1
|
Awalt JK, Su W, Nguyen W, Loi K, Jarman KE, Penington JS, Ramesh S, Fairhurst KJ, Yeo T, Park H, Uhlemann AC, Chandra Maity B, De N, Mukherjee P, Chakraborty A, Churchyard A, Famodimu MT, Delves MJ, Baum J, Mittal N, Winzeler EA, Papenfuss AT, Chowdury M, de Koning-Ward TF, Maier AG, van Dooren GG, Baud D, Brand S, Fidock DA, Jackson PF, Cowman AF, Dans MG, Sleebs BE. Exploration and characterization of the antimalarial activity of cyclopropyl carboxamides that target the mitochondrial protein, cytochrome b. Eur J Med Chem 2024; 280:116921. [PMID: 39388903 PMCID: PMC11609934 DOI: 10.1016/j.ejmech.2024.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Drug resistance against antimalarials is rendering them increasingly ineffective and so there is a need for the development of new antimalarials. To discover new antimalarial chemotypes a phenotypic screen of the Janssen Jumpstarter library against the P. falciparum asexual stage was undertaken, uncovering the cyclopropyl carboxamide structural hit class. Structure-activity analysis revealed that each structural moiety was largely resistant to change, although small changes led to the frontrunner compound, WJM280, which has potent asexual stage activity (EC50 40 nM) and no human cell cytotoxicity. Forward genetics uncovered that cyclopropyl carboxamide resistant parasites have mutations and an amplification in the cytochrome b gene. Cytochrome b was then verified as the target with profiling against cytochrome b drug-resistant parasites and a mitochondrial oxygen consumption assay. Accordingly, the cyclopropyl carboxamide class was shown to have slow-acting asexual stage activity and activity against male gametes and exoerythrocytic forms. Enhancing metabolic stability to attain efficacy in malaria mouse models remains a challenge in the future development of this antimalarial chemotype.
Collapse
Affiliation(s)
- Jon Kyle Awalt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Wenyin Su
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Katie Loi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | - Kate E Jarman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Jocelyn S Penington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Saishyam Ramesh
- Research School of Biology, The Australian National University, Canberra, 2600, Australia
| | - Kate J Fairhurst
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Nirupam De
- TCG Lifesciences, Kolkata, West Bengal, 700091, India
| | | | | | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, UK
| | - Mufuliat T Famodimu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Michael J Delves
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, UK; School of Biomedical Sciences, University of New South Wales, Sydney, 2031, Australia
| | - Nimisha Mittal
- School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Elizabeth A Winzeler
- School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Mrittika Chowdury
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, 3216, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, 3216, Australia
| | - Alexander G Maier
- Research School of Biology, The Australian National University, Canberra, 2600, Australia
| | - Giel G van Dooren
- Research School of Biology, The Australian National University, Canberra, 2600, Australia
| | - Delphine Baud
- Medicines for Malaria Venture, Geneva, 1215, Switzerland
| | - Stephen Brand
- Medicines for Malaria Venture, Geneva, 1215, Switzerland
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Paul F Jackson
- Global Public Health, Janssen R&D LLC, La Jolla, 92121, USA
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Madeline G Dans
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
2
|
Nguyen GB, Cooper CA, McWhorter O, Sharma R, Elliot A, Ruberto A, Freitas R, Pathak AK, Kyle DE, Maher SP. Screening the Global Health Priority Box against Plasmodium berghei liver stage parasites using an inexpensive luciferase detection protocol. Malar J 2024; 23:357. [PMID: 39580415 PMCID: PMC11585928 DOI: 10.1186/s12936-024-05155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Malaria, a disease caused by parasites of the genus Plasmodium, continues to impact many regions globally. The rise in resistance to artemisinin-based anti-malarial drugs highlights the need for new treatments. Ideally, new anti-malarials will kill the asymptomatic liver stages as well as the symptomatic blood stages. While blood stage screening assays are routine and efficient, liver stage screening assays are more complex and costly. To decrease the cost of liver stage screening, a previously reported luciferase detection protocol requiring only common laboratory reagents was adapted for testing against luciferase-expressing Plasmodium berghei liver stage parasites. METHODS After optimizing cell lysis conditions, the concentration of reagents, and the density of host hepatocytes (HepG2), the protocol was validated with 28 legacy anti-malarials to show this simple protocol produces a stable signal useful for obtaining quality small molecule potency data similar to that obtained from a high content imaging endpoint. The protocol was then used to screen the Global Health Priority Box (GHPB) and confirm the potency of hits in dose-response assays. Selectivity was determined using a galactose-based, 72 h HepG2 assay to avoid missing mitochondrial-toxic compounds due to the Crabtree effect. Receiver-operator characteristic plots were used to retroactively characterize the screens' predictive value. RESULTS Optimal luciferase signal was achieved using a lower HepG2 seed density (5 × 103 cells/well of a 384-well microtitre plate) compared to many previously reported luciferase-based screens. While producing lower signal compared to a commercial alternative, this luciferase detection method was found much more stable, with a > 3 h half-life, and robust enough for producing dose-response plots with as few as 500 sporozoites/well. A screen of the GHPB resulted in 9 hits with selective activity against P. berghei liver schizonts, including MMV674132 which exhibited 30.2 nM potency. Retrospective analyses show excellent predictive value for both anti-malarial activity and cytotoxicity. CONCLUSIONS This method is suitable for high-throughput screening at a cost nearly 20-fold less than using commercial luciferase detection kits, thereby enabling larger liver stage anti-malarial screens and hit optimization make-test cycles. Further optimization of the hits detected using this protocol is ongoing.
