1
|
Roney IJ, Rudner DZ. Bacillus subtilis uses the SigM signaling pathway to prioritize the use of its lipid carrier for cell wall synthesis. PLoS Biol 2024; 22:e3002589. [PMID: 38683856 PMCID: PMC11081497 DOI: 10.1371/journal.pbio.3002589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 05/09/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Peptidoglycan (PG) and most surface glycopolymers and their modifications are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP). These lipid-linked precursors are then flipped across the membrane and polymerized or directly transferred to surface polymers, lipids, or proteins. Despite its essential role in envelope biogenesis, UndP is maintained at low levels in the cytoplasmic membrane. The mechanisms by which bacteria distribute this limited resource among competing pathways is currently unknown. Here, we report that the Bacillus subtilis transcription factor SigM and its membrane-anchored anti-sigma factor respond to UndP levels and prioritize its use for the synthesis of the only essential surface polymer, the cell wall. Antibiotics that target virtually every step in PG synthesis activate SigM-directed gene expression, confounding identification of the signal and the logic of this stress-response pathway. Through systematic analyses, we discovered 2 distinct responses to these antibiotics. Drugs that trap UndP, UndP-linked intermediates, or precursors trigger SigM release from the membrane in <2 min, rapidly activating transcription. By contrasts, antibiotics that inhibited cell wall synthesis without directly affecting UndP induce SigM more slowly. We show that activation in the latter case can be explained by the accumulation of UndP-linked wall teichoic acid precursors that cannot be transferred to the PG due to the block in its synthesis. Furthermore, we report that reduction in UndP synthesis rapidly induces SigM, while increasing UndP production can dampen the SigM response. Finally, we show that SigM becomes essential for viability when the availability of UndP is restricted. Altogether, our data support a model in which the SigM pathway functions to homeostatically control UndP usage. When UndP levels are sufficiently high, the anti-sigma factor complex holds SigM inactive. When levels of UndP are reduced, SigM activates genes that increase flux through the PG synthesis pathway, boost UndP recycling, and liberate the lipid carrier from nonessential surface polymer pathways. Analogous homeostatic pathways that prioritize UndP usage are likely to be common in bacteria.
Collapse
Affiliation(s)
- Ian J. Roney
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
El-Sayed SM, Ahmed SA, Gulia K, Lenhard JR, Hassan AHE, Farahat AA. Small Molecules Incorporating Privileged Amidine Moiety as Potential Hits Combating Antibiotic-Resistant Bacteria. Pharmaceuticals (Basel) 2023; 16:1040. [PMID: 37513951 PMCID: PMC10384254 DOI: 10.3390/ph16071040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The continuing need for the discovery of potent antibacterial agents against antibiotic-resistant pathogens is the driving force for many researchers to design and develop such agents. Herein, we report the design, synthesis, and biological evaluation of amidine derivatives as new antibacterial agents. Compound 13d was the most active in this study against a wide range of antibiotic-resistant, and susceptible, Gram-positive, and Gram-negative bacterial strains. Time-kill assay experiments indicated that compound 13d was an effective bactericidal compound against the tested organisms at the log-phase of bacterial growth. Docking simulations were performed to assess in silico its mode of action regarding UPPS, KARI, and DNA as potential bacterial targets. Results unveiled the importance of structural features of compound 13d in its biological activity including central thiophene ring equipped with left and right pyrrolo[2,3-b]pyridine and phenyl moieties and two terminal amidines cyclized into 4,5-dihydro-1H-imidazol-2-yl functionalities. Collectively, compound 13d represents a possible hit for future development of potent antibacterial agents.
Collapse
Affiliation(s)
- Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Samar A Ahmed
- Department of Clinical and Administrative Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Kanika Gulia
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
| | - Justin R Lenhard
- Department of Clinical and Administrative Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Abdelbasset A Farahat
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Keller MR, Dörr T. Bacterial metabolism and susceptibility to cell wall-active antibiotics. Adv Microb Physiol 2023; 83:181-219. [PMID: 37507159 PMCID: PMC11024984 DOI: 10.1016/bs.ampbs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Bacterial infections are increasingly resistant to antimicrobial therapy. Intense research focus has thus been placed on identifying the mechanisms that bacteria use to resist killing or growth inhibition by antibiotics and the ways in which bacteria share these traits with one another. This work has led to the advancement of new drugs, combination therapy regimens, and a deeper appreciation for the adaptability seen in microorganisms. However, while the primary mechanisms of action of most antibiotics are well understood, the more subtle contributions of bacterial metabolic state to repairing or preventing damage caused by antimicrobials (thereby promoting survival) are still understudied. Here, we review a modern viewpoint on a classical system: examining bacterial metabolism's connection to antibiotic susceptibility. We dive into the relationship between metabolism and antibiotic efficacy through the lens of growth rate, energy state, resource allocation, and the infection environment, focusing on cell wall-active antibiotics.
