1
|
Popielec A, Ostrowska N, Wojciechowska M, Feig M, Trylska J. Crowded environment affects the activity and inhibition of the NS3/4A protease. Biochimie 2020; 176:169-180. [DOI: 10.1016/j.biochi.2020.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
|
2
|
Denesyuk AI, Johnson MS, Salo-Ahen OMH, Uversky VN, Denessiouk K. NBCZone: Universal three-dimensional construction of eleven amino acids near the catalytic nucleophile and base in the superfamily of (chymo)trypsin-like serine fold proteases. Int J Biol Macromol 2020; 153:399-411. [PMID: 32151723 PMCID: PMC7124590 DOI: 10.1016/j.ijbiomac.2020.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 10/25/2022]
Abstract
(Chymo)trypsin-like serine fold proteases belong to the serine/cysteine proteases found in eukaryotes, prokaryotes, and viruses. Their catalytic activity is carried out using a triad of amino acids, a nucleophile, a base, and an acid. For this superfamily of proteases, we propose the existence of a universal 3D structure comprising 11 amino acids near the catalytic nucleophile and base - Nucleophile-Base Catalytic Zone (NBCZone). The comparison of NBCZones among 169 eukaryotic, prokaryotic, and viral (chymo)trypsin-like proteases suggested the existence of 15 distinct groups determined by the combination of amino acids located at two "key" structure-functional positions 54T and 55T near the catalytic base His57T. Most eukaryotic and prokaryotic proteases fell into two major groups, [ST]A and TN. Usually, proteases of [ST]A group contain a disulfide bond between cysteines Cys42T and Cys58T of the NBCZone. In contrast, viral proteases were distributed among seven groups, and lack this disulfide bond. Furthermore, only the [ST]A group of eukaryotic proteases contains glycine at position 43T, which is instrumental for activation of these enzymes. In contrast, due to the side chains of residues at position 43T prokaryotic and viral proteases do not have the ability to carry out the structural transition of the eukaryotic zymogen-zyme type.
Collapse
Affiliation(s)
- Alexander I Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia; Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; Pharmaceutical Sciences Laboratory, Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; Pharmaceutical Sciences Laboratory, Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
3
|
de Wispelaere M, Du G, Donovan KA, Zhang T, Eleuteri NA, Yuan JC, Kalabathula J, Nowak RP, Fischer ES, Gray NS, Yang PL. Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nat Commun 2019; 10:3468. [PMID: 31371704 PMCID: PMC6672008 DOI: 10.1038/s41467-019-11429-w] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022] Open
Abstract
Targeted protein degradation is a promising drug development paradigm. Here we leverage this strategy to develop a new class of small molecule antivirals that induce proteasomal degradation of viral proteins. Telaprevir, a reversible-covalent inhibitor that binds to the hepatitis C virus (HCV) protease active site is conjugated to ligands that recruit the CRL4CRBN ligase complex, yielding compounds that can both inhibit and induce the degradation of the HCV NS3/4A protease. An optimized degrader, DGY-08-097, potently inhibits HCV in a cellular infection model, and we demonstrate that protein degradation contributes to its antiviral activity. Finally, we show that this new class of antiviral agents can overcome viral variants that confer resistance to traditional enzymatic inhibitors such as telaprevir. Overall, our work provides proof-of-concept that targeted protein degradation may provide a new paradigm for the development of antivirals with superior resistance profiles. Targeted protein degradation (TPD) is a promising strategy for drug development. In this proof-of-concept study, the authors use telaprevir, which binds hepatitis C virus (HCV) NS3/4A protease, to target the protease for protein degradation, and show inhibition of wildtype as well as drug resistant HCV.
Collapse
Affiliation(s)
- Mélissanne de Wispelaere
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Guangyan Du
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Katherine A Donovan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Tinghu Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Nicholas A Eleuteri
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jingting C Yuan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Joann Kalabathula
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Radosław P Nowak
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Eric S Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Priscilla L Yang
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Doncheva NT, Domingues FS, McGivern DR, Shimakami T, Zeuzem S, Lengauer T, Lange CM, Albrecht M, Welsch C. Near-Neighbor Interactions in the NS3-4A Protease of HCV Impact Replicative Fitness of Drug-Resistant Viral Variants. J Mol Biol 2019; 431:2354-2368. [PMID: 31051172 DOI: 10.1016/j.jmb.2019.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022]
Abstract
A variety of amino acid substitutions in the NS3-4A protease of the hepatitis C virus lead to protease inhibitor (PI) resistance. Many of these significantly impair the replication fitness of the resistant variants in a genotype- and subtype-dependent manner, a critical factor in determining the probability with which resistant variants will persist. However, the underlying molecular mechanisms are unknown. Here, we present a novel residue-interaction network approach to determine how near-neighbor interactions of PI resistance mutations in NS3-4A can impact protease functional sites dependent on their genomic background. We constructed subtype-specific consensus residue networks for subtypes 1a and 1b from protease structure ensembles combined with biological properties of protein residues and evolutionary amino acid conservation. By applying local and global network topology analysis and visual exploration, we characterize PI resistance-associated sites and outline differences in near-neighbor interactions. We find local residue-interaction patterns and features at protease functional sites that are subtype specific. The noncovalent bonding patterns indicate higher fitness costs conferred by PI resistance mutations in a subtype 1b genomic background and explain the prevalence of Q80K and R155K in subtype 1a. Based on local residue interactions, we predict a subtype-specific role for the protease residue NS3-Q80 in molecular mechanisms related to the assembly of infectious virus particles that is supported by experimental data on the capacity of Q80K variants to replicate and produce infectious virus in subtype 1a and 1b cell culture.
