1
|
Ding J, Hoglund RM, Tagbor H, Tinto H, Valéa I, Mwapasa V, Kalilani-Phiri L, Van Geertruyden JP, Nambozi M, Mulenga M, Hachizovu S, Ravinetto R, D'Alessandro U, Tarning J. Population pharmacokinetics of amodiaquine and piperaquine in African pregnant women with uncomplicated Plasmodium falciparum infections. CPT Pharmacometrics Syst Pharmacol 2024. [PMID: 39228131 DOI: 10.1002/psp4.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 09/05/2024] Open
Abstract
Artemisinin-based combination therapy (ACT) is the first-line recommended treatment for uncomplicated malaria. Pharmacokinetic (PK) properties in pregnant women are often based on small studies and need to be confirmed and validated in larger pregnant patient populations. This study aimed to evaluate the PK properties of amodiaquine and its active metabolite, desethylamodiaquine, and piperaquine in women in their second and third trimester of pregnancy with uncomplicated P. falciparum infections. Eligible pregnant women received either artesunate-amodiaquine (200/540 mg daily, n = 771) or dihydroartemisinin-piperaquine (40/960 mg daily, n = 755) for 3 days (NCT00852423). Population PK properties were evaluated using nonlinear mixed-effects modeling, and effect of gestational age and trimester was evaluated as covariates. 1071 amodiaquine and 1087 desethylamodiaquine plasma concentrations, and 976 piperaquine plasma concentrations, were included in the population PK analysis. Amodiaquine concentrations were described accurately with a one-compartment disposition model followed by a two-compartment disposition model of desethylamodiaquine. The relative bioavailability of amodiaquine increased with gestational age (1.25% per week). The predicted exposure to desethylamodiaquine was 2.8%-32.2% higher in pregnant women than that reported in non-pregnant women, while day 7 concentrations were comparable. Piperaquine concentrations were adequately described by a three-compartment disposition model. Neither gestational age nor trimester had significant impact on the PK of piperaquine. The predicted exposure and day 7 concentrations of piperaquine were similar to that reported in non-pregnant women. In conclusion, the exposure to desethylamodiaquine and piperaquine was similar to that in non-pregnant women. Dose adjustment is not warranted for women in their second and their trimester of pregnancy.
Collapse
Affiliation(s)
- Junjie Ding
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Harry Tagbor
- University of Health and Allied Sciences, Ho, Ghana
| | | | | | - Victor Mwapasa
- Department of Community and Environmental Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Linda Kalilani-Phiri
- Department of Community and Environmental Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | | | | | | | - Raffaella Ravinetto
- Public Health Department, Institute of Tropical Medicine, Antwerp, Belgium
- School of Public Health, University of the Western Cape, Cape Town, South Africa
| | - Umberto D'Alessandro
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- The WorldWide Antimalarial Resistance Network, Oxford, UK
| |
Collapse
|
2
|
Saito M, Wilaisrisak P, Pimanpanarak M, Viladpai-Nguen J, Paw MK, Koesukwiwat U, Tarning J, White NJ, Nosten F, McGready R. Comparison of lumefantrine, mefloquine, and piperaquine concentrations between capillary plasma and venous plasma samples in pregnant women with uncomplicated falciparum and vivax malaria. Antimicrob Agents Chemother 2024; 68:e0009324. [PMID: 38597636 PMCID: PMC11064628 DOI: 10.1128/aac.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
Capillary samples offer practical benefits compared with venous samples for the measurement of drug concentrations, but the relationship between the two measures varies between different drugs. We measured the concentrations of lumefantrine, mefloquine, piperaquine in 270 pairs of venous plasma and concurrent capillary plasma samples collected from 270 pregnant women with uncomplicated falciparum or vivax malaria. The median and range of venous plasma concentrations included in this study were 447.5 ng/mL (8.81-3,370) for lumefantrine (day 7, n = 76, median total dose received 96.0 mg/kg), 17.9 ng/mL (1.72-181) for desbutyl-lumefantrine, 1,885 ng/mL (762-4,830) for mefloquine (days 3-21, n = 90, median total dose 24.9 mg/kg), 641 ng/mL (79.9-1,950) for carboxy-mefloquine, and 51.8 ng/mL (3.57-851) for piperaquine (days 3-21, n = 89, median total dose 52.2 mg/kg). Although venous and capillary plasma concentrations showed a high correlation (Pearson's correlation coefficient: 0.90-0.99) for all antimalarials and their primary metabolites, they were not directly interchangeable. Using the concurrent capillary plasma concentrations and other variables, the proportions of venous plasma samples predicted within a ±10% precision range was 34% (26/76) for lumefantrine, 36% (32/89) for desbutyl-lumefantrine, 74% (67/90) for mefloquine, 82% (74/90) for carboxy-mefloquine, and 24% (21/89) for piperaquine. Venous plasma concentrations of mefloquine, but not lumefantrine and piperaquine, could be predicted by capillary plasma samples with an acceptable level of agreement. Capillary plasma samples can be utilized for pharmacokinetic and clinical studies, but caution surrounding cut-off values is required at the individual level.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT01054248.
Collapse
Affiliation(s)
- Makoto Saito
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Pornpimon Wilaisrisak
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mupawjay Pimanpanarak
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Jacher Viladpai-Nguen
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Moo Kho Paw
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Urairat Koesukwiwat
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J. White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Coppola P, Butler A, Cole S, Kerwash E. Total and Free Blood and Plasma Concentration Changes in Pregnancy for Medicines Highly Bound to Plasma Proteins: Application of Physiologically Based Pharmacokinetic Modelling to Understand the Impact on Efficacy. Pharmaceutics 2023; 15:2455. [PMID: 37896215 PMCID: PMC10609738 DOI: 10.3390/pharmaceutics15102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Free drug concentrations are generally considered the pharmacologically active moiety and are important for cellular diffusion and distribution. Pregnancy-related changes in plasma protein binding and blood partitioning are due to decreases in plasma albumin, alpha-1-acid glycoprotein, and haematocrit; this may lead to increased free concentrations, tissue distribution, and clearance during pregnancy. In this paper we highlight the importance and challenges of considering changes in total and free concentrations during pregnancy. For medicines highly bound to plasma proteins, such as tacrolimus, efavirenz, clindamycin, phenytoin, and carbamazepine, differential changes in concentrations of free drug during pregnancy may be clinically significant and have important implications for dose adjustment. Therapeutic drug monitoring usually relies on the measurement of total concentrations; this can result in dose adjustments that are not necessary when changes in free concentrations are considered. We explore the potential of physiologically based pharmacokinetic (PBPK) models to support the understanding of the changes in plasma proteins binding, using tacrolimus and efavirenz as example drug models. The exposure to either drug was predicted to be reduced during pregnancy; however, the decrease in the exposure to the total tacrolimus and efavirenz were significantly larger than the reduction in the exposure to the free drug. These data show that PBPK modelling can support the impact of the changes in plasma protein binding and may be used for the simulation of free concentrations in pregnancy to support dosing decisions.
Collapse
|
4
|
Magnitude of Drug–Drug Interactions in Special Populations. Pharmaceutics 2022; 14:pharmaceutics14040789. [PMID: 35456623 PMCID: PMC9027396 DOI: 10.3390/pharmaceutics14040789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
Drug–drug interactions (DDIs) are one of the most frequent causes of adverse drug reactions or loss of treatment efficacy. The risk of DDIs increases with polypharmacy and is therefore of particular concern in individuals likely to present comorbidities (i.e., elderly or obese individuals). These special populations, and the population of pregnant women, are characterized by physiological changes that can impact drug pharmacokinetics and consequently the magnitude of DDIs. This review compiles existing DDI studies in elderly, obese, and pregnant populations that include a control group without the condition of interest. The impact of physiological changes on the magnitude of DDIs was then analyzed by comparing the exposure of a medication in presence and absence of an interacting drug for the special population relative to the control population. Aging does not alter the magnitude of DDIs as the related physiological changes impact the victim and perpetrator drugs to a similar extent, regardless of their elimination pathway. Conversely, the magnitude of DDIs can be changed in obese individuals or pregnant women, as these conditions impact drugs to different extents depending on their metabolic pathway.
Collapse
|
5
|
Clinical pharmacokinetics of quinine and its relationship with treatment outcomes in children, pregnant women, and elderly patients, with uncomplicated and complicated malaria: a systematic review. Malar J 2022; 21:41. [PMID: 35144612 PMCID: PMC8832728 DOI: 10.1186/s12936-022-04065-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background Standard dosage regimens of quinine formulated for adult patients with uncomplicated and complicated malaria have been applied for clinical uses in children, pregnant women, and elderly. Since these populations have anatomical and physiological differences from adults, dosage regimens formulated for adults may not be appropriate. The study aimed to (i) review existing information on the pharmacokinetics of quinine in children, pregnant women, and elderly populations, (ii) identify factors that influence quinine pharmacokinetics, and (iii) analyse the relationship between the pharmacokinetics and treatment outcomes (therapeutic and safety) of various dosage regimens of quinine. Methods Web of Sciences, Cochrane Library, Scopus, and PubMed were the databases applied in this systematic search for relevant research articles published up to October 2020 using the predefined search terms. The retrieved articles were initially screened by titles and abstracts to exclude any irrelevant articles and were further evaluated based on full-texts, applying the predefined eligibility criteria. Excel spreadsheet (Microsoft, WA, USA) was used for data collection and management. Qualitative data are presented as numbers and percentages, and where appropriate, mean + SD or median (range) or range values. Results Twenty-eight articles fulfilled the eligibility criteria, 19 in children, 7 in pregnant women, and 2 in elderly (14 and 7 articles in complicated and uncomplicated malaria, respectively). Severity of infection, routes of administration, and nutritional status were shown to be the key factors impacting quinine pharmacokinetics in these vulnerable groups. Conclusions The recommended dosages for both uncomplicated and complicated malaria are, in general, adequate for elderly and children with uncomplicated malaria. Dose adjustment may be required in pregnant women with both uncomplicated and complicated malaria, and in children with complicated malaria. Pharmacokinetics studies relevant to clinical efficacy in these vulnerable groups of patients with large sample size and reassessment of MIC (minimum inhibitory concentration) should be considered. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04065-1.