Collapse
Affiliation(s)
- Megan Renee Keller
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States; Department of Microbiology, Cornell University, Ithaca, NY, United States; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
4
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
5
|
Jorgenson MA, Bryant JC. A genetic screen to identify factors affected by undecaprenyl phosphate recycling uncovers novel connections to morphogenesis in Escherichia coli. Mol Microbiol 2021; 115:191-207. [PMID: 32979869 PMCID: PMC10568968 DOI: 10.1111/mmi.14609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Indexed: 01/30/2023]
Abstract
Undecaprenyl phosphate (Und-P) is an essential lipid carrier that ferries cell wall intermediates across the cytoplasmic membrane in bacteria. Und-P is generated by dephosphorylating undecaprenyl pyrophosphate (Und-PP). In Escherichia coli, BacA, PgpB, YbjG, and LpxT dephosphorylate Und-PP and are conditionally essential. To identify vulnerabilities that arise when Und-P metabolism is defective, we developed a genetic screen for synthetic interactions which, in combination with ΔybjG ΔlpxT ΔbacA, are lethal or reduce fitness. The screen uncovered novel connections to cell division, DNA replication/repair, signal transduction, and glutathione metabolism. Further analysis revealed several new morphogenes; loss of one of these, qseC, caused cells to enlarge and lyse. QseC is the sensor kinase component of the QseBC two-component system. Loss of QseC causes overactivation of the QseB response regulator by PmrB cross-phosphorylation. Here, we show that deleting qseB completely reverses the shape defect of ΔqseC cells, as does overexpressing rprA (a small RNA). Surprisingly, deleting pmrB only partially suppressed qseC-related shape defects. Thus, QseB is activated by multiple factors in QseC's absence and prior functions ascribed to QseBC may originate from cell wall defects. Altogether, our findings provide a framework for identifying new determinants of cell integrity that could be targeted in future therapies.
Collapse
Affiliation(s)
- Matthew A. Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Joseph C. Bryant
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
6
|
Lin LC, Chang SC, Ge MC, Liu TP, Lu JJ. Novel single-nucleotide variations associated with vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Infect Drug Resist 2018; 11:113-123. [PMID: 29403293 PMCID: PMC5783010 DOI: 10.2147/idr.s148335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prolonged vancomycin usage may cause methicillin-resistant Staphylococcus aureus to become vancomycin-intermediate S. aureus (VISA) and heterogeneous VISA (hVISA). Mechanisms of vancomycin resistance of VISA and hVISA are still unclear. In this study, analyses of nucleotide sequence variations in 30 vancomycin-sensitive S. aureus (VSSA), 41 hVISA and 16 VISA isolates revealed 29 single-nucleotide variations in 12 genes (fmtC, graR, graS, htrA, mecA, pbp2, pbp4, srtA, tcaA, upps, vicK and vraR) that are related to cell wall synthesis or the two-component system. Six of these 29 single-nucleotide variations were novel and resulted in the following amino acid changes: Q692E in FmtC; T278I, P306L and I311T in HtrA; and I63V and K101E in Upps. Since P306L and I311T in HtrA and I63V in Upps were present in the majority (76.7%–86.7%) of VSSA isolates, these three amino acid variations may not be associated with vancomycin resistance. The other three amino acid variations (T278I in HtrA, K101E in Upps and Q692E in FmtC) were present in the majority (87.5%–93.8%) of hVISA and VISA isolates, but only in a small number (22.9%–25.7%) of VSSA isolates, suggesting that they are associated with vancomycin resistance.