Collapse
Affiliation(s)
- Nadezhda T Doncheva
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany; Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | | | - David R McGivern
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Stefan Zeuzem
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt a.M., Germany
| | - Thomas Lengauer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Christian M Lange
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt a.M., Germany
| | - Mario Albrecht
- Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria
| | - Christoph Welsch
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany; Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt a.M., Germany.
| |
Collapse
|
5
|
Sun D, Dai M, Shen S, Li C, Yan X. Analysis of Naturally Occurring Resistance-Associated Variants to NS3/4A Protein Inhibitors, NS5A Protein Inhibitors, and NS5B Polymerase Inhibitors in Patients With Chronic Hepatitis C. Gene Expr 2018; 18:63-69. [PMID: 29221500 PMCID: PMC5885147 DOI: 10.3727/105221617x15100607143377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first NS3/4A hepatitis C virus (HCV) protease inhibitors telaprevir and boceprevir were approved in 2011, and both NS5A and NS5B polymerase inhibitors were launched. Recently, direct-acting antivirals (DAAs) have had a major impact on patients infected with HCV. HCV DAAs are highly effective antivirals with fewer side effects. DAAs have been developed for the treatment of HCV infection in combination with PEG-IFN-α/RBV as well as in IFN-free regimens. However, some drug resistance mutations occur when a single oral DAA is used for treatment, which indicates that there is a low-frequency drug resistance mutation in HCV patients before the application of antiviral drugs. Our research showed that natural resistance to HCV DAAs was found in treatment-naive CHC patients and that the drug resistance mutation rates differ in various HCV genotypes. Many challenges posed by natural resistance should be considered in the context of DAA therapies.
Collapse
Affiliation(s)
- Danhui Sun
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Mingjia Dai
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Shanshan Shen
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Chunyang Li
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Xuebing Yan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| |
Collapse
|
6
|
Riber CF, Andersen AHF, Rolskov LA, Zuwala K, Gajda P, Løvschall KB, Dagnæs-Hansen F, Banda DH, Pietschmann T, Tolstrup M, Zelikin AN. Synthetic Polymer with a Structure-Driven Hepatic Deposition and Curative Pharmacological Activity in Hepatic Cells. ACS Macro Lett 2017; 6:935-940. [PMID: 35650894 DOI: 10.1021/acsmacrolett.7b00471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthetic polymers make strong contributions as tools for delivery of biological drugs and chemotherapeutics. The most praised characteristic of polymers in these applications is complete lack of pharmacological function such as to minimize the side effects within the human body. In contrast, synthetic polymers with curative pharmacological activity are truly rare. Moreover, such activity is typically nonspecific rather than structure-defined. In this work, we present the discovery of poly(ethylacrylic acid) (PEAA) as a polymer with a suit of structure-defined, unexpected, pharmacological, and pharmacokinetic properties not observed in close structural analogues. Specifically, PEAA reveals capacity to bind to albumin with ensuing natural hepatic deposition in vivo and exhibits concurrent inhibitory activity against the hepatitis C virus and inflammation in hepatic cells. Our findings provide a view on synthetic polymers as curative, functional agents and present PEAA as a unique biomedical tool with applications related to health of the human liver.
Collapse
Affiliation(s)
- Camilla Frich Riber
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Anna Halling Folkmar Andersen
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Lærke Anegaard Rolskov
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Kaja Zuwala
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Paulina Gajda
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Kaja Borup Løvschall
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | | | - Dominic H. Banda
- Institute
of Experimental Virology, TWINCORE Centre for Experimental and Clinical
Infection Research, Medical School Hannover/Helmholtz Centre for Infection Research, Hannover, Germany
| | - Thomas Pietschmann
- Institute
of Experimental Virology, TWINCORE Centre for Experimental and Clinical
Infection Research, Medical School Hannover/Helmholtz Centre for Infection Research, Hannover, Germany
| | - Martin Tolstrup
- Department
of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Department
of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Alexander N. Zelikin
- Department
of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
7
|
Abstract
Multiple direct-acting antiviral (DAA)-based regimens are currently approved that provide one or more interferon-free treatment options for hepatitis C virus (HCV) genotypes (G) 1-6. The choice of a DAA regimen, duration of therapy, and use of ribavirin depends on multiple viral and host factors, including HCV genotype, the detection of resistance-associated amino acid (aa) substitutions (RASs), prior treatment experience, and presence of cirrhosis. In regard to viral factors that may guide the treatment choice, the most important is the infecting genotype because a number of DAAs are genotype-designed. The potency and the genetic barrier may also impact the choice of treatment. One important and debated possible virologic factor that may negatively influence the response to DAAs is the presence of baseline RASs. Baseline resistance testing is currently not routinely considered or recommended for initiating HCV treatment, due to the overall high response rates (sustained virological response >90%) obtained. Exceptions are