9, depending on the host strain and the β-lactamase harboured. β-Lactamase structural gene mutations mostly affected the avibactam binding site through changes in the Ω-loop: e.g. Asp179Tyr (D179Y) in KPC-2. Other mutations included ones proposed to reduce the permeability to ceftazidime and/or avibactam through changes in outer membrane structure, up-regulated efflux, or both. The existence, or otherwise, of cross-resistance between ceftazidime/avibactam and other antibacterial agents was also reviewed as a key element of the preclinical primary pharmacology of the new agent. Cross-resistance between ceftazidime/avibactam and other β-lactam-based antibacterial agents was caused by MBLs. Mechanism-based cross-resistance was not observed between ceftazidime/avibactam and fluoroquinolones, aminoglycosides or colistin. A low level of general co-resistance to ceftazidime/avibactam was observed in MDR Enterobacterales and P. aeruginosa. For example, among 2821 MDR Klebsiella spp., 3.4% were resistant to ceftazidime/avibactam, in contrast to 0.07% of 8177 non-MDR isolates. Much of this was caused by possession of MBLs. Among 1151 MDR, XDR and pandrug-resistant isolates of P. aeruginosa from the USA, 11.1% were resistant to ceftazidime/avibactam, in contrast to 3.0% of 7452 unselected isolates. In this case, the decreased proportion susceptible was not due to MBLs.
Collapse
Affiliation(s)
| | - Sushmita D Lahiri
- Infectious Diseases and Vaccines, Johnson & Johnson, Cambridge, MA, USA
| | | | | |
Collapse
|
17
|
Gu D, Yan Z, Cai C, Li J, Zhang Y, Wu Y, Yang J, Huang Y, Zhang R, Wu Y. Comparison of the NG-Test Carba 5, Colloidal Gold Immunoassay (CGI) Test, and Xpert Carba-R for the Rapid Detection of Carbapenemases in Carbapenemase-Producing Organisms. Antibiotics (Basel) 2023; 12:antibiotics12020300. [PMID: 36830211 PMCID: PMC9952068 DOI: 10.3390/antibiotics12020300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) are increasingly recognized as an urgent public health concern. The rapid and accurate identification of carbapenemases could provide insights into antimicrobial therapy and infection control. In this study, we evaluated the efficacy of three different methods, including the NG-test Carba 5, colloidal gold immunoassay (CGI) test, and Xpert Carba-R assay, for the rapid detection of five carbapenemases (KPC, NDM, IMP, OXA-48, and VIM). A total of 207 Gram-negative strains collected from patients and hospital sewages were tested. The presence or absence of carbapenemase genes in the whole-genome sequences was used as the gold standard for evaluating the accuracy of the above-mentioned three methods. Among the 192 strains carrying only one carbapenemase gene, the accuracies of the NG-Test Carba 5, CGI test, and Xpert Carba-R were 96.88% (95% CI, 93.01-98.72%), 96.88% (95% CI, 93.01-98.72%), and 97.92% (95% CI, 94.41-99.33%), respectively. Xpert Carba-R was able to detect all 13 types of KPC variants, including KPC-2, KPC-3, KPC-25, KPC-33, KPC-35, KPC-51, KPC-52, KPC-71, KPC-76, KPC-77, KPC-78, KPC-93, and KPC-123, with a detection sensitivity of 100.00% (95% CI, 96.50-100.00%), a specificity of 100.00% (95% CI, 92.38-100.00%), and a κ index of 1.00. For IMP, Carba 5 was superior to the other two methods, with a sensitivity of 100% (95% CI, 71.66-100.00%), a specificity of 100% (95% CI, 97.38-100.00%), and a κ index of 1.00. For the remaining 15 strains carrying two or three kinds of carbapenemase genes, Carba 5 performed the best, which accurately identified all the target genes, followed by Xpert Carba-R (12/15, 80.00%) and the CGI test (10/15, 66.67%). Therefore, all three assays demonstrated reliable performances in carbapenemase detection, and Xpert Carba-R should be recommended for the detection of KPC variants, especially for patients at a high risk of infections caused by ceftazidime/avibactam-resistant strains. IMPORTANCE: CRE was listed as one of the top three pathogens that are in critical need of new antibiotics by the WHO. The rapid and accurate identification of carbapenemases is important for antimicrobial therapy and infection control. In recent years, new beta-lactam/beta-lactamase inhibitor combinations such as ceftazidime/avibactam (CZA) have been approved by the Food and Drug Administration (FDA) to cope with CRE challenges. CZA was effective against class A, class C, and some class D enzymes such as OXA-48-like. However, CZA-resistant KPC variants emerged at an alarming speed, which posed a new challenge for the accurate identification of KPC variants. In this study, we evaluated the performance of two lateral flow immunochromatographic assays, namely, NG-test Carba 5 and the CGI test, and the automated real-time quantitative PCR Xpert Carba-R in the rapid detection of carbapenemases. Notably, 13 types of KPC variants were enrolled in this study, which covered most KPC variants discovered in China. Carba-R was superior to NG-teat Carba 5 and the CGI test; it was able to detect all of the included KPC variants, including KPC-2, KPC-3, KPC-25, KPC-33, KPC-35, KPC-51, KPC-52, KPC-71, KPC-76, KPC-77, KPC-78, KPC-93, and KPC-123.
Collapse
Affiliation(s)
- Danxia Gu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Zelin Yan
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Chang Cai
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Jiaping Li
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Yuchen Wu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Jiaxing Yang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Yonglu Huang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
- Correspondence: (R.Z.); (Y.W.)
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Research Unit of Food Safety, Chinese Academy of Medical Sciences (2019RU014), Beijing 100022, China
- Correspondence: (R.Z.); (Y.W.)
| |
Collapse
|
18
|
Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics (Basel) 2023; 12:antibiotics12020234. [PMID: 36830145 PMCID: PMC9952820 DOI: 10.3390/antibiotics12020234] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative opportunistic pathogen responsible for a variety of community and hospital infections. Infections caused by carbapenem-resistant K. pneumoniae (CRKP) constitute a major threat for public health and are strongly associated with high rates of mortality, especially in immunocompromised and critically ill patients. Adhesive fimbriae, capsule, lipopolysaccharide (LPS), and siderophores or iron carriers constitute the main virulence factors which contribute to the pathogenicity of K. pneumoniae. Colistin and tigecycline constitute some of the last resorts for the treatment of CRKP infections. Carbapenemase production, especially K. pneumoniae carbapenemase (KPC) and metallo-β-lactamase (MBL), constitutes the basic molecular mechanism of CRKP emergence. Knowledge of the mechanism of CRKP appearance is crucial, as it can determine the selection of the most suitable antimicrobial agent among those most recently launched. Plazomicin, eravacycline, cefiderocol, temocillin, ceftolozane-tazobactam, imipenem-cilastatin/relebactam, meropenem-vaborbactam, ceftazidime-avibactam and aztreonam-avibactam constitute potent alternatives for treating CRKP infections. The aim of the current review is to highlight the virulence factors and molecular pathogenesis of CRKP and provide recent updates on the molecular epidemiology and antimicrobial treatment options.
Collapse
|
19
|
Karami-Zarandi M, Rahdar HA, Esmaeili H, Ranjbar R. Klebsiella pneumoniae: an update on antibiotic resistance mechanisms. Future Microbiol 2023; 18:65-81. [PMID: 36632990 DOI: 10.2217/fmb-2022-0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Klebsiella pneumoniae colonizes mucosal surfaces of healthy humans and is responsible for one third of all Gram-negative infections in hospitalized patients. K. pneumoniae is compatible with acquiring antibiotic resistance elements such as plasmids and transposons encoding various β-lactamases and efflux pumps. Mutations in different proteins such as β-lactamases, efflux proteins, outer membrane proteins, gene replication enzymes, protein synthesis complexes and transcription enzymes also generate resistance to antibiotics. Biofilm formation is another strategy that facilitates antibiotic resistance. Resistant strains can be treated by combination therapy using available antibiotics, though proper management of antibiotic consumption in hospitals is important to reduce the emergence and proliferation of resistance to current antibiotics.
Collapse
Affiliation(s)
- Morteza Karami-Zarandi
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 4513956111, Iran
| | - Hossein Ali Rahdar
- Department of Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, 7618815676, Iran
| | - Hadi Esmaeili
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology & Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| |
Collapse
|
20
|
Tam VH, Merlau PR, Hudson CS, Kline EG, Eales BM, Smith J, Sofjan AK, Shields RK. Optimal ceftazidime/avibactam dosing exposure against KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother 2022; 77:3130-3137. [PMID: 36031868 PMCID: PMC10205629 DOI: 10.1093/jac/dkac294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/05/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Infections due to carbapenem-resistant Enterobacterales are considered urgent public health threats and often treated with a β-lactam/β-lactamase inhibitor combination. However, clinical treatment failure and resistance emergence have been attributed to inadequate dosing. We used a novel framework to provide insights of optimal dosing exposure of ceftazidime/avibactam. METHODS Seven clinical isolates of Klebsiella pneumoniae producing different KPC variants were examined. Ceftazidime susceptibility (MIC) was determined by broth dilution using escalating concentrations of avibactam. The observed MICs were characterized as response to avibactam concentrations using an inhibitory sigmoid Emax model. Using the best-fit parameter values, %fT>MICi was estimated for various dosing regimens of ceftazidime/avibactam. A hollow-fibre infection model (HFIM) was subsequently used to ascertain the effectiveness of selected regimens over 120 h. The drug exposure threshold associated with bacterial suppression was identified by recursive partitioning. RESULTS In all scenarios, ceftazidime MIC reductions were well characterized with increasing avibactam concentrations. In HFIM, bacterial regrowth over time correlated with emergence of resistance. Overall, suppression of bacterial regrowth was associated with %fT>MICi ≥ 76.1% (100% versus 18.2%; P < 0.001). Using our framework, the optimal drug exposure could be achieved with ceftazidime/avibactam 2.5 g every 12 h in 5 out of 7 isolates. Furthermore, ceftazidime/avibactam 2.5 g every 8 h can suppress an isolate deemed resistant based on conventional susceptibility testing method. CONCLUSIONS An optimal drug exposure to suppress KPC-producing bacteria was identified. The novel framework is informative and may be used to guide optimal dosing of other β-lactam/β-lactamase inhibitor combinations. Further in vivo investigations are warranted.