Collapse
Affiliation(s)
- Lee-Chung Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shih-Cheng Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mao-Cheng Ge
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tsui-Ping Liu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Radeck J, Lautenschläger N, Mascher T. The Essential UPP Phosphatase Pair BcrC and UppP Connects Cell Wall Homeostasis during Growth and Sporulation with Cell Envelope Stress Response in Bacillus subtilis. Front Microbiol 2017; 8:2403. [PMID: 29259598 PMCID: PMC5723303 DOI: 10.3389/fmicb.2017.02403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/20/2017] [Indexed: 12/03/2022] Open
Abstract
The bacterial cell wall separates the cell from its surrounding and protects it from environmental stressors. Its integrity is maintained by a highly regulated process of cell wall biosynthesis. The membrane-located lipid II cycle provides cell wall building blocks that are assembled inside the cytoplasm to the outside for incorporation. Its carrier molecule, undecaprenyl phosphate (UP), is then recycled by dephosphorylation from undecaprenyl pyrophosphate (UPP). In Bacillus subtilis, this indispensable reaction is catalyzed by the UPP phosphatases BcrC and UppP. Here, we study the physiological function of both phosphatases with respect to morphology, cell wall homeostasis and the resulting cell envelope stress response (CESR). We demonstrate that uppP and bcrC represent a synthetic lethal gene pair, which encodes an essential physiological function. Accordingly, cell growth and morphology were severely impaired during exponential growth if the overall UPP phosphatase level was limiting. UppP, but not BcrC, was crucial for normal sporulation. Expression of bcrC, but not uppP, was upregulated in the presence of cell envelope stress conditions caused by bacitracin if UPP phosphatase levels were limited. This homeostatic feedback renders BcrC more important during growth than UppP, particularly in defense against cell envelope stress.
Collapse
Affiliation(s)
- Jara Radeck
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| | | | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Neoteric advancement in TB drugs and an overview on the anti-tubercular role of peptides through computational approaches. Microb Pathog 2017; 114:80-89. [PMID: 29174699 DOI: 10.1016/j.micpath.2017.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) is a devastating threat to human health whose treatment without the emergence of drug resistant Mycobacterium tuberculosis (M. tuberculosis) is the million-dollar question at present. The pathogenesis of M. tuberculosis has been extensively studied which represents unique defence strategies by infecting macrophages. Several anti-tubercular drugs with varied mode of action and administration from diversified sources have been used for the treatment of TB that later contributed to the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). However, few of potent anti-tubercular drugs are scheduled for clinical trials status in 2017-2018. Peptides of varied origins such as human immune cells and non-immune cells, bacteria, fungi, and venoms have been widely investigated as anti-tubercular agents for the replacement of existing anti-tubercular drugs in future. In the present review, we spotlighted not only on the mechanisms of action and mode of administration of currently available anti-tubercular drugs but also the recent comprehensive report of World Health Organization (WHO) on TB epidemic, diagnosis, prevention, and treatment. The major excerpt of the study also inspects the direct contribution of different computational tools during drug designing strategies against M. tuberculosis in order to grasp the interplay between anti-tubercular peptides and targeted bacterial protein. The potentiality of some of these anti-tubercular peptides as therapeutic agents unlocks a new portal for achieving the goal of end TB strategy.
Collapse
|
9
|
Wang M, Firrman J, Zhang L, Arango-Argoty G, Tomasula P, Liu L, Xiao W, Yam K. Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus. Molecules 2017; 22:molecules22081292. [PMID: 28771188 PMCID: PMC6152273 DOI: 10.3390/molecules22081292] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 01/09/2023] Open
Abstract
Apigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the effect of pure apigenin on human gut bacteria, at both the single strain and community levels. The effect of apigenin on the single gut bacteria strains Bacteroides galacturonicus, Bifidobacterium catenulatum, Lactobacillus rhamnosus GG, and Enterococcus caccae, was examined by measuring their anaerobic growth profiles. The effect of apigenin on a gut microbiota community was studied by culturing a fecal inoculum under in vitro conditions simulating the human ascending colon. 16S rRNA gene sequencing and GC-MS analysis quantified changes in the community structure. Single molecule RNA sequencing was used to reveal the response of Enterococcus caccae to apigenin. Enterococcus caccae was effectively inhibited by apigenin when cultured alone, however, the genus Enterococcus was enhanced when tested in a community setting. Single molecule RNA sequencing found that Enterococcus caccae responded to apigenin by up-regulating genes involved in DNA repair, stress response, cell wall synthesis, and protein folding. Taken together, these results demonstrate that apigenin affects both the growth and gene expression of Enterococcus caccae.
Collapse
Affiliation(s)
- Minqian Wang
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA.