Collapse
Affiliation(s)
- Gia-Bao Nguyen
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Olivia McWhorter
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Ritu Sharma
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Anne Elliot
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Anthony Ruberto
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Rafael Freitas
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Ashutosh K Pathak
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA.
| |
Collapse
|
3
|
Kurian J, Kumari V, Chaluvalappil SV, Anas M, Manhas A, Kalluruttimmal R, Kumar N, Manheri MK. Adenine Modification at C7 as a Viable Strategy to Potentiate the Antimalarial Activity of Quinolones. ChemMedChem 2021; 17:e202100472. [PMID: 34717044 DOI: 10.1002/cmdc.202100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Indexed: 11/08/2022]
Abstract
Although many quinolones have shown promise as potent antimalarials, their clinical development has been slow due to poor performance in vivo. Insights into structural modifications that can improve their therapeutic potential will be very valuable in this vibrant area of research. Our studies involving a library of quinolones which vary in substitution pattern at N1, C3, C6 and C7 positions have shown that the presence of adenine moiety at C7 can bring a noticeable improvement in activity compared to other heterocyclic groups at this location. The most potent compound emerged from this study showed IC50 values of 0.38 μM and 0.75 μM against chloroquine-sensitive and -resistant (W2) strains, respectively. Docking analysis in the Qo site of cytochrome bc1 complex revealed the contribution of a key H-bonding interaction from the adenine unit in target binding. This corroborates with compound-induced loss of mitochondrial functions. These findings not only open avenues for further exploration of antimalarial potential of adenine-modified quinolones, but also suggests broader opportunities during lead-optimization against other antimalarial targets.
Collapse
Affiliation(s)
- Jais Kurian
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Varsha Kumari
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur road, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saheer V Chaluvalappil
- Department of Chemistry, Krishna Menon Memorial Government Women's College, Kannur 670004, Kerala, India
| | - Mohammad Anas
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur road, Lucknow, 226031, India
| | - Ashan Manhas
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur road, Lucknow, 226031, India
| | - Ramshad Kalluruttimmal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Niti Kumar
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur road, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Muraleedharan K Manheri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
4
|
Huang Z, Li R, Tang T, Ling D, Wang M, Xu D, Sun M, Zheng L, Zhu F, Min H, Boonhok R, Ding Y, Wen Y, Chen Y, Li X, Chen Y, Liu T, Han J, Miao J, Fang Q, Cao Y, Tang Y, Cui J, Xu W, Cui L, Zhu J, Wong G, Li J, Jiang L. A novel multistage antiplasmodial inhibitor targeting Plasmodium falciparum histone deacetylase 1. Cell Discov 2020; 6:93. [PMID: 33311461 PMCID: PMC7733455 DOI: 10.1038/s41421-020-00215-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/09/2020] [Indexed: 01/07/2023] Open
Abstract
Although artemisinin combination therapies have succeeded in reducing the global burden of malaria, multidrug resistance of the deadliest malaria parasite, Plasmodium falciparum, is emerging worldwide. Innovative antimalarial drugs that kill all life-cycle stages of malaria parasites are urgently needed. Here, we report the discovery of the compound JX21108 with broad antiplasmodial activity against multiple life-cycle stages of malaria parasites. JX21108 was developed from chemical optimization of quisinostat, a histone deacetylase inhibitor. We identified P. falciparum histone deacetylase 1 (PfHDAC1), an epigenetic regulator essential for parasite growth and invasion, as a molecular target of JX21108. PfHDAC1 knockdown leads to the downregulation of essential parasite genes, which is highly consistent with the transcriptomic changes induced by JX21108 treatment. Collectively, our data support that PfHDAC1 is a potential drug target for overcoming multidrug resistance and that JX21108 treats malaria and blocks parasite transmission simultaneously.
Collapse
Affiliation(s)
- Zhenghui Huang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ruoxi Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Tongke Tang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dazheng Ling
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Manjiong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Dandan Xu
- Department of Microbiology and Parasitology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity, Bengbu, Anhui 233030, China
| | - Maoxin Sun
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lulu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Feng Zhu
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hui Min
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Rachasak Boonhok
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yan Ding
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Yuhao Wen
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yicong Chen
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yuxi Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Taiping Liu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Jiping Han
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Miao
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity, Bengbu, Anhui 233030, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jie Cui
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Gary Wong
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
5
|
Abstract
As the world gets closer to eliminating malaria, the scientific community worldwide has begun to realize the importance of malaria transmission-blocking interventions. The onus of breaking the life cycle of the human malaria parasite Plasmodium falciparum predominantly rests upon transmission-blocking drugs because of emerging resistance to commonly used schizonticides and insecticides. This third part of our review series on malaria transmission-blocking entails transmission-blocking potential of preclinical transmission-blocking antimalarials and other non-malaria drugs/experimental compounds that are not in clinical or preclinical development for malaria but possess transmission-blocking potential. Collective analysis of the structure and the activity of these experimental compounds might pave the way toward generation of novel prototypes of next-generation transmission-blocking drugs.