Collapse
Affiliation(s)
- Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Paul R Merlau
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Cole S Hudson
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Ellen G Kline
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brianna M Eales
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - James Smith
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Amelia K Sofjan
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
21
|
Development of Resistance to Eravacycline by Klebsiella pneumoniae and Collateral Sensitivity-Guided Design of Combination Therapies. Microbiol Spectr 2022; 10:e0139022. [PMID: 35972286 PMCID: PMC9603973 DOI: 10.1128/spectrum.01390-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The evolution of bacterial antibiotic resistance is exhausting the list of currently used antibiotics and endangers those in the pipeline. The combination of antibiotics is a promising strategy that may suppress resistance development and/or achieve synergistic therapeutic effects. Eravacycline is a newly approved antibiotic that is effective against a variety of multidrug-resistant (MDR) pathogens. However, the evolution of resistance to eravacycline and strategies to suppress the evolution remain unexplored. Here, we demonstrated that a carbapenem-resistant Klebsiella pneumoniae clinical isolate quickly developed resistance to eravacycline, which is mainly caused by mutations in the gene encoding the Lon protease. The evolved resistant mutants display collateral sensitivities to β-lactam/β-lactamase inhibitor (BLBLI) combinations aztreonam/avibactam and ceftazidime-avibactam. Proteomic analysis revealed upregulation of the multidrug efflux system AcrA-AcrB-TolC and porin proteins OmpA and OmpU, which contributed to the increased resistance to eravacycline and susceptibility to BLBLIs, respectively. The combination of eravacycline with aztreonam/avibactam or ceftazidime-avibactam suppresses resistance development. We further demonstrated that eravacycline-resistant mutants evolved from an NDM-1-containing K. pneumoniae strain display collateral sensitivity to aztreonam/avibactam, and the combination of eravacycline with aztreonam/avibactam suppresses resistance development. In addition, the combination of eravacycline with aztreonam/avibactam or ceftazidime-avibactam displayed synergistic therapeutic effects in a murine cutaneous abscess model. Overall, our results revealed mechanisms of resistance to eravacycline and collateral sensitivities to BLBLIs and provided promising antibiotic combinations in the treatment of multidrug-resistant K. pneumoniae infections. IMPORTANCE The increasing bacterial antibiotic resistance is a serious threat to global public health, which demands novel antimicrobial medicines and treatment strategies. Eravacycline is a newly approved antibiotic that belongs to the tetracycline antibiotics. Here, we found that a multidrug-resistant Klebsiella pneumoniae clinical isolate rapidly developed resistance to eravacycline and the evolved resistant mutants displayed collateral sensitivity to antibiotics aztreonam/avibactam and ceftazidime-avibactam. We demonstrated that the combination of eravacycline with aztreonam/avibactam or ceftazidime-avibactam repressed resistance development and improved the treatment efficacies. We also elucidated the mechanisms that contribute to the increased resistance to eravacycline and susceptibility to aztreonam/avibactam and ceftazidime-avibactam. This work demonstrated the mechanisms of antibiotic resistance and collateral sensitivity and provided a new therapeutically option for effective antibiotic combinations.
Collapse
|
22
|
Findlay J, Rens C, Poirel L, Nordmann P. In Vitro Mechanisms of Resistance Development to Imipenem-Relebactam in KPC-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2022; 66:e0091822. [PMID: 36154170 PMCID: PMC9578389 DOI: 10.1128/aac.00918-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Enterobacterales, such as KPC-producing Klebsiella pneumoniae, represent a major threat to public health. Novel drug combinations including imipenem-relebactam (IPM-REL) have recently been introduced and have been shown to exhibit excellent activity toward such strains. However, there has recently been reports of the in vivo emergence of IPM-REL resistance in KPC-producing K. pneumoniae. Here, we evaluated, in vitro, the nature of the mutations that lead to IPM-REL resistance in 5 KPC-producing K. pneumoniae strains, including 2 that produce KPC enzymes conferring ceftazidime-avibactam resistance. An in vitro multi-step selection assay was performed and corresponding mutants obtained. Mutations were identified in OmpK36 as well as 2 different mutant derivatives of KPC. Mutant strains exhibited decreased susceptibility to β-lactams, including the carbapenems, and meropenem-vaborbactam (MEM-VAB). Expression of blaKPC gene variants in an Escherichia coli recombinant strain resulted in a concomitant increased susceptibility to carbapenems and decreased susceptibility to CAZ-AVI, and enzymatic assays showed that the inhibitory activity of both AVI and REL was significantly lowered for both KPC mutants compared to parental enzymes. Complementation assays showed that OmpK36 plays a major role in IPM-REL resistance as well resistance to other ß-lactams and β-lactam/ß-lactamase inhibitor combinations. Overall, this study showed that (i) IPM-REL resistant strains can be obtained from CAZ-AVI-susceptible or -resistant KPC producers, (ii) selection of IPM-REL resistance has a collateral effect on MEM-VAB susceptibility - indicative of shared resistance mechanisms, (iii) and mutations in the KPC sequence may be obtained using IPM-REL selection leading to the possibility of vertical and horizontal transfer of this resistance trait.
Collapse
Affiliation(s)
- Jacqueline Findlay
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Céline Rens
- Clinical Microbiology Unit, Pasteur Institute of Lille, Lille, France
- European Institute for Emerging Antibiotic Resistance, Pasteur Institute and University of Lille, Lille, France
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- European Institute for Emerging Antibiotic Resistance, Pasteur Institute and University of Lille, Lille, France
- European Institute for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- INSERM European Unit (IAME, France), University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- European Institute for Emerging Antibiotic Resistance, Pasteur Institute and University of Lille, Lille, France
- European Institute for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- INSERM European Unit (IAME, France), University of Fribourg, Fribourg, Switzerland
- Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| |
Collapse
|
23
|
Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview. Antimicrob Agents Chemother 2022; 66:e0044722. [PMID: 35980232 PMCID: PMC9487638 DOI: 10.1128/aac.00447-22] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
First variants of the Klebsiella pneumoniae carbapenemase (KPC), KPC-2 and KPC-3, have encountered a worldwide success, particularly in K. pneumoniae isolates. These beta-lactamases conferred resistance to most beta-lactams including carbapenems but remained susceptible to new beta-lactam/beta-lactamase inhibitors, such as ceftazidime-avibactam. After the marketing of ceftazidime-avibactam, numerous variants of KPC resistant to this association have been described among isolates recovered from clinical samples or derived from experimental studies. In KPC variants resistant to ceftazidime-avibactam, point mutations, insertions and/or deletions have been described in various hot spots. Deciphering the impact of these mutations is crucial, not only from a therapeutic point of view, but also to follow the evolution in time and space of KPC variants resistant to ceftazidime-avibactam. In this review, we describe the mutational landscape of the KPC beta-lactamase toward ceftazidime-avibactam resistance based on a multidisciplinary approach including epidemiology, microbiology, enzymology, and thermodynamics. We show that resistance is associated with three hot spots, with a high representation of insertions and deletions compared with other class A beta-lactamases. Moreover, extension of resistance to ceftazidime-avibactam is associated with a trade-off in the resistance to other beta-lactams and a decrease in enzyme stability. Nevertheless, the high natural stability of KPC could underlay the propensity of this enzyme to acquire in vivo mutations conferring resistance to ceftazidime-avibactam (CAZavi), particularly via insertions and deletions.
Collapse
|
24
|
Ruegsegger L, Xiao J, Naziripour A, Kanumuambidi T, Brown D, Williams F, Marshall SH, Rudin SD, Yen K, Chu T, Chen L, Sozzi E, Bartelt L, Kreiswirth B, Bonomo RA, van Duin D. Multidrug-Resistant Gram-Negative Bacteria in Burn Patients. Antimicrob Agents Chemother 2022; 66:e0068822. [PMID: 36066237 PMCID: PMC9487463 DOI: 10.1128/aac.00688-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Patients with burn injuries are at high risk for infectious complications, and infections are the most common cause of death after the first 72 h of hospitalization. Hospital-acquired infections caused by multidrug resistant (MDR) Gram-negative bacteria (GNB) in this population are concerning. Here, we evaluated carriage with MDR GNB in patients in a large tertiary-care burn intensive care unit. Twenty-nine patients in the burn unit were screened for intestinal carriage. Samples were cultured on selective media. Median time from admission to the burn unit to first sample collection was 9 days (IQR 5 - 17 days). In 21 (72%) patients, MDR GNB were recovered; the most common bacterial species isolated was Pseudomonas aeruginosa, which was found in 11/29 (38%) of patients. Two of these patients later developed bloodstream infections with P. aeruginosa. Transmission of KPC-31-producing ST22 Citrobacter freundii was detected. Samples from two patients grew genetically similar C. freundii isolates that were resistant to ceftazidime-avibactam. On analysis of whole-genome sequencing, blaKPC-31 was part of a Tn4401b transposon that was present on two different plasmids in each C. freundii isolate. Plasmid curing experiments showed that removal of both copies of blaKPC-31 was required to restore susceptibility to ceftazidime-avibactam. In summary, MDR GNB colonization is common in burn patients and patient-to-patient transmission of highly resistant GNB occurs. These results emphasize the ongoing need for infection prevention and antimicrobial stewardship efforts in this highly vulnerable population.