Collapse
|
6
|
Hazenberg P, Navaratnam K, Busuulwa P, Waitt C. Anti-Infective Dosing in Special Populations: Pregnancy. Clin Pharmacol Ther 2021; 109:977-986. [PMID: 33548055 DOI: 10.1002/cpt.2192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/28/2021] [Indexed: 12/29/2022]
Abstract
Substantial anatomical and physiological changes occur during pregnancy and labor, which impact on drug absorption, distribution, metabolism, and elimination. Reduced maternal concentrations may have a clinically important impact on the efficacy of anti-infectives for mother, fetus, and neonate, with potential dosing implications. However, there is a paucity of pregnancy-specific data examining this. Existing data on the pharmacokinetics of anti-infectives in pregnancy are summarized and evaluated, with emphasis on agents that are used in treatment of HIV, tuberculosis, malaria, and common bacterial infections. Limitations and challenges in achieving ideal study designs in pregnant populations are highlighted, and key quality considerations for the generation of the highest quality evidence are outlined. PubMed was searched for each chosen anti-infective. Pharmacokinetic studies which either compared pharmacokinetics from pregnant women against nonpregnant controls, or which assessed concentrations against a known minimum inhibitory concentration were included. Two independent reviewers extracted data from each study and appraised them using the 24-point ClinPK Checklist. The main finding was that there is a lack of published data for anti-infectives in pregnancy, despite their clinical importance. Of the studies identified, only those investigating cobicistat-boosted antiretroviral regimens firmly concluded that these should not be used in pregnancy. Most studies concluded either that further research was needed, or that there were significant pharmacokinetic differences between pregnant and nonpregnant participants which had uncertain clinical significance. Challenges in applying existing quality grading systems to these studies were noted, suggesting a development of a refined system for appraisal of pharmacokinetic studies in "special populations" may be warranted.
Collapse
Affiliation(s)
- Phoebe Hazenberg
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Kate Navaratnam
- Centre for Women's Health Research, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Paula Busuulwa
- Centre for Women's Health Research, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Catriona Waitt
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.,Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
7
|
Al Khaja KAJ, Sequeira RP. Drug treatment and prevention of malaria in pregnancy: a critical review of the guidelines. Malar J 2021; 20:62. [PMID: 33485330 PMCID: PMC7825227 DOI: 10.1186/s12936-020-03565-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022] Open
Abstract
Background Malaria caused by Plasmodium falciparum in pregnancy can result in adverse maternal and fetal sequelae. This review evaluated the adherence of the national guidelines drawn from World Health Organization (WHO) regions, Africa, Eastern Mediterranean, Southeast Asia, and Western Pacific, to the WHO recommendations on drug treatment and prevention of chloroquine-resistant falciparum malaria in pregnant women. Methods Thirty-five updated national guidelines and the President’s Malaria Initiative (PMI), available in English language, were reviewed. The primary outcome measures were the first-line anti-malarial treatment protocols adopted by national guidelines for uncomplicated and complicated falciparum malaria infections in early (first) and late (second and third) trimesters of pregnancy. The strategy of intermittent preventive treatment of malaria in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) was also addressed. Results This review evaluated the treatment and prevention of falciparum malaria in pregnancy in 35 national guidelines/PMI-Malaria Operational Plans (MOP) reports out of 95 malaria-endemic countries. Of the 35 national guidelines, 10 (28.6%) recommend oral quinine plus clindamycin as first-line treatment for uncomplicated malaria in the first trimester. As the first-line option, artemether–lumefantrine, an artemisinin-based combination therapy, is adopted by 26 (74.3%) of the guidelines for treating uncomplicated or complicated malaria in the second and third trimesters. Intravenous artesunate is approved by 18 (51.4%) and 31 (88.6%) guidelines for treating complicated malaria during early and late pregnancy, respectively. Of the 23 national guidelines that recommend IPTp-SP strategy, 8 (34.8%) are not explicit about directly observed therapy requirements, and three-quarters, 17 (73.9%), do not specify contra-indication of SP in human immunodeficiency virus (HIV)-infected pregnant women receiving cotrimoxazole prophylaxis. Most of the guidelines (18/23; 78.3%) state the recommended folic acid dose. Conclusion Several national guidelines and PMI reports require update revisions to harmonize with international guidelines and emergent trends in managing falciparum malaria in pregnancy. National guidelines and those of donor agencies should comply with those of WHO guideline recommendations although local conditions and delayed guideline updates may call for deviations from WHO evidence-based guidelines.
Collapse
Affiliation(s)
- Khalid A J Al Khaja
- Department of Pharmacology & Therapeutics, College of Medicine & Medical Sciences, Arabian Gulf University, P.O. Box 22979, Manama, Kingdom of Bahrain.
| | - Reginald P Sequeira
- Department of Pharmacology & Therapeutics, College of Medicine & Medical Sciences, Arabian Gulf University, P.O. Box 22979, Manama, Kingdom of Bahrain
| |
Collapse
|
8
|
Adegbola AJ, Soyinka JO, Bolaji OO. Effect of CYP3A5*3 genotypes on lumefantrine plasma concentrations among malaria-HIV-infected women. Pharmacogenomics 2020; 21:1289-1297. [PMID: 33243092 DOI: 10.2217/pgs-2020-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: We aimed to assess the effect of a functional polymorphism of CYP3A5 on lumefantrine pharmacokinetics. Patients & methods: Sixty-nine women diagnosed with malaria received standard doses of artemether-lumefantrine. Concentration-time data for lumefantrine and genotyping data were obtained for each participant. Pharmacokinetic-genotype associative relationships were assessed using linear regressions, Mann-Whitney U-test or Kruskal-Wallis statistics. Results: Average age and weight (standard deviation) of the patients were 33 (6.8) years and 59.5 (11.6) kg, respectively. CYP3A5*3 genotype associated with the log-transformed maximum concentration with the median (interquartile range) values of 8279 (6516-13,420) and 6331 (4093-8631) ng/ml (p = 0.032) among the carriers and noncarriers of CYP3A5*3, respectively. Besides, the NR1I3 c.152-1089T>C genotypes had an associative trend with the lumefantrine area under the curve (AUC0-96h) and clearance. Conclusion: CYP3A5*3 genetic variant is associated with a high maximum plasma concentration of lumefantrine. This warrants further investigations on the association between CYP3A5*3 gene variants, lumefantrine pharmacokinetics and electrophysiological effect.
Collapse
Affiliation(s)
- Adebanjo J Adegbola
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Julius O Soyinka
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Oluseye O Bolaji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| |
Collapse
|
9
|
Bukkems VE, Colbers A, Marzolini C, Molto J, Burger DM. Drug-Drug Interactions with Antiretroviral Drugs in Pregnant Women Living with HIV: Are They Different from Non-Pregnant Individuals? Clin Pharmacokinet 2020; 59:1217-1236. [PMID: 32696442 PMCID: PMC7550380 DOI: 10.1007/s40262-020-00914-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Although the separate effects of drug-drug interactions and pregnancy on antiretroviral drug pharmacokinetics have been widely studied and described, their combined effect is largely unknown. Physiological changes during pregnancy may change the extent or clinical relevance of a drug-drug interaction in a pregnant woman. This review aims to provide a detailed overview of the mechanisms, magnitude, and clinical significance of antiretroviral drug-drug interactions in pregnant women. METHODS We performed a literature search and selected studies that compared the magnitude of drug-drug interactions with antiretroviral drugs in pregnant vs non-pregnant women. RESULTS Forty-eight papers examining drug-drug interactions during pregnancy were selected, of which the majority focused on pharmacokinetic boosting. Other selected studies examined the drug-drug interactions between efavirenz and lumefantrine, efavirenz and tuberculosis drugs, etravirine and tenofovir disoproxil fumarate, atazanavir and tenofovir disoproxil, and mefloquine and nevirapine in pregnant compared to non-pregnant women. The clinical significance of antiretroviral drug-drug interactions changed during pregnancy from a minimal effect to a contra-indication. In almost all cases, the clinical significance of a drug-drug interaction was more relevant in pregnant women, owing to the combined effects of pregnancy-induced physiological changes and drug-drug interactions leading to a lower absolute drug exposure. CONCLUSIONS Multiple studies show that the clinical relevance of a drug-drug interaction can change during pregnancy. Unfortunately, many potential interactions have not been studied in pregnancy, which may place pregnant women living with human immunodeficiency virus and their newborns at risk.
Collapse
Affiliation(s)
- Vera E Bukkems
- Department of Pharmacy, Radboud University Medical Center and Radboud Institute for Health Sciences (RIHS), Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Angela Colbers
- Department of Pharmacy, Radboud University Medical Center and Radboud Institute for Health Sciences (RIHS), Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.
| | - Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Jose Molto
- Fundació Lluita Contra La Sida, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - David M Burger
- Department of Pharmacy, Radboud University Medical Center and Radboud Institute for Health Sciences (RIHS), Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Moore BR, Davis TM. Updated pharmacokinetic considerations for the use of antimalarial drugs in pregnant women. Expert Opin Drug Metab Toxicol 2020; 16:741-758. [PMID: 32729740 DOI: 10.1080/17425255.2020.1802425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The association between pregnancy and altered drug pharmacokinetic (PK) properties is acknowledged, as is its impact on drug plasma concentrations and thus therapeutic efficacy. However, there have been few robust PK studies of antimalarial use in pregnancy. Given that inadequate dosing for prevention or treatment of malaria in pregnancy can result in negative maternal/infant outcomes, along with the potential to select for parasite drug resistance, it is imperative that reliable pregnancy-specific dosing recommendations are established. AREAS COVERED PK studies of antimalarial drugs in pregnancy. The present review summarizes the efficacy and PK properties of WHO-recommended therapies used in pregnancy, with a focus on PK studies published since 2014. EXPERT OPINION Changes in antimalarial drug disposition in pregnancy are well described, yet pregnant women continue to receive treatment regimens optimized for non-pregnant adults. Contemporary in silico modeling has recently identified a series of alternative dosing regimens that are predicted to provide optimal therapeutic efficacy for pregnant women.