Collapse
|
6
|
Zhao X, Wang X, Li Y. Combined HQSAR method and molecular docking study on genotoxicity mechanism of quinolones with higher genotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34830-34853. [PMID: 31655981 DOI: 10.1007/s11356-019-06482-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Using the hologram quantitative structure-activity relationship (HQSAR) method, a quantitative model of the structure-activity relationship between the genotoxicity of quinolones towards gram-negative bacteria and structure of quinolones is constructed. A series of novel quinolones are designed, and 4 environmentally friendly quinolone derivatives are finally selected, because of their enhanced genotoxicity towards gram-negative/positive bacteria, decreased bioconcentration and increased photodegradability and biodegradability. The mechanisms underlying the genotoxicity of quinolones and its derivatives are analysed based on amino acid residues and molecular interactions. Three hydrophilic amino acids [arginine (ARG), asparagine (ASN) and aspartic acid (ASP)] play important roles in the antibacterial effects of quinolones. The introduction of highly hydrophilic groups into the C-7 position of amifloxacin (AMI) not only improved the stability of the AMI derivative-topoisomerase IV-DNA complex but also improved the antibacterial activities of AMI derivatives.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Xiaolei Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
7
|
Neelarapu R, Maignan JR, Lichorowic CL, Monastyrskyi A, Mutka TS, LaCrue AN, Blake LD, Casandra D, Mashkouri S, Burrows JN, Willis PA, Kyle DE, Manetsch R. Design and Synthesis of Orally Bioavailable Piperazine Substituted 4(1H)-Quinolones with Potent Antimalarial Activity: Structure-Activity and Structure-Property Relationship Studies. J Med Chem 2018; 61:1450-1473. [PMID: 29215279 DOI: 10.1021/acs.jmedchem.7b00738] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Malaria deaths have been decreasing over the last 10-15 years, with global mortality rates having fallen by 47% since 2000. While the World Health Organization (WHO) recommends the use of artemisinin-based combination therapies (ACTs) to combat malaria, the emergence of artemisinin resistant strains underscores the need to develop new antimalarial drugs. Recent in vivo efficacy improvements of the historical antimalarial ICI 56,780 have been reported, however, with the poor solubility and rapid development of resistance, this compound requires further optimization. A series of piperazine-containing 4(1H)-quinolones with greatly enhanced solubility were developed utilizing structure-activity relationship (SAR) and structure-property relationship (SPR) studies. Furthermore, promising compounds were chosen for an in vivo scouting assay to narrow selection for testing in an in vivo Thompson test. Finally, two piperazine-containing 4(1H)-quinolones were curative in the conventional Thompson test and also displayed in vivo activity against the liver stages of the parasite.
Collapse
Affiliation(s)
- Raghupathi Neelarapu
- Department of Chemistry, University of South Florida , CHE 205, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Jordany R Maignan
- Department of Chemistry, University of South Florida , CHE 205, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Cynthia L Lichorowic
- Department of Chemistry and Chemical Biology, Northeastern University , 102 Hurtig Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Andrii Monastyrskyi
- Department of Chemistry, University of South Florida , CHE 205, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Tina S Mutka
- Department of Global Health, College of Public Health, University of South Florida , 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Alexis N LaCrue
- Department of Global Health, College of Public Health, University of South Florida , 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Lynn D Blake
- Department of Global Health, College of Public Health, University of South Florida , 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Debora Casandra
- Department of Global Health, College of Public Health, University of South Florida , 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Sherwin Mashkouri
- Department of Global Health, College of Public Health, University of South Florida , 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Jeremy N Burrows
- Medicines for Malaria Venture , 20, Route de Pré-Bois, P.O. Box 1826, 1215 Geneva, Switzerland
| | - Paul A Willis
- Medicines for Malaria Venture , 20, Route de Pré-Bois, P.O. Box 1826, 1215 Geneva, Switzerland
| | - Dennis E Kyle
- Department of Global Health, College of Public Health, University of South Florida , 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University , 102 Hurtig Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States.,Department of Pharmaceutical Sciences, Northeastern University , 102 Hurtig Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Fan YL, Cheng XW, Wu JB, Liu M, Zhang FZ, Xu Z, Feng LS. Antiplasmodial and antimalarial activities of quinolone derivatives: An overview. Eur J Med Chem 2018; 146:1-14. [PMID: 29360043 DOI: 10.1016/j.ejmech.2018.01.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Malaria remains one of the most deadly infectious diseases globally. Considering the growing spread of resistance, development of new and effective antimalarials remains an urgent priority. Quinolones, which are emerged as one of the most important class of antibiotics in the treatment of various bacterial infections, showed potential in vitro antiplasmodial and in vivo antimalarial activities, making them promising candidates for the chemoprophylaxis and treatment of malaria. This review presents the current progresses and applications of quinolone-based derivatives as potential antimalarials to pave the way for the development of new antimalarials.