Collapse
Affiliation(s)
- Laura Ruegsegger
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jamie Xiao
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Arash Naziripour
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Trey Kanumuambidi
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dylan Brown
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Felicia Williams
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Steven H. Marshall
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Susan D. Rudin
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kelly Yen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Tingyu Chu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Emanuele Sozzi
- Department of Environmental Science and Engineering, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Luther Bartelt
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Barry Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Robert A. Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Li X, Zhang J, Yang C, Li J, Wang J, Huang W, Zeng L, Liang X, Long W, Zhang X. Increased Expression and Amplification of blaKPC-2 Contributes to Resistance to Ceftazidime/Avibactam in a Sequence Type 11 Carbapenem-Resistant Klebsiella pneumoniae Strain. Microbiol Spectr 2022; 10:e0095522. [PMID: 35900090 PMCID: PMC9430841 DOI: 10.1128/spectrum.00955-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Ceftazidime/avibactam (CAZ/AVI) is regarded as an effective alternative antibiotic for the clinical treatment of Klebsiella pneumoniae carbapenemase (KPC)-producing isolates. As resistance has been reported in some strains, it is critical to understand the key mechanisms contributing to the acquired resistance to CAZ/AVI. From January 2018 to April 2020, 127 KPC-producing carbapenem-resistant Klebsiella pneumoniae strains (CRKPs) were isolated at a university hospital in Chongqing, China, and 25 strains showed reduced susceptibility to CAZ/AVI. All reduced-susceptibility CRKPs were deficient in Ompk35 and Ompk36 porins, and 24 strains had a premature termination at amino acid position 63 in Ompk35 and 134 to 135 glycine and aspartic acid (GD) insertion in OmpK36, while the blaKPC-2 expression level showed no significant difference compared to that of strain BAA-1705. Four reduced-susceptibility strains evolved resistance under selective pressure of CAZ/AVI with the blaKPC-2 expression level increased, and two of these strains had mutations in the Ω-loop. The study found a strain of CRKP55 with changes in the resistance phenotype during conjugation, evolving from reduced sensitivity to high-level resistance to CAZ/AVI. Through plasmid sequencing and reverse transcription-quantitative PCR, it was speculated that insertion sequence (IS)26-mediated blaKPC-2 gene amplification caused the MIC value change in the conjugant JKP55. Our findings illustrated the potential of CAZ/AVI resistance under antibiotic stress and demonstrated that IS26 may mediate blaKPC-2 replication transposition, leading to high-level resistance during horizontal gene transfer. Investigation of CAZ/AVI resistance mechanisms may offer a unique opportunity to study the horizontal evolutionary trajectories of K. pneumoniae high-risk clones. IMPORTANCE Klebsiella pneumoniae carbapenemase (KPC) production is the most common mechanism of K. pneumoniae resistance to carbapenems in China. Currently, CAZ/AVI is considered a potential alternative therapeutic option for infections caused by these isolates. However, there have been increasing reports of resistant or reduced-sensitivity strains since the approval of this agent. In this study, resistance to CAZ/AVI was induced under drug-selective pressure and was caused by blaKPC-2 overexpression and/or substitutions in the Ω-loop of KPC. Additionally, it was demonstrated that a conjugative plasmid carrying blaKPC-2 could transfer horizontally between species, and perhaps, IS26-derived tandem amplification of blaKPC-2 during this period led to high-level resistance to CAZ/AVI. Our research suggests that IS26-mediated resistance evolution may have important implications in guiding clinical antibiotic use.
Collapse
Affiliation(s)
- Xinhui Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chengru Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jie Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wan Huang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lingyi Zeng
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, China
| | - Xushan Liang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzhang Long
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Lima O, Sousa A, Longueira-Suárez R, Filgueira A, Taboada-Martínez C, Portela-Pino C, Nodar A, Vasallo-Vidal F, Martinez-Lamas L, Pérez-Landeiro A, Rubianes M, Pérez-Rodríguez MT. Ceftazidime-avibactam treatment in bacteremia caused by OXA-48 carbapenemase-producing Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis 2022; 41:1173-1182. [PMID: 35939239 DOI: 10.1007/s10096-022-04482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Therapeutic options for bacteremia caused by carbapenem-resistant Enterobacterales (CRE) OXA-48-type are limited. The objective of this study was to analyze clinical success of CAZ-AVI compared with best available therapy (BAT) in patients with Klebsiella pneumoniae carbapenemase-producing OXA-48-type bacteremia (CRKp-OXA-48). We conducted a retrospective, single-center observational study in adult patients with CRKp-OXA-48 between December 2015 and May 2019. We collected the patients' clinical and epidemiological characteristics, antibiotic treatment (CAZ-AVI vs. BAT), and evolution. Factors associated with clinical success were analyzed using binary logistic regression. The study included 76 patients with CRKp-OXA-48-type bacteremia 33 received CAZ-AVI and 43 BAT. CAZ-AVI was mainly used in monotherapy (91%). Clinical success was more common in patients < 70-year-old (OR 4.79, 95% CI [1.435-16.002], p = 0.011) and CAZ-AVI treatment (OR 6.69, 95% CI [1.68-26.604], p = 0.007). Kaplan-Meier survival curve of 14-day mortality showed a lower mortality in patients who received CAZ-AVI (log rank 0.013). However, CAZ-AVI did not achieve statistical difference in IPTW for 14- and 30-day mortality (aOR 0.1, 95% CI [0.02-1.22], p = 0.076 and aOR 1.7, 95% CI [0.48-5.98], p = 0.413, respectively). CAZ-AVI treatment might be associated with a greater clinical success in CRKp-OXA-48 bacteremia.
Collapse
Affiliation(s)
- O Lima
- Infectious Diseases Unit, Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Vigo, Spain. .,Biomedical Research Institute Galicia Sur, Vigo, Spain.
| | - A Sousa
- Infectious Diseases Unit, Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Vigo, Spain.,Biomedical Research Institute Galicia Sur, Vigo, Spain
| | - R Longueira-Suárez
- Infectious Diseases Unit, Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Vigo, Spain.,Biomedical Research Institute Galicia Sur, Vigo, Spain
| | - A Filgueira
- Vascular Surgery Department, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | - C Taboada-Martínez
- Infectious Diseases Unit, Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | - C Portela-Pino
- Infectious Diseases Unit, Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | - A Nodar
- Infectious Diseases Unit, Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | - F Vasallo-Vidal
- Microbiology Department, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | - L Martinez-Lamas
- Microbiology Department, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | - A Pérez-Landeiro
- Pharmacy Department, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | - M Rubianes
- Infectious Diseases Unit, Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | - M T Pérez-Rodríguez
- Infectious Diseases Unit, Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Vigo, Spain.,Biomedical Research Institute Galicia Sur, Vigo, Spain
| |
Collapse
|
27
|
Jean SS, Lee YL, Hsu CW, Hsueh PR. In vitro susceptibilities of isolates of potentially naturally inducible chromosomal AmpC-producing metallo-β-lactamase-negative carbapenem-resistant Enterobacterales species to ceftazidime-avibactam: Data from the Antimicrobial Testing Leadership and Surveillance Programme, 2012-2019. Int J Antimicrob Agents 2022; 60:106617. [PMID: 35718266 DOI: 10.1016/j.ijantimicag.2022.106617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 04/28/2022] [Accepted: 06/12/2022] [Indexed: 11/17/2022]
Abstract
In total, 74,570 potentially naturally inducible chromosomal AmpC-producing (PNIC-AmpC) Enterobacterales isolates included in the Antimicrobial Testing Leadership and Surveillance Programme were obtained worldwide from 2012 to 2019 (22,503 from 2012 to 2014 and 52,067 from 2015 to 2019). One hundred seventeen and 711 isolates obtained in 2012-2014 and 2015-2019, respectively, were carbapenem-resistant Enterobacterales (PNIC-AmpC-CRE). The minimum inhibitory concentrations of ceftazidime-avibactam for these isolates against were determined using the broth microdilution method. Genes encoding different Ambler classes of β-lactamases were investigated using multiplex PCR. After 97 isolates harboring genes encoding metallo-β-lactamases (MβL) were excluded, 731 PNIC-AmpC MβL-negative CRE isolates (101 from 2012 to 2014 and 630 from 2015 to 2019) were included in this study. Enterobacter cloacae complex species, Escherichia coli, and Citrobacter freundii complex species accounted for 36.3% (n = 265), 30.4% (n = 222), and 11.8% (n = 86), respectively, followed by Providencia species (n = 72), Serratia species (n = 52), and Klebsiella aerogenes (n = 34). The resistance rates to ceftazidime-avibactam for the overall PNIC-AmpC MβL-negative CRE isolates differed markedly between the two periods (35.6% vs. 63.3%, P < 0.001). Similar trends were observed for the MβL-negative-CR-E. cloacae complex species (47.4% vs. 65.2%; P = 0.046) and MβL-negative-CR-E. coli (16.2% vs. 63.8%; P < 0.001) but not for MβL-negative-CR-C. freundii complex species (40% vs. 62%; P = 0.153). Amongst the PNIC-AmpC MβL-negative CRE isolates, resistance rates to ceftazidime-avibactam worsened. Caution should be taken when empirically prescribing ceftazidime-avibactam for infections caused by PNIC-AmpC-CRE before susceptibility data are available.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan; Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chin-Wang Hsu
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan; Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
28
|
Nichols WW, Bradford PA, Lahiri SD, Stone GG. The primary pharmacology of ceftazidime/avibactam: in vitro translational biology. J Antimicrob Chemother 2022; 77:2321-2340. [PMID: 35665807 DOI: 10.1093/jac/dkac171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous reviews of ceftazidime/avibactam have focused on in vitro molecular enzymology and microbiology or the clinically associated properties of the combination. Here we take a different approach. We initiate a series of linked reviews that analyse research on the combination that built the primary pharmacology data required to support the clinical and business risk decisions to perform randomized controlled Phase 3 clinical trials, and the additional microbiological research that was added to the above, and the safety and chemical manufacturing and controls data, that constituted successful regulatory licensing applications for ceftazidime/avibactam in multiple countries, including the USA and the EU. The aim of the series is to provide both a source of reference for clinicians and microbiologists to be able to use ceftazidime/avibactam to its best advantage for patients, but also a case study of bringing a novel β-lactamase inhibitor (in combination with an established β-lactam) through the microbiological aspects of clinical development and regulatory applications, updated finally with a review of resistance occurring in patients under treatment. This first article reviews the biochemistry, structural biology and basic microbiology of the combination, showing that avibactam inhibits the great majority of serine-dependent β-lactamases in Enterobacterales and Pseudomonas aeruginosa to restore the in vitro antibacterial activity of ceftazidime. Translation to efficacy against infections in vivo is reviewed in the second co-published article, Nichols et al. (J Antimicrob Chemother 2022; dkac172).