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 114 MCB Hall, Blacksburg, VA 24060, USA.
| | - Gustavo Arango-Argoty
- Department of Computer Science, Virginia Tech, 114 MCB Hall, Blacksburg, VA 24060, USA.
| | - Peggy Tomasula
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Weidong Xiao
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, PA 19140, USA.
| | - Kit Yam
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
10
|
Depletion of Undecaprenyl Pyrophosphate Phosphatases Disrupts Cell Envelope Biogenesis in Bacillus subtilis. J Bacteriol 2016; 198:2925-2935. [PMID: 27528508 DOI: 10.1128/jb.00507-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/02/2016] [Indexed: 11/20/2022] Open
Abstract
The integrity of the bacterial cell envelope is essential to sustain life by countering the high turgor pressure of the cell and providing a barrier against chemical insults. In Bacillus subtilis, synthesis of both peptidoglycan and wall teichoic acids requires a common C55 lipid carrier, undecaprenyl-pyrophosphate (UPP), to ferry precursors across the cytoplasmic membrane. The synthesis and recycling of UPP requires a phosphatase to generate the monophosphate form Und-P, which is the substrate for peptidoglycan and wall teichoic acid synthases. Using an optimized clustered regularly interspaced short palindromic repeat (CRISPR) system with catalytically inactive ("dead") CRISPR-associated protein 9 (dCas9)-based transcriptional repression system (CRISPR interference [CRISPRi]), we demonstrate that B. subtilis requires either of two UPP phosphatases, UppP or BcrC, for viability. We show that a third predicted lipid phosphatase (YodM), with homology to diacylglycerol pyrophosphatases, can also support growth when overexpressed. Depletion of UPP phosphatase activity leads to morphological defects consistent with a failure of cell envelope synthesis and strongly activates the σM-dependent cell envelope stress response, including bcrC, which encodes one of the two UPP phosphatases. These results highlight the utility of an optimized CRISPRi system for the investigation of synthetic lethal gene pairs, clarify the nature of the B. subtilis UPP-Pase enzymes, and provide further evidence linking the σM regulon to cell envelope homeostasis pathways. IMPORTANCE The emergence of antibiotic resistance among bacterial pathogens is of critical concern and motivates efforts to develop new therapeutics and increase the utility of those already in use. The lipid II cycle is one of the most frequently targeted processes for antibiotics and has been intensively studied. Despite these efforts, some steps have remained poorly defined, partly due to genetic redundancy. CRISPRi provides a powerful tool to investigate the functions of essential genes and sets of genes. Here, we used an optimized CRISPRi system to demonstrate functional redundancy of two UPP phosphatases that are required for the conversion of the initially synthesized UPP lipid carrier to Und-P, the substrate for the synthesis of the initial lipid-linked precursors in peptidoglycan and wall teichoic acid synthesis.
Collapse
|
11
|
Radeck J, Fritz G, Mascher T. The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network. Curr Genet 2016; 63:79-90. [PMID: 27344142 DOI: 10.1007/s00294-016-0624-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/24/2022]
Abstract
The cell envelope stress response (CESR) encompasses all regulatory events that enable a cell to protect the integrity of its envelope, an essential structure of any bacterial cell. The underlying signaling network is particularly well understood in the Gram-positive model organism Bacillus subtilis. It consists of a number of two-component systems (2CS) and extracytoplasmic function σ factors that together regulate the production of both specific resistance determinants and general mechanisms to protect the envelope against antimicrobial peptides targeting the biogenesis of the cell wall. Here, we summarize the current picture of the B. subtilis CESR network, from the initial identification of the corresponding signaling devices to unraveling their interdependence and the underlying regulatory hierarchy within the network. In the course of detailed mechanistic studies, a number of novel signaling features could be described for the 2CSs involved in mediating CESR. This includes a novel class of so-called intramembrane-sensing histidine kinases (IM-HKs), which-instead of acting as stress sensors themselves-are activated via interprotein signal transfer. Some of these IM-HKs are involved in sensing the flux of antibiotic resistance transporters, a unique mechanism of responding to extracellular antibiotic challenge.