Collapse
Affiliation(s)
- Yi-Lei Fan
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, PR China
| | - Xiang-Wei Cheng
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, PR China
| | - Jian-Bing Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, PR China
| | - Min Liu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Feng-Zhi Zhang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| | - Zhi Xu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China
| |
Collapse
|
9
|
Abstract
In the last 2 decades, renewed attention to neglected tropical diseases (NTDs) has spurred the development of antiparasitic agents, especially in light of emerging drug resistance. The need for new drugs has required in vitro screening methods using parasite culture. Furthermore, clinical laboratories sought to correlate in vitro susceptibility methods with treatment outcomes, most notably with malaria. Parasites with their various life cycles present greater complexity than bacteria, for which standardized susceptibility methods exist. This review catalogs the state-of-the-art methodologies used to evaluate the effects of drugs on key human parasites from the point of view of drug discovery as well as the need for laboratory methods that correlate with clinical outcomes.
Collapse
|
10
|
Namelikonda NK, Monastyrskyi A, Manetsch R. Scalable Multigram Syntheses of Antimalarial 4(1H
)-Quinolones ELQ-300 and P4Q-391. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Andrii Monastyrskyi
- Department of Chemistry; University of South Florida; 4202 E Fowler Ave. 33620 Tampa FL USA
| | - Roman Manetsch
- Department of Chemistry; University of South Florida; 4202 E Fowler Ave. 33620 Tampa FL USA
| |
Collapse
|
11
|
Brockmeyer F, Manetsch R. Progress in the Optimization of 4(1 H)-Quinolone Derivatives as Antimalarials Targeting the Erythrocytic, the Exoerythrocytic and the Transmitting Stages of the Malaria Parasite. Chimia (Aarau) 2017; 71:213-219. [PMID: 28446339 PMCID: PMC9257372 DOI: 10.2533/chimia.2017.213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Malaria is one of the leading infectious diseases occurring mainly in tropical and subtropical areas. Although available antimalarial tools have reduced the number of fatalities, there is still an urgent need for the development of new and more efficacious treatments to cure and eradicate malaria especially due to emerging resistance to all antimalarial drugs. Research was initiated to revisit antimalarial compounds which were deemed unsuitable as a result of poor understanding of physicochemical properties and the optimization thereof. The 4(1H)-quinolones are a class of compounds with demonstrated activity against malaria parasites. Recent optimization of the long-known core led to two highly promising compounds, i.e. P4Q-391 and ELQ-300, with great selective activity against all stages of the parasite's life cycle and good physicochemical properties. In this paper, we discuss the key steps on the way to these compounds, which fuel hope to find a suitable treatment for the prevention, cure and eradication of malaria.
Collapse
Affiliation(s)
- Fabian Brockmeyer
- Northeastern University Department of Chemistry and Chemical Biology and Department of Pharmaceutical Sciences 360 Huntington Avenue, HT102, Boston, Massachusetts 02115, USA
| | - Roman Manetsch
- Northeastern University Department of Chemistry and Chemical Biology and Department of Pharmaceutical Sciences 360 Huntington Avenue, HT102, Boston, Massachusetts 02115, USA;,
| |
Collapse
|
12
|
McPhillie M, Zhou Y, El Bissati K, Dubey J, Lorenzi H, Capper M, Lukens AK, Hickman M, Muench S, Verma SK, Weber CR, Wheeler K, Gordon J, Sanders J, Moulton H, Wang K, Kim TK, He Y, Santos T, Woods S, Lee P, Donkin D, Kim E, Fraczek L, Lykins J, Esaa F, Alibana-Clouser F, Dovgin S, Weiss L, Brasseur G, Wirth D, Kent M, Hood L, Meunieur B, Roberts CW, Hasnain SS, Antonyuk SV, Fishwick C, McLeod R. New paradigms for understanding and step changes in treating active and chronic, persistent apicomplexan infections. Sci Rep 2016; 6:29179. [PMID: 27412848 PMCID: PMC4944145 DOI: 10.1038/srep29179] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/31/2016] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii, the most common parasitic infection of human brain and eye, persists across lifetimes, can progressively damage sight, and is currently incurable. New, curative medicines are needed urgently. Herein, we develop novel models to facilitate drug development: EGS strain T. gondii forms cysts in vitro that induce oocysts in cats, the gold standard criterion for cysts. These cysts highly express cytochrome b. Using these models, we envisioned, and then created, novel 4-(1H)-quinolone scaffolds that target the cytochrome bc1 complex Qi site, of which, a substituted 5,6,7,8-tetrahydroquinolin-4-one inhibits active infection (IC50, 30 nM) and cysts (IC50, 4 μM) in vitro, and in vivo (25 mg/kg), and drug resistant Plasmodium falciparum (IC50, <30 nM), with clinically relevant synergy. Mutant yeast and co-crystallographic studies demonstrate binding to the bc1 complex Qi site. Our results have direct impact on improving outcomes for those with toxoplasmosis, malaria, and ~2 billion persons chronically infected with encysted bradyzoites.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda K Lukens
- Harvard School of Public Health, Boston, Massachusetts, USA
- The Broad Institute, Boston, Massachusetts, USA
| | - Mark Hickman
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | | | | | | | | | - Kai Wang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, Washington, USA
| | - Yuqing He
- Institute for Systems Biology, Seattle, Washington, USA
| | - Tatiana Santos
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Patty Lee
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - David Donkin
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Eric Kim
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | | | | | - Louis Weiss
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Dyann Wirth
- Harvard School of Public Health, Boston, Massachusetts, USA
- The Broad Institute, Boston, Massachusetts, USA
| | | | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, USA
| | - Brigitte Meunieur
- Institute for Integrative Biology of the Cell (12BC), Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
13
|
Maignan JR, Lichorowic CL, Giarrusso J, Blake LD, Casandra D, Mutka TS, LaCrue AN, Burrows JN, Willis PA, Kyle DE, Manetsch R. ICI 56,780 Optimization: Structure–Activity Relationship Studies of 7-(2-Phenoxyethoxy)-4(1H)-quinolones with Antimalarial Activity. J Med Chem 2016; 59:6943-60. [DOI: 10.1021/acs.jmedchem.6b00759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jordany R. Maignan
- Department
of Chemistry, University of South Florida, CHE 205, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Cynthia L. Lichorowic
- Department
of Chemistry, University of South Florida, CHE 205, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
- Department
of Chemistry and Chemical Biology, Northeastern University, 102 Hurtig
Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - James Giarrusso
- Department
of Chemistry, University of South Florida, CHE 205, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Lynn D. Blake
- Department
of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Debora Casandra
- Department
of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Tina S. Mutka
- Department
of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Alexis N. LaCrue
- Department
of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Jeremy N. Burrows
- Medicines for Malaria Venture, 20, Route de Pré-Bois, P.O. Box 1826, 1215 Geneva 15, Switzerland
| | - Paul A. Willis
- Medicines for Malaria Venture, 20, Route de Pré-Bois, P.O. Box 1826, 1215 Geneva 15, Switzerland
| | - Dennis E. Kyle
- Department
of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, United States
| | - Roman Manetsch
- Department
of Chemistry, University of South Florida, CHE 205, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
- Department
of Chemistry and Chemical Biology, Northeastern University, 102 Hurtig
Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern University, 102 Hurtig
Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
De Niz M, Stanway RR, Wacker R, Keller D, Heussler VT. An ultrasensitive NanoLuc-based luminescence system for monitoring Plasmodium berghei throughout its life cycle. Malar J 2016; 15:232. [PMID: 27102897 PMCID: PMC4840902 DOI: 10.1186/s12936-016-1291-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/13/2016] [Indexed: 01/08/2023] Open
Abstract
Background Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. Results NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. Conclusions PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Derya Keller
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
15
|
Siciliano G, Alano P. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research. Front Microbiol 2015; 6:391. [PMID: 26029172 PMCID: PMC4426725 DOI: 10.3389/fmicb.2015.00391] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/16/2015] [Indexed: 12/31/2022] Open
Abstract
The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.
Collapse
Affiliation(s)
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di SanitàRome, Italy
| |
Collapse
|
16
|
Kumar S, Kumari R, Pandey R. New insight-guided approaches to detect, cure, prevent and eliminate malaria. PROTOPLASMA 2015; 252:717-753. [PMID: 25323622 DOI: 10.1007/s00709-014-0697-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/01/2014] [Indexed: 06/04/2023]
Abstract
New challenges posed by the development of resistance against artemisinin-based combination therapies (ACTs) as well as previous first-line therapies, and the continuing absence of vaccine, have given impetus to research in all areas of malaria control. This review portrays the ongoing progress in several directions of malaria research. The variants of RTS,S and apical membrane antigen 1 (AMA1) are being developed and test adapted as multicomponent and multistage malaria control vaccines, while many other vaccine candidates and methodologies to produce antigens are under experimentation. To track and prevent the spread of artemisinin resistance from Southeast Asia to other parts of the world, rolling circle-enhanced enzyme activity detection (REEAD), a time- and cost-effective malaria diagnosis in field conditions, and a DNA marker associated with artemisinin resistance have become available. Novel mosquito repellents and mosquito trapping and killing techniques much more effective than the prevalent ones are undergoing field testing. Mosquito lines stably infected with their symbiotic wild-type or genetically engineered bacteria that kill sympatric malaria parasites are being constructed and field tested for stopping malaria transmission. A complementary approach being pursued is the addition of ivermectin-like drug molecules to ACTs to cure malaria and kill mosquitoes. Experiments are in progress to eradicate malaria mosquito by making it genetically male sterile. High-throughput screening procedures are being developed and used to discover molecules that possess long in vivo half life and are active against liver and blood stages for the fast cure of malaria symptoms caused by simple or relapsing and drug-sensitive and drug-resistant types of varied malaria parasites, can stop gametocytogenesis and sporogony and could be given in one dose. Target-based antimalarial drug designing has begun. Some of the putative next-generation antimalarials that possess in their scaffold structure several of the desired properties of malaria cure and control are exemplified by OZ439, NITD609, ELQ300 and tafenoquine that are already undergoing clinical trials, and decoquinate, usnic acid, torin-2, ferroquine, WEHI-916, MMV396749 and benzothiophene-type N-myristoyltransferase (NMT) inhibitors, which are candidates for future clinical usage. Among these, NITD609, ELQ300, decoquinate, usnic acid, torin-2 and NMT inhibitors not only cure simple malaria and are prophylactic against simple malaria, but they also cure relapsing malaria.
Collapse
Affiliation(s)
- Sushil Kumar
- SKA Institution for Research, Education and Development (SKAIRED), 4/11 SarvPriya Vihar, New Delhi, 110016, India,
| | | | | |
Collapse
|
17
|
Ravi M, Chauhan P, Kant R, Shukla SK, Yadav PP. Transition-Metal-Free C-3 Arylation of Quinoline-4-ones with Arylhydrazines. J Org Chem 2015; 80:5369-76. [DOI: 10.1021/acs.joc.5b00739] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Makthala Ravi
- Division
of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Parul Chauhan
- Division
of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ruchir Kant
- Division
of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sanjeev K. Shukla
- Sophisticated
Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Prem. P. Yadav
- Division
of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
18
|
Cross RM, Flanigan DL, Monastyrskyi A, LaCrue AN, Sáenz FE, Maignan JR, Mutka TS, White KL, Shackleford DM, Bathurst I, Fronczek FR, Wojtas L, Guida WC, Charman SA, Burrows JN, Kyle DE, Manetsch R. Orally bioavailable 6-chloro-7-methoxy-4(1H)-quinolones efficacious against multiple stages of Plasmodium. J Med Chem 2014; 57:8860-79. [PMID: 25148516 PMCID: PMC4234439 DOI: 10.1021/jm500942v] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The continued proliferation
of malaria throughout temperate and
tropical regions of the world has promoted a push for more efficacious
treatments to combat the disease. Unfortunately, more recent remedies
such as artemisinin combination therapies have been rendered less
effective due to developing parasite resistance, and new drugs are
required that target the parasite in the liver to support the disease
elimination efforts. Research was initiated to revisit antimalarials
developed in the 1940s and 1960s that were deemed unsuitable for use
as therapeutic agents as a result of poor understanding of both physicochemical
properties and parasitology. Structure–activity and structure–property
relationship studies were conducted to generate a set of compounds
with the general 6-chloro-7-methoxy-2-methyl-4(1H)-quinolone scaffold which were substituted at the 3-position with
a variety of phenyl moieties possessing various properties. Extensive
physicochemical evaluation of the quinolone series was carried out
to downselect the most promising 4(1H)-quinolones, 7, 62, 66, and 67,
which possessed low-nanomolar EC50 values against W2 and
TM90-C2B as well as improved microsomal stability. Additionally, in
vivo Thompson test results using Plasmodium berghei in mice showed that these 4(1H)-quinolones were
efficacious for the reduction of parasitemia at >99% after 6 days.
Collapse
Affiliation(s)
- R Matthew Cross
- Department of Chemistry, University of South Florida , CHE 205, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Beteck RM, Smit FJ, Haynes RK, N'Da DD. Recent progress in the development of anti-malarial quinolones. Malar J 2014; 13:339. [PMID: 25176157 PMCID: PMC4162983 DOI: 10.1186/1475-2875-13-339] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/26/2014] [Indexed: 11/10/2022] Open
Abstract
Available anti-malarial tools have over the ten-year period prior to 2012 dramatically reduced the number of fatalities due to malaria from one million to less than six-hundred and thirty thousand. Although fewer people now die from malaria, emerging resistance to the first-line anti-malarial drugs, namely artemisinins in combination with quinolines and arylmethanols, necessitates the urgent development of new anti-malarial drugs to curb the disease. The quinolones are a promising class of compounds, with some demonstrating potent in vitro activity against the malaria parasite. This review summarizes the progress made in the development of potential anti-malarial quinolones since 2008. The efficacy of these compounds against both asexual blood stages and other stages of the malaria parasite, the nature of putative targets, and a comparison of these properties with anti-malarial drugs currently in clinical use, are discussed.
Collapse
Affiliation(s)
| | | | | | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
20
|
Li Q, O'Neil M, Xie L, Caridha D, Zeng Q, Zhang J, Pybus B, Hickman M, Melendez V. Assessment of the prophylactic activity and pharmacokinetic profile of oral tafenoquine compared to primaquine for inhibition of liver stage malaria infections. Malar J 2014; 13:141. [PMID: 24731238 PMCID: PMC3989846 DOI: 10.1186/1475-2875-13-141] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/02/2014] [Indexed: 11/10/2022] Open
Abstract
Background As anti-malarial drug resistance escalates, new safe and effective medications are necessary to prevent and treat malaria infections. The US Army is developing tafenoquine (TQ), an analogue of primaquine (PQ), which is expected to be more effective in preventing malaria in deployed military personnel. Methods To compare the prophylactic efficacy of TQ and PQ, a transgenic Plasmodium berghei parasite expressing the bioluminescent reporter protein luciferase was utilized to visualize and quantify parasite development in C57BL/6 albino mice treated with PQ and TQ in single or multiple regimens using a real-time in vivo imaging system (IVIS). As an additional endpoint, blood stage parasitaemia was monitored by flow cytometry. Comparative pharmacokinetic (PK) and liver distribution studies of oral and intravenous PQ and TQ were also performed. Results Mice treated orally with three doses of TQ at 5 mg/kg three doses of PQ at 25 mg/kg demonstrated no bioluminescence liver signal and no blood stage parasitaemia was observed suggesting both drugs showed 100% causal activity at the doses tested. Single dose oral treatment with 5 mg TQ or 25 mg of PQ, however, yielded different results as only TQ treatment resulted in causal prophylaxis in P. berghei sporozoite-infected mice. TQ is highly effective for causal prophylaxis in mice at a minimal curative single oral dose of 5 mg/kg, which is a five-fold improvement in potency versus PQ. PK studies of the two drugs administered orally to mice showed that the absolute bioavailability of oral TQ was 3.5-fold higher than PQ, and the AUC of oral TQ was 94-fold higher than oral PQ. The elimination half-life of oral TQ in mice was 28 times longer than PQ, and the liver tissue distribution of TQ revealed an AUC that was 188-fold higher than PQ. Conclusions The increased drug exposure levels and longer exposure time of oral TQ in the plasma and livers of mice highlight the lead quality attributes that explain the much improved efficacy of TQ when compared to PQ.
Collapse
Affiliation(s)
- Qigui Li
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sáenz FE, LaCrue AN, Cross RM, Maignan JR, Udenze KO, Manetsch R, Kyle DE. 4-(1H)-Quinolones and 1,2,3,4-Tetrahydroacridin-9(10H)-ones prevent the transmission of Plasmodium falciparum to Anopheles freeborni. Antimicrob Agents Chemother 2013; 57:6187-95. [PMID: 24080648 PMCID: PMC3837905 DOI: 10.1128/aac.00492-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 09/22/2013] [Indexed: 11/20/2022] Open
Abstract
Malaria kills approximately 1 million people a year, mainly in sub-Saharan Africa. Essential steps in the life cycle of the parasite are the development of gametocytes, as well as the formation of oocysts and sporozoites, in the Anopheles mosquito vector. Preventing transmission of malaria through the mosquito is necessary for the control of the disease; nevertheless, the vast majority of drugs in use act primarily against the blood stages. The study described herein focuses on the assessment of the transmission-blocking activities of potent antierythrocytic stage agents derived from the 4(1H)-quinolone scaffold. In particular, three 3-alkyl- or 3-phenyl-4(1H)-quinolones (P4Qs), one 7-(2-phenoxyethoxy)-4(1H)-quinolone (PEQ), and one 1,2,3,4-tetrahydroacridin-9(10H)-one (THA) were assessed for their transmission-blocking activity against the mosquito stages of the human malaria parasite (Plasmodium falciparum) and the rodent parasite (P. berghei). Results showed that all of the experimental compounds reduced or prevented the exflagellation of male gametocytes and, more importantly, prevented parasite transmission to the mosquito vector. Additionally, treatment with ICI 56,780 reduced the number of sporozoites that reached the Anopheles salivary glands. These findings suggest that 4(1H)-quinolones, which have activity against the blood stages, can also prevent the transmission of Plasmodium to the mosquito and, hence, are potentially important drug candidates to eradicate malaria.
Collapse
Affiliation(s)
- Fabián E. Sáenz
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | - Alexis N. LaCrue
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | - R. Matthew Cross
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Jordany R. Maignan
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Kenneth O. Udenze
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| | - Roman Manetsch
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Dennis E. Kyle
- Department of Global Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
22
|
Rodrigues T, Ressurreição AS, da Cruz FP, Albuquerque IS, Gut J, Carrasco MP, Gonçalves D, Guedes RC, dos Santos DJVA, Mota MM, Rosenthal PJ, Moreira R, Prudêncio M, Lopes F. Flavones as isosteres of 4(1H)-quinolones: discovery of ligand efficient and dual stage antimalarial lead compounds. Eur J Med Chem 2013; 69:872-80. [PMID: 24125849 DOI: 10.1016/j.ejmech.2013.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 11/20/2022]
Abstract
Malaria is responsible for nearly one million deaths annually, and the increasing prevalence of multi-resistant strains of Plasmodium falciparum poses a great challenge to controlling the disease. A diverse set of flavones, isosteric to 4(1H)-quinolones, were prepared and profiled for their antiplasmodial activity against the blood stage of P. falciparum W2 strain, and the liver stage of the rodent parasite Plasmodium berghei. Ligand efficient leads were identified as dual stage antimalarials, suggesting that scaffold optimization may afford potent antiplasmodial compounds.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-019 Lisbon, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rodrigues T, da Cruz FP, Lafuente-Monasterio MJ, Gonçalves D, Ressurreição AS, Sitoe AR, Bronze MR, Gut J, Schneider G, Mota MM, Rosenthal PJ, Prudêncio M, Gamo FJ, Lopes F, Moreira R. Quinolin-4(1H)-imines are potent antiplasmodial drugs targeting the liver stage of malaria. J Med Chem 2013; 56:4811-5. [PMID: 23701465 DOI: 10.1021/jm400246e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a novel series of quinolin-4(1H)-imines as dual-stage antiplasmodials, several-fold more active than primaquine in vitro against Plasmodium berghei liver stage. Among those, compounds 5g and 5k presented low nanomolar IC50 values. The compounds are metabolically stable and modulate several drug targets. These results emphasize the value of quinolin-4(1H)-imines as a new chemotype and their suitable properties for further drug development.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-019 Lisbon, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Biamonte MA, Wanner J, Le Roch KG. Recent advances in malaria drug discovery. Bioorg Med Chem Lett 2013; 23:2829-43. [PMID: 23587422 PMCID: PMC3762334 DOI: 10.1016/j.bmcl.2013.03.067] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/11/2013] [Accepted: 03/20/2013] [Indexed: 01/18/2023]
Abstract
This digest covers some of the most relevant progress in malaria drug discovery published between 2010 and 2012. There is an urgent need to develop new antimalarial drugs. Such drugs can target the blood stage of the disease to alleviate the symptoms, the liver stage to prevent relapses, and the transmission stage to protect other humans. The pipeline for the blood stage is becoming robust, but this should not be a source of complacency, as the current therapies set a high standard. Drug discovery efforts directed towards the liver and transmission stages are in their infancy but are receiving increasing attention as targeting these stages could be instrumental in eradicating malaria.