Collapse
|
29
|
Alsenani TA, Viviani SL, Kumar V, Taracila MA, Bethel CR, Barnes MD, Papp-Wallace KM, Shields RK, Nguyen MH, Clancy CJ, Bonomo RA, van den Akker F. Structural Characterization of the D179N and D179Y Variants of KPC-2 β-Lactamase: Ω-Loop Destabilization as a Mechanism of Resistance to Ceftazidime-Avibactam. Antimicrob Agents Chemother 2022; 66:e0241421. [PMID: 35341315 PMCID: PMC9017313 DOI: 10.1128/aac.02414-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemases (KPC-2 and KPC-3) present a global clinical threat, as these β-lactamases confer resistance to carbapenems and oxyimino-cephalosporins. Recent clinically identified KPC variants with substitutions at Ambler position D179, located in the Ω loop, are resistant to the β-lactam/β-lactamase inhibitor combination ceftazidime-avibactam, but susceptible to meropenem-vaborbactam. To gain insights into ceftazidime-avibactam resistance conferred by D179N/Y variants of KPC-2, crystal structures of these variants were determined. The D179N KPC-2 structure revealed that the change of the carboxyl to an amide moiety at position 179 disrupted the salt bridge with R164 present in wild-type KPC-2. Additional interactions were disrupted in the Ω loop, causing a decrease in the melting temperature. Shifts originating from N179 were also transmitted toward the active site, including ∼1-Å shifts of the deacylation water and interacting residue N170. The structure of the D179Y KPC-2 β-lactamase revealed more drastic changes, as this variant exhibited disorder of the Ω loop, with other flanking regions also being disordered. We postulate that the KPC-2 variants can accommodate ceftazidime because the Ω loop is displaced in D179Y or can be more readily displaced in D179N KPC-2. To understand why the β-lactamase inhibitor vaborbactam is less affected by the D179 variants than avibactam, we determined the crystal structure of D179N KPC-2 in complex with vaborbactam, which revealed wild-type KPC-2-like vaborbactam-active site interactions. Overall, the structural results regarding KPC-2 D179 variants revealed various degrees of destabilization of the Ω loop that contribute to ceftazidime-avibactam resistance, possible substrate-assisted catalysis of ceftazidime, and meropenem and meropenem-vaborbactam susceptibility.
Collapse
Affiliation(s)
- T. A. Alsenani
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - S. L. Viviani
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - V. Kumar
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - M. A. Taracila
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - C. R. Bethel
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - M. D. Barnes
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - K. M. Papp-Wallace
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - R. K. Shields
- University of Pittsburgh, Department of Medicine, Division of Infectious Diseases, Pittsburgh, Pennsylvania, USA
| | - M. H. Nguyen
- University of Pittsburgh, Department of Medicine, Division of Infectious Diseases, Pittsburgh, Pennsylvania, USA
| | - C. J. Clancy
- University of Pittsburgh, Department of Medicine, Division of Infectious Diseases, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - R. A. Bonomo
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Senior Clinical Scientist Investigator, CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - F. van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
30
|
Taracila MA, Bethel CR, Hujer AM, Papp-Wallace KM, Barnes MD, Rutter JD, VanPelt J, Shurina BA, van den Akker F, Clancy CJ, Nguyen MH, Cheng S, Shields RK, Page RC, Bonomo RA. Different Conformations Revealed by NMR Underlie Resistance to Ceftazidime/Avibactam and Susceptibility to Meropenem and Imipenem among D179Y Variants of KPC β-Lactamase. Antimicrob Agents Chemother 2022; 66:e0212421. [PMID: 35311523 PMCID: PMC9017342 DOI: 10.1128/aac.02124-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
β-Lactamase-mediated resistance to ceftazidime-avibactam (CZA) is a serious limitation in the treatment of Gram-negative bacteria harboring Klebsiella pneumoniae carbapenemase (KPC). Herein, the basis of susceptibility to carbapenems and resistance to ceftazidime (CAZ) and CZA of the D179Y variant of KPC-2 and -3 was explored. First, we determined that resistance to CZA in a laboratory strain of Escherichia coli DH10B was not due to increased expression levels of the variant enzymes, as demonstrated by reverse transcription PCR (RT-PCR). Using timed mass spectrometry, the D179Y variant formed prolonged acyl-enzyme complexes with imipenem (IMI) and meropenem (MEM) in KPC-2 and KPC-3, which could be detected up to 24 h, suggesting that IMI and MEM act as covalent β-lactamase inhibitors more than as substrates for D179Y KPC-2 and -3. This prolonged acyl-enzyme complex of IMI and MEM by D179Y variants was not observed with wild-type (WT) KPCs. CAZ was studied and the D179Y variants also formed acyl-enzyme complexes (1 to 2 h). Thermal denaturation and differential scanning fluorimetry showed that the tyrosine substitution at position 179 destabilized the KPC β-lactamases (KPC-2/3 melting temperature [Tm] of 54 to 55°C versus D179Y Tm of 47.5 to 51°C), and the D179Y protein was 3% disordered compared to KPC-2 at 318 K. Heteronuclear 1H/15N-heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy also revealed that the D179Y variant, compared to KPC-2, is partially disordered. Based upon these observations, we discuss the impact of disordering of the Ω loop as a consequence of the D179Y substitution. These conformational changes and disorder in the overall structure as a result of D179Y contribute to this unanticipated phenotype.
Collapse
Affiliation(s)
- Magdalena A. Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Christopher R. Bethel
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Andrea M. Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Krisztina M. Papp-Wallace
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Melissa D. Barnes
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Joseph D. Rutter
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Jamie VanPelt
- Cell, Molecular, and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio, USA
| | - Ben A. Shurina
- Cell, Molecular, and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio, USA
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Cornelius J. Clancy
- University of Pittsburgh, Department of Medicine, Infectious Diseases Section, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - M. Hong Nguyen
- University of Pittsburgh, Department of Medicine, Infectious Diseases Section, Pittsburgh, Pennsylvania, USA
| | - Shaoji Cheng
- University of Pittsburgh, Department of Medicine, Infectious Diseases Section, Pittsburgh, Pennsylvania, USA
| | - Ryan K. Shields
- University of Pittsburgh, Department of Medicine, Infectious Diseases Section, Pittsburgh, Pennsylvania, USA
| | - Richard C. Page
- Cell, Molecular, and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
31
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis 2022; 75:187-212. [PMID: 35439291 PMCID: PMC9890506 DOI: 10.1093/cid/ciac268] [Citation(s) in RCA: 230] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. The initial guidance document on infections caused by extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa) was published on 17 September 2020. Over the past year, there have been a number of important publications furthering our understanding of the management of ESBL-E, CRE, and DTR-P. aeruginosa infections, prompting a rereview of the literature and this updated guidance document. METHODS A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections reviewed, updated, and expanded previously developed questions and recommendations about the treatment of ESBL-E, CRE, and DTR-P. aeruginosa infections. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment recommendations are provided with accompanying rationales, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Recommendations apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of 24 October 2021. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Correspondence: P. D. Tamma, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA ()
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service and Center for Antimicrobial Resistance and Epidemiology, Louis Stokes Cleveland Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
32
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
33
|
Poirel L, Sadek M, Kusaksizoglu A, Nordmann P. Co-resistance to ceftazidime-avibactam and cefiderocol in clinical isolates producing KPC variants. Eur J Clin Microbiol Infect Dis 2022; 41:677-680. [PMID: 35088164 DOI: 10.1007/s10096-021-04397-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
Cefiderocol (FDC) and ceftazidime-avibactam (CZA) are among the latest generation of commercialized antibiotics against carbapenem-resistant Gram negatives. However, emergence of CZA resistance is being increasingly reported, involving different KPC variants in Enterobacterales. By analyzing two CZA-resistant KPC-3 clinical variants, KPC-41 and KPC-50, we showed that KPC-41, and to a lesser extent KPC-50, may also have an impact on susceptibility to FDC leading to a cross-resistance. This feature highlights that a susceptibility testing to FDC is mandatory prior any clinical use of FDC for treating infections due to KPC producers.
Collapse
Affiliation(s)
- Laurent Poirel
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, CH-1700, Fribourg, Switzerland
- INSERM European Unit (IAME), University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Mustafa Sadek
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, CH-1700, Fribourg, Switzerland
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Ayda Kusaksizoglu
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, CH-1700, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, CH-1700, Fribourg, Switzerland.
- INSERM European Unit (IAME), University of Fribourg, Fribourg, Switzerland.
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland.
- Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland.
| |
Collapse
|
34
|
Antimicrobial Treatment Options for Difficult-to-Treat Resistant Gram-Negative Bacteria Causing Cystitis, Pyelonephritis, and Prostatitis: A Narrative Review. Drugs 2022; 82:407-438. [PMID: 35286622 PMCID: PMC9057390 DOI: 10.1007/s40265-022-01676-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
Urinary tract infections, including cystitis, acute pyelonephritis, and prostatitis, are among the most common diagnoses prompting antibiotic prescribing. The rise in antimicrobial resistance over the past decades has led to the increasing challenge of urinary tract infections because of multidrug-resistant and "difficult-to-treat resistance" among Gram-negative bacteria. Recent advances in pharmacotherapy and medical microbiology are modernizing how these urinary tract infections are treated. Advances in pharmacotherapy have included not only the development and approval of novel antibiotics, such as ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, ceftolozane/tazobactam, cefiderocol, plazomicin, and glycylcyclines, but also the re-examination of the potential role of legacy antibiotics, including older aminoglycosides and tetracyclines. Recent advances in medical microbiology allow phenotypic and molecular mechanism of resistance testing, and thus antibiotic prescribing can be tailored to the mechanism of resistance in the infecting pathogen. Here, we provide a narrative review on the clinical and pre-clinical studies of drugs that can be used for difficult-to-treat resistant Gram-negative bacteria, with a particular focus on data relevant to the urinary tract. We also offer a pragmatic framework for antibiotic selection when encountering urinary tract infections due to difficult-to-treat resistant Gram-negative bacteria based on the organism and its mechanism of resistance.
Collapse
|
35
|
Impact of ceftazidime-avibactam treatment in the emergence of novel KPC variants in ST307- Klebsiella pneumoniae high-risk clone and consequences for their routine detection. J Clin Microbiol 2022; 60:e0224521. [PMID: 35107303 DOI: 10.1128/jcm.02245-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emergence of Klebsiella pneumoniae (Kp) isolates carrying novel blaKPC variants conferring ceftazidime-avibactam (CAZ/AVI) resistance is being increasingly reported. We evaluated the accuracy of phenotypic methods commonly used in routine clinical laboratories in the detection of novel KPC enzymes. Additionally, we characterized by WGS the KPC-ST307-Kp isolates recovered in our hospital before and after CAZ/AVI therapy. Rectal colonization or infection by carbapenem-resistant KPC-3-Kp isolates (imipenem MIC 16 mg/L, meropenem MIC 8->16 mg/L) and CAZ/AVI-susceptible (CAZ/AVI MIC 1-2 mg/L) were first detected in three ICU patients admitted between March-2020 and July-2020. KPC-Kp isolates with increased CAZ/AVI MICs (8-32 mg/L) and carbapenem susceptibility (imipenem and meropenem MIC <1 mg/L) were recovered within 6-24 days after CAZ/AVI treatment. WGS confirmed that all KPC-Kp isolates belonged to the ST307 high-risk clone and carried identical antimicrobial resistance genes and virulence factors. The presence of the novel blaKPC-46, blaKPC-66 and blaKPC-92 genes was confirmed in the Kp isolates with increased CAZ/AVI MICs and restored carbapenem activity. KPC production was confirmed by immunochromatography, the eazyplex®-Superbug-CRE system and the Xpert® Carba-R assay in all KPC-Kp isolates, but not in any isolate using chromogenic agar plates for carbapenemase producers (ChromID-CARBA), the KPC/MBL/OXA-48 Confirm Kit and the β-CARBA test. Nevertheless, all grew in chromogenic agar plates for ESBL producers (ChromID-ESBL). We report the failure of the most common phenotypic methods used for the detection of novel KPC carbapenemases but not of rapid molecular or immunochromatography assays thus highlighting their relevance in microbiology laboratories.
Collapse
|
36
|
Arcari G, Oliva A, Sacco F, Di Lella FM, Raponi G, Tomolillo D, Curtolo A, Venditti M, Carattoli A. Interplay between Klebsiella pneumoniae producing KPC-31 and KPC-3 under treatment with high dosage meropenem: a case report. Eur J Clin Microbiol Infect Dis 2022; 41:495-500. [PMID: 34988712 PMCID: PMC8731190 DOI: 10.1007/s10096-021-04388-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022]
Abstract
The objective was to study ceftazidime-avibactam resistant and susceptible Klebsiella pneumoniae isolated from a patient admitted to the Policlinico Umberto I of Rome for SARS-CoV2. Data on the evolution of patient's conditions, antimicrobial therapies, and microbiological data were collected. Whole-genome sequencing performed by Illumina and Nanopore sequencing methods were used to type the strains. During the hospitalization, a SARS-CoV2-infected patient was colonized by a KPC-producing K. pneumoniae strain and empirically treated with ceftazidime-avibactam (CZA) when presenting spiking fever symptoms. Successively, ST2502 CZA-resistant strain producing the KPC-31 variant gave a pulmonary infection to the patient. The infection was treated with high doses of meropenem. The KPC-31-producing strain disappeared but the patient remained colonized by a KPC-3-producing K. pneumoniae strain. An interplay between highly conserved KPC-31- and KPC-3-producing ST2502 strains occurred in the SARS-CoV2 patient during the hospitalization, selected by CZA and carbapenem treatments, respectively.
Collapse
Affiliation(s)
- Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Federica Sacco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Microbiology and Virology Unit, University Hospital Policlinico Umberto I, Rome, Italy
| | | | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Microbiology and Virology Unit, University Hospital Policlinico Umberto I, Rome, Italy
| | - Dario Tomolillo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ambrogio Curtolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
37
|
Xiong L, Wang X, Wang Y, Yu W, Zhou Y, Chi X, Xiao T, Xiao Y. Molecular mechanisms underlying bacterial resistance to ceftazidime/avibactam. WIREs Mech Dis 2022; 14:e1571. [PMID: 35891616 PMCID: PMC9788277 DOI: 10.1002/wsbm.1571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/30/2022]
Abstract
Ceftazidime/avibactam (CAZ/AVI), a combination of ceftazidime and a novel β-lactamase inhibitor (avibactam) that has been approved by the U.S. Food and Drug Administration, the European Union, and the National Regulatory Administration in China. CAZ/AVI is used mainly to treat complicated urinary tract infections and complicated intra-abdominal infections in adults, as well as to treat patients infected with Carbapenem-resistant Enterobacteriaceae (CRE) susceptible to CAZ/AVI. However, increased clinical application of CAZ/AVI has resulted in the development of resistant strains. Mechanisms of resistance in most of these strains have been attributed to blaKPC mutations, which lead to amino acid substitutions in β-lactamase and changes in gene expression. Resistance to CAZ/AVI is also associated with reduced expression and loss of outer membrane proteins or overexpression of efflux pumps. In this review, the prevalence of CAZ/AVI-resistance bacteria, resistance mechanisms, and selection of detection methods of CAZ/AVI are demonstrated, aiming to provide scientific evidence for the clinical prevention and treatment of CAZ/AVI resistant strains, and provide guidance for the development of new drugs. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Luying Xiong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Xueting Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yuan Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Wei Yu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yanzi Zhou
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Xiaohui Chi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Tingting Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yonghong Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina,Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
38
|
Tumbarello M, Raffaelli F, Cascio A, Falcone M, Signorini L, Mussini C, De Rosa FG, Losito AR, De Pascale G, Pascale R, Giacobbe DR, Oliva A, Farese A, Morelli P, Tiseo G, Meschiari M, Del Giacomo P, Montagnani F, Fabbiani M, Vargas J, Spanu T, Bassetti M, Venditti M, Viale P. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac022. [PMID: 35265842 PMCID: PMC8900192 DOI: 10.1093/jacamr/dlac022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/15/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives To explore the real-life performance of meropenem/vaborbactam for treating serious KPC-producing Klebsiella pneumoniae infections, including those resistant to ceftazidime/avibactam. Methods A retrospective observational cohort study was conducted in 12 Italian hospitals. Enrolled patients had K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp) infections (59.5% of which were ceftazidime/avibactam resistant). Patients who received ≥72 h of meropenem/vaborbactam therapy (with or without other antimicrobials) in a compassionate-use setting were included. Results The 37 infections (all hospital-acquired) were mainly bacteraemic (BSIs, n = 23) or lower respiratory tract infections (LRTIs, n = 10). Clinical cure was achieved in 28 (75.6%) cases and microbiologically confirmed in all 25 with follow-up cultures. Three (10.7%) of the 28 clinical cures (all BSIs, 2/3 microbiologically confirmed) were followed by in-hospital recurrences after meropenem/vaborbactam was discontinued (median interval: 18 days). All three recurrences were susceptible to meropenem/vaborbactam and successfully managed with meropenem/vaborbactam combined with colistin or fosfomycin. Nine patients (24.3%) (all with BSIs or LRTIs) died in hospital with persistent signs of infection. Most were aged over 60 years, with high comorbidity burdens and INCREMENT scores ≥8. Only one had received meropenem/vaborbactam monotherapy. Six began meropenem/vaborbactam therapy >48 h after infection onset. Outcomes were unrelated to the isolate’s ceftazidime/avibactam susceptibility status. The single adverse event observed consisted of severe leukopenia with thrombocytopenia. Conclusions With the well-known limitations of real-life retrospective studies, our results support previous findings indicating that meropenem/vaborbactam therapy will be a safe, effective tool for managing serious KPC-Kp infections, including the increasing proportion displaying resistance to ceftazidime/avibactam.
Collapse
Affiliation(s)
- Mario Tumbarello
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- UOC Malattie Infettive e Tropicali, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
- Corresponding author. E-mail: ;
| | - Francesca Raffaelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonio Cascio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127, Palermo, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Liana Signorini
- UOC Malattie Infettive, Spedali Civili di Brescia, Brescia, Italy
| | - Cristina Mussini
- Clinica delle Malattie Infettive, Università di Modena e Reggio Emilia, Modena, Italy
| | | | - Angela Raffaella Losito
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Roma, Italy
- Dipartimento di Scienze dell’emergenze, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Renato Pascale
- Dipartimento scienze mediche e chirurgiche, Università di Bologna/IRCCS Policlinico Sant’Orsola, Bologna, Italy
| | - Daniele Roberto Giacobbe
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze della Salute (DISSAL), Università di Genova, Genova, Italy
| | - Alessandra Oliva
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, Roma, Italy
| | - Alberto Farese
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Paola Morelli
- Infectious Diseases Unit, Hospital Health Direction, Humanitas Clinical and Research Center – IRCCS, Rozzano, Milan, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Giusy Tiseo
- Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marianna Meschiari
- Clinica delle Malattie Infettive, Università di Modena e Reggio Emilia, Modena, Italy
| | - Paola Del Giacomo
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Francesca Montagnani
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- UOC Malattie Infettive e Tropicali, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Massimiliano Fabbiani
- UOC Malattie Infettive e Tropicali, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Joel Vargas
- Dipartimento di Scienze dell’emergenze, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Teresa Spanu
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Dipartimento di Scienze dell’emergenze, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Matteo Bassetti
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze della Salute (DISSAL), Università di Genova, Genova, Italy
| | - Mario Venditti
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, Roma, Italy
| | - Pierluigi Viale
- Dipartimento scienze mediche e chirurgiche, Università di Bologna/IRCCS Policlinico Sant’Orsola, Bologna, Italy
| |
Collapse
|
39
|
Paul M, Carrara E, Retamar P, Tängdén T, Bitterman R, Bonomo RA, de Waele J, Daikos GL, Akova M, Harbarth S, Pulcini C, Garnacho-Montero J, Seme K, Tumbarello M, Lindemann PC, Gandra S, Yu Y, Bassetti M, Mouton JW, Tacconelli E, Baño JR. European Society of clinical microbiology and infectious diseases (ESCMID) guidelines for the treatment of infections caused by Multidrug-resistant Gram-negative bacilli (endorsed by ESICM -European Society of intensive care Medicine). Clin Microbiol Infect 2021; 28:521-547. [PMID: 34923128 DOI: 10.1016/j.cmi.2021.11.025] [Citation(s) in RCA: 387] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
SCOPE These ESCMID guidelines address the targeted antibiotic treatment of 3rd generation cephalosporin-resistant Enterobacterales (3GCephRE) and carbapenem-resistant Gram-negative bacteria, focusing on the effectiveness of individual antibiotics and on combination vs. monotherapy. METHODS An expert panel was convened by ESCMID. A systematic review was performed including randomized controlled trials and observational studies, examining different antibiotic treatment regimens for the targeted treatment of infections caused by the 3GCephRE, carbapenem-resistant Enterobacterales (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA) and carbapenem-resistant Acinetobacter baumanni (CRAB). Treatments were classified as head-to-head comparisons between individual antibiotics and monotherapy vs. combination therapy regimens, including defined monotherapy and combination regimens only. The primary outcome was all-cause mortality, preferably at 30 days and secondary outcomes included clinical failure, microbiological failure, development of resistance, relapse/recurrence, adverse events and length of hospital stay. The last search of all databases was conducted in December 2019, followed by a focused search for relevant studies up until ECCMID 2021. Data were summarized narratively. The certainty of the evidence for each comparison between antibiotics and between monotherapy vs. combination therapy regimens was classified by the GRADE recommendations. The strength of the recommendations for or against treatments was classified as strong or conditional (weak). RECOMMENDATIONS The guideline panel reviewed the evidence per pathogen, preferably per site of infection, critically appraising the existing studies. Many of the comparisons were addressed in small observational studies at high risk of bias only. Notably, there was very little evidence on the effects of the new, recently approved, beta-lactam beta-lactamase inhibitors on infections caused by carbapenem-resistant Gram-negative bacteria. Most recommendations are based on very-low and low certainty evidence. A high value was placed on antibiotic stewardship considerations in all recommendations, searching for carbapenem-sparing options for 3GCephRE and limiting the recommendations of the new antibiotics for severe infections, as defined by the sepsis-3 criteria. Research needs are addressed.
Collapse
Affiliation(s)
- Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Elena Carrara
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Pilar Retamar
- Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/ Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Roni Bitterman
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Robert A Bonomo
- Department of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Medical Service, Research Service, and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA;; VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH, USA
| | - Jan de Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - George L Daikos
- First Department of Medicine, National and Kapodistrian University of Athens
| | - Murat Akova
- Hacettepe University School of Medicine, Department Of Infectious Diseases, Ankara, Turkey
| | - Stephan Harbarth
- Infection Control Programme, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Celine Pulcini
- Université de Lorraine, APEMAC, Nancy, France; Université de Lorraine, CHRU-Nancy, Infectious Diseases Department, Nancy, France
| | | | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Italy
| | | | - Sumanth Gandra
- Division of Infectious Diseases, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Matteo Bassetti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; Clinica Malattie Infettive, San Martino Policlinico Hospital, Genoa, Italy
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona, Italy; Division of Infectious Diseases, Department of Internal Medicine I, German Center for Infection Research, University of Tübingen, Tübingen, Germany; German Centre for Infection Research (DZIF), Clinical Research Unit for Healthcare Associated Infections, Tübingen, Germany.
| | - Jesus Rodriguez Baño
- Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/ Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| |
Collapse
|
40
|
Ceftazidime/Avibactam-Resistant Klebsiella pneumoniae subsp. pneumoniae Isolates in a Tertiary Italian Hospital: Identification of a New Mutation of the Carbapenemase Type 3 (KPC-3) Gene Conferring Ceftazidime/Avibactam Resistance. Microorganisms 2021; 9:microorganisms9112356. [PMID: 34835481 PMCID: PMC8624296 DOI: 10.3390/microorganisms9112356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022] Open
Abstract
Several Klebsiella pneumoniae carpabenemase (KPC) gene mutations are associated with ceftazidime/avibactam (CAZ-AVI) resistance. Here, we describe four Klebsiella pneumoniae subsp. pneumoniae CAZ-AVI-resistant clinical isolates, collected at the University Hospital of Tor Vergata, Rome, Italy, from July 2019 to February 2020. These resistant strains were characterized as KPC-3, having the transition from cytosine to thymine (CAC-TAC) at nucleotide position 814, with histidine that replaces tyrosine (H272Y). In addition, two different types of KPC gene mutations were detected. The first one, common to three strains, was the D179Y (G532T), associated with CAZ-AVI resistance. The second mutation, found only in one strain, is a new mutation of the KPC-3 gene: a transversion from thymine to adenine (CTG-CAG) at nucleotide position 553. This mutation causes a KPC variant in which glutamine replaces leucine (Q168L). None of the isolates were detected by a rapid immunochromatographic assay for detection of carbapenemase (NG Biotech, Guipry, France) and were unable to grow on a selective chromogenic medium Carba SMART (bioMerieux, Firenze, Italy). Thus, they escaped common tests used for the prompt detection of Klebsiella pneumoniae KPC-producing.
Collapse
|
41
|
Han X, Shi Q, Mao Y, Quan J, Zhang P, Lan P, Jiang Y, Zhao D, Wu X, Hua X, Yu Y. Emergence of Ceftazidime/Avibactam and Tigecycline Resistance in Carbapenem-Resistant Klebsiella pneumoniae Due to In-Host Microevolution. Front Cell Infect Microbiol 2021; 11:757470. [PMID: 34760723 PMCID: PMC8573091 DOI: 10.3389/fcimb.2021.757470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae can cause both hospital- and community-acquired clinical infections. Last-line antibiotics against carbapenem-resistant K. pneumoniae (CRKP), such as ceftazidime/avibactam (CZA) and tigecycline (TGC), remain limited as treatment choices. This study aimed to investigate the mechanisms by which CRKP acquires CZA and TGC resistance in vivo under β-lactam antibiotic and TGC exposure. Three CRKP strains (XDX16, XDX31 and XDX51) were consecutively isolated from an inpatient with a urinary tract infection in two months. PFGE and MLST showed that these strains were closely related and belonged to sequence type (ST) 4496, which is a novel ST closely related to ST11. Compared to XDX16 and XDX31, XDX51 developed CZA and TGC resistance. Sequencing showed that double copies of blaKPC-2 were located on a 108 kb IncFII plasmid, increasing blaKPC-2 expression in XDX51. In addition, ramR was interrupted by Insertion sequence (IS) Kpn14 in XDX51, with this strain exhibiting upregulation of ramA, acrA and acrB expression compared with XDX16 and XDX31. Furthermore, LPS analysis suggested that the O-antigen in XDX51 was defective due to ISKpn26 insertion in the rhamnosyl transferase gene wbbL, which slightly reduced TGC susceptibility. In brief, CZA resistance was caused mainly by blaKPC-2 duplication, and TGC resistance was caused by ramR inactivation with additional LPS changes due to IS element insertion in wbbL. Notably, CRKP developed TGC and CZA resistance within one month under TGC and β-lactam treatment without exposure to CZA. The CRKP clone ST4496 has the ability to evolve CZA and TGC resistance rapidly, posing a potential threat to inpatients during antibiotic treatment.
Collapse
Affiliation(s)
- Xinhong Han
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiucheng Shi
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yihan Mao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Quan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Lan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Zhao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueqing Wu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
In-Vitro Selection of Ceftazidime/Avibactam Resistance in OXA-48-Like-Expressing Klebsiella pneumoniae: In-Vitro and In-Vivo Fitness, Genetic Basis and Activities of β-Lactam Plus Novel β-Lactamase Inhibitor or β-Lactam Enhancer Combinations. Antibiotics (Basel) 2021; 10:antibiotics10111318. [PMID: 34827256 PMCID: PMC8614831 DOI: 10.3390/antibiotics10111318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ceftazidime/avibactam uniquely demonstrates activity against both KPC and OXA-48-like carbapenemase-expressing Enterobacterales. Clinical resistance to ceftazidime/avibactam in KPC-producers was foreseen in in-vitro resistance studies. Herein, we assessed the resistance selection propensity of ceftazidime/avibactam in K. pneumoniae expressing OXA-48-like β-lactamases (n = 10), employing serial transfer approach. Ceftazidime/avibactam MICs (0.25–4 mg/L) increased to 16–256 mg/L after 15 daily-sequential transfers. The whole genome sequence analysis of terminal mutants showed modifications in proteins linked to efflux (AcrB/AcrD/EmrA/Mdt), outer membrane permeability (OmpK36) and/or stress response pathways (CpxA/EnvZ/RpoE). In-vitro growth properties of all the ceftazidime/avibactam-selected mutants were comparable to their respective parents and they retained the ability to cause pulmonary infection in neutropenic mice. Against these mutants, we explored the activities of various combinations of β-lactams (ceftazidime or cefepime) with structurally diverse β-lactamase inhibitors or a β-lactam enhancer, zidebactam. Zidebactam, in combination with either cefepime or ceftazidime, overcame ceftazidime/avibactam resistance (MIC range 0.5–8 mg/L), while cefepime/avibactam was the second best (MIC: 0.5–16 mg/L) in yielding lower MICs. The present work revealed the possibility of ceftazidime/avibactam resistance in OXA-48-like K. pneumoniae through mutations in proteins involved in efflux and/or porins without concomitant fitness cost mandating astute monitoring of ceftazidime/avibactam resistance among OXA-48 genotypes.
Collapse
|
43
|
Evaluation of ceftazidime/avibactam alone and in combination with amikacin, colistin and tigecycline against Klebsiella pneumoniae carbapenemase-producing K. pneumoniae by in vitro time-kill experiment. PLoS One 2021; 16:e0258426. [PMID: 34648556 PMCID: PMC8516195 DOI: 10.1371/journal.pone.0258426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) poses a major threat to human health worldwide. Combination therapies of antibiotics with different mechanisms have been recommended in literatures. This study assessed in vitro antibacterial activities and synergistic activities of ceftazidime/avibactam alone and in combinations against KPC-Kp. In total, 70 isolates from 2 hospitals in Beijing were examined in our study. By using the agar dilution method and broth dilution method, we determined the minimum inhibitory concentration (MIC) of candidate antibiotics. Ceftazidime/avibactam demonstrated promising susceptibility against KPC-Kp (97.14%). Synergistic activities testing was achieved by checkerboard method and found ceftazidime/avibactam-amikacin displayed synergism in 90% isolates. Ceftazidime/avibactam-colistin displayed partial synergistic in 43% isolates, and ceftazidime/avibactam-tigecycline displayed indifference in 67% isolates. In time-kill assays, antibiotics at 1-fold MIC were mixed with bacteria at 1 × 105 CFU/ml and Mueller-Hinton broth (MHB). Combinations of ceftazidime/avibactam with amikacin and tigecycline displayed better antibacterial effects than single drug. Ceftazidime/avibactam-colistin combination did not exhibit better effect than single drug. In KPC-Kp infections, susceptibility testing suggested that ceftazidime/avibactam may be considered as first-line choice. However, monotherapy is often inadequate in infection management. Thus, our study revealed that combination therapy including ceftazidime/avibactam colistin and ceftazidime/avibactam tigecycline may benefit than monotherapy in KPC-Kp treatment. Further pharmacokinetic/pharmacodynamic and mutant prevention concentration studies should be performed to optimize multidrug-regimens.
Collapse
|
44
|
Mushtaq S, Vickers A, Ellaby N, Woodford N, Livermore DM. Selection and characterization of mutational resistance to aztreonam/avibactam in β-lactamase-producing Enterobacterales. J Antimicrob Chemother 2021; 77:98-111. [PMID: 34568905 DOI: 10.1093/jac/dkab346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Aztreonam/avibactam is being developed for its broad activity against carbapenemase-producing Enterobacterales, including those with metallo-β-lactamases (MBLs). Its potential to select resistance in target pathogens was explored. Findings are compared with previous data for ceftazidime/avibactam and ceftaroline/avibactam. METHODS Single-step mutants were sought from 52 Enterobacterales with AmpC, ESBL, KPC, MBL and OXA-48-like enzymes. Mutation frequencies were calculated. MICs were determined by CLSI agar dilution. Genomes were sequenced using Illumina methodology. RESULTS Irrespective of β-lactamase type and of whether avibactam was used at 1 or 4 mg/L, mutants could rarely be obtained at >4× the starting MIC, and most MIC rises were correspondingly small. Putative resistance (MIC >8 + 4 mg/L) associated with changes to β-lactamases was seen only for mutants of AmpC, where it was associated with Asn346Tyr and Tyr150Cys substitutions. Asn346Tyr led to broad resistance to avibactam combinations; Tyr150Cys significantly affected only aztreonam/avibactam. MIC rises up to 4 + 4 mg/L were seen for producers of mutant KPC-2 or -3 enzymes, and were associated with Trp105Arg, Ser106Pro and Ser109Pro substitutions, which all reduced the MICs of other β-lactams. For producers of other β-lactamase types, we largely found mutants with lesions in baeRS or envZ, putatively affecting drug accumulation. Single mutants had lesions in ampD, affecting AmpC expression or ftsI, encoding PBP3. CONCLUSIONS The risk of mutational resistance to aztreonam/avibactam appears smaller than for ceftazidime/avibactam, where Asp179Tyr arises readily in KPC enzymes, conferring frank resistance. Asn346 substitutions in AmpC enzymes may remain a risk, having been repeatedly selected with multiple avibactam combinations in vitro.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England National Infection Service, London, UK
| | - Anna Vickers
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England National Infection Service, London, UK
| | - Nicholas Ellaby
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England National Infection Service, London, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England National Infection Service, London, UK
| | | |
Collapse
|
45
|
Guo Y, Liu N, Lin Z, Ba X, Zhuo C, Li F, Wang J, Li Y, Yao L, Liu B, Xiao S, Jiang Y, Zhuo C. Mutations in porin LamB contribute to ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae. Emerg Microbes Infect 2021; 10:2042-2051. [PMID: 34551677 PMCID: PMC8567916 DOI: 10.1080/22221751.2021.1984182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ceftazidime-avibactam (CAZ-AVI) shows promising activity against carbapenem-resistant Klebsiella pneumoniae (CRKP), however, CAZ-AVI resistance have emerged recently. Mutations in KPCs, porins OmpK35 and/or OmpK36, and PBPs are known to contribute to the resistance to CAZ-AVI in CRKP. To identify novel CAZ-AVI resistance mechanism, we generated 10 CAZ-AVI-resistant strains from 14 CAZ-AVI susceptible KPC-producing K. pneumoniae (KPC-Kp) strains through in vitro multipassage resistance selection using low concentrations of CAZ-AVI. Comparative genomic analysis for the original and derived mutants identified CAZ-AVI resistance-associated mutations in KPCs, PBP3 (encoded by ftsI), and LamB, an outer membrane maltoporin. CAZ-AVI susceptible KPC-Kp strains became resistant when complemented with mutated blaKPC genes. Complementation experiments also showed that a plasmid borne copy of wild-type lamB or ftsI gene reduced the MIC value of CAZ-AVI in the induced resistant strains. In addition, blaKPC expression level increased in four of the six CAZ-AVI-resistant strains without KPC mutations, indicating a probable association between increased blaKPC expression and increased resistance in these strains. In conclusion, we here identified a novel mechanism of CAZ-AVI resistance associated with mutations in porin LamB in KPC-Kp.
Collapse
Affiliation(s)
- Yingyi Guo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ningjing Liu
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhiwei Lin
- Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Guangdong, People's Republic of China
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Chuyue Zhuo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Feifeng Li
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiong Wang
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yitan Li
- Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Guangdong, People's Republic of China
| | - Likang Yao
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Baomo Liu
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shunian Xiao
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ying Jiang
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chao Zhuo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
46
|
Moreira NK, Caierão J. Ceftazidime-avibactam: are we safe from class A carbapenemase producers' infections? Folia Microbiol (Praha) 2021; 66:879-896. [PMID: 34505209 DOI: 10.1007/s12223-021-00918-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 01/14/2023]
Abstract
Recently, new combinations of β-lactams and β-lactamase inhibitors became available, including ceftazidime-avibactam, and increased the ability to treat infections caused by carbapenem-resistant Enterobacterales (CRE). Despite the reduced time of clinical use, isolates expressing resistance to ceftazidime-avibactam have been reported, even during treatment or in patients with no previous contact with this drug. Here, we detailed review data on global ceftazidime-avibactam susceptibility, the mechanisms involved in resistance, and the molecular epidemiology of resistant isolates. Ceftazidime-avibactam susceptibility remains high (≥ 98.4%) among Enterobacterales worldwide, being lower among extended-spectrum β-lactamase (ESBL) producers and CRE. Alterations in class A β-lactamases are the major mechanism involved in ceftazidime-avibactam resistance, and mutations are mainly, but not exclusively, located in the Ω loop of these enzymes. Modifications in Klebsiella pneumoniae carbapenemase (KPC) 3 and KPC-2 have been observed by many authors, generating variants with different mutations, insertions, and/or deletions. Among these, the most commonly described is Asp179Tyr, both in KPC-3 (KPC-31 variant) and in KPC-2 (KPC-33 variant). Changes in membrane permeability and overexpression of efflux systems may also be associated with ceftazidime-avibactam resistance. Although several clones have been reported, ST258 with Asp179Tyr deserves special attention. Surveillance studies and rationale use are essential to retaining the activity of this and other antimicrobials against class A CRE.
Collapse
Affiliation(s)
- Natália Kehl Moreira
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil.
| | - Juliana Caierão
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil
| |
Collapse
|
47
|
Li X, Quan J, Ke H, Wu W, Feng Y, Yu Y, Jiang Y. Emergence of a KPC Variant Conferring Resistance to Ceftazidime-Avibactam in a Widespread ST11 Carbapenem-Resistant Klebsiella pneumoniae Clone in China. Front Microbiol 2021; 12:724272. [PMID: 34484166 PMCID: PMC8415713 DOI: 10.3389/fmicb.2021.724272] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection poses a great threat to public health worldwide, and KPC-2-producing strains are the main factors responsible for resistance to carbapenems in China. Ceftazidime/avibactam (CZA) is a novel β-lactam/β-lactamase inhibitor combination with good activity against KPC-2 carbapenemase and is becoming the most important option for treating KPC-producing CRKP infection. Here, we report the emergence of a novel KPC-2 variant, designated KPC-74, produced by K. pneumoniae strain KP55, that conferred CZA resistance in a patient after CZA exposure. The novel blaKPC–74 variant showed a deletion of 6 nucleotides at positions 712–717 compared with blaKPC–2, and this deletion resulted in the consequent deletion of glycine and valine at positions 239 and 240. Antimicrobial susceptibility testing showed that KP55 presents multidrug resistance, including resistance to CZA and ertapenem, but is susceptible to imipenem, meropenem, and colistin. The blaKPC–74 gene was located on a plasmid, as determined by S1-nuclease pulsed-field gel electrophoresis followed by southern blotting, and confirmed to be 133,766 bp in length by whole-genome sequencing on both the Illumina and MinION platforms. The CZA resistance phenotype of the novel KPC variant was confirmed by both transformation of the blaKPC–74-harboring plasmid and a blaKPC–74 gene cloning assay, showing a 64-fold higher CZA minimum inhibitory concentration (MIC) than the recipient strains. The G239_V240del observed in KPC-74 was outside the omega-loop region but was still close to the active site Ser70 and omega-loop in the protein tertiary structure. The enzyme kinetic parameters and IC50 values further indicated that the hydrolytic activity of the KPC-74 enzyme against ceftazidime was potentiated twofold and that the affinity between KPC-74 and avibactam was alleviated 17-fold compared with that of the KPC-2 allele. This CZA resistance mediated by KPC-74 could be selected after CZA therapy and evolved to be more diverse and heterogeneous. Surveillance of CZA resistance is urgently needed in clinical settings.
Collapse
Affiliation(s)
- Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jingjing Quan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Huanhuan Ke
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhao Wu
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
48
|
Evaluation of SuperCAZ/AVI® Medium for Screening Ceftazidime-avibactam Resistant Gram-negative Isolates. Diagn Microbiol Infect Dis 2021; 101:115475. [PMID: 34419742 DOI: 10.1016/j.diagmicrobio.2021.115475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022]
Abstract
The industrial version of SuperCAZ/AVI® medium developed for screening CAZ/AVI resistant Gram-negative isolates has been evaluated here using a collection of 87 well-characterized clinical isolates of worldwide origin. In addition, testing was performed by spiking stools with a series of resistant and susceptible isolates. In those conditions, the SuperCAZ/AVI® medium exhibited a sensitivity and specificity of 100 %, down to the lower limit of detection of 101 to 102 CFU/ml. The SuperCAZ/AVI® medium is a sensitive and specific screening medium for detection of CZA-resistant bacteria regardless of their resistance mechanisms.
Collapse
|
49
|
In Vivo Evolution of GES β-Lactamases Driven by Ceftazidime/Avibactam Treatment of Pseudomonas aeruginosa Infections. Antimicrob Agents Chemother 2021; 65:e0098621. [PMID: 34125593 DOI: 10.1128/aac.00986-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms underlying an in vivo switch in the resistance phenotype of P. aeruginosa after ceftazidime-avibactam treatment was investigated. The initial isolate (a blood culture) was resistant to meropenem but remained susceptible to antipseudomonal cephalosporins and combinations with β-lactamase inhibitors. One week after ceftazidime-avibactam therapy, a subsequent isolate (a rectal swab) recovered from the same patient showed the opposite phenotype. Whole-genome sequence analysis revealed a single SNP difference between both (ST235) isolates, leading to a P162S change in blaGES-5, creating blaGES-15. Thus, blaGES-1, blaGES-5, and blaGES-15 were cloned and expressed in the wild-type strain PAO1. Susceptibility profiles confirmed the P162S substitution reverted the carbapenemase phenotype determined by the G170S change of GES-5 back into the ESBL phenotype of GES-1.
Collapse
|
50
|
KPC-Mediated Resistance to Ceftazidime-Avibactam and Collateral Effects in Klebsiella pneumoniae. Antimicrob Agents Chemother 2021; 65:e0089021. [PMID: 34228551 DOI: 10.1128/aac.00890-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Enterobacterales, such as Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae, represent a major threat to public health due to their rapid spread. Novel drug combinations such as ceftazidime-avibactam (CZA), combining a broad-spectrum cephalosporin along with a broad-spectrum β-lactamase inhibitor, have recently been introduced and have been shown to exhibit excellent activity toward multidrug-resistant KPC-producing Enterobacterales strains. However, CZA-resistant K. pneumoniae isolates are now being increasingly reported, mostly corresponding to producers of KPC variants. In this study, we evaluated in vitro the nature of the mutations in the KPC-2 and KPC-3 β-lactamase sequences (the most frequent KPC-type enzymes) that lead to CZA resistance and the subsequent effects of these mutations on susceptibility to other β-lactam antibiotics. Single-step in vitro selection assays were conducted, resulting in the identification of a series of mutations in the KPC sequence which conferred the ability of those mutated enzymes to confer resistance to CZA. Hence, 16 KPC-2 variants and 10 KPC-3 variants were obtained. Production of the KPC variants in an Escherichia coli recombinant strain resulted in a concomitant increased susceptibility to broad-spectrum cephalosporins and carbapenems, with the exceptions of ceftazidime and piperacillin-tazobactam, compared to wild-type KPC enzymes. Enzymatic assays showed that all of the KPC variants identified exhibited an increased affinity toward ceftazidime and a slightly decreased sensitivity to avibactam, sustaining their impact on CZA resistance. However, their respective carbapenemase activities were concurrently negatively impacted.
Collapse
|