Collapse
Affiliation(s)
- Jara Radeck
- Institute of Microbiology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Georg Fritz
- LOEWE-Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität (TU) Dresden, Dresden, Germany.
| |
Collapse
|
12
|
Radeck J, Gebhard S, Orchard PS, Kirchner M, Bauer S, Mascher T, Fritz G. Anatomy of the bacitracin resistance network inBacillus subtilis. Mol Microbiol 2016; 100:607-20. [DOI: 10.1111/mmi.13336] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Jara Radeck
- Technische Universität Dresden, Institute of Microbiology; Dresden Germany
- Ludwig-Maximilians-Universität Mänchen, Department Biology I; Mänchen Germany
| | - Susanne Gebhard
- University of Bath, Department of Biology and Biochemistry, Milner Centre for Evolution; Bath United Kingdom
| | | | - Marion Kirchner
- Ludwig-Maximilians-Universität Mänchen, Department Biology I; Mänchen Germany
| | - Stephanie Bauer
- Ludwig-Maximilians-Universität Mänchen, Department Biology I; Mänchen Germany
| | - Thorsten Mascher
- Technische Universität Dresden, Institute of Microbiology; Dresden Germany
| | - Georg Fritz
- Philipps-Universität Marburg, LOEWE-Center for Synthetic Microbiology (SYNMIKRO); Marburg Germany
| |
Collapse
|
13
|
Helmann JD. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Curr Opin Microbiol 2016; 30:122-132. [PMID: 26901131 DOI: 10.1016/j.mib.2016.02.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 01/20/2023]
Abstract
Bacillus subtilis provides a model for investigation of the bacterial cell envelope, the first line of defense against environmental threats. Extracytoplasmic function (ECF) sigma factors activate genes that confer resistance to agents that threaten the integrity of the envelope. Although their individual regulons overlap, σ(W) is most closely associated with membrane-active agents, σ(X) with cationic antimicrobial peptide resistance, and σ(V) with resistance to lysozyme. Here, I highlight the role of the σ(M) regulon, which is strongly induced by conditions that impair peptidoglycan synthesis and includes the core pathways of envelope synthesis and cell division, as well as stress-inducible alternative enzymes. Studies of these cell envelope stress responses provide insights into how bacteria acclimate to the presence of antibiotics.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Abstract
The practice of medicine was profoundly transformed by the introduction of the antibiotics (compounds isolated from Nature) and the antibacterials (compounds prepared by synthesis) for the control of bacterial infection. As a result of the extraordinary success of these compounds over decades of time, a timeless biological activity for these compounds has been presumed. This presumption is no longer. The inexorable acquisition of resistance mechanisms by bacteria is retransforming medical practice. Credible answers to this dilemma are far better recognized than they are being implemented. In this perspective we examine (and in key respects, reiterate) the chemical and biological strategies being used to address the challenge of bacterial resistance.
Collapse
Affiliation(s)
- Jed F. Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46556–5670, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46556–5670, USA
| |
Collapse
|
15
|
Abstract
Nearly all bacteria contain a peptidoglycan cell wall. The peptidoglycan precursor molecule is LipidII, containing the basic peptidoglycan building block attached to a lipid. Although the suitability of LipidII as an antibacterial target has long been recognized, progress on elucidating the role(s) of LipidII in bacterial cell biology has been slow. The focus of this review is on exciting new developments, both with respect to antibacterials targeting LipidII as well as the emerging role of LipidII in organizing the membrane and cell wall synthesis. It appears that on both sides of the membrane, LipidII plays crucial roles in organizing cytoskeletal proteins and peptidoglycan synthesis machineries. Finally, the recent discovery of no less than three different categories of LipidII flippases will be discussed.
Collapse
Affiliation(s)
- Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
- * E-mail:
| | - Menno B. Tol
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| |
Collapse
|
16
|
Kuley R, Bossers-deVries R, Smith HE, Smits MA, Roest HIJ, Bossers A. Major differential gene regulation in Coxiella burnetii between in vivo and in vitro cultivation models. BMC Genomics 2015; 16:953. [PMID: 26572556 PMCID: PMC4647677 DOI: 10.1186/s12864-015-2143-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/23/2015] [Indexed: 11/29/2022] Open
Abstract
Background Coxiella burnetii is the causative agent of the zoonotic disease Q fever. As it is an intracellular pathogen, infection by C. burnetii requires adaptation to its eukaryotic host and intracellular environment. The recently developed cell-free medium also allows the bacteria to propagate without host cells, maintaining its infection potential. The adaptation to different hosts or extracellular environments has been assumed to involve genome-wide modulation of C. burnetii gene expression. However, little is currently known about these adaptation events which are critical for understanding the intracellular survival of C. burnetii. Results We studied C. burnetii genome–wide transcriptional patterns in vivo (mice spleen) and in cell and cell-free in vitro culture models to examine its metabolic pathways and virulence associated gene expression patterns that are required to colonize and persist in different environments. Within each model, the gene expression profiles of the Dutch C. burnetii outbreak strain (602) and NM reference strains were largely similar. In contrast, modulation of gene-expression was strongly influenced by the cultivation method, indicating adaptation of the bacterium to available components. Genome–wide expression profiles of C. burnetii from in vitro cell culture were more similar to those seen for in vivo conditions, while gene expression profiles of cell-free culture were more distant to in vivo. Under in vivo conditions, significant alterations of genes involved in metabolism and virulence were identified. We observed that C. burnetii under in vivo conditions predominantly uses glucose as a carbon source (mostly for biosynthetic processes) and fatty acids for energy generation. C. burnetii experienced nutrient limitation and anaerobiosis as major stressors, while phosphate limitation was identified as an important signal for intracellular growth inside eukaryotic host cells. Finally, the in vivo environment significantly induced expression of several virulence genes, including those implicated in LPS synthesis, colonization, host component modulation and DNA repair mechanisms. Conclusion Our study shows that C. burnetii, with its relative small genome, requires only a subset of core gene functions to survive under in vitro conditions, but requires the induction of full repertoire of genes for successful pathogenesis and thriving in harsh environments in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2143-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Runa Kuley
- Department of Infection Biology, Central Veterinary Institute part of Wageningen UR, Lelystad, The Netherlands.,Host Microbe Interactomics, Wageningen University, Wageningen, The Netherlands
| | - Ruth Bossers-deVries
- Department of Infection Biology, Central Veterinary Institute part of Wageningen UR, Lelystad, The Netherlands
| | - Hilde E Smith
- Department of Infection Biology, Central Veterinary Institute part of Wageningen UR, Lelystad, The Netherlands
| | - Mari A Smits
- Department of Infection Biology, Central Veterinary Institute part of Wageningen UR, Lelystad, The Netherlands.,Host Microbe Interactomics, Wageningen University, Wageningen, The Netherlands
| | - Hendrik I J Roest
- Department of Bacteriology and TSEs, Central Veterinary Institute part of Wageningen UR, Lelystad, The Netherlands
| | - Alex Bossers
- Department of Infection Biology, Central Veterinary Institute part of Wageningen UR, Lelystad, The Netherlands.
| |
Collapse
|
17
|
MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. Proc Natl Acad Sci U S A 2015; 112:6437-42. [PMID: 25918422 DOI: 10.1073/pnas.1504967112] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial surface polysaccharides are synthesized from lipid-linked precursors at the inner surface of the cytoplasmic membrane before being translocated across the bilayer for envelope assembly. Transport of the cell wall precursor lipid II in Escherichia coli requires the broadly conserved and essential multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily member MurJ. Here, we show that Bacillus subtilis cells lacking all 10 MOP superfamily members are viable with only minor morphological defects, arguing for the existence of an alternate lipid II flippase. To identify this factor, we screened for synthetic lethal partners of MOP family members using transposon sequencing. We discovered that an uncharacterized gene amj (alternate to MurJ; ydaH) and B. subtilis MurJ (murJBs; formerly ytgP) are a synthetic lethal pair. Cells defective for both Amj and MurJBs exhibit cell shape defects and lyse. Furthermore, expression of Amj or MurJBs in E. coli supports lipid II flipping and viability in the absence of E. coli MurJ. Amj is present in a subset of gram-negative and gram-positive bacteria and is the founding member of a novel family of flippases. Finally, we show that Amj is expressed under the control of the cell envelope stress-response transcription factor σ(M) and cells lacking MurJBs increase amj transcription. These findings raise the possibility that antagonists of the canonical MurJ flippase trigger expression of an alternate translocase that can resist inhibition.
Collapse
|
18
|
Schirner K, Eun YJ, Dion M, Luo Y, Helmann JD, Garner EC, Walker S. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB. Nat Chem Biol 2015; 11:38-45. [PMID: 25402772 PMCID: PMC4270829 DOI: 10.1038/nchembio.1689] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/11/2014] [Indexed: 12/14/2022]
Abstract
The bacterial actin homolog MreB, which is crucial for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm, and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis.
Collapse
Affiliation(s)
- Kathrin Schirner
- Department of Microbiology and Immunobiology, Harvard Medical School,
Boston, MA 02115, USA
| | - Ye-Jin Eun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge,
MA 02138, USA
| | - Mike Dion
- Department of Molecular and Cellular Biology, Harvard University, Cambridge,
MA 02138, USA
| | - Yun Luo
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge,
MA 02138, USA
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School,
Boston, MA 02115, USA
| |
Collapse
|
19
|
Kingston AW, Zhao H, Cook GM, Helmann JD. Accumulation of heptaprenyl diphosphate sensitizes Bacillus subtilis to bacitracin: implications for the mechanism of resistance mediated by the BceAB transporter. Mol Microbiol 2014; 93:37-49. [PMID: 24806199 DOI: 10.1111/mmi.12637] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
Abstract
Heptaprenyl diphosphate (C35 -PP) is an isoprenoid intermediate in the synthesis of both menaquinone and the sesquarterpenoids. We demonstrate that inactivation of ytpB, encoding a C35 -PP utilizing enzyme required for sesquarterpenoid synthesis, leads to an increased sensitivity to bacitracin, an antibiotic that binds undecaprenyl pyrophosphate (C55 -PP), a key intermediate in cell wall synthesis. Genetic studies indicate that bacitracin sensitivity is due to accumulation of C35 -PP, rather than the absence of sesquarterpenoids. Sensitivity is accentuated in a ytpB menA double mutant, lacking both known C35 -PP consuming enzymes, and in a ytpB strain overexpressing the HepST enzyme that synthesizes C35 -PP. Conversely, sensitivity in the ytpB background is suppressed by mutation of hepT or by supplementation with 1,4-dihydroxy-2-naphthoate, a co-substrate with C35 -PP for MenA. Bacitracin sensitivity results from impairment of the BceAB and BcrC resistance mechanisms by C35 -PP: in a bceAB bcrC double mutant disruption of ytpB no longer increases bacitracin sensitivity. These results suggest that C35 -PP inhibits both BcrC (a C55 -PP phosphatase) and BceAB (an ABC transporter that confers bacitracin resistance). These findings lead to a model in which BceAB protects against bacitracin by transfer of the target, C55 -PP, rather than the antibiotic across the membrane.
Collapse
Affiliation(s)
- Anthony W Kingston
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | | | | | | |
Collapse
|
20
|
Grover S, Alderwick LJ, Mishra AK, Krumbach K, Marienhagen J, Eggeling L, Bhatt A, Besra GS. Benzothiazinones mediate killing of Corynebacterineae by blocking decaprenyl phosphate recycling involved in cell wall biosynthesis. J Biol Chem 2014; 289:6177-87. [PMID: 24446451 PMCID: PMC3937683 DOI: 10.1074/jbc.m113.522623] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Benzothiazinones (BTZs) are a new class of sulfur containing heterocyclic compounds that target DprE1, an oxidoreductase involved in the epimerization of decaprenyl-phosphoribose (DPR) to decaprenyl-phosphoarabinose (DPA) in the Corynebacterineae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. As a result, BTZ inhibition leads to inhibition of cell wall arabinan biosynthesis. Previous studies have demonstrated the essentiality of dprE1. In contrast, Cg-UbiA a ribosyltransferase, which catalyzes the first step of DPR biosynthesis prior to DprE1, when genetically disrupted, produced a viable mutant, suggesting that although BTZ biochemically targets DprE1, killing also occurs through chemical synthetic lethality, presumably through the lack of decaprenyl phosphate recycling. To test this hypothesis, a derivative of BTZ, BTZ043, was examined in detail against C. glutamicum and C. glutamicum::ubiA. The wild type strain was sensitive to BTZ043; however, C. glutamicum::ubiA was found to be resistant, despite possessing a functional DprE1. When the gene encoding C. glutamicum Z-decaprenyl-diphosphate synthase (NCgl2203) was overexpressed in wild type C. glutamicum, resistance to BTZ043 was further increased. This data demonstrates that in the presence of BTZ, the bacilli accumulate DPR and fail to recycle decaprenyl phosphate, which results in the depletion of decaprenyl phosphate and ultimately leads to cell death.
Collapse
Affiliation(s)
- Shipra Grover
- From the School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom and
| | | | | | | | | | | | | | | |
Collapse
|