Collapse
Affiliation(s)
- Marco A Biamonte
- Drug Discovery for Tropical Diseases, Suite 230, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
25
|
Nilsen A, LaCrue AN, White KL, Forquer IP, Cross RM, Marfurt J, Mather MW, Delves MJ, Shackleford DM, Saenz FE, Morrisey JM, Steuten J, Mutka T, Li Y, Wirjanata G, Ryan E, Duffy S, Kelly JX, Sebayang BF, Zeeman AM, Noviyanti R, Sinden RE, Kocken CHM, Price RN, Avery VM, Angulo-Barturen I, Jiménez-Díaz MB, Ferrer S, Herreros E, Sanz LM, Gamo FJ, Bathurst I, Burrows JN, Siegl P, Guy RK, Winter RW, Vaidya AB, Charman SA, Kyle DE, Manetsch R, Riscoe MK. Quinolone-3-diarylethers: a new class of antimalarial drug. Sci Transl Med 2013; 5:177ra37. [PMID: 23515079 PMCID: PMC4227885 DOI: 10.1126/scitranslmed.3005029] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The goal for developing new antimalarial drugs is to find a molecule that can target multiple stages of the parasite's life cycle, thus impacting prevention, treatment, and transmission of the disease. The 4(1H)-quinolone-3-diarylethers are selective potent inhibitors of the parasite's mitochondrial cytochrome bc1 complex. These compounds are highly active against the human malaria parasites Plasmodium falciparum and Plasmodium vivax. They target both the liver and blood stages of the parasite as well as the forms that are crucial for disease transmission, that is, the gametocytes, the zygote, the ookinete, and the oocyst. Selected as a preclinical candidate, ELQ-300 has good oral bioavailability at efficacious doses in mice, is metabolically stable, and is highly active in blocking transmission in rodent models of malaria. Given its predicted low dose in patients and its predicted long half-life, ELQ-300 has potential as a new drug for the treatment, prevention, and, ultimately, eradication of human malaria.
Collapse
Affiliation(s)
- Aaron Nilsen
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Alexis N. LaCrue
- Department of Global Health, College of Public Health, 3720 Spectrum Blvd. (Ste 304), Tampa, FL 33612, USA
| | - Karen L. White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Isaac P. Forquer
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Richard M. Cross
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620-5250, USA
| | - Jutta Marfurt
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Michael W. Mather
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Michael J. Delves
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Fabian E. Saenz
- Department of Global Health, College of Public Health, 3720 Spectrum Blvd. (Ste 304), Tampa, FL 33612, USA
| | - Joanne M. Morrisey
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Jessica Steuten
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Tina Mutka
- Department of Global Health, College of Public Health, 3720 Spectrum Blvd. (Ste 304), Tampa, FL 33612, USA
| | - Yuexin Li
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Grennady Wirjanata
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Eileen Ryan
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Sandra Duffy
- Eskitis Institute for Cell & Molecular Therapies, Brisbane Innovation Park, Nathan campus, Griffith University, QLD 4111, Australia
| | - Jane Xu Kelly
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Boni F. Sebayang
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Rintis Noviyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia
| | - Robert E. Sinden
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Clemens H. M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Ric N. Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Vicky M. Avery
- Eskitis Institute for Cell & Molecular Therapies, Brisbane Innovation Park, Nathan campus, Griffith University, QLD 4111, Australia
| | - Iñigo Angulo-Barturen
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - María Belén Jiménez-Díaz
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Santiago Ferrer
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Esperanza Herreros
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Laura M. Sanz
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Francisco-Javier Gamo
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Ian Bathurst
- Medicines for Malaria Venture, 20, route de Pré-Bois, PO Box 1826, 1215 Geneva 15, Switzerland
| | - Jeremy N. Burrows
- Medicines for Malaria Venture, 20, route de Pré-Bois, PO Box 1826, 1215 Geneva 15, Switzerland
| | - Peter Siegl
- Siegl Pharma Consulting LLC, Blue Bell, PA, USA
| | - R. Kiplin Guy
- Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| | - Rolf W. Winter
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Akhil B. Vaidya
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Dennis E. Kyle
- Department of Global Health, College of Public Health, 3720 Spectrum Blvd. (Ste 304), Tampa, FL 33612, USA
| | - Roman Manetsch
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620-5250, USA
| | - Michael K. Riscoe
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
- Department of Molecular Microbiology and Immunology, 3181 Sam Jackson Blvd., Portland, Oregon 97239, USA
| |
Collapse
|