Collapse
Affiliation(s)
- Brioni R Moore
- School of Pharmacy and Biomedical Sciences, Curtin University , Bentley, Western Australia, Australia.,Medical School, University of Western Australia , Crawley, Western Australia, Australia
| | - Timothy M Davis
- Medical School, University of Western Australia , Crawley, Western Australia, Australia
| |
Collapse
|
11
|
Mutagonda RF, Minzi OMS, Massawe SN, Asghar M, Färnert A, Kamuhabwa AAR, Aklillu E. Pregnancy and CYP3A5 Genotype Affect Day 7 Plasma Lumefantrine Concentrations. Drug Metab Dispos 2020; 47:1415-1424. [PMID: 31744845 DOI: 10.1124/dmd.119.088062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Pregnancy and pharmacogenetics variation alter drug disposition and treatment outcome. The objective of this study was to investigate the effect of pregnancy and pharmacogenetics variation on day 7 lumefantrine (LF) plasma concentration and therapeutic responses in malaria-infected women treated with artemether-lumefantrine (ALu) in Tanzania. A total of 277 (205 pregnant and 72 nonpregnant) women with uncomplicated Plasmodium falciparum malaria were enrolled. Patients were treated with ALu and followed up for 28 days. CYP3A4, CYP3A5, and ABCB1 genotyping were done. Day 7 plasma LF concentration and the polymerase chain reaction (PCR) - corrected adequate clinical and parasitological response (ACPR) at day 28 were determined. The mean day 7 plasma LF concentrations were significantly lower in pregnant women than nonpregnant women [geometric mean ratio = 1.40; 95% confidence interval (CI) of geometric mean ratio (1.119-1.1745), P < 0.003]. Pregnancy, low body weight, and CYP3A5*1/*1 genotype were significantly associated with low day 7 LF plasma concentration (P < 0.01). PCR-corrected ACPR was 93% (95% CI = 89.4-96.6) in pregnant women and 95.7% (95% CI = 90.7-100) in nonpregnant women. Patients with lower day 7 LF concentration had a high risk of treatment failure (mean 652 vs. 232 ng/ml, P < 0.001). In conclusion, pregnancy, low body weight, and CYP3A5*1 allele are significant predictors of low day 7 LF plasma exposure. In turn, lower day 7 LF concentration is associated with a higher risk of recrudescence. SIGNIFICANCE STATEMENT: This study reports a number of factors contributing to the lower day 7 lumefantrine (LF) concentration in women, which includes pregnancy, body weight, and CYP3A5*1/*1 genotype. It also shows that day 7 LF concentration is a main predictor of malaria treatment. These findings highlight the need to look into artemether-LF dosage adjustment in pregnant women so as to be able to maintain adequate drug concentration, which is required to reduce treatment failure rates in pregnant women.
Collapse
Affiliation(s)
- Ritah F Mutagonda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Omary M S Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Siriel N Massawe
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Muhammad Asghar
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Anna Färnert
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Appolinary A R Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Eleni Aklillu
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| |
Collapse
|
12
|
Karbwang J, Na‐Bangchang K. The Role of Clinical Pharmacology in Chemotherapy of Multidrug‐Resistant
Plasmodium falciparum. J Clin Pharmacol 2020; 60:830-847. [DOI: 10.1002/jcph.1589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Juntra Karbwang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
- Department of Clinical Product developmentNagasaki Institute of Tropical MedicineNagasaki University Nagasaki Japan
| | - Kesara Na‐Bangchang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
| |
Collapse
|
13
|
Bretscher MT, Dahal P, Griffin J, Stepniewska K, Bassat Q, Baudin E, D'Alessandro U, Djimde AA, Dorsey G, Espié E, Fofana B, González R, Juma E, Karema C, Lasry E, Lell B, Lima N, Menéndez C, Mombo-Ngoma G, Moreira C, Nikiema F, Ouédraogo JB, Staedke SG, Tinto H, Valea I, Yeka A, Ghani AC, Guerin PJ, Okell LC. The duration of chemoprophylaxis against malaria after treatment with artesunate-amodiaquine and artemether-lumefantrine and the effects of pfmdr1 86Y and pfcrt 76T: a meta-analysis of individual patient data. BMC Med 2020; 18:47. [PMID: 32098634 PMCID: PMC7043031 DOI: 10.1186/s12916-020-1494-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/09/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The majority of Plasmodium falciparum malaria cases in Africa are treated with the artemisinin combination therapies artemether-lumefantrine (AL) and artesunate-amodiaquine (AS-AQ), with amodiaquine being also widely used as part of seasonal malaria chemoprevention programs combined with sulfadoxine-pyrimethamine. While artemisinin derivatives have a short half-life, lumefantrine and amodiaquine may give rise to differing durations of post-treatment prophylaxis, an important additional benefit to patients in higher transmission areas. METHODS We analyzed individual patient data from 8 clinical trials of AL versus AS-AQ in 12 sites in Africa (n = 4214 individuals). The time to PCR-confirmed reinfection after treatment was used to estimate the duration of post-treatment protection, accounting for variation in transmission intensity between settings using hidden semi-Markov models. Accelerated failure-time models were used to identify potential effects of covariates on the time to reinfection. The estimated duration of chemoprophylaxis was then used in a mathematical model of malaria transmission to determine the potential public health impact of each drug when used for first-line treatment. RESULTS We estimated a mean duration of post-treatment protection of 13.0 days (95% CI 10.7-15.7) for AL and 15.2 days (95% CI 12.8-18.4) for AS-AQ overall. However, the duration varied significantly between trial sites, from 8.7-18.6 days for AL and 10.2-18.7 days for AS-AQ. Significant predictors of time to reinfection in multivariable models were transmission intensity, age, drug, and parasite genotype. Where wild type pfmdr1 and pfcrt parasite genotypes predominated (<=20% 86Y and 76T mutants, respectively), AS-AQ provided ~ 2-fold longer protection than AL. Conversely, at a higher prevalence of 86Y and 76T mutant parasites (> 80%), AL provided up to 1.5-fold longer protection than AS-AQ. Our simulations found that these differences in the duration of protection could alter population-level clinical incidence of malaria by up to 14% in under-5-year-old children when the drugs were used as first-line treatments in areas with high, seasonal transmission. CONCLUSION Choosing a first-line treatment which provides optimal post-treatment prophylaxis given the local prevalence of resistance-associated markers could make a significant contribution to reducing malaria morbidity.
Collapse
Affiliation(s)
- Michael T Bretscher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Prabin Dahal
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jamie Griffin
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - Kasia Stepniewska
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Umberto D'Alessandro
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Abdoulaye A Djimde
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, USA
| | - Emmanuelle Espié
- Epicentre, Paris, France.,Clinical and Epidemiology Department, GSK Vaccines, R&D Center, Wavre, Belgium
| | - Bakary Fofana
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Raquel González
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Elizabeth Juma
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Corine Karema
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Bertrand Lell
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Centre de Recherches Medicales de Lambarene, Lambarene, Gabon
| | - Nines Lima
- Department of Paediatrics, University of Calabar, Calabar, Nigeria
| | - Clara Menéndez
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Medicales de Lambarene, Lambarene, Gabon.,Institute for Tropical Medicine, University of Tubingen, Tubingen, Germany.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clarissa Moreira
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Frederic Nikiema
- Institut de Recherche en Science de la Sante, Bobo-Dioulasso, Burkina Faso
| | - Jean B Ouédraogo
- Institut de Recherche en Science de la Sante, Bobo-Dioulasso, Burkina Faso
| | - Sarah G Staedke
- Department of Clinical Research, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Halidou Tinto
- Institut de Recherche en Science de la Sante, Nanoro, Burkina Faso
| | - Innocent Valea
- Institut de Recherche en Science de la Sante, Nanoro, Burkina Faso
| | - Adoke Yeka
- Uganda Malaria Surveillance Project, Kampala, Uganda
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Philippe J Guerin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| |
Collapse
|
14
|
A Randomized Controlled Trial of Three- versus Five-Day Artemether-Lumefantrine Regimens for Treatment of Uncomplicated Plasmodium falciparum Malaria in Pregnancy in Africa. Antimicrob Agents Chemother 2020; 64:AAC.01140-19. [PMID: 31818818 PMCID: PMC7038309 DOI: 10.1128/aac.01140-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/24/2019] [Indexed: 01/09/2023] Open
Abstract
Artemether-lumefantrine antimalarial efficacy in pregnancy could be compromised by reduced drug exposure. Population-based simulations suggested that therapeutic efficacy would be improved if the treatment duration was increased. Artemether-lumefantrine antimalarial efficacy in pregnancy could be compromised by reduced drug exposure. Population-based simulations suggested that therapeutic efficacy would be improved if the treatment duration was increased. We assessed the efficacy, tolerability, and pharmacokinetics of an extended 5-day regimen of artemether-lumefantrine compared to the standard 3-day treatment in 48 pregnant women and 48 nonpregnant women with uncomplicated falciparum malaria in an open-label, randomized clinical trial. Babies were assessed at birth and 1, 3, 6, and 12 months. Nonlinear mixed-effects modeling was used to characterize the plasma concentration-time profiles of artemether and lumefantrine and their metabolites. Both regimens were highly efficacious (100% PCR-corrected cure rates) and well tolerated. Babies followed up to 1 year had normal development. Parasite clearance half-lives were longer in pregnant women (median [range], 3.30 h [1.39 to 7.83 h]) than in nonpregnant women (2.43 h [1.05 to 6.00 h]) (P=0.005). Pregnant women had lower exposures to artemether and dihydroartemisinin than nonpregnant women, resulting in 1.2% decreased exposure for each additional week of gestational age. By term, these exposures were reduced by 48% compared to nonpregnant patients. The overall exposure to lumefantrine was improved with the extended regimen, with no significant differences in exposures to lumefantrine or desbutyl-lumefantrine between pregnant and nonpregnant women. The extended artemether-lumefantrine regimen was well tolerated and safe and increased the overall antimalarial drug exposure and so could be a promising treatment option in pregnancy in areas with lower rates of malaria transmission and/or emerging drug resistance. (This study has been registered at ClinicalTrials.gov under identifier NCT01916954.)
Collapse
|
15
|
Birgersson S, Valea I, Tinto H, Traore-Coulibaly M, Toe LC, Hoglund RM, Van Geertruyden JP, Ward SA, D’Alessandro U, Abelö A, Tarning J. Population pharmacokinetics of artesunate and dihydroartemisinin in pregnant and non-pregnant women with uncomplicated Plasmodium falciparum malaria in Burkina Faso: an open label trial. Wellcome Open Res 2019; 4:45. [PMID: 32025570 PMCID: PMC6974929 DOI: 10.12688/wellcomeopenres.14849.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
Background: Malaria during pregnancy is a major health risk for both the mother and the foetus. Pregnancy has been shown to influence the pharmacokinetics of a number of different antimalarial drugs. This might lead to an under-exposure in these patients which could increase the risk of treatment failure and the development of drug resistance. The study aim was to evaluate the pharmacokinetics of artesunate and dihydroartemisinin in pregnant and non-pregnant patients using a population modelling approach. Methods: Twenty-four women in their second and third trimester of pregnancy and twenty-four paired non-pregnant women, all with uncomplicated P. falciparum malaria, were enrolled in this study. Treatment was a fixed-dose combination of oral artesunate and mefloquine once daily for three days. Frequent blood samples were collected and concentration-time data for artesunate and dihydroartemisinin were analysed simultaneously using nonlinear mixed-effects modelling. Results: Artesunate pharmacokinetics was best described by a transit-compartment absorption model followed by a one-compartment disposition model under the assumption of complete in vivo conversion of artesunate into dihydroartemisinin. Dihydroartemisinin pharmacokinetics was best described by a one-compartment disposition model with first-order elimination. Pregnant women had a 21% higher elimination clearance of dihydroartemisinin, compared to non-pregnant women, resulting in proportionally lower drug exposure. In addition, initial parasitaemia and liver status (alanine aminotransferase) were found to affect the relative bioavailability of artesunate. Conclusions: Results presented here show a substantially lower drug exposure to the antimalarial drug dihydroartemisinin during pregnancy after standard oral treatment of artesunate and mefloquine. This might result in an increased risk of treatment failure and drug resistance development, especially in low transmission settings where relative immunity is lower. Trial registration: ClinicalTrials.gov NCT00701961 (19/06/2008).
Collapse
Affiliation(s)
- Sofia Birgersson
- Department of Pharmacology, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Innocent Valea
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la Sante´, Unite´ de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la Sante´, Unite´ de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - Maminata Traore-Coulibaly
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la Sante´, Unite´ de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - Laeticia C. Toe
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
- Department of Food Safety, Quality and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, B-9000, Belgium
| | - Richard M. Hoglund
- Mahidol-Oxford Tropical Medicine Resarch Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | | | - Stephen A. Ward
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | - Angela Abelö
- Department of Pharmacology, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Resarch Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
16
|
Birgersson S, Valea I, Tinto H, Traore-Coulibaly M, Toe LC, Hoglund RM, Van Geertruyden JP, Ward SA, D’Alessandro U, Abelö A, Tarning J. Population pharmacokinetics of artesunate and dihydroartemisinin in pregnant and non-pregnant women with uncomplicated Plasmodium falciparum malaria in Burkina Faso: an open label trial. Wellcome Open Res 2019. [DOI: 10.12688/wellcomeopenres.14849.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Malaria during pregnancy is a major health risk for both the mother and the foetus. Pregnancy has been shown to influence the pharmacokinetics of a number of different antimalarial drugs. This might lead to an under-exposure in these patients which could increase the risk of treatment failure and the development of drug resistance. The study aim was to evaluate the pharmacokinetics of artesunate and dihydroartemisinin in pregnant and non-pregnant patients using a population modelling approach. Methods: Twenty-four women in their second and third trimester of pregnancy and twenty-four paired non-pregnant women, all with uncomplicated P. falciparum malaria, were enrolled in this study. Treatment was a fixed-dose combination of oral artesunate and mefloquine once daily for three days. Frequent blood samples were collected and concentration-time data for artesunate and dihydroartemisinin were analysed simultaneously using nonlinear mixed-effects modelling. Results: Artesunate pharmacokinetics was best described by a transit-compartment absorption model followed by a one-compartment disposition model under the assumption of complete in vivo conversion of artesunate into dihydroartemisinin. Dihydroartemisinin pharmacokinetics was best described by a one-compartment disposition model with first-order elimination. Pregnant women had a 21% higher elimination clearance of dihydroartemisinin, compared to non-pregnant women, resulting in proportionally lower drug exposure. In addition, initial parasitaemia and liver status (alanine aminotransferase) were found to affect the relative bioavailability of artesunate. Conclusions: Results presented here show a substantially lower drug exposure to the antimalarial drug dihydroartemisinin during pregnancy after standard oral treatment of artesunate and mefloquine. This might result in an increased risk of treatment failure and drug resistance development, especially in low transmission settings where relative immunity is lower. Trial registration: ClinicalTrials.gov NCT00701961 (19/06/2008)
Collapse
|
17
|
Saito M, Gilder ME, McGready R, Nosten F. Antimalarial drugs for treating and preventing malaria in pregnant and lactating women. Expert Opin Drug Saf 2018; 17:1129-1144. [PMID: 30351243 DOI: 10.1080/14740338.2018.1535593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Malaria in pregnancy and postpartum cause maternal mortality and adverse fetal outcomes. Efficacious and safe antimalarials are needed to treat and prevent such serious consequences. However, because of the lack of evidence on fetal safety, quinine, an old and less efficacious drug has long been recommended for pregnant women. Uncertainty about safety in relation to breastfeeding leads to withholding of efficacious treatments postpartum or cessation of breastfeeding. Areas covered: A search identified literature on humans in three databases (MEDLINE, Embase and Global health) using pregnancy or lactation, and the names of antimalarial drugs as search terms. Adverse reactions to the mother, fetus or breastfed infant were summarized together with efficacies. Expert opinion: Artemisinins are more efficacious and well-tolerated than quinine in pregnancy. Furthermore, the risks of miscarriage, stillbirth or congenital abnormality were not higher in pregnancies exposed to artemisinin derivatives for treatment of malaria than in pregnancies exposed to quinine or in the comparable background population unexposed to any antimalarials, and this was true for treatment in any trimester. Assessment of safety and efficacy of antimalarials including dose optimization for pregnant women is incomplete. Resistance to sulfadoxine-pyrimethamine in Plasmodium falciparum and long unprotected intervals between intermittent treatment doses begs reconsideration of current preventative recommendations in pregnancy. Data remain limited on antimalarials during breastfeeding; while most first-line drugs appear safe, further research is needed.
Collapse
Affiliation(s)
- Makoto Saito
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK.,c WorldWide Antimalarial Resistance Network (WWARN) , Oxford , UK
| | - Mary Ellen Gilder
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand
| | - Rose McGready
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - François Nosten
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
18
|
Effect of Pregnancy on the Pharmacokinetic Interaction between Efavirenz and Lumefantrine in HIV-Malaria Coinfection. Antimicrob Agents Chemother 2018; 62:AAC.01252-18. [PMID: 30082286 DOI: 10.1128/aac.01252-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023] Open
Abstract
Artemether-lumefantrine is often coadministered with efavirenz-based antiretroviral therapy for malaria treatment in HIV-infected women during pregnancy. Previous studies showed changes in lumefantrine pharmacokinetics due to interaction with efavirenz in nonpregnant adults. The influence of pregnancy on this interaction has not been reported. This pharmacokinetic study involved 35 pregnant and 34 nonpregnant HIV-malaria-coinfected women receiving efavirenz-based antiretroviral therapy and was conducted in four health facilities in Nigeria. Participants received a 3-day standard regimen of artemether-lumefantrine for malaria treatment, and intensive pharmacokinetic sampling was conducted from 0.5 to 96 h after the last dose. Plasma efavirenz, lumefantrine, and desbutyl-lumefantrine were quantified using validated assays, and pharmacokinetic parameters were derived using noncompartmental analysis. The median middose plasma concentrations of efavirenz were significantly lower in pregnant women (n = 32) than in nonpregnant women (n = 32) at 1,820 ng/ml (interquartile range, 1,300 to 2,610 ng/ml) versus 2,760 ng/ml (interquartile range, 2,020 to 5,640 ng/ml), respectively (P = 0.006). The lumefantrine area under the concentration-time curve from 0 to 96 h was significantly higher in pregnant women (n = 27) at 155,832 ng · h/ml (interquartile range, 102,400 to 214,011 ng · h/ml) than nonpregnant women at 90,594 ng · h/ml (interquartile range, 58,869 to 149,775 ng · h/ml) (P = 0.03). A similar trend was observed for the lumefantrine concentration at 12 h after the last dose of lumefantrine, which was 2,870 ng/ml (interquartile range, 2,180 to 4,880 ng/ml) versus 2,080 ng/ml (interquartile range, 1,190 to 2,970 ng/ml) in pregnant and nonpregnant women, respectively (P = 0.02). The lumefantrine-to-desbutyl-lumefantrine ratio also tended to be lower in pregnant women than in nonpregnant women (P = 0.076). Overall, pregnancy tempered the extent of efavirenz-lumefantrine interactions, resulting in increased lumefantrine exposure. However, any consideration of dosage adjustment for artemether-lumefantrine to enhance exposure in this population needs to be based on data from a prospective study with safety and efficacy endpoints.
Collapse
|
19
|
Developments in Taste-Masking Techniques for Traditional Chinese Medicines. Pharmaceutics 2018; 10:pharmaceutics10030157. [PMID: 30213035 PMCID: PMC6161181 DOI: 10.3390/pharmaceutics10030157] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022] Open
Abstract
A variety of pharmacologically active substances, including chemotherapeutic drugs and the substances from traditional Chinese medicine (TCM), always exhibit potent bioactivities after oral administration. However, their unpleasant taste (such as bitterness) and/or odor always decrease patient compliance and thus compromise their curative efficacies in clinical application. Therefore, the developments of taste-masking techniques are of great significance in improving their organoleptic properties. However, though a variety of taste-masking techniques have been successfully used to mask the unpalatable taste of chemotherapeutic drugs, their suitability for TCM substances is relatively limited. This is mainly due to the fact that the bitter ingredients existing in multicomponent TCM systems (i.e., effective fractions, single Chinese herbs, and compound preparations) are always unclear, and thus, there is lack of tailor-made taste-masking techniques to be utilized to conceal their unpleasant taste. The relevant studies are also relatively limited. As a whole, three types of taste-masking techniques are generally applied to TCM, including (i) functional masking via sweeteners, bitter blockers, and taste modifiers; (ii) physical masking via polymer film-coating or lipid barrier systems; and (iii) biochemical masking via intermolecular interaction, β-cyclodextrin inclusion, or ion-exchange resins. This review fully summarizes the results reported in this field with the purpose of providing an informative reference for relevant readers.
Collapse
|
20
|
Kloprogge F, Workman L, Borrmann S, Tékété M, Lefèvre G, Hamed K, Piola P, Ursing J, Kofoed PE, Mårtensson A, Ngasala B, Björkman A, Ashton M, Friberg Hietala S, Aweeka F, Parikh S, Mwai L, Davis TME, Karunajeewa H, Salman S, Checchi F, Fogg C, Newton PN, Mayxay M, Deloron P, Faucher JF, Nosten F, Ashley EA, McGready R, van Vugt M, Proux S, Price RN, Karbwang J, Ezzet F, Bakshi R, Stepniewska K, White NJ, Guerin PJ, Barnes KI, Tarning J. Artemether-lumefantrine dosing for malaria treatment in young children and pregnant women: A pharmacokinetic-pharmacodynamic meta-analysis. PLoS Med 2018; 15:e1002579. [PMID: 29894518 PMCID: PMC5997317 DOI: 10.1371/journal.pmed.1002579] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/04/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The fixed dose combination of artemether-lumefantrine (AL) is the most widely used treatment for uncomplicated Plasmodium falciparum malaria. Relatively lower cure rates and lumefantrine levels have been reported in young children and in pregnant women during their second and third trimester. The aim of this study was to investigate the pharmacokinetic and pharmacodynamic properties of lumefantrine and the pharmacokinetic properties of its metabolite, desbutyl-lumefantrine, in order to inform optimal dosing regimens in all patient populations. METHODS AND FINDINGS A search in PubMed, Embase, ClinicalTrials.gov, Google Scholar, conference proceedings, and the WorldWide Antimalarial Resistance Network (WWARN) pharmacology database identified 31 relevant clinical studies published between 1 January 1990 and 31 December 2012, with 4,546 patients in whom lumefantrine concentrations were measured. Under the auspices of WWARN, relevant individual concentration-time data, clinical covariates, and outcome data from 4,122 patients were made available and pooled for the meta-analysis. The developed lumefantrine population pharmacokinetic model was used for dose optimisation through in silico simulations. Venous plasma lumefantrine concentrations 7 days after starting standard AL treatment were 24.2% and 13.4% lower in children weighing <15 kg and 15-25 kg, respectively, and 20.2% lower in pregnant women compared with non-pregnant adults. Lumefantrine exposure decreased with increasing pre-treatment parasitaemia, and the dose limitation on absorption of lumefantrine was substantial. Simulations using the lumefantrine pharmacokinetic model suggest that, in young children and pregnant women beyond the first trimester, lengthening the dose regimen (twice daily for 5 days) and, to a lesser extent, intensifying the frequency of dosing (3 times daily for 3 days) would be more efficacious than using higher individual doses in the current standard treatment regimen (twice daily for 3 days). The model was developed using venous plasma data from patients receiving intact tablets with fat, and evaluations of alternative dosing regimens were consequently only representative for venous plasma after administration of intact tablets with fat. The absence of artemether-dihydroartemisinin data limited the prediction of parasite killing rates and recrudescent infections. Thus, the suggested optimised dosing schedule was based on the pharmacokinetic endpoint of lumefantrine plasma exposure at day 7. CONCLUSIONS Our findings suggest that revised AL dosing regimens for young children and pregnant women would improve drug exposure but would require longer or more complex schedules. These dosing regimens should be evaluated in prospective clinical studies to determine whether they would improve cure rates, demonstrate adequate safety, and thereby prolong the useful therapeutic life of this valuable antimalarial treatment.
Collapse
Affiliation(s)
- Frank Kloprogge
- WorldWide Antimalarial Resistance Network, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Institute for Global Health, University College London, London, United Kingdom
| | - Lesley Workman
- WorldWide Antimalarial Resistance Network, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Steffen Borrmann
- Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Mamadou Tékété
- Institute for Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Kamal Hamed
- Novartis Pharmaceuticals, East Hanover, New Jersey, United States of America
| | | | - Johan Ursing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Danderyds Hospital, Stockholm, Sweden
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Poul Erik Kofoed
- Bandim Health Project, Bissau, Guinea-Bissau
- Department of Paediatrics, Kolding Hospital, Kolding, Denmark
| | - Andreas Mårtensson
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Billy Ngasala
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Michael Ashton
- Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Friberg Hietala
- Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
- Pharmetheus, Uppsala, Sweden
| | - Francesca Aweeka
- UCSF School of Pharmacy, San Francisco, California, United States of America
| | - Sunil Parikh
- Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Leah Mwai
- Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Tropical Medicine and Joanna Briggs Institute Affiliate Centre for Evidence Based Health Care Evidence Synthesis and Translation Unit, Afya Research Africa, Nairobi, Kenya
- International Development Research Centre, Ottawa, Ontario, Canada
| | - Timothy M. E. Davis
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Harin Karunajeewa
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Sam Salman
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Francesco Checchi
- Epicentre, Paris, France
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Carole Fogg
- Epicentre, Paris, France
- Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Paul N. Newton
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Lao–Oxford–Mahosot Hospital–Wellcome Trust Research Unit, Vientiane, Laos
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Lao–Oxford–Mahosot Hospital–Wellcome Trust Research Unit, Vientiane, Laos
- Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Laos
| | - Philippe Deloron
- UMR216 Institut de Recherche pour le Développement, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | | | - François Nosten
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | - Rose McGready
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Michele van Vugt
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Amsterdam Medical Centre, Amsterdam, The Netherlands
| | - Stephane Proux
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Ric N. Price
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Darwin, Northern Territory, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - Juntra Karbwang
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Farkad Ezzet
- Novartis Pharmaceuticals, East Hanover, New Jersey, United States of America
| | | | - Kasia Stepniewska
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
| | - Nicholas J. White
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Philippe J. Guerin
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
| | - Karen I. Barnes
- WorldWide Antimalarial Resistance Network, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Joel Tarning
- WorldWide Antimalarial Resistance Network, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
D'Alessandro U, Hill J, Tarning J, Pell C, Webster J, Gutman J, Sevene E. Treatment of uncomplicated and severe malaria during pregnancy. THE LANCET. INFECTIOUS DISEASES 2018; 18:e133-e146. [PMID: 29395998 DOI: 10.1016/s1473-3099(18)30065-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/19/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Over the past 10 years, the available evidence on the treatment of malaria during pregnancy has increased substantially. Owing to their relative ease of use, good sensitivity and specificity, histidine rich protein 2 based rapid diagnostic tests are appropriate for symptomatic pregnant women; however, such tests are less appropriate for systematic screening because they will not detect an important proportion of infections among asymptomatic women. The effect of pregnancy on the pharmacokinetics of antimalarial drugs varies greatly between studies and class of antimalarial drugs, emphasising the need for prospective studies in pregnant and non-pregnant women. For the treatment of malaria during the first trimester, international guidelines are being reviewed by WHO. For the second and third trimester of pregnancy, results from several trials have confirmed that artemisinin-based combination treatments are safe and efficacious, although tolerability and efficacy might vary by treatment. It is now essential to translate such evidence into policies and clinical practice that benefit pregnant women in countries where malaria is endemic. Access to parasitological diagnosis or appropriate antimalarial treatment remains low in many countries and regions. Therefore, there is a pressing need for research to identify quality improvement interventions targeting pregnant women and health providers. In addition, efficient and practical systems for pharmacovigilance are needed to further expand knowledge on the safety of antimalarial drugs, particularly in the first trimester of pregnancy.
Collapse
Affiliation(s)
- Umberto D'Alessandro
- Medical Research Council Unit, Banjul, The Gambia; London School of Hygiene & Tropical Medicine, London, UK.
| | - Jenny Hill
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christopher Pell
- Centre for Social Science and Global Health, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
| | - Jayne Webster
- London School of Hygiene & Tropical Medicine, London, UK
| | - Julie Gutman
- Malaria Branch, US Centers for Diseases Control and Prevention, Atlanta, GA, USA
| | - Esperanca Sevene
- Manhiça Health Research Center (CISM), Manhiça, Mozambique; Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| |
Collapse
|
22
|
Saito M, Gilder ME, Nosten F, McGready R, Guérin PJ. Systematic literature review and meta-analysis of the efficacy of artemisinin-based and quinine-based treatments for uncomplicated falciparum malaria in pregnancy: methodological challenges. Malar J 2017; 16:488. [PMID: 29237461 PMCID: PMC5729448 DOI: 10.1186/s12936-017-2135-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Background There is no agreed standard method to assess the efficacy of anti-malarials for uncomplicated falciparum in pregnancy despite an increased risk of adverse outcomes for the mother and the fetus. The aim of this review is to present the currently available evidence from both observational and interventional cohort studies on anti-malarial efficacy in pregnancy and summarize the variability of assessment and reporting found in the review process. Methods Efficacy methodology and assessment of artemisinin-based treatments (ABT) and quinine-based treatments (QBT) were reviewed systematically using seven databases and two clinical trial registries (protocol registration—PROSPERO: CRD42017054808). Pregnant women in all trimesters with parasitologically confirmed uncomplicated falciparum malaria were included irrespective of symptoms. This review attempted to re-calculate proportions of treatment success applying the same definition as the standard WHO methodology for non-pregnant populations. Aggregated data meta-analyses using data from randomized control trials (RCTs) comparing different treatments were performed by random effects model. Results A total of 48 eligible efficacy studies were identified including 7279 treated Plasmodium falciparum episodes. While polymerase chain reaction (PCR) was used in 24 studies for differentiating recurrence, the assessment and reporting of treatment efficacy was heterogeneous. When the same definition could be applied, PCR-corrected treatment failure of ≥ 10% at any time points was observed in 3/30 ABT and 3/7 QBT arms. Ten RCTs compared different combinations of ABT but there was a maximum of two published RCTs with PCR-corrected outcomes for each comparison. Five RCTs compared ABT and QBT. Overall, the risk of treatment failure was significantly lower in ABT than in QBT (risk ratio 0.22, 95% confidence interval 0.07–0.63), although the actual drug combinations and outcome endpoints were different. First trimester women were included in 12 studies none of which were RCTs of ABT. Conclusions Efficacy studies in pregnancy are not only limited in number but use varied methodological assessments. In five RCTs with comparable methodology, ABT resulted in higher efficacy than QBT in the second and third trimester of pregnancy. Individual patient data meta-analysis can include data from observational cohort studies and could overcome some of the limitations of the current assessment given the paucity of data in this vulnerable group. Electronic supplementary material The online version of this article (10.1186/s12936-017-2135-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Makoto Saito
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK. .,Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand.
| | - Mary Ellen Gilder
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.,Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Rose McGready
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.,Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Philippe J Guérin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| |
Collapse
|
23
|
Zhang X, Rakesh KP, Shantharam CS, Manukumar HM, Asiri AM, Marwani HM, Qin HL. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorg Med Chem 2017; 26:340-355. [PMID: 29269253 DOI: 10.1016/j.bmc.2017.11.026] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Abstract
Cancer is one of the leading groups of threatened caused by abnormal state cell growth and second leading diseases involved in the major global death. To treat this, research looking for promising anticancer drugs from natural resource, or synthesized novel molecules by diverse group of scientists worldwide. Currently, drugs get into clinical practices and showing side effects with target actions which in turn leading to multidrug resistance unknowingly. Podophyllotoxin, a naturally occurring lignan and with hybrids have become one of the most attractive subjects due to their broad spectrum of pharmacological activities. Podophyllotoxin derivatives have been the centre of attention of extensive chemical amendment and pharmacological investigation in modern decades. Mainly, the innovation of the semi-synthetic anticancer drugs etoposide and teniposide has stimulated prolonged research interest in this structural phenotype. The present review focuses mainly onnew anticancer drugs from podophyllotoxin analogs, mechanism of action and their structure-activity relationships (SAR) as potential anticancer candidates for future discovery of suitable drug candidates.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430073, PR China
| | - K P Rakesh
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430073, PR China.
| | - C S Shantharam
- Department of Chemistry, Pooja Bhagavath Memorial Mahajana Education Centre, Mysuru 570016, Karnataka, India
| | - H M Manukumar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - A M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - H M Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hua-Li Qin
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430073, PR China.
| |
Collapse
|
24
|
Sugiarto SR, Davis TME, Salman S. Pharmacokinetic considerations for use of artemisinin-based combination therapies against falciparum malaria in different ethnic populations. Expert Opin Drug Metab Toxicol 2017; 13:1115-1133. [PMID: 29027504 DOI: 10.1080/17425255.2017.1391212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Artemisinin-based combination therapy (ACT) is used extensively as first-line treatment for uncomplicated falciparum malaria. There has been no rigorous assessment of the potential for racial/ethnic differences in the pharmacokinetic properties of ACTs that might influence their efficacy. Areas covered: A comprehensive literature search was performed that identified 72 publications in which the geographical origin of the patients could be ascertained and the key pharmacokinetic parameters maximum drug concentration (Cmax), area under the plasma concentration-time curve (AUC) and elimination half-life (t½β) were available for one or more of the five WHO-recommended ACTs (artemether-lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, dihydroartemisinin-piperaquine and artesunate-sulfadoxine-pyrimethamine). Comparisons of each of the three pharmacokinetic parameters of interest were made by drug (artemisinin derivative and long half-life partner), race/ethnicity (African, Asian, Caucasian, Melanesian, South American) and patient categories based on age and pregnancy status. Expert opinion: The review identified no evidence of a clinically significant influence of race/ethnicity on the pharmacokinetic properties of the nine component drugs in the five ACTs currently recommended by WHO for first-line treatment of uncomplicated falciparum malaria. This provides reassurance for health workers in malaria-endemic regions that ACTs can be given in recommended doses with the expectation of adequate blood concentrations regardless of race/ethnicity.
Collapse
Affiliation(s)
- Sri Riyati Sugiarto
- a Medical School , University of Western Australia, Fremantle Hospital , Fremantle , Australia
| | - Timothy M E Davis
- a Medical School , University of Western Australia, Fremantle Hospital , Fremantle , Australia
| | - Sam Salman
- a Medical School , University of Western Australia, Fremantle Hospital , Fremantle , Australia
| |
Collapse
|
25
|
Clark RL, Youreneff M, DeLise AM. Developmental toxicity studies of lumefantrine and artemether in rats and rabbits. ACTA ACUST UNITED AC 2017; 107:243-257. [PMID: 28032463 DOI: 10.1002/bdrb.21189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 11/11/2022]
Abstract
The combination of artemether plus lumefantrine is a type of artemisinin-based combination therapy (ACT) recommended by the World Health Organization for uncomplicated falciparum malaria except in the first trimester of pregnancy. The first trimester restriction was based on the marked embryotoxicity in animals (including embryo death and cardiac and skeletal malformations) of artemisinins such as artesunate, dihydroartemisinin, and artemether. Before recommending ACTs for use in the first trimester, the World Health Organization has requested that all information relevant to the assessment of risk of ACTs to the embryo be made available to the public. This report describes the results of embryo-fetal development studies of artemether alone, lumefantrine alone, and the combination in rats and rabbits as well as toxicokinetic studies of lumefantrine in pregnant rabbits. The developmental no-effect levels for lumefantrine were 300 mg/kg/day in rats (based on a 25% decrease in litter size at 1000 mg/kg/day) and 1000 mg/kg/day in rabbits. The calculated safety margins based on human equivalent dose and plasma Cmax and AUC values were in the range of 2.5- to 17-fold. The developmental no-effect levels for artemether were 3 mg/kg/day in rats and 25 mg/kg/day in rabbits. Lumefantrine caused no teratogenicity and was not a potent embryotoxin in rats and rabbits. Expected artemisinin-like findings were seen with artemether alone and with artemether/lumefantrine combined except that no malformations were observed. There were no findings in pregnant rats and rabbits that would cause increased concern for the use of artemether-lumefantrine in the first trimester compared to other ACTs.
Collapse
|
26
|
Olafuyi O, Coleman M, Badhan RK. The application of physiologically based pharmacokinetic modelling to assess the impact of antiretroviral-mediated drug-drug interactions on piperaquine antimalarial therapy during pregnancy. Biopharm Drug Dispos 2017; 38:464-478. [DOI: 10.1002/bdd.2087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Olusola Olafuyi
- Aston Healthy Research Group, Aston Pharmacy School; Aston University; Birmingham B4 7ET UK
| | - Michael Coleman
- Aston Pharmacy School; Aston University; Birmingham B4 7ET UK
| | - Raj K.S. Badhan
- Aston Healthy Research Group, Aston Pharmacy School; Aston University; Birmingham B4 7ET UK
- Aston Pharmacy School; Aston University; Birmingham B4 7ET UK
| |
Collapse
|
27
|
Mutagonda RF, Kamuhabwa AAR, Minzi OMS, Massawe SN, Asghar M, Homann MV, Färnert A, Aklillu E. Effect of pharmacogenetics on plasma lumefantrine pharmacokinetics and malaria treatment outcome in pregnant women. Malar J 2017; 16:267. [PMID: 28673292 PMCID: PMC5496343 DOI: 10.1186/s12936-017-1914-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/27/2017] [Indexed: 01/09/2023] Open
Abstract
Background Pregnancy has considerable effects on the pharmacokinetic properties of drugs used to treat uncomplicated Plasmodium falciparum malaria. The role of pharmacogenetic variation on anti-malarial drug disposition and efficacy during pregnancy is not well investigated. The study aimed to examine the effect of pharmacogenetics on lumefantrine (LF) pharmacokinetics and treatment outcome in pregnant women. Methods Pregnant women with uncomplicated falciparum malaria were enrolled and treated with artemether-lumefantrine (ALu) at Mkuranga and Kisarawe district hospitals in Coast Region of Tanzania. Day-7 LF plasma concentration and genotyping forCYP2B6 (c.516G>T, c.983T>C), CYP3A4*1B, CYP3A5 (*3, *6, *7) and ABCB1 c.4036A4G were determined. Blood smear for parasite quantification by microscopy, and dried blood spot for parasite screening and genotyping using qPCR and nested PCR were collected at enrolment up to day 28 to differentiate between reinfection from recrudescence. Treatment response was recorded following the WHO protocol. Results In total, 92 pregnant women in their second and third trimester were included in the study and 424 samples were screened for presence of P. falciparum. Parasites were detected during the follow up period in 11 (12%) women between day 7 and 28 after treatment and PCR genotyping confirmed recrudescent infection in 7 (63.3%) women. The remaining four (36.4%) pregnant women had reinfection: one on day 14 and three on day 28. The overall PCR-corrected treatment failure rate was 9.0% (95% CI 4.4–17.4). Day 7 LF concentration was not significantly influenced by CYP2B6, CYP3A4*1B and ABCB1 c.4036A>G genotypes. Significant associations between CYP3A5 genotype and day 7 plasma LF concentrations was found, being higher in carriers of CYP3A5 defective variant alleles than CYP3A5*1/*1 genotype. No significant influence of CYP2B6, CYP3A5 and ABCB1 c.4036A>Genotypes on malaria treatment outcome were observed. However, CYP3A4*1B did affect malaria treatment outcome in pregnant women followed up for 28 days (P = 0.018). Conclusions Genetic variations in CYP3A4 and CYP3A5may influence LF pharmacokinetics and treatment outcome in pregnant women.
Collapse
Affiliation(s)
- Ritah F Mutagonda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania.
| | - Appolinary A R Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania
| | - Omary M S Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania
| | - Siriel N Massawe
- Department of Obstetrics and Gynaecology, School of Medicine, Muhimbili University of Allied Sciences, P.O Box 65013, Dar es Salaam, Tanzania
| | - Muhammad Asghar
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, 171 76, Stockholm, Sweden
| | - Manijeh V Homann
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, 171 76, Stockholm, Sweden
| | - Anna Färnert
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, 171 76, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Eleni Aklillu
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
28
|
Clark RL. Animal Embryotoxicity Studies of Key Non-Artemisinin Antimalarials and Use in Women in the First Trimester. Birth Defects Res 2017. [DOI: 10.1002/bdr2.1035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Abstract
BACKGROUND Women are commonly prescribed a variety of medications during pregnancy. As most organ systems are affected by the substantial anatomical and physiological changes that occur during pregnancy, it is expected that pharmacokinetics (PK) (absorption, distribution, metabolism, and excretion of drugs) would also be affected in ways that may necessitate changes in dosing schedules. The objective of this study was to systematically identify existing clinically relevant evidence on PK changes during pregnancy. METHODS AND FINDINGS Systematic searches were conducted in MEDLINE (Ovid), Embase (Ovid), Cochrane Central Register of Controlled Trials (Ovid), and Web of Science (Thomson Reuters), from database inception to August 31, 2015. An update of the search from September 1, 2015, to May 20, 2016, was performed, and relevant data were added to the present review. No language or date restrictions were applied. All publications of clinical PK studies involving a group of pregnant women with a comparison to nonpregnant participants or nonpregnant population data were eligible to be included in this review. A total of 198 studies involving 121 different medications fulfilled the inclusion criteria. In these studies, commonly investigated drug classes included antiretrovirals (54 studies), antiepileptic drugs (27 studies), antibiotics (23 studies), antimalarial drugs (22 studies), and cardiovascular drugs (17 studies). Overall, pregnancy-associated changes in PK parameters were often observed as consistent findings among many studies, particularly enhanced drug elimination and decreased exposure to total drugs (bound and unbound to plasma proteins) at a given dose. However, associated alterations in clinical responses and outcomes, or lack thereof, remain largely unknown. CONCLUSION This systematic review of pregnancy-associated PK changes identifies a significant gap between the accumulating knowledge of PK changes in pregnant women and our understanding of their clinical impact for both mother and fetus. It is essential for clinicians to be aware of these unique pregnancy-related changes in PK, and to critically examine their clinical implications.
Collapse
|
30
|
Moore BR, Salman S, Davis TME. Treatment regimens for pregnant women with falciparum malaria. Expert Rev Anti Infect Ther 2016; 14:691-704. [PMID: 27322015 DOI: 10.1080/14787210.2016.1202758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION With increasing parasite drug resistance, the WHO has updated treatment recommendations for falciparum malaria including in pregnancy. This review assesses the evidence for choice of treatment for pregnant women. AREAS COVERED Relevant studies, primarily those published since 2010, were identified from reference databases and were used to identify secondary data sources. Expert commentary: WHO recommends use of intravenous artesunate for severe malaria, quinine-clindamycin for uncomplicated malaria in first trimester, and artemisinin combination therapy for uncomplicated malaria in second/third trimesters. Because fear of adverse outcomes has often excluded pregnant women from conventional drug development, available data for novel therapies are usually based on preclinical studies and cases of inadvertent exposure. Changes in antimalarial drug disposition in pregnancy have been observed but are yet to be translated into specific treatment recommendations. Such targeted regimens may become important as parasite resistance demands that drug exposure is optimized.
Collapse
Affiliation(s)
- Brioni R Moore
- a Fiona Stanley Hospital Unit, School of Medicine and Pharmacology , University of Western Australia , Perth , Australia.,b School of Pharmacy , Curtin University , Perth , Australia
| | - Sam Salman
- c Linear Clinical Research Limited, QEII Medical Centre , Nedlands , Australia.,d Fremantle Hospital Unit, School of Medicine and Pharmacology , University of Western Australia , Fremantle , Australia
| | - Timothy M E Davis
- d Fremantle Hospital Unit, School of Medicine and Pharmacology , University of Western Australia , Fremantle , Australia
| |
Collapse
|
31
|
Han HW, Qiu HY, Hu C, Sun WX, Yang RW, Qi JL, Wang XM, Lu GH, Yang YH. Design, synthesis and anti-cancer activity evaluation of podophyllotoxin-norcantharidin hybrid drugs. Bioorg Med Chem Lett 2016; 26:3237-3242. [DOI: 10.1016/j.bmcl.2016.05.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/14/2016] [Accepted: 05/21/2016] [Indexed: 11/26/2022]
|
32
|
Mutagonda RF, Kamuhabwa AAR, Minzi OMS, Massawe SN, Maganda BA, Aklillu E. Malaria prevalence, severity and treatment outcome in relation to day 7 lumefantrine plasma concentration in pregnant women. Malar J 2016; 15:278. [PMID: 27177586 PMCID: PMC4866074 DOI: 10.1186/s12936-016-1327-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/04/2016] [Indexed: 12/28/2022] Open
Abstract
Background Day 7 plasma concentrations of lumefantrine (LF) can serve as a marker to predict malaria treatment outcome in different study populations. Two main cut-off points (175 and 280 ng/ml) are used to indicate plasma concentrations of LF, below which treatment failure is anticipated. However, there is limited data on the cumulative risk of recurrent parasitaemia (RP) in relation to day 7 LF plasma concentrations in pregnant women. This study describes the prevalence, severity, factors influencing treatment outcome of malaria in pregnancy and day 7 LF plasma concentration therapeutic cut-off points that predicts treatment outcome in pregnant women. Methods This was a one-arm prospective cohort study whereby 89 pregnant women with uncomplicated Plasmodium falciparum malaria receiving artemether-lumefantrine (ALu) participated in pharmacokinetics and pharmacodynamics study. Blood samples were collected on days 0, 2, 7, 14, 21 and 28 for malaria parasite quantification. LF plasma concentrations were determined on day 7. The primary outcome measure was an adequate clinical and parasitological response (ACPR) after treatment with ALu. Results The prevalence of malaria in pregnant women was 8.1 % (95 % CI 6.85–9.35) of whom 3.4 % (95 % CI 1.49–8.51) had severe malaria. The overall PCR-uncorrected treatment failure rate was 11.7 % (95 % CI 0.54–13.46 %). Low baseline hemoglobin (<10 g/dl) and day 7 LF concentration <600 ng/ml were significant predictors of RP. The median day 7 LF concentration was significantly lower in pregnant women with RP (270 ng/ml) than those with ACPR (705 ng/ml) (p = 0.016). The relative risk of RP was 4.8 folds higher (p = 0.034) when cut-off of <280 ng/ml was compared to ≥280 ng/ml and 7.8-folds higher (p = 0.022) when cut-off of <600 ng/ml was compared to ≥600 ng/ml. The cut-off value of 175 ng/ml was not associated with the risk of RP (p = 0.399). Conclusions Pregnant women with day 7 LF concentration <600 ng/ml are at high risk of RP than those with ≥600 ng/ml. To achieve effective therapeutic outcome, higher day 7 venous plasma LF concentration ≥600 ng/ml is required for pregnant patients than the previously suggested cut-off value of 175 or 280 ng/ml for non-pregnant adult patients.
Collapse
Affiliation(s)
- Ritah F Mutagonda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania.
| | - Appolinary A R Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania
| | - Omary M S Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania
| | - Siriel N Massawe
- Department of Obstetrics and Gynaecology, School of Medicine, Muhimbili University of Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania
| | - Betty A Maganda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania
| | - Eleni Aklillu
- Department of Laboratory of Medicine, Division of Clinical Pharmacology, Karolinska Institutet, 141 86, Stockholm, Sweden
| |
Collapse
|
33
|
Burger RJ, Visser BJ, Grobusch MP, van Vugt M. The influence of pregnancy on the pharmacokinetic properties of artemisinin combination therapy (ACT): a systematic review. Malar J 2016; 15:99. [PMID: 26891915 PMCID: PMC4757991 DOI: 10.1186/s12936-016-1160-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background Pregnancy has been reported to alter the pharmacokinetic properties of anti-malarial drugs, including the different components of artemisinin-based combination therapy (ACT). However, small sample sizes make it difficult to draw strong conclusions based on individual pharmacokinetic studies. The aim of this review is to summarize the evidence of the influence of pregnancy on the pharmacokinetic properties of different artemisinin-based combinations. Methods A PROSPERO-registered systematic review to identify clinical trials that investigated the influence of pregnancy on the pharmacokinetic properties of different forms of ACT was conducted, following PRISMA guidelines. Without language restrictions, Medline/PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of Science, LILACS, Biosis Previews and the African Index Medicus were searched for studies published up to November 2015. The following components of ACT that are currently recommend by the World Health Organization as first-line treatment of malaria in pregnancy were reviewed: artemisinin, artesunate, dihydroartemisinin, lumefantrine, amodiaquine, mefloquine, sulfadoxine, pyrimethamine, piperaquine, atovaquone and proguanil. Results The literature search identified 121 reports, 27 original studies were included. 829 pregnant women were included in the analysis. Comparison of the available studies showed lower maximum concentrations (Cmax) and exposure (AUC) of dihydroartemisinin, the active metabolite of all artemisinin derivatives, after oral administration of artemether, artesunate and dihydroartemisinin in pregnant women. Low day 7 concentrations were commonly seen in lumefantrine studies, indicating a low exposure and possibly reduced efficacy. The influence of pregnancy on amodiaquine and piperaquine seemed not to be clinically relevant. Sulfadoxine plasma concentration was significantly reduced and clearance rates were higher in pregnancy, while pyrimethamine and mefloquine need more research as no general conclusion can be drawn based on the available evidence. For atovaquone, the available data showed a lower maximum concentration and exposure. Finally, the maximum concentration of cycloguanil, the active metabolite of proguanil, was significantly lower, possibly compromising the efficacy. Conclusion These findings suggest that reassessment of the dose of the artemisinin derivate and some components of ACT are necessary to ensure the highest possible efficacy of malaria treatment in pregnant women. However, for most components of ACT, data were insufficient and extensive research with larger sample sizes will be necessary to identify the exact influences of pregnancy on the pharmacokinetic properties of different artemisinin-based combinations. In addition, different clinical studies used diverse study designs with various reported relevant outcomes. Future pharmacokinetic studies could benefit from more uniform designs, in order to increase quality, robustness and effectiveness. Study registration: CRD42015023756 (PROSPERO) Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1160-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Renée J Burger
- Division of Internal Medicine, Department of Infectious Diseases, Academic Medical Center, Center of Tropical Medicine and Travel Medicine, University of Amsterdam, Meibergdreef 9, PO Box 22700, 1100 DE, Amsterdam, The Netherlands.
| | - Benjamin J Visser
- Division of Internal Medicine, Department of Infectious Diseases, Academic Medical Center, Center of Tropical Medicine and Travel Medicine, University of Amsterdam, Meibergdreef 9, PO Box 22700, 1100 DE, Amsterdam, The Netherlands. .,Centre de Recherches de Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, Lambaréné, Gabon.
| | - Martin P Grobusch
- Division of Internal Medicine, Department of Infectious Diseases, Academic Medical Center, Center of Tropical Medicine and Travel Medicine, University of Amsterdam, Meibergdreef 9, PO Box 22700, 1100 DE, Amsterdam, The Netherlands. .,Centre de Recherches de Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, Lambaréné, Gabon.
| | - Michèle van Vugt
- Division of Internal Medicine, Department of Infectious Diseases, Academic Medical Center, Center of Tropical Medicine and Travel Medicine, University of Amsterdam, Meibergdreef 9, PO Box 22700, 1100 DE, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Riley C, Dellicour S, Ouma P, Kioko U, ter Kuile FO, Omar A, Kariuki S, Buff AM, Desai M, Gutman J. Knowledge and Adherence to the National Guidelines for Malaria Case Management in Pregnancy among Healthcare Providers and Drug Outlet Dispensers in Rural, Western Kenya. PLoS One 2016; 11:e0145616. [PMID: 26789638 PMCID: PMC4720358 DOI: 10.1371/journal.pone.0145616] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023] Open
Abstract
Background Although prompt, effective treatment is a cornerstone of malaria control, information on provider adherence to malaria in pregnancy (MIP) treatment guidelines is limited. Incorrect or sub-optimal treatment can adversely affect the mother and fetus. This study assessed provider knowledge of and adherence to national case management guidelines for uncomplicated MIP. Methods We conducted a cross-sectional study from September to November 2013, in 51 health facilities (HF) and a randomly-selected sample of 39 drug outlets (DO) in the KEMRI/CDC Health and Demographic Surveillance System area in western Kenya. Provider knowledge of national treatment guidelines was assessed with standardized questionnaires. Correct practice required adequate diagnosis, pregnancy assessment, and treatment with correct drug and dosage. In HF, we conducted exit interviews in all women of childbearing age assessed for fever. In DO, simulated clients posing as first trimester pregnant women or as relatives of third trimester pregnant women collected standardized information. Results Correct MIP case management knowledge and practice were observed in 45% and 31% of HF and 0% and 3% of DO encounters, respectively. The correct drug and dosage for pregnancy trimester was prescribed in 62% of HF and 42% of DO encounters; correct prescription occurred less often in first than in second/ third trimesters (HF: 24% vs. 65%, p<0.01; DO: 0% vs. 40%, p<0.01). Sulfadoxine-pyrimethamine, which is not recommended for malaria treatment, was prescribed in 3% of HF and 18% of DO encounters. Exposure to artemether-lumefantrine in first trimester, which is contraindicated, occurred in 29% and 49% of HF and DO encounters, respectively. Conclusion This study highlights knowledge inadequacies and incorrect prescribing practices in the treatment of MIP. Particularly concerning is the prescription of contraindicated medications in the first trimester. These issues should be addressed through comprehensive trainings and increased supportive supervision. Additional innovative means to improve care should be explored.
Collapse
Affiliation(s)
- Christina Riley
- Rollins School of Public Health, Emory University, Atlanta, United States of America
- * E-mail: (JG); (CR)
| | | | - Peter Ouma
- KEMRI, Centre for Global Health Research, Kisumu, Kenya
| | - Urbanus Kioko
- Malaria Control Unit, Ministry of Health, Nairobi, Kenya
| | | | - Ahmeddin Omar
- Malaria Control Unit, Ministry of Health, Nairobi, Kenya
| | - Simon Kariuki
- KEMRI, Centre for Global Health Research, Kisumu, Kenya
| | - Ann M. Buff
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, United States of America
- US President’s Malaria Initiative, Nairobi, Kenya
| | - Meghna Desai
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, United States of America
- Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Julie Gutman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, United States of America
- * E-mail: (JG); (CR)
| |
Collapse
|
35
|
Hoglund RM, Byakika-Kibwika P, Lamorde M, Merry C, Ashton M, Hanpithakpong W, Day NPJ, White NJ, Äbelö A, Tarning J. Artemether-lumefantrine co-administration with antiretrovirals: population pharmacokinetics and dosing implications. Br J Clin Pharmacol 2015; 79:636-49. [PMID: 25297720 PMCID: PMC4386948 DOI: 10.1111/bcp.12529] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/03/2014] [Indexed: 11/29/2022] Open
Abstract
AIM Drug–drug interactions between antimalarial and antiretroviral drugs may influence antimalarial treatment outcomes. The aim of this study was to investigate the potential drug–drug interactions between the antimalarial drugs, lumefantrine, artemether and their respective metabolites desbutyl-lumefantrine and dihydroartemisinin, and the HIV drugs efavirenz, nevirapine and lopinavir/ritonavir. METHOD Data from two clinical studies, investigating the influence of the HIV drugs efavirenz, nevirapine and lopinavir/ritonavir on the pharmacokinetics of the antimalarial drugs lumefantrine, artemether and their respective metabolites, in HIV infected patients were pooled and analyzed using a non-linear mixed effects modelling approach. RESULTS Efavirenz and nevirapine significantly decreased the terminal exposure to lumefantrine (decrease of 69.9% and 25.2%, respectively) while lopinavir/ritonavir substantially increased the exposure (increase of 439%). All antiretroviral drugs decreased the total exposure to dihydroartemisinin (decrease of 71.7%, 41.3% and 59.7% for efavirenz, nevirapine and ritonavir/lopinavir, respectively). Simulations suggest that a substantially increased artemether-lumefantrine dose is required to achieve equivalent exposures when co-administered with efavirenz (250% increase) and nevirapine (75% increase). When co-administered with lopinavir/ritonavir it is unclear if the increased lumefantrine exposure compensates adequately for the reduced dihydroartemisinin exposure and thus whether dose adjustment is required. CONCLUSION There are substantial drug interactions between artemether-lumefantrine and efavirenz, nevirapine and ritonavir/lopinavir. Given the readily saturable absorption of lumefantrine, the dose adjustments predicted to be necessary will need to be evaluated prospectively in malaria-HIV co-infected patients.
Collapse
Affiliation(s)
- Richard M Hoglund
- Unit for Pharmacokinetics and Drug Metabolism, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Artemether-Lumefantrine Pharmacokinetics and Clinical Response Are Minimally Altered in Pregnant Ugandan Women Treated for Uncomplicated Falciparum Malaria. Antimicrob Agents Chemother 2015; 60:1274-82. [PMID: 26666942 PMCID: PMC4775973 DOI: 10.1128/aac.01605-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/13/2015] [Indexed: 12/03/2022] Open
Abstract
Artemether-lumefantrine is a first-line regimen for the treatment of uncomplicated malaria during the second and third trimesters of pregnancy. Previous studies have reported changes in the pharmacokinetics and clinical outcomes following treatment with artemether-lumefantrine in pregnant women compared to nonpregnant adults; however, the results are inconclusive. We conducted a study in rural Uganda to compare the pharmacokinetics of artemether-lumefantrine and the treatment responses between 30 pregnant women and 30 nonpregnant adults with uncomplicated Plasmodium falciparum malaria. All participants were uninfected with HIV, treated with a six-dose regimen of artemether-lumefantrine, and monitored clinically for 42 days. The pharmacokinetics of artemether, its metabolite dihydroartemisinin, and lumefantrine were evaluated for 21 days following treatment. We found no significant differences in the overall pharmacokinetics of artemether, dihydroartemisinin, or lumefantrine in a direct comparison of pregnant women to nonpregnant adults, except for a statistically significant but small difference in the terminal elimination half-lives of both dihydroartemisinin and lumefantrine. There were seven PCR-confirmed reinfections (5 pregnant and 2 nonpregnant participants). The observation of a shorter terminal half-life for lumefantrine may have contributed to a higher frequency of reinfection or a shorter posttreatment prophylactic period in pregnant women than in nonpregnant adults. While the comparable overall pharmacokinetic exposure is reassuring, studies are needed to further optimize antimalarial efficacy in pregnant women, particularly in high-transmission settings and because of emerging drug resistance. (This study is registered at ClinicalTrials.gov under registration no. NCT01717885.)
Collapse
|
37
|
Abstract
Severe malaria in pregnancy is a large contributor to maternal morbidity and mortality. Intravenous quinine has traditionally been the treatment drug of choice for severe malaria in pregnancy. However, recent randomized clinical trials (RCTs) indicate that intravenous artesunate is more efficacious for treating severe malaria, resulting in changes to the World Health Organization (WHO) treatment guidelines. Artemisinins, including artesunate, are embryo-lethal in animal studies and there is limited experience with their use in the first trimester. This review summarizes the current literature supporting 2010 WHO treatment guidelines for severe malaria in pregnancy and the efficacy, pharmacokinetics, and adverse event data for currently used antimalarials available for severe malaria in pregnancy. We identified ten studies on the treatment of severe malaria in pregnancy that reported clinical outcomes. In two studies comparing intravenous quinine with intravenous artesunate, intravenous artesunate was more efficacious and safe for use in pregnant women. No studies detected an increased risk of miscarriage, stillbirth, or congenital anomalies associated with first trimester exposure to artesunate. Although the WHO recommends using either quinine or artesunate for the treatment of severe malaria in first trimester pregnancies, our findings suggest that artesunate should be the preferred treatment option for severe malaria in all trimesters.
Collapse
|
38
|
Padberg S. Anti-infective Agents. DRUGS DURING PREGNANCY AND LACTATION 2015. [PMCID: PMC7150338 DOI: 10.1016/b978-0-12-408078-2.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
39
|
Kloprogge F, Jullien V, Piola P, Dhorda M, Muwanga S, Nosten F, Day NPJ, White NJ, Guerin PJ, Tarning J. Population pharmacokinetics of quinine in pregnant women with uncomplicated Plasmodium falciparum malaria in Uganda. J Antimicrob Chemother 2014; 69:3033-40. [PMID: 24970740 PMCID: PMC4195470 DOI: 10.1093/jac/dku228] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Oral quinine is used for the treatment of uncomplicated malaria during pregnancy, but few pharmacokinetic data are available for this population. Previous studies have reported a substantial effect of malaria on the pharmacokinetics of quinine resulting from increased α-1-acid glycoprotein levels and decreased cytochrome P450 3A4 activity. The aim of this study was to investigate the pharmacokinetic properties of oral quinine in pregnant women with uncomplicated malaria in Uganda using a population approach. Methods Data from 22 women in the second and third trimesters of pregnancy with uncomplicated Plasmodium falciparum malaria were analysed. Patients received quinine sulphate (10 mg of salt/kg) three times daily (0, 8 and 16 h) for 7 days. Plasma samples were collected daily and at frequent intervals after the first and last doses. A population pharmacokinetic model for quinine was developed accounting for different disposition, absorption, error and covariate models. Results Parasitaemia, as a time-varying covariate affecting relative bioavailability, and body temperature on admission as a covariate on elimination clearance, explained the higher exposure to quinine during acute malaria compared with the convalescent phase. Neither the estimated gestational age nor the trimester influenced the pharmacokinetic properties of quinine significantly. Conclusions A population model was developed that adequately characterized quinine pharmacokinetics in pregnant Ugandan women with acute malaria. Quinine exposure was lower than previously reported in patients who were not pregnant. The measurement of free quinine concentration will be necessary to determine the therapeutic relevance of these observations.
Collapse
Affiliation(s)
- Frank Kloprogge
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vincent Jullien
- Université Paris Descartes, INSERM U663, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Vincent de Paul, Paris, France
| | - Patrice Piola
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Epicentre, Paris, France Mbarara University of Science & Technology, Mbarara, Uganda
| | - Mehul Dhorda
- Epicentre, Paris, France Epicentre, Mbarara, Uganda Malaria Group, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - François Nosten
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas P J Day
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Philippe J Guerin
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Epicentre, Paris, France
| | - Joel Tarning
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
40
|
Gwee A, Cranswick N. Anti-infective use in children and pregnancy: current deficiencies and future challenges. Br J Clin Pharmacol 2014; 79:216-21. [PMID: 24588467 DOI: 10.1111/bcp.12363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/11/2014] [Indexed: 12/20/2022] Open
Abstract
There are a number of challenges to using anti-infective agents in children and pregnant women. There is limited understanding of the altered pharmacokinetics of anti-infectives in these populations and as a result, optimized dosing regimens are yet to be established. The potential adverse effects of the drug on pregnancy outcome and the developing foetus is a major consideration, and the long term implications of drug side effects must be taken into account when drug exposure occurs early in life. These factors hinder research and licensing of new anti-infective drugs in these populations. We describe the current deficiencies and future challenges of anti-infective use in children and pregnant women, providing specific examples.
Collapse
Affiliation(s)
- Amanda Gwee
- Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria; Murdoch Childrens Research Institute, Melbourne, Victoria
| | | |
Collapse
|