1
|
Biedrzycka M, Urbanowicz P, Brisse S, Palma F, Żabicka D, Gniadkowski M, Izdebski R. Multiple regional outbreaks caused by global and local VIM-producing Klebsiella pneumoniae clones in Poland, 2006-2019. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-05016-1. [PMID: 39708274 DOI: 10.1007/s10096-024-05016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE This study was aimed at comprehensive genomic analysis of VIM-type carbapenemase-producing Klebsiella pneumoniae species complex (KpSC) in Poland. METHODS All non-duplicate 214 VIM-producing KpSC isolates reported in Poland in 2006-2019 were short-read sequenced and re-identified by the average nucleotide identity scoring. Their clonality/phylogeny was assessed by cgMLST and SNP in comparison with genomes from international databases. Serotypes, VIM-encoding integrons, resistomes, virulomes and plasmid replicons were identified by various bioinformatic tools. Structures of plasmids and genomic islands with VIM integrons were analysed for representative long-read sequenced isolates. RESULTS The KpSC isolates were the second most prevalent VIM-positive Enterobacterales (23.1%) in Poland in 2006-2019, following Enterobacter spp. (40.1%). Their significance emerged in 2014 and then grew consequently, owing to eight regional outbreaks of K. pneumoniae sequence types (STs) ST437, ST147, ST15, ST277 and ST392. These carried different VIM integrons, mainly In238 and In916 types, located on IncFIB + IncHI2 (pNDM-MAR)-, IncA- or IncM-like plasmids, or clc-type integrative and conjugative elements. Despite relatedness of the outbreak clusters to isolates from other countries, e.g. Greece, Spain, Slovakia or Germany, most of them have apparently emerged on site by horizontal acquisition of resistance determinants from other species, including Enterobacter spp. and Pseudomonas spp. CONCLUSIONS This work shows dynamic epidemiology of VIM-producing organisms, driven by a mix of circulation of different VIM-encoding elements, and parallel clonal spread of multiple organisms.
Collapse
Affiliation(s)
- Marta Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Paweł Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Université Paris Cité, Paris, France
| | - Federica Palma
- Biological Resource Center of the Institut Pasteur, Institut Pasteur, Université Paris Cité, Paris, France
| | - Dorota Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Radosław Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland.
| |
Collapse
|
2
|
Chu J, Choi J, Ji SK, Park C, Jung SH, Park SH, Lee DG. An outbreak of bla KPC-4- and bla VIM-1-producing Klebsiella pneumoniae and Klebsiella variicola at a single hospital in South Korea. Antimicrob Resist Infect Control 2024; 13:123. [PMID: 39394195 PMCID: PMC11470574 DOI: 10.1186/s13756-024-01478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND The dissemination of Klebsiella spp. producing multiple carbapenemases has been increasingly recognized. Between July 2019 and August 2021, ten patients were found to carry Klebsiella spp. co-harboring blaKPC-4 and blaVIM-1 across multiple wards at a Korean hospital, and one isolate was recovered from a hand-washing sink, more than a year after the outbreak. This study aimed to investigate the outbreak and conduct a genomic study of these isolates. METHODS Whole-genome sequencing, including long-read sequencing, was performed to analyze plasmid structures and mobile genetic elements (MGEs). Bioinformatics analyses were performed to trace clonal transmission chains and horizontal gene transfer. RESULTS The findings suggested that the inter-ward spread of Klebsiella spp. seemed to be facilitated by healthcare worker contact or patient movement. Of the nine isolates collected (eight clinical and one environmental), seven (including the environmental isolate) were identified as K. pneumoniae (ST3680) and two were K. variicola (single-locus variant of ST5252). These isolates showed high genetic relatedness within their species and harbored the IncHI5B plasmid carrying both blaKPC-4 and blaVIM-1 (pKPCVIM.1). On this plasmid, blaVIM-1 was located in the Class 1 integron associated with IS1326::IS1353 (In2), and Tn4401b carrying blaKPC-4 was inserted into IS1326::IS1353, creating a novel MGE construct (In2_blaVIM-1-Tn4401b_blaKPC-4). CONCLUSION The hospital-wide spread of blaKPC-4 and blaVIM-1 was facilitated by clonal spread and horizontal plasmid transfer. The persistence of this strain in the hospital sink suggests a potential reservoir of the strain. Understanding the transmission mechanisms of persistent pathogens is important for improving infection control strategies in hospitals.
Collapse
Affiliation(s)
- Jiyon Chu
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaeki Choi
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seul Ki Ji
- Infection Prevention and Control Unit, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Chulmin Park
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Hyun Jung
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Sun Hee Park
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Aracil-Gisbert S, Fernández-De-Bobadilla MD, Guerra-Pinto N, Serrano-Calleja S, Pérez-Cobas AE, Soriano C, de Pablo R, Lanza VF, Pérez-Viso B, Reuters S, Hasman H, Cantón R, Baquero F, Coque TM. The ICU environment contributes to the endemicity of the " Serratia marcescens complex" in the hospital setting. mBio 2024; 15:e0305423. [PMID: 38564701 PMCID: PMC11077947 DOI: 10.1128/mbio.03054-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Serratia marcescens is an opportunistic pathogen historically associated with sudden outbreaks in intensive care units (ICUs) and the spread of carbapenem-resistant genes. However, the ecology of S. marcescens populations in the hospital ecosystem remains largely unknown. We combined epidemiological information of 1,432 Serratia spp. isolates collected from sinks of a large ICU that underwent demographic and operational changes (2019-2021) and 99 non-redundant outbreak/non-outbreak isolates from the same hospital (2003-2019) with 165 genomic data. These genomes were grouped into clades (1-4) and subclades (A and B) associated with distinct species: Serratia nematodiphila (1A), S. marcescens (1B), Serratia bockelmannii (2A), Serratia ureilytica (2B), S. marcescens/Serratia nevei (3), and S. nevei (4A and 4B). They may be classified into an S. marcescens complex (SMC) due to the similarity between/within subclades (average nucleotide identity >95%-98%), with clades 3 and 4 predominating in our study and publicly available databases. Chromosomal AmpC β-lactamase with unusual basal-like expression and prodigiosin-lacking species contrasted classical features of Serratia. We found persistent and coexisting clones in sinks of subclades 4A (ST92 and ST490) and 4B (ST424), clonally related to outbreak isolates carrying blaVIM-1 or blaOXA-48 on prevalent IncL/pB77-CPsm plasmids from our hospital since 2017. The distribution of SMC populations in ICU sinks and patients reflects how Serratia species acquire, maintain, and enable plasmid evolution in both "source" (permanent, sinks) and "sink" (transient, patients) hospital patches. The results contribute to understanding how water sinks serve as reservoirs of Enterobacterales clones and plasmids that enable the persistence of carbapenemase genes in healthcare settings, potentially leading to outbreaks and/or hospital-acquired infections.IMPORTANCEThe "hospital environment," including sinks and surfaces, is increasingly recognized as a reservoir for bacterial species, clones, and plasmids of high epidemiological concern. Available studies on Serratia epidemiology have focused mainly on outbreaks of multidrug-resistant species, overlooking local longitudinal analyses necessary for understanding the dynamics of opportunistic pathogens and antibiotic-resistant genes within the hospital setting. This long-term genomic comparative analysis of Serratia isolated from the ICU environment with isolates causing nosocomial infections and/or outbreaks within the same hospital revealed the coexistence and persistence of Serratia populations in water reservoirs. Moreover, predominant sink strains may acquire highly conserved and widely distributed plasmids carrying carbapenemase genes, such as the prevalent IncL-pB77-CPsm (pOXA48), persisting in ICU sinks for years. The work highlights the relevance of ICU environmental reservoirs in the endemicity of certain opportunistic pathogens and resistance mechanisms mainly confined to hospitals.
Collapse
Affiliation(s)
- Sonia Aracil-Gisbert
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Member of the ESCMID Food- and Water-borne Infections Study Group (EFWISG), Basel, Switzerland
| | - Miguel D. Fernández-De-Bobadilla
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Member of the ESCMID Food- and Water-borne Infections Study Group (EFWISG), Basel, Switzerland
| | - Natalia Guerra-Pinto
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Member of the ESCMID Food- and Water-borne Infections Study Group (EFWISG), Basel, Switzerland
| | - Silvia Serrano-Calleja
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Ana Elena Pérez-Cobas
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Member of the ESCMID Food- and Water-borne Infections Study Group (EFWISG), Basel, Switzerland
- Biomedical Research Center Network of Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Cruz Soriano
- Intensive Medicine, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- University of Alcalá (UAH), Madrid, Spain
| | - Raúl de Pablo
- Intensive Medicine, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- University of Alcalá (UAH), Madrid, Spain
| | - Val F. Lanza
- Biomedical Research Center Network of Infectious Diseases (CIBERINFEC), Madrid, Spain
- Bioinformatics Unit, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Blanca Pérez-Viso
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Sandra Reuters
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Institute for Infection Prevention and Control, Medical Center–University of Freiburg, Freiburg, Germany
| | - Henrik Hasman
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Member of the ESCMID Food- and Water-borne Infections Study Group (EFWISG), Basel, Switzerland
- Statens Serum Institut, Copenhagen, Denmark
| | - Rafael Cantón
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Biomedical Research Center Network of Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Fernando Baquero
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Biomedical Research Center Network of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Teresa M. Coque
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Member of the ESCMID Food- and Water-borne Infections Study Group (EFWISG), Basel, Switzerland
- Biomedical Research Center Network of Infectious Diseases (CIBERINFEC), Madrid, Spain
| |
Collapse
|
4
|
Zheng Z, Cheng Q, Ye L, Xu Y, Chen S. Characterization of VIM-71, a novel VIM-type metallo-β-lactamase variant encoded by an integrative and conjugative element recovered from a Vibrio alginolyticus strain in China. Microbiol Res 2024; 278:127532. [PMID: 37879253 DOI: 10.1016/j.micres.2023.127532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
A novel VIM-type metallo-β-lactamase variant, VIM-71, which is encoded by a multidrug-resistant Vibrio alginolyticus strain recovered from a shrimp sample in China, was identified. Compared to VIM-1, VIM-71 differs in 22 amino acid positions based on the primary protein sequence and confers a similar resistance profile to penicillins, but the level of resistance to carbapenems encoded by this enzyme was lower than that of VIM-1. The blaVIM-71 gene was found located in an integrative and conjugative element of the SXT/R391 family in the chromosome. These findings implied that genetic elements that encode clinically important carbapenemases continue to evolve in Vibrio spp.
Collapse
Affiliation(s)
- Zhiwei Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China; State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qipeng Cheng
- College of Life Sciences, Anhui Normal University, Wuhu, PR China; State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lianwei Ye
- State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yating Xu
- State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China; State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Bitar I, Papagiannitsis CC, Kraftova L, Marchetti VM, Petinaki E, Finianos M, Chudejova K, Zemlickova H, Hrabak J. Implication of different replicons in the spread of the VIM-1-encoding integron, In110, in Enterobacterales from Czech hospitals. Front Microbiol 2023; 13:993240. [PMID: 36687644 PMCID: PMC9845580 DOI: 10.3389/fmicb.2022.993240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Background VIM metallo-β-lactamases are enzymes characterized by the ability to hydrolyze all β-lactams. Usually, bla VIM-like genes are carried by class 1 integrons. In the Czech Republic, only sporadic cases of VIM-producing Enterobacterales have been reported in which those isolates carried the VIM-1 carbapenemase-encoding integron In110. However, during 2019-2020, an increased number was reported. Therefore, the aim of the current study was to characterize the genetic elements involved in the increased spread of bla VIM genes. Materials and methods 32 VIM-producing Enterobacterales collected between 2019 and 2020 were subjected to: antimicrobial susceptibility testing, integron analysis, and short reads sequencing. Based on the results, 19 isolates were selected as representative and sequenced using Sequel I platform. Results The 32 VIM-producing isolates exhibited variations in the MICs of carbapenems. Based on short-read data, 26 of the 32 sequenced isolates harbored the bla VIM-1 allele while six isolates carried the bla VIM-4 gene. The most prevalent was the In110 integron (n = 24) and two isolates carried the In4873 class 1 integron. The bla VIM-4 allele was identified in class 1 integrons In1174 (n = 3), In416 (n = 1), In2143 (n = 1) and In2150. Long reads sequencing revealed that the bla VIM was carried by: pKPC-CAV1193-like (n = 6), HI1 (pNDM-CIT; n = 4), HI2 (n = 3), FIB (pECLA; n = 2) and N (n = 1) incompatibility groups. Two bla VIM-carrying plasmids could not be typed by the database, while another one was integrated into the chromosome. Conclusion We observed the spread of VIM-encoding integrons, mainly of In110, among Enterobacterales isolated from Czech hospitals, but also an increased number of novel elements underlining the ongoing evolution.
Collapse
Affiliation(s)
- Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia,*Correspondence: Ibrahim Bitar, ✉
| | | | - Lucie Kraftova
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Vittoria Mattioni Marchetti
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Efthymia Petinaki
- Department of Microbiology, University Hospital of Larissa, Larissa, Greece
| | - Marc Finianos
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Katerina Chudejova
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Helena Zemlickova
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czechia,Department of Medical Microbiology, 3rd Faculty of Medicine, Charles University, Prague, Czechia
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| |
Collapse
|
6
|
Genomic Characterization of Imipenem- and Imipenem-Relebactam-Resistant Clinical Isolates of Pseudomonas aeruginosa. mSphere 2021; 6:e0083621. [PMID: 34817240 PMCID: PMC8612254 DOI: 10.1128/msphere.00836-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and a major cause of nosocomial infections. The global spread of carbapenem-resistant strains is growing rapidly and has become a major public health challenge. Imipenem-relebactam (I/R) is a novel carbapenem-beta-lactamase inhibitor combination that can overcome carbapenem resistance. In this study, we aimed to understand the mechanism underlying resistance to imipenem and imipenem-relebactam. For this purpose, we performed a genomic comparison of 40 new clinical P. aeruginosa strains with different antibiotic sensitivity patterns as well as the presence/absence of carbapenemases. Results indicated the presence of a reduced flexible genome (15% total) mostly represented by phages and defense mechanisms against them, showing an important role in evolution and pathogenicity. We found a high diversity of antibiotic resistance genes grouped in small clusters mobilized via integrative and conjugative elements and facilitated by the high homologous recombination detected. Ortholog genes were found in several pathogenic strains from distantly related taxa in different mobile elements with a global distribution. The microdiversity found in those strains without carbapenemases did not reveal a clear pattern that could be associated with carbapenem resistance, suggesting multiple mechanisms of resistance in the core genome. Our results provide new insight into the dynamics and high genomic plasticity by which clinical strains of P. aeruginosa acquire resistance. This knowledge can be applied to other multidrug-resistant microbes to create predictive frameworks for assessing common molecular mechanisms of antibiotic resistance and integrated into new strategies for their prevention. IMPORTANCE The growing emergence and spread of carbapenem-resistant pathogens worldwide exacerbate the clinical challenge of treating these infections. Given the importance of carbapenems for the treatment of infections caused by Pseudomonas aeruginosa, this study aimed to investigate the underlying genomic properties of the clinical isolates that exhibited resistance to imipenem and imipenem-relebactam. This information will enhance our ability to forecast traits of resistant strains and design reliable treatments against this important threat. Our results provide new insight into the dynamics and high genomic plasticity by which clinical strains of P. aeruginosa acquire resistance as well as offers a methodology that can be applied to many other opportunistic pathogens with broad antibiotic resistance.
Collapse
|
7
|
Brovedan MA, Marchiaro PM, Díaz MS, Faccone D, Corso A, Pasteran F, Viale AM, Limansky AS. Pseudomonas putida group species as reservoirs of mobilizable Tn402-like class 1 integrons carrying bla VIM-2 metallo-β-lactamase genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105131. [PMID: 34748986 DOI: 10.1016/j.meegid.2021.105131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
The Pseudomonas putida group (P. putida G) is composed of at least 21 species associated with a wide range of environments, including the clinical setting. Here, we characterized 13 carbapenem-resistant P. putida G clinical isolates bearing class 1 integrons/transposons (class 1 In/Tn) carrying blaVIM-2 metallo-β-lactamase gene cassettes obtained from hospitals of Argentina. Multilocus sequencing (MLSA) and phylogenetic analyses based on 16S rDNA, gyrB and rpoD sequences distinguished 7 species among them. blaVIM-2 was found in three different cassette arrays: In41 (blaVIM-2-aacA4), In899 (only blaVIM-2), and In528 (dfrB1-aacA4-blaVIM-2). In41 and In899 were associated with complete tniABQC transposition modules and IRi/IRt boundaries characteristic of the Tn5053/Tn402 transposons, which were designated Tn6335 and Tn6336, respectively. The class 1 In/Tn element carrying In528, however, exhibited a defective tni module bearing only the tniC (transposase) gene, associated with a complete IS6100 bounded with two oppositely-oriented IRt end regions. In some P. putida G isolates including P. asiatica, P. juntendi, P. putida G/II, and P. putida G/V, Tn6335/Tn6336 were carried by pLD209-type conjugative plasmids capable of self-mobilization to P. aeruginosa or Escherichia coli. In other isolates of P. asiatica, P. putida G/II, and P. monteiliieilii, however, these blaVIM-2-containing class 1 In/Tn elements were found inserted into the res regions preceding the tnpR (resolvase) gene of particular Tn21 subgroup members of Tn3 transposons. The overall results reinforce the notion of P. putida G members as blaVIM-2 reservoirs, and shed light on the mechanisms of dissemination of carbapenem resistance genes to other pathogenic bacteria in the clinical setting.
Collapse
Affiliation(s)
- Marco A Brovedan
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Patricia M Marchiaro
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María S Díaz
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego Faccone
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Pasteran
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro M Viale
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Adriana S Limansky
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
8
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
9
|
Subedi D, Vijay AK, Willcox M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clin Exp Optom 2021; 101:162-171. [DOI: 10.1111/cxo.12621] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Dinesh Subedi
- School of Optometry and Vision Science, Faculty of Science, The University of New South Wales, Sydney, New South Wales, Australia,
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, Faculty of Science, The University of New South Wales, Sydney, New South Wales, Australia,
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Science, The University of New South Wales, Sydney, New South Wales, Australia,
| |
Collapse
|
10
|
Hansen GT. Continuous Evolution: Perspective on the Epidemiology of Carbapenemase Resistance Among Enterobacterales and Other Gram-Negative Bacteria. Infect Dis Ther 2021; 10:75-92. [PMID: 33492641 PMCID: PMC7954928 DOI: 10.1007/s40121-020-00395-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
The global emergence of carbapenemase-producing bacteria capable of hydrolyzing the once effective carbapenem antibiotics is considered a contemporary public health concern. Carbapenemase enzymes, once constrained to isolates of Klebsiella pneumoniae, are now routinely reported in different bacteria within the Enterobacterales order of bacteria, creating the acronym CRE which now defines Carbapenem-Resistant Enterobacterales. CRE harboring different types of enzymes, including the most prevalent types KPC, VIM, IMP, NDM, and OXA-48, are now routinely reported and more importantly, are now frequently present in many infections world-wide. Defining and updating the contemporary epidemiology of both the US and global burden of carbapenem-resistant infections is now more important than ever. This review describes the global distribution and continued evolution of carbapenemases which continue to spread at alarming rates. Informed understanding of the current epidemiology of CRE, coupled with advances in antibiotic options, and the use rapid diagnostics offers the potential for rapid identification and management of carbapenem-resistant infections.
Collapse
Affiliation(s)
- Glen T Hansen
- Department of Pathology and Laboratory Medicine, Hennepin County Medical Center, Minneapolis, MN, USA.
- Department of Pathology and Laboratory Medicine, University of Minnesota, School of Medicine, Minneapolis, MN, USA.
- Department of Medicine, Infectious Disease, University of Minnesota, School of Medicine, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Pauly N, Hammerl JA, Grobbel M, Tenhagen BA, Käsbohrer A, Bisenius S, Fuchs J, Horlacher S, Lingstädt H, Mauermann U, Mitro S, Müller M, Rohrmann S, Schiffmann AP, Stührenberg B, Zimmermann P, Schwarz S, Meemken D, Irrgang A. ChromID ® CARBA Agar Fails to Detect Carbapenem-Resistant Enterobacteriaceae With Slightly Reduced Susceptibility to Carbapenems. Front Microbiol 2020; 11:1678. [PMID: 32849351 PMCID: PMC7432429 DOI: 10.3389/fmicb.2020.01678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/26/2020] [Indexed: 02/02/2023] Open
Abstract
After first detections of carbapenemase-producing Enterobacteriaceae (CPE) in animals, the European Union Reference Laboratory for Antimicrobial Resistance has provided a protocol for the isolation of carbapenemase-producing Escherichia (E.) coli from cecum content and meat. Up to now, only few isolates were recovered using this procedure. In our experience, the choice of the selective agar is important for the efficacy of the method. Currently, the use of the prevailing method fails to detect CPE that exhibit a low resistance against carbapenems. Thus, this study aims to evaluate the suitability of selective media with antibiotic supplements and commercial ChromID® CARBA agar for a reliable CPE detection. For comparative investigations, detection of freeze-dried carbapenemase-resistant bacteria was studied on different batches of the ChromID® CARBA agar as well as on MacConkey agar supplemented with 1 mg/L cefotaxime and 0.125 mg/L meropenem (McC+CTX+MEM). The suitability of the different media was assessed within a time of 25 weeks, starting at least six weeks before expiration of the media. Carbapenem-resistant isolates exhibiting a serine-based hydrolytic resistance mechanism (e.g., bla KPC genes) were consistently detected over 25 weeks on the different media. In contrast, carbapenemase producers with only slightly reduced susceptibility and exhibiting a zinc-catalyzed activity (e.g., bla VIM, bla NDM, and bla IMP) could only be cultivated on long-time expired ChromID® CARBA, but within the whole test period on McC+CTX+MEM. Thus, ChromID® CARBA agar appears to be not suitable for the detection of CPE with slightly increased minimum inhibitory concentrations (MIC) against carbapenems, which have been detected in German livestock and thus, are of main interest in the national monitoring programs. Our data are in concordance with the results of eleven state laboratories that had participated in this study with their ChromID® CARBA batches routinely used for the German CPE monitoring. Based on the determined CPE detection rate, we recommend the use of McC+CTX+MEM for monitoring purposes. This study indicates that the use of ChromID® CARBA agar might lead to an underestimation of the current CPE occurrence in food and livestock samples.
Collapse
Affiliation(s)
- Natalie Pauly
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jens A Hammerl
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Mirjam Grobbel
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Annemarie Käsbohrer
- German Federal Institute for Risk Assessment, Berlin, Germany.,Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Vienna, Austria
| | - Sandra Bisenius
- Institute for Fish and Fishery Products (LAVES), Cuxhaven, Germany
| | - Jannika Fuchs
- Chemical and Veterinary Investigation Office, Karlsruhe, Germany
| | | | - Holger Lingstädt
- State Office for Consumer Protection Saxony-Anhalt, Stendal, Germany
| | | | - Silke Mitro
- State Investigation Institute for Health and Veterinary Services, Chemnitz, Germany
| | - Margit Müller
- Chemical and Veterinary Investigation Office Rhein-Ruhr-Wupper, Krefeld, Germany
| | - Stefan Rohrmann
- Chemical and Veterinary Investigation Office, Arnsberg, Germany
| | | | | | - Pia Zimmermann
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Diana Meemken
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
12
|
Alexander HK, MacLean RC. Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. Proc Natl Acad Sci U S A 2020; 117:19455-19464. [PMID: 32703812 PMCID: PMC7431077 DOI: 10.1073/pnas.1919672117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A better understanding of how antibiotic exposure impacts the evolution of resistance in bacterial populations is crucial for designing more sustainable treatment strategies. The conventional approach to this question is to measure the range of concentrations over which resistant strain(s) are selectively favored over a sensitive strain. Here, we instead investigate how antibiotic concentration impacts the initial establishment of resistance from single cells, mimicking the clonal expansion of a resistant lineage following mutation or horizontal gene transfer. Using two Pseudomonas aeruginosa strains carrying resistance plasmids, we show that single resistant cells have <5% probability of detectable outgrowth at antibiotic concentrations as low as one-eighth of the resistant strain's minimum inhibitory concentration (MIC). This low probability of establishment is due to detrimental effects of antibiotics on resistant cells, coupled with the inherently stochastic nature of cell division and death on the single-cell level, which leads to loss of many nascent resistant lineages. Our findings suggest that moderate doses of antibiotics, well below the MIC of resistant strains, may effectively restrict de novo emergence of resistance even though they cannot clear already-large resistant populations.
Collapse
Affiliation(s)
- Helen K Alexander
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom;
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
13
|
Zheng Z, Ye L, Chan EWC, Chen S. Identification and characterization of a conjugative blaVIM-1-bearing plasmid in Vibrio alginolyticus of food origin. J Antimicrob Chemother 2020; 74:1842-1847. [PMID: 30993329 DOI: 10.1093/jac/dkz140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/21/2019] [Accepted: 03/10/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the genetic features of the blaVIM-1 gene first detected in a cephalosporin-resistant Vibrio alginolyticus isolate, Vb1978. METHODS The MICs of V. alginolyticus strain Vb1978 were determined, and the β-lactamases produced were screened and analysed using conjugation, S1-PFGE and Southern blotting. The complete sequence of the blaVIM-1-encoding plasmid was also obtained using the Illumina and MinION sequencing platforms. RESULTS V. alginolyticus strain Vb1978, isolated from a retail shrimp sample, was resistant to cephalosporins and exhibited reduced susceptibility to carbapenems. A novel blaVIM-1-carrying conjugative plasmid, designated pVb1978, was identified in this strain. Plasmid pVb1978 had 50 001 bp and comprised 59 predicted coding sequences (CDSs). The plasmid backbone of pVb1978 was homologous to those of IncP-type plasmids, while its replication region was structurally similar to non-IncP plasmids. The blaVIM-1 gene was found to be carried by the class 1 integron In70 and associated with a defective Tn402-like transposon. CONCLUSIONS A novel blaVIM-1-carrying conjugative plasmid, pVb1978, was reported for the first time in V. alginolyticus, which warrants further investigation in view of its potential pathogenicity towards humans and widespread occurrence in the environment.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lianwei Ye
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
14
|
Fontana C, Angeletti S, Mirandola W, Cella E, Alessia L, Zehender G, Favaro M, Leoni D, Rose DD, Gherardi G, Florio LD, Salemi M, Andreoni M, Sarmati L, Ciccozzi M. Whole genome sequencing of carbapenem-resistant Klebsiella pneumoniae: evolutionary analysis for outbreak investigation. Future Microbiol 2020; 15:203-212. [PMID: 32056447 DOI: 10.2217/fmb-2019-0074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Carbapenemase-resistant Enterobacteriaceae represents a major concern in hospital setting. Materials & methods: The evolutionary history of carbapenem-resistant Klebsiella pneumonia strains was analyzed by core genome multilocus sequence typing and Bayesian phylogenesis by whole genomes sequencing. Results: A great increase carbapenem-resistant K. pneumoniae causing blood stream infection was observed in the years 2015-2016. At multilocus sequence typing (MLST), they were prevalently ST512 and ST101. ST512 were core genome (cg)MLST 53, while ST101 mainly cgMLST453. The minimum-spanning tree, based on cgMLST, showed strains clustering based on the different STs. By Bayesian phylogenetic analysis, maximum clade credibility tree showed that strains were introduced in the year 2005 with the most probable location in the ICU ward. Two outbreaks by ST101 and ST512 strains with Tower T8 as the probable location were evidenced. Conclusion: Molecular epidemiology is a powerful tool to track the way of transmission of resistant bacteria within the hospital setting.
Collapse
Affiliation(s)
- Carla Fontana
- Clinical Microbiology Laboratories, Polyclinic of Tor Vergata, Rome, Italy.,Department of Experimental Medicine & Biochemical Sciences, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Walter Mirandola
- Clinical Microbiology Laboratories, Polyclinic of Tor Vergata, Rome, Italy
| | - Eleonora Cella
- Unit of Medical Statistics & Molecular Epidemiology, University Campus Bio-Medico of Rome, Italy
| | - Lai Alessia
- Department of Biomedical & Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical & Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Marco Favaro
- Department of Experimental Medicine & Biochemical Sciences, University of Rome "Tor Vergata", Rome, Italy
| | - Davide Leoni
- Clinical of Infectious Diseases, Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Diego Delle Rose
- Clinical of Infectious Diseases, Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Giovanni Gherardi
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Lucia De Florio
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.,Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Massimo Andreoni
- Clinical of Infectious Diseases, Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Loredana Sarmati
- Clinical of Infectious Diseases, Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics & Molecular Epidemiology, University Campus Bio-Medico of Rome, Italy
| |
Collapse
|
15
|
Lalaoui R, Djukovic A, Bakour S, Hadjadj L, Sanz J, Salavert M, López-Hontangas JL, Sanz MA, Ubeda C, Rolain JM. Genomic characterization of Citrobacter freundii strains coproducing OXA-48 and VIM-1 carbapenemase enzymes isolated in leukemic patient in Spain. Antimicrob Resist Infect Control 2019; 8:167. [PMID: 31687131 PMCID: PMC6820958 DOI: 10.1186/s13756-019-0630-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/16/2019] [Indexed: 11/25/2022] Open
Abstract
Background The emergence of carbapenemase-producing (CP) Citrobacter freundii poses a significant threat to public health, especially in high-risk populations. In this study, whole genome sequencing was used to characterize the carbapenem resistance mechanism of three C. freundii clinical isolates recovered from fecal samples of patients with acute leukemia (AL) from Spain. Materials and methods Twelve fecal samples, collected between 2013 and 2015 from 9 patients with AL, were screened for the presence of CP strains by selecting them on MacConkey agar supplemented with ertapenem (0.5 mg/L). Bacteria were identified by MALDI-TOF mass spectrometry and were phenotypically characterized. Whole genome sequencing of C. freundii isolates was performed using the MinION and MiSeq Illumina sequencers. Bioinformatic analysis was performed in order to identify the molecular support of carbapenem resistance and to study the genetic environment of carbapenem resistance encoding genes. Results Three carbapenem-resistant C. freundii strains (imipenem MIC≥32 mg/L) corresponding to three different AL patients were isolated. Positive modified Carba NP test results suggested carbapenemase production. The genomes of each C. freundii tested were assembled into a single chromosomal contig and plasmids contig. In all the strains, the carbapenem resistance was due to the coproduction of OXA-48 and VIM-1 enzymes encoded by genes located on chromosome and on an IncHI2 plasmid, respectively. According to the MLST and the SNPs analysis, all strains belonged to the same clone ST169. Conclusion We report in our study, the intestinal carrying of C. freundii clone ST169 coproducing OXA-48 and VIM-1 identified in leukemic patients.
Collapse
Affiliation(s)
- Rym Lalaoui
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- MEPHI, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Ana Djukovic
- Centro Superior de Investigación en Salud Pública – FISABIO, Valencia, Spain
| | - Sofiane Bakour
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- MEPHI, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Linda Hadjadj
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- MEPHI, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Jaime Sanz
- Department of Medicine, Hospital Universitari I Politecnic La Fe, University of Valencia, and Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, Valencia, Spain
| | | | | | - Miguel A. Sanz
- Department of Medicine, Hospital Universitari I Politecnic La Fe, University of Valencia, and Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, Valencia, Spain
| | - Carles Ubeda
- Centro Superior de Investigación en Salud Pública – FISABIO, Valencia, Spain
- Centers of Biomedical Research Network (CIBER) in Epidemiology and Public Health, Madrid, Spain
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- MEPHI, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| |
Collapse
|
16
|
Global Burden of Colistin-Resistant Bacteria: Mobilized Colistin Resistance Genes Study (1980-2018). Microorganisms 2019; 7:microorganisms7100461. [PMID: 31623244 PMCID: PMC6843232 DOI: 10.3390/microorganisms7100461] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Colistin is considered to be an antimicrobial of last-resort for the treatment of multidrug-resistant Gram-negative bacterial infections. The recent global dissemination of mobilized colistin resistance (mcr) genes is an urgent public health threat. An accurate estimate of the global prevalence of mcr genes, their reservoirs and the potential pathways for human transmission are required to implement control and prevention strategies, yet such data are lacking. Publications from four English (PubMed, Scopus, the Cochrane Database of Systematic Reviews and Web of Science) and two Chinese (CNKI and WANFANG) databases published between 18 November 2015 and 30 December 2018 were identified. In this systematic review and meta-analysis, the prevalence of mcr genes in bacteria isolated from humans, animals, the environment and food products were investigated. A total of 974 publications were identified. 202 observational studies were included in the systematic review and 71 in the meta-analysis. mcr genes were reported from 47 countries across six continents and the overall average prevalence was 4.7% (0.1–9.3%). China reported the highest number of mcr-positive strains. Pathogenic Escherichia coli (54%), isolated from animals (52%) and harboring an IncI2 plasmid (34%) were the bacteria with highest prevalence of mcr genes. The estimated prevalence of mcr-1 pathogenic E. coli was higher in food-animals than in humans and food products, which suggests a role for foodborne transmission. This study provides a comprehensive assessment of prevalence of the mcr gene by source, organism, genotype and type of plasmid.
Collapse
|
17
|
Izdebski R, Baraniak A, Zabicka D, Sekowska A, Gospodarek-Komkowska E, Hryniewicz W, Gniadkowski M. VIM/IMP carbapenemase-producing Enterobacteriaceae in Poland: epidemic Enterobacter hormaechei and Klebsiella oxytoca lineages. J Antimicrob Chemother 2019; 73:2675-2681. [PMID: 29986025 DOI: 10.1093/jac/dky257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022] Open
Abstract
Objectives To analyse VIM/IMP-type MBL-producing Enterobacteriaceae isolates identified in Poland during 2006-12. Methods Isolates were typed by PFGE, followed by MLST. blaVIM/IMP genes were amplified and sequenced within class 1 integrons. Their plasmidic versus chromosomal location was assessed by nuclease S1 and I-CeuI plus hybridization experiments. Plasmids were characterized by transfer assays and PCR-based replicon typing. Results One hundred and nineteen VIM/IMP-positive Enterobacteriaceae cases were reported in Poland from the first case in 2006 until 2012. The patients were in 54 hospitals and were infected or colonized by 121 organisms, including Enterobacter cloacae complex (n = 64), Klebsiella oxytoca (n = 23), Serratia marcescens (n = 20) and Klebsiella pneumoniae (n = 11). The isolates represented numerous pulsotypes and mainly original STs, and carried eight integrons with blaVIM-1-like genes (blaVIM-1/-4/-28/-37/-40; n = 101), three with blaVIM-2 variants (blaVIM-2/-20; n = 17) and one with blaIMP-19 (n = 3). Six integrons were new, and five and two formed prevalent families of In238-like (n = 96) and In1008-like (n = 16) elements, respectively. In238 (aacA4-blaVIM-4rpt) and In1008 (blaVIM-2-aacA4) had been originally observed in Polish Pseudomonas aeruginosa, suggestive of their transfer to enterobacteria, followed by spread and diversification. Four organisms have disseminated inter-regionally, i.e. Enterobacter hormaechei ST90 with plasmidic In238/In238a integrons (n = 36), K. oxytoca ST145 with a chromosomal In237-like element (n = 18) and two subclones of E. hormaechei ST89 with In1008- or In238-type variants (n = 8 and n = 7, respectively). Conclusions The epidemiology of VIM/IMP-producing Enterobacteriaceae in Poland has revealed a remarkable number of specific or novel characteristics of the organisms, with some possible links to other mid-southern European countries.
Collapse
Affiliation(s)
- R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - A Baraniak
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - D Zabicka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - A Sekowska
- Department of Microbiology, Nicolas Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - E Gospodarek-Komkowska
- Department of Microbiology, Nicolas Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - W Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
18
|
Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat Commun 2019; 10:3617. [PMID: 31399590 PMCID: PMC6689000 DOI: 10.1038/s41467-019-11615-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/25/2019] [Indexed: 11/08/2022] Open
Abstract
The worldwide dissemination of metallo-β-lactamases (MBLs), mediating resistance to carbapenem antibiotics, is a major public health problem. The extent of dissemination of MBLs such as VIM-2, SPM-1 and NDM among Gram-negative pathogens cannot be explained solely based on the associated mobile genetic elements or the resistance phenotype. Here, we report that MBL host range is determined by the impact of MBL expression on bacterial fitness. The signal peptide sequence of MBLs dictates their adaptability to each host. In uncommon hosts, inefficient processing of MBLs leads to accumulation of toxic intermediates that compromises bacterial growth. This fitness cost explains the exclusion of VIM-2 and SPM-1 from Escherichia coli and Acinetobacter baumannii, and their confinement to Pseudomonas aeruginosa. By contrast, NDMs are expressed without any apparent fitness cost in different bacteria, and are secreted into outer membrane vesicles. We propose that the successful dissemination and adaptation of MBLs to different bacterial hosts depend on protein determinants that enable host adaptability and carbapenem resistance. Metallo-β-lactamases (MBLs) confer resistance to carbapenem antibiotics. Here, López et al. show that the host range of MBLs depends on the efficiency of MBL signal peptide processing and secretion into outer membrane vesicles, which affects bacterial fitness.
Collapse
|
19
|
Bonardi S, Pitino R. Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Ital J Food Saf 2019; 8:7956. [PMID: 31316921 PMCID: PMC6603432 DOI: 10.4081/ijfs.2019.7956] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/09/2019] [Indexed: 01/11/2023] Open
Abstract
Antimicrobial resistance is an increasing global health problem and one of the major concerns for economic impacts worldwide. Recently, resistance against carbapenems (doripenem, ertapenem, imipenem, meropenem), which are critically important antimicrobials for human cares, poses a great risk all over the world. Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and encoded by both chromosomal and plasmidic genes. They hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillins and aztreonam. Despite several studies in human patients and hospital settings have been performed in European countries, the role of livestock animals, wild animals and the terrestrial and aquatic environment in the maintenance and transmission of carbapenemase- producing bacteria has been poorly investigated. The present review focuses on the carbapenemase-producing bacteria detected in pigs, cattle, poultry, fish, mollusks, wild birds and wild mammals in Europe as well as in non-European countries, investigating the genetic mechanisms for their transmission among food-producing animals and wildlife. To shed light on the important role of the environment in the maintenance and genetic exchange of resistance determinants between environmental and pathogenic bacteria, studies on aquatic sources (rivers, lakes, as well as wastewater treatment plants) are described.
Collapse
Affiliation(s)
- Silvia Bonardi
- Department of Veterinary Science, University of Parma, Italy
| | | |
Collapse
|
20
|
Molecular Characterization of Multidrug-Resistant Pseudomonas aeruginosa Isolates in Hospitals in Myanmar. Antimicrob Agents Chemother 2019; 63:AAC.02397-18. [PMID: 30803967 DOI: 10.1128/aac.02397-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/19/2019] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) Pseudomonas aeruginosa has become a serious worldwide medical problem. This study was designed to clarify the genetic and epidemiological properties of MDR P. aeruginosa strains isolated from hospitals in Myanmar. Forty-five MDR P. aeruginosa isolates obtained from different patients in seven hospitals in Myanmar were screened using the broth microdilution method. The whole genomes of the MDR isolates were sequenced using a MiSeq platform (Illumina). Phylogenetic trees were constructed from single nucleotide polymorphism concatemers. Multilocus sequence types were deduced, and drug resistance genes were identified. Of the 45 isolates, 38 harbored genes encoding carbapenemases, including DIM-1, IMP-1, NDM-1, VIM-2, and VIM-5, and 9 isolates had genes encoding 16S rRNA methylases, including RmtB, RmtD3, RmtE, and RmtF2. Most MDR P. aeruginosa strains isolated in Myanmar belonged to sequence type 1047 (ST1047). This is the first molecular epidemiological analysis of MDR P. aeruginosa clinical isolates in Myanmar. These findings strongly suggest that P. aeruginosa ST1047 strains harboring carbapenemases, including DIM-, IMP-, NDM-, and VIM-type metallo-β-lactamases, have been spreading throughout medical settings in Myanmar.
Collapse
|
21
|
Ory J, Bricheux G, Robin F, Togola A, Forestier C, Traore O. Biofilms in hospital effluents as a potential crossroads for carbapenemase-encoding strains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:7-15. [PMID: 30530220 DOI: 10.1016/j.scitotenv.2018.11.427] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/09/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Bacterial resistance to carbapenem, which is mainly due to the successful dissemination of carbapenemase-encoding genes, has become a major health problem. Few studies have aimed to characterize the level of resistance in the environment, notably in hospital wastewater, which is a likely hotspot for exchange of antibiotic resistance genes. In this work, we looked for the presence of imipenem-resistant bacteria and imipenem in the effluent of the teaching hospital of Clermont-Ferrand, France. Selective growth of bacteria from 14-day old biofilms formed in the pipe sewer showed that 22.1% of the isolates were imipenem-resistant and identified as Aeromonas (n = 23), Pseudomonas (n = 10), Stenotrophomonas (n = 4) and Acinetobacter (n = 1). Fifteen of these strains harbored acquired carbapenemase-encoding genes blaVIM (n = 11), blaOXA-48 (n = 2), blaGES (n = 1), blaNDM (n = 1). All isolates also harbored associated resistances to aminoglycosides, fluoroquinolones and/or tetracyclin. S1-nuclease pulsed-field gel electrophoresis analysis of eight selected isolates showed that four of them harbored one to two plasmids of molecular weight between 48.5 Kb and 194 Kb. In vitro transformation assays evidenced the presence of blaVIM and blaNDM on plasmids with the blaVIM harboring 80 Kb plasmid having conjugative capacity. The predicted environmental concentration of imipenem in the hospital effluent was 3.16 μg/L, suggesting that biofilm bacteria are subjected to sub-MICs of imipenem within the effluent. However, no imipenem molecule was detected in the hospital effluent, probably owing to its instability: in vitro assays indicated that imipenem's biological activity was no longer detectable after 45 h of storage. However, the predictive value of the hazard quotient relative to the development of resistance was >1.0 (HQr = 28.9 ± 1.9), which indicates a possible risk. The presence of carbapenemase-encoding genes in hospital effluent biofilm strains and their ability to transfer are therefore a potential hazard that should not be neglected and points to the need for monitoring antibiotic resistance in hospital wastewater.
Collapse
Affiliation(s)
- J Ory
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement", F-63000 Clermont-Ferrand, France; Service d'hygiène hospitalière, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - G Bricheux
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement", F-63000 Clermont-Ferrand, France
| | - F Robin
- Laboratoire de Bactériologie & CNR de la Résistance aux Antibiotiques, CHU de Clermont-Ferrand, Clermont-Ferrand, France; Université Clermont Auvergne, Inserm, M2ISH, F-63000 Clermont-Ferrand, France
| | - A Togola
- Bureau de recherches géologiques et minières (BRGM), 3 avenue Claude Guillemin, F-45100 Orléans, France
| | - C Forestier
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement", F-63000 Clermont-Ferrand, France
| | - O Traore
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement", F-63000 Clermont-Ferrand, France; Service d'hygiène hospitalière, CHU de Clermont-Ferrand, Clermont-Ferrand, France.
| |
Collapse
|
22
|
Khan FA, Hellmark B, Ehricht R, Söderquist B, Jass J. Related carbapenemase-producing Klebsiella isolates detected in both a hospital and associated aquatic environment in Sweden. Eur J Clin Microbiol Infect Dis 2018; 37:2241-2251. [DOI: 10.1007/s10096-018-3365-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/20/2018] [Indexed: 12/01/2022]
|
23
|
Wilson H, Török ME. Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae. Microb Genom 2018; 4:e000197. [PMID: 30035710 PMCID: PMC6113871 DOI: 10.1099/mgen.0.000197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global public-health emergency, which threatens the advances made by modern medical care over the past century. The World Health Organization has recently published a global priority list of antibiotic-resistant bacteria, which includes extended-spectrum β-lactamase-producing Enterobacteriaceae and carbapenemase-producing Enterobacteriaceae. In this review, we highlight the mechanisms of resistance and the genomic epidemiology of these organisms, and the impact of AMR.
Collapse
Affiliation(s)
- Hayley Wilson
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - M. Estée Török
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, UK
| |
Collapse
|
24
|
Brown-Jaque M, Rodriguez Oyarzun L, Cornejo-Sánchez T, Martín-Gómez MT, Gartner S, de Gracia J, Rovira S, Alvarez A, Jofre J, González-López JJ, Muniesa M. Detection of Bacteriophage Particles Containing Antibiotic Resistance Genes in the Sputum of Cystic Fibrosis Patients. Front Microbiol 2018; 9:856. [PMID: 29765367 PMCID: PMC5938348 DOI: 10.3389/fmicb.2018.00856] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is a chronic disease in which the bacterial colonization of the lung is linked to an excessive inflammatory response that leads to respiratory failure. The microbiology of CF is complex. Staphylococcus aureus is the first bacterium to colonize the lungs in 30% of pediatric CF patients, and 80% of adult patients develop a chronic Pseudomonas aeruginosa infection, but other microorganisms can also be found. The use of antibiotics is essential to treat the disease, but antibiotic performance is compromised by resistance mechanisms. Among various mechanisms of transfer of antibiotic resistance genes (ARGs), the recently been reported bacteriophages are the least explored in clinical settings. To determine the role of phages in CF as mobile genetic elements (MGEs) carrying ARGs, we evaluated their presence in 71 CF patients. 71 sputum samples taken from these patients were screened for eight ARGs (blaTEM, blaCTX-M-1-group, blaCTX-M-9-group, blaOXA-48, blaVIM, mecA, qnrA, and qnrS) in the bacteriophage DNA fraction. The phages found were also purified and observed by electron microscopy. 32.4% of CF patients harbored ARGs in phage DNA. β-lactamase genes, particularly blaVIM and blaTEM, were the most prevalent and abundant, whereas mecA, qnrA, and qnrS were very rare. Siphoviridae phage particles capable of infecting P. aeruginosa and Klebsiella pneumoniae were detected in CF sputum. Phage particles harboring ARGs were found to be abundant in the lungs of both CF patients and healthy individuals and could contribute to the colonization of multiresistant strains.
Collapse
Affiliation(s)
- Maryury Brown-Jaque
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Lirain Rodriguez Oyarzun
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Thais Cornejo-Sánchez
- Department of Clinical Microbiology, Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria T Martín-Gómez
- Department of Clinical Microbiology, Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Gartner
- Cystic Fibrosis Unit, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, CIBER of Respiratory Diseases (Ciberes CB06/06/0030), Carlos III Health Institute, Barcelona, Spain
| | - Javier de Gracia
- Cystic Fibrosis Unit, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, CIBER of Respiratory Diseases (Ciberes CB06/06/0030), Carlos III Health Institute, Barcelona, Spain
| | - Sandra Rovira
- Cystic Fibrosis Unit, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, CIBER of Respiratory Diseases (Ciberes CB06/06/0030), Carlos III Health Institute, Barcelona, Spain
| | - Antonio Alvarez
- Cystic Fibrosis Unit, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, CIBER of Respiratory Diseases (Ciberes CB06/06/0030), Carlos III Health Institute, Barcelona, Spain
| | - Joan Jofre
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Juan J González-López
- Department of Clinical Microbiology, Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Matsumura Y, Peirano G, Devinney R, Bradford PA, Motyl MR, Adams MD, Chen L, Kreiswirth B, Pitout JDD. Genomic epidemiology of global VIM-producing Enterobacteriaceae. J Antimicrob Chemother 2018; 72:2249-2258. [PMID: 28520983 DOI: 10.1093/jac/dkx148] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
Background International data on the molecular epidemiology of Enterobacteriaceae with VIM carbapenemases are limited. Methods We performed short read (Illumina) WGS on a global collection of 89 VIM-producing clinical Enterobacteriaceae (2008-14). Results VIM-producing (11 varieties within 21 different integrons) isolates were mostly obtained from Europe. Certain integrons with bla VIM were specific to a country in different species and clonal complexes (CCs) (In 87 , In 624 , In 916 and In 1323 ), while others had spread globally among various Enterobacteriaceae species (In 110 and In 1209 ). Klebsiella pneumoniae was the most common species ( n = 45); CC147 from Greece was the most prevalent clone and contained In 590 -like integrons with four different bla VIM s. Enterobacter cloacae complex was the second most common species and mainly consisted of Enterobacter hormaechei ( Enterobacter xiangfangensis , subsp. steigerwaltii and Hoffmann cluster III). CC200 (from Croatia and Turkey), CC114 (Croatia, Greece, Italy and the USA) and CC78 (from Greece, Italy and Spain) containing bla VIM-1 were the most common clones among the E. cloacae complex. Conclusions This study highlights the importance of surveillance programmes using the latest molecular techniques in providing insight into the characteristics and global distribution of Enterobacteriaceae with bla VIM s.
Collapse
Affiliation(s)
- Yasufumi Matsumura
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gisele Peirano
- Departments of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada.,Division of Microbiology, Calgary Laboratory Services, Calgary, Alberta, Canada
| | - Rebekah Devinney
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Mark D Adams
- Department of Medical Microbiology, J. Craig Venter Institute, La Jolla, CA, USA
| | - Liang Chen
- Public Research Institute TB Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Barry Kreiswirth
- Public Research Institute TB Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Johann D D Pitout
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.,Departments of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada.,Division of Microbiology, Calgary Laboratory Services, Calgary, Alberta, Canada.,Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
26
|
Alexander J, Knopp G, Dötsch A, Wieland A, Schwartz T. Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 559:103-112. [PMID: 27058129 DOI: 10.1016/j.scitotenv.2016.03.154] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
An ozone treatment system was investigated to analyze its impact on clinically relevant antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs). A concentration of 0.9±0.1g ozone per 1g DOC was used to treat conventional clarified wastewater. PCR, qPCR analyses, Illumina 16S Amplicon Sequencing, and PCR-DGGE revealed diverse patterns of resistances and susceptibilities of opportunistic bacteria and accumulations of some ARGs after ozone treatment. Molecular marker genes for enterococci indicated a high susceptibility to ozone. Although they were reduced by almost 99%, they were still present in the bacterial population after ozone treatment. In contrast to this, Pseudomonas aeruginosa displayed only minor changes in abundance after ozone treatment. This indicated different mechanisms of microorganisms to cope with the bactericidal effects of ozone. The investigated ARGs demonstrated an even more diverse pattern. After ozone treatment, the erythromycin resistance gene (ermB) was reduced by 2 orders of magnitude, but simultaneously, the abundance of two other clinically relevant ARGs increased within the surviving wastewater population (vanA, blaVIM). PCR-DGGE analysis and 16S-Amplicon-Sequencing confirmed a selection-like process in combination with a substantial diversity loss within the vital wastewater population after ozone treatment. Especially the PCR-DGGE results demonstrated the survival of GC-rich bacteria after ozone treatment.
Collapse
Affiliation(s)
- Johannes Alexander
- Karlsruhe Institute of Technology (KIT) - Campus North, Institute of Functional Interfaces (IFG), Microbiology at Natural and Technical Interfaces Department, P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Gregor Knopp
- Technische Universität Darmstadt, Institute IWAR, Wastewater Technology, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
| | - Andreas Dötsch
- Karlsruhe Institute of Technology (KIT) - Campus North, Institute of Functional Interfaces (IFG), Microbiology at Natural and Technical Interfaces Department, P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Arne Wieland
- Xylem Services GmbH, Boschstraße 4 - 14, 32051, Herford, Germany
| | - Thomas Schwartz
- Karlsruhe Institute of Technology (KIT) - Campus North, Institute of Functional Interfaces (IFG), Microbiology at Natural and Technical Interfaces Department, P.O. Box 3640, 76021, Karlsruhe, Germany.
| |
Collapse
|
27
|
Mathlouthi N, Al-Bayssari C, Bakour S, Rolain JM, Chouchani C. RETRACTED ARTICLE: Prevalence and emergence of carbapenemases-producing Gram-negative bacteria in Mediterranean basin. Crit Rev Microbiol 2016; 43:43-61. [DOI: 10.3109/1040841x.2016.1160867] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Najla Mathlouthi
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire des Microorganismes et Biomolécules Actives, Campus Universitaire, El-Manar II, Tunisia
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
- Université de Carthage, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Technopôle de Borj-Cedria, BP-1003, Hammam-Lif, Tunisia
| | - Charbel Al-Bayssari
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Sofiane Bakour
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Jean Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Chedly Chouchani
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire des Microorganismes et Biomolécules Actives, Campus Universitaire, El-Manar II, Tunisia
- Université de Carthage, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Technopôle de Borj-Cedria, BP-1003, Hammam-Lif, Tunisia
| |
Collapse
|
28
|
Martirosov DM, Lodise TP. Emerging trends in epidemiology and management of infections caused by carbapenem-resistant Enterobacteriaceae. Diagn Microbiol Infect Dis 2016; 85:266-75. [DOI: 10.1016/j.diagmicrobio.2015.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 11/16/2022]
|
29
|
Paul D, Dhar D, Maurya AP, Mishra S, Sharma GD, Chakravarty A, Bhattacharjee A. Occurrence of co-existing bla VIM-2 and bla NDM-1 in clinical isolates of Pseudomonas aeruginosa from India. Ann Clin Microbiol Antimicrob 2016; 15:31. [PMID: 27154587 PMCID: PMC4859973 DOI: 10.1186/s12941-016-0146-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND bla VIM-2 harboring Pseudomonas aeruginosa has been reported worldwide and considered as the most prevalent metallo-β-lactamase after NDM which are found horizontally transferable and mostly associated with integron gene cassettes. The present study investigates the genetic background, transmission dynamics as well as stability of bla VIM-2 in clinical isolates of P. aeruginosa harbor bla NDM-1 as well which were collected from October 2012 to September 2013. METHODS Two P. aeruginosa strains harboring bla VIM-2 along with bla NDM-1 were isolated from Silchar Medical College and Hospital, India. Genetic environment of these resistance determinants was determined and transferability was checked by transformation and conjugation assay which was further confirmed by Southern hybridization. Replicon typing was performed to determine the incompatibility group of the resistant plasmid and their stability was checked by serial passage method. Antimicrobial susceptibility pattern of the isolates was determined and their clonal relatedness was checked by pulsed field gel electrophoresis. RESULTS bla VIM-2 was found to be horizontally transferable through an Inc F type plasmid of approximately 30 kb in size. bla VIM-2 was found to be associated with integron gene cassette and was flanked by two different types of cassette arrays. Both the isolates were co-harboring bla NDM-1 which was carried within Inc N type of plasmid with an approximate 24 kb in size and associated with ISAba125 in their upstream region. Reduced susceptibility rate as well as high MIC range was observed in case of wild strains and transformants carrying bla VIM-2 and bla NDM-1. CONCLUSIONS The detection of this co-existence of multiple carbapenem resistance genes in this part of world is worrisome and further investigation is required in order to trace the source and to initiate proper treatment option.
Collapse
Affiliation(s)
- Deepjyoti Paul
- Department of Microbiology, Assam University, Silchar, India
| | - Debadatta Dhar
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, India
| | | | - Shweta Mishra
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gauri Dutt Sharma
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Atanu Chakravarty
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, India
| | | |
Collapse
|
30
|
Falgenhauer L, Ghosh H, Guerra B, Yao Y, Fritzenwanker M, Fischer J, Helmuth R, Imirzalioglu C, Chakraborty T. Comparative genome analysis of IncHI2 VIM-1 carbapenemase-encoding plasmids of Escherichia coli and Salmonella enterica isolated from a livestock farm in Germany. Vet Microbiol 2015; 200:114-117. [PMID: 26411323 DOI: 10.1016/j.vetmic.2015.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/16/2022]
Abstract
Carbapenem-resistant Enterobacteriaceae are not any more isolated only from human settings, but also from livestock. We reported for the first time the presence of VIM-1 carbapenemases in a livestock farm in Germany. The VIM-1 resistance gene found in these farms was located on IncHI2 plasmids. In order to be able to analyse these plasmids in more detail, two different plasmids from a single farm (pRH-R27 from Salmonella enterica and pRH-R178 from Escherichia coli) were completely sequenced and analysed for the presence of antibiotic and heavy metal resistances. The plasmids showed to harbour blaVIM-1, aacA4, aadA1, sul1, qacEΔ (encoded in an In110 class 1 integron), as well as blaACC-1, strA/strB, and catA1 genes together with resistance to heavy metals (ter-, mer-, sil-, ars-, rcn-, and pco). Comparison with other IncHI2 plasmid revealed that while pRH-R27 is a mosaic IncHI2 plasmid with both high homology to the plasmid pSTm-A54650 and R478, both isolated from humans, pRH-R178 is a deletion derivative of pRH-R27, presumably caused by several IS-mediated deletions indicating genetic evolution of plasmids in this environment.
Collapse
Affiliation(s)
- Linda Falgenhauer
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany; German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Hiren Ghosh
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany; German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Beatriz Guerra
- Federal Institute for Risk Assessment, National Reference Laboratory for Antimicrobial Resistance, Department Biological Safety, Berlin, Germany
| | - Yancheng Yao
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany; German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Moritz Fritzenwanker
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany; German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Jennie Fischer
- Federal Institute for Risk Assessment, National Reference Laboratory for Antimicrobial Resistance, Department Biological Safety, Berlin, Germany
| | - Reiner Helmuth
- Federal Institute for Risk Assessment, National Reference Laboratory for Antimicrobial Resistance, Department Biological Safety, Berlin, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany; German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany; German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany.
| |
Collapse
|
31
|
San Millan A, Toll-Riera M, Escudero JA, Cantón R, Coque TM, MacLean RC. Sequencing of plasmids pAMBL1 and pAMBL2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance. J Antimicrob Chemother 2015. [PMID: 26209313 DOI: 10.1093/jac/dkv222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Carbapenemases are a major concern for the treatment of infectious diseases caused by Gram-negative bacteria. Although plasmids are responsible for the spread of resistance genes among these pathogens, there is limited information on the nature of the mobile genetic elements carrying carbapenemases in Pseudomonas aeruginosa. METHODS We combined data from two different next-generation sequencing platforms, Illumina HiSeq2000 and PacBio RSII, to obtain the complete nucleotide sequences of two blaVIM-1-carrying plasmids (pAMBL1 and pAMBL2) isolated from P. aeruginosa clinical isolates. RESULTS Plasmid pAMBL1 has 26 440 bp and carries a RepA_C family replication protein. pAMBL1 is similar to plasmids pNOR-2000 and pKLC102 from P. aeruginosa and pAX22 from Achromobacter xylosoxidans, which also carry VIM-type carbapenemases. pAMBL2 is a 24 133 bp plasmid with a replication protein that belongs to the Rep_3 family. It shows a high degree of homology with a fragment of the blaVIM-1-bearing plasmid pPC9 from Pseudomonas putida. Plasmid pAMBL2 carries three copies of the blaVIM-1 cassette in an In70 class 1 integron conferring, unlike pAMBL1, high-level resistance to carbapenems. CONCLUSIONS We present two new plasmids coding for VIM-1 carbapenemase from P. aeruginosa and report that the presence of three copies of blaVIM-1 in pAMBL2 produces high-level resistance to carbapenems.
Collapse
Affiliation(s)
- Alvaro San Millan
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Macarena Toll-Riera
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Jose Antonio Escudero
- Institut Pasteur, Plasticité du Génome Bactérien, CNRS URA 2171, 75015 Paris, France
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Teresa M Coque
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain Centros de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| | - R Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
32
|
Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nat Commun 2015; 6:6845. [PMID: 25897488 PMCID: PMC4410645 DOI: 10.1038/ncomms7845] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/04/2015] [Indexed: 12/17/2022] Open
Abstract
Horizontal gene transfer (HGT) plays a key role in bacterial evolution, especially with respect to antibiotic resistance. Fitness costs associated with mobile genetic elements (MGEs) are thought to constrain HGT, but our understanding of these costs remains fragmentary, making it difficult to predict the success of HGT events. Here we use the interaction between P. aeruginosa and a costly plasmid (pNUK73) to investigate the molecular basis of the cost of HGT. Using RNA-Seq, we show that the acquisition of pNUK73 results in a profound alteration of the transcriptional profile of chromosomal genes. Mutations that inactivate two genes encoded on chromosomally integrated MGEs recover these fitness costs and transcriptional changes by decreasing the expression of the pNUK73 replication gene. Our study demonstrates that interactions between MGEs can compromise bacterial fitness via altered gene expression, and we argue that conflicts between mobile elements impose a general constraint on evolution by HGT.
Collapse
|
33
|
Pfennigwerth N, Geis G, Gatermann SG, Kaase M. Description of IMP-31, a novel metallo-β-lactamase found in an ST235 Pseudomonas aeruginosa strain in Western Germany. J Antimicrob Chemother 2015; 70:1973-80. [PMID: 25835992 DOI: 10.1093/jac/dkv079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/07/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The objective of this study was to characterize a novel IMP-type metallo-β-lactamase (MBL) found in an MDR clinical isolate of Pseudomonas aeruginosa. METHODS The P. aeruginosa isolate NRZ-00156 was recovered from an inguinal swab from a patient hospitalized in Western Germany and showed high MICs of carbapenems. MBL production was analysed by Etest for MBLs, an EDTA combined disc test and an EDTA bioassay. Typing of the isolate was performed by MLST. Genetic characterization of the new blaIMP gene was performed by sequencing the PCR products. A phylogenetic tree was constructed. The novel blaIMP gene was expressed in Escherichia coli TOP10 and the enzyme was subjected to biochemical characterization. RESULTS The P. aeruginosa isolate NRZ-00156 expressed the ST235 allelic profile and was resistant to all the β-lactams tested except aztreonam. The isolate was positive for MBL production and harboured a new IMP allele, blaIMP-31, located on a disrupted class I integron [also carrying the blaOXA-35, aac(6')-Ib, aac(3)-Ic and aphA15 genes]. Its closest relative was IMP-35, with 96.7% amino acid identity. Expression of blaIMP-31 demonstrated that E. coli TOP10 producing IMP-31 had elevated resistance to all the β-lactams tested except aztreonam. Kinetic data were obtained for both IMP-31 and IMP-1. In comparison with IMP-1, IMP-31 showed weaker hydrolytic activity against all the β-lactams tested, which resulted from lower kcat values. CONCLUSIONS The characterization of the new IMP-type gene blaIMP-31 from an ST235 P. aeruginosa isolate indicates an ongoing spread of highly divergent IMP-type carbapenemases in clinical P. aeruginosa strains and highlights the continuous need for the prevention of nosocomial infections caused by MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Niels Pfennigwerth
- Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Gabriele Geis
- Institute for Medical Laboratory Diagnostics Bochum GmbH, Castroper Straße 45, 44791 Bochum, Germany
| | - Sören G Gatermann
- Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Martin Kaase
- Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
34
|
Papagiannitsis CC, Izdebski R, Baraniak A, Fiett J, Herda M, Hrabák J, Derde LPG, Bonten MJM, Carmeli Y, Goossens H, Hryniewicz W, Brun-Buisson C, Gniadkowski M, Grabowska A, Nikonorow E, Dautzenberg MJ, Adler A, Kazma M, Navon-Venezia S, Malhotra-Kumar S, Lammens C, Legrand P, Annane D, Chalfine A, Giamarellou H, Petrikkos GL, Nardi G, Balode A, Dumpis U, Stammet P, Arag I, Esteves F, Muzlovic I, Tomic V, Mart AT, Lawrence C, Salomon J, Paul M, Lerman Y, Rossini A, Salvia A, Samso JV, Fierro J. Survey of metallo-β-lactamase-producing Enterobacteriaceae colonizing patients in European ICUs and rehabilitation units, 2008–11. J Antimicrob Chemother 2015; 70:1981-8. [DOI: 10.1093/jac/dkv055] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/07/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- C. C. Papagiannitsis
- National Medicines Institute, Warsaw, Poland
- Faculty of Medicine in Plzeň, Charles University in Prague, Plzeň, Czech Republic
| | - R. Izdebski
- National Medicines Institute, Warsaw, Poland
| | - A. Baraniak
- National Medicines Institute, Warsaw, Poland
| | - J. Fiett
- National Medicines Institute, Warsaw, Poland
| | - M. Herda
- National Medicines Institute, Warsaw, Poland
| | - J. Hrabák
- Faculty of Medicine in Plzeň, Charles University in Prague, Plzeň, Czech Republic
| | - L. P. G. Derde
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Y. Carmeli
- Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tn6249, a new Tn6162 transposon derivative carrying a double-integron platform and involved with acquisition of the blaVIM-1 metallo-β-lactamase gene in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 59:1583-7. [PMID: 25547348 DOI: 10.1128/aac.04047-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The In70.2 integron platform appears to be a conserved structure involved in the dissemination of the blaVIM-1 metallo-β-lactamase gene in Pseudomonas aeruginosa. The genetic context of the In70.2 integron platform from P. aeruginosa VR-143/97, the VIM-1-producing index strain isolated in Italy in 1997, was fully characterized by a next-generation sequencing approach refined by conventional sequencing. The In70.2 integron platform from VR-143/97 was found to be associated with a defective Tn402-like transposon inserted into the urf2 gene of a Tn3 family transposon of an original structure, named Tn6249, which also carried a partially deleted mer operon and an In90 integron platform in a tail-to-tail orientation. Tn6249 was inserted into a PACS171b-like genomic island, which was in turn inserted into the endA gene of the Pseudomonas chromosomal backbone. Tn6249 showed a similar structure and a conserved location with respect to that of Tn6060, a Tn3 family transposon associated with In70.2 and carrying a double-integron platform, which was detected in a VIM-1-producing P. aeruginosa strain isolated in Australia in 2008. Both Tn6249 and Tn6060 are apparently derived from Tn6162, a mercury resistance transposon carrying an integron platform, which was found in P. aeruginosa isolates from different geographic locations. The conservation of the genetic context of Tn6249 and Tn6060 suggests an in situ evolution of these elements after the insertion of a Tn6162-like ancestor into the PACS171b-like genomic island (GI) present in the genome of a successful widespread P. aeruginosa clonal lineage.
Collapse
|
36
|
Temkin E, Adler A, Lerner A, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann N Y Acad Sci 2014; 1323:22-42. [PMID: 25195939 DOI: 10.1111/nyas.12537] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduced in the 1980s, carbapenem antibiotics have served as the last line of defense against multidrug-resistant Gram-negative organisms. Over the last decade, carbapenem-resistant Enterobacteriaceae (CRE) have emerged as a significant public health threat. This review summarizes the molecular genetics, natural history, and epidemiology of CRE and discusses approaches to prevention and treatment.
Collapse
Affiliation(s)
- Elizabeth Temkin
- Division of Epidemiology and Preventive Medicine, Tel Aviv Sourasky Medical Center, Israel
| | | | | | | |
Collapse
|
37
|
Domingues S, da Silva GJ, Nielsen KM. Integrons: Vehicles and pathways for horizontal dissemination in bacteria. Mob Genet Elements 2014; 2:211-223. [PMID: 23550063 PMCID: PMC3575428 DOI: 10.4161/mge.22967] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrons are genetic elements first described at the end of the 1980s. Although most integrons were initially described in human clinical isolates, they have now been identified in many non-clinical environments, such as water and soil. Integrons are present in ≈10% of the sequenced bacterial genomes and are frequently linked to mobile genetic elements (MGEs); particularly the class 1 integrons. Genetic linkage to a diverse set of MGEs facilitates horizontal transfer of class 1 integrons within and between bacterial populations and species. The mechanistic aspects limiting transfer of MGEs will therefore limit the transfer of class 1 integrons. However, horizontal movement due to genes provided in trans and homologous recombination can result in class 1 integron dynamics independent of MGEs. A key determinant for continued dissemination of class 1 integrons is the probability that transferred MGEs will be vertically inherited in the recipient bacterial population. Heritability depends both on genetic stability as well as the fitness costs conferred to the host. Here we review the factors known to govern the dissemination of class 1 integrons in bacteria.
Collapse
Affiliation(s)
- Sara Domingues
- Centre of Pharmaceutical Studies; Faculty of Pharmacy; University of Coimbra; Coimbra, Portugal ; Department of Pharmacy; Faculty of Health Sciences; University of Tromsø; Tromsø, Norway
| | | | | |
Collapse
|
38
|
Sequence types 235, 111, and 132 predominate among multidrug-resistant pseudomonas aeruginosa clinical isolates in Croatia. Antimicrob Agents Chemother 2014; 58:6277-83. [PMID: 25070098 DOI: 10.1128/aac.03116-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A population analysis of 103 multidrug-resistant Pseudomonas aeruginosa isolates from Croatian hospitals was performed. Twelve sequence types (STs) were identified, with a predominance of international clones ST235 (serotype O11 [41%]), ST111 (serotype O12 [15%]), and ST132 (serotype O6 [11%]). Overexpression of the natural AmpC cephalosporinase was common (42%), but only a few ST235 or ST111 isolates produced VIM-1 or VIM-2 metallo-β-lactamases or PER-1 or GES-7 extended-spectrum β-lactamases.
Collapse
|
39
|
First description of a blaVIM-2-carrying Citrobacter freundii isolate in Spain. Antimicrob Agents Chemother 2014; 58:6331-2. [PMID: 25022585 DOI: 10.1128/aac.03168-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Villa J, Viedma E, Brañas P, Orellana MA, Otero JR, Chaves F. Multiclonal spread of VIM-1-producing Enterobacter cloacae isolates associated with In624 and In488 integrons located in an IncHI2 plasmid. Int J Antimicrob Agents 2014; 43:451-5. [DOI: 10.1016/j.ijantimicag.2014.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
|
41
|
Comparison of local features from two Spanish hospitals reveals common and specific traits at multiple levels of the molecular epidemiology of metallo-β-lactamase-producing Pseudomonas spp. Antimicrob Agents Chemother 2014; 58:2454-8. [PMID: 24492368 DOI: 10.1128/aac.02586-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Twenty-seven well-characterized metallo-β-lactamase (MBL)-producing Pseudomonas strains from two distantly located hospitals were analyzed. The results revealed specific features defining the multilevel epidemiology of strains from each hospital in terms of species, clonality, predominance of high-risk clones, composition/diversity of integrons, and linkages of Tn402-related structures. Therefore, despite the global trends driving the epidemiology of MBL-producing Pseudomonas spp., the presence of local features has to be considered in order to understand this threat and implement proper control strategies.
Collapse
|
42
|
Sefraoui I, Berrazeg M, Drissi M, Rolain JM. Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa clinical strains isolated from western Algeria between 2009 and 2012. Microb Drug Resist 2013; 20:156-61. [PMID: 24320688 DOI: 10.1089/mdr.2013.0161] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infections caused by carbapenem-resistant Pseudomonas aeruginosa strains represent a major therapeutic and epidemiological problem. The aim of this study was to characterize carbapenem resistance in 89 clinical strains of P. aeruginosa isolated from three hospitals in western Algeria between October 2009 and November 2012. Minimum inhibitory concentrations (MICs) of imipenem were determined by the Etest method. Screening for metallo-β-lactamase (MβL) was performed using Etest MβL strips, and a PCR was conducted to detect carbapenemase-encoding genes. The amplification of the oprD gene followed by a sequencing reaction was performed for all strains resistant to imipenem. The clonality of 53 P. aeruginosa strains was demonstrated using multilocus sequence typing (MLST). Among the 89 isolates, 35 (39.33%) were found to be resistant to IMP (MICs ≥16 μg/ml). The blaVIM-2 gene was detected in two strains. The remaining imipenem-resistant isolates showed the presence of oprD mutations. The MLST analysis differentiated strains into various clones and the strains from the same clone had an identical sequence of the oprD gene. We report the second detection in 2010 of blaVIM-2 in Algerian P. aeruginosa strains. We also found that oprD mutations were the major determinant of high-level imipenem resistance. We demonstrate that these oprD mutations can be used as a tool to study the clonality in P. aeruginosa isolates.
Collapse
Affiliation(s)
- Imane Sefraoui
- 1 Aix-Marseille Université , Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Marseille, France
| | | | | | | |
Collapse
|
43
|
Draft Whole-Genome Sequence of VIM-1-Producing Multidrug-Resistant Enterobacter cloacae EC_38VIM1. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00694-13. [PMID: 24009122 PMCID: PMC3764417 DOI: 10.1128/genomea.00694-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The VIM-1-producing multidrug-resistant strain Enterobacter cloacae was isolated from blood culture. The strain showed multiple resistances to clinically used antibiotics, including all β-lactams, fluoroquinolones, aminoglycosides, and sulfonamides. Sequence analysis showed the presence of 14 genes associated with resistance to antibiotics, including the metallo-β-lactamase VIM-1 gene, which was located in a class 1 integron.
Collapse
|
44
|
Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations. ISME JOURNAL 2013; 8:601-612. [PMID: 24152711 PMCID: PMC3930321 DOI: 10.1038/ismej.2013.182] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 11/09/2022]
Abstract
Plasmids have a key role in the horizontal transfer of genes among bacteria. Although plasmids are catalysts for bacterial evolution, it is challenging to understand how they can persist in bacterial populations over the long term because of the burden they impose on their hosts (the ‘plasmid paradox'). This paradox is especially perplexing in the case of ‘small' plasmids, which are unable to self-transfer by conjugation. Here, for the first time, we investigate how interactions between co-infecting plasmids influence plasmid persistence. Using an experimental model system based on interactions between a diverse assemblage of ‘large' plasmids and a single small plasmid, pNI105, in the pathogenic bacterium Pseudomonas aeruginosa, we demonstrate that positive epistasis minimizes the cost associated with carrying multiple plasmids over the short term and increases the stability of the small plasmid over a longer time scale. In support of these experimental data, bioinformatic analysis showed that associations between small and large plasmids are more common than would be expected owing to chance alone across a range of families of bacteria; more generally, we find that co-infection with multiple plasmids is more common than would be expected owing to chance across a wide range of bacterial phyla. Collectively, these results suggest that positive epistasis promotes plasmid stability in bacterial populations. These findings pave the way for future mechanistic studies aimed at elucidating the molecular mechanisms of plasmid–plasmid interaction, and evolutionary studies aimed at understanding how the coevolution of plasmids drives the spread of plasmid-encoded traits.
Collapse
|
45
|
Rodrigues C, Novais Â, Machado E, Peixe L. Detection of VIM-34, a novel VIM-1 variant identified in the intercontinental ST15 Klebsiella pneumoniae clone. J Antimicrob Chemother 2013; 69:274-5. [PMID: 23934739 PMCID: PMC7314032 DOI: 10.1093/jac/dkt314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Carla Rodrigues
- REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | | | | | | |
Collapse
|
46
|
Di Pilato V, Pollini S, Rossolini GM. Characterization of plasmid pAX22, encoding VIM-1 metallo-β-lactamase, reveals a new putative mechanism of In70 integron mobilization. J Antimicrob Chemother 2013; 69:67-71. [DOI: 10.1093/jac/dkt311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
47
|
Papagiannitsis CC, Študentová V, Hrabák J, Kubele J, Jindrák V, Žemličková H. Isolation from a nonclinical sample of Leclercia adecarboxylata producing a VIM-1 metallo-β-lactamase. Antimicrob Agents Chemother 2013; 57:2896-7. [PMID: 23529733 PMCID: PMC3716174 DOI: 10.1128/aac.00052-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Costas C. Papagiannitsis
- Department of Microbiology, Faculty of Medicine and University Hospital, Charles University, Plzen, Czech Republic
| | - Vendula Študentová
- Department of Microbiology, Faculty of Medicine and University Hospital, Charles University, Plzen, Czech Republic
| | - Jaroslav Hrabák
- Department of Microbiology, Faculty of Medicine and University Hospital, Charles University, Plzen, Czech Republic
| | - Jan Kubele
- Department of Clinical Microbiology, Na Homolce Hospital, Prague, Czech Republic
| | - Vlastimil Jindrák
- Department of Clinical Microbiology, Na Homolce Hospital, Prague, Czech Republic
| | - Helena Žemličková
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
48
|
Complete sequence of pOZ176, a 500-kilobase IncP-2 plasmid encoding IMP-9-mediated carbapenem resistance, from outbreak isolate Pseudomonas aeruginosa 96. Antimicrob Agents Chemother 2013; 57:3775-82. [PMID: 23716048 DOI: 10.1128/aac.00423-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa 96 (PA96) was isolated during a multicenter surveillance study in Guangzhou, China, in 2000. Whole-genome sequencing of this outbreak strain facilitated analysis of its IncP-2 carbapenem-resistant plasmid, pOZ176. The plasmid had a length of 500,839 bp and an average percent G+C content of 57%. Of the 618 predicted open reading frames, 65% encode hypothetical proteins. The pOZ176 backbone is not closely related to any plasmids thus far sequenced, but some similarity to pQBR103 of Pseudomonas fluorescens SBW25 was observed. Two multiresistant class 1 integrons and several insertion sequences were identified. The blaIMP-9-carrying integron contained aacA4 → bla(IMP-9) → aacA4, flanked upstream by Tn21 tnpMRA and downstream by a complete tni operon of Tn402 and a mer module, named Tn6016. The second integron carried aacA4 → catB8a → bla(OXA-10) and was flanked by Tn1403-like tnpRA and a sul1-type 3' conserved sequence (3'-CS), named Tn6217. Other features include three resistance genes similar to those of Tn5, a tellurite resistance operon, and two pil operons. The replication and maintenance systems exhibit similarity to a genomic island of Ralstonia solanacearum GM1000. Codon usage analysis suggests the recent acquisition of bla(IMP-9). The origins of the integrons on pOZ176 indicated separate horizontal gene transfer events driven by antibiotic selection. The novel mosaic structure of pOZ176 suggests that it is derived from environmental bacteria.
Collapse
|
49
|
Martinez E, Pérez JE, Márquez C, Vilacoba E, Centrón D, Leal AL, Saavedra C, Saavedra SY, Tovar C, Vanegas N, Stokes HW. Emerging and existing mechanisms co-operate in generating diverse β-lactam resistance phenotypes in geographically dispersed and genetically disparate Pseudomonas aeruginosa strains. J Glob Antimicrob Resist 2013; 1:135-142. [PMID: 27873623 DOI: 10.1016/j.jgar.2013.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/05/2013] [Accepted: 03/30/2013] [Indexed: 11/19/2022] Open
Abstract
β-Lactam resistance in Pseudomonas aeruginosa clinical isolates is driven by a number of mechanisms. Whilst several are understood, how they act co-operatively in pathogenic strains is less clear. In some isolates, resistance profiles cannot always be explained by identifying the common resistance-determining pathways, suggesting that other mechanisms may be important. Pathogenic P. aeruginosa isolates from four countries were characterised by PCR. Quantitative expression analysis was also assessed for the activity of several pathways that influence antibiotic resistance, and culture experiments were conducted to test how random transposition of the insertion sequence IS26 during growth may influence resistance to some antibiotics. In most strains, antibiotic resistance was being driven by changes in multiple pathways and by the presence or absence of genes acquired by lateral gene transfer. Multiple mechanisms of resistance were prevalent in strains from all of the countries examined, although regional differences in the type of interacting mechanisms were apparent. Changes in chromosomal pathways included overexpression of AmpC and two efflux pumps. Also, gain or loss of IS26 at some chromosomal locations, most notably oprD, could influence resistance to carbapenems. IS26-related resistance was found in strains from Argentina and geographically linked Uruguay, but not in strains from either Colombia or Australia. Pseudomonas aeruginosa pathogenic strains are evolving to become multidrug-resistant in more complex ways. This is being influenced by single strains acquiring changes in numerous known pathways as well as by newly emerging resistance mechanisms in this species.
Collapse
Affiliation(s)
- Elena Martinez
- The ithree institute, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Javier Escobar Pérez
- Laboratorio de Genética Molecular Bacteriana, Universidad El Bosque, Bogotá, Colombia
| | - Carolina Márquez
- Cátedra de Microbiología, Instituto de Química Biológica, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Elisabet Vilacoba
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Daniela Centrón
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Aura L Leal
- Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Catalina Tovar
- Grupo de Resistencia Bacteriana y Enfermedades Tropicales, Universidad del Sinú, Monteria-Cordoba, Colombia
| | - Natasha Vanegas
- The ithree institute, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia; Laboratorio de Genética Molecular Bacteriana, Universidad El Bosque, Bogotá, Colombia
| | - H W Stokes
- The ithree institute, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
50
|
Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol 2013; 4:15. [PMID: 23508522 PMCID: PMC3589745 DOI: 10.3389/fmicb.2013.00015] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/22/2013] [Indexed: 12/21/2022] Open
Abstract
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Ana P. Tedim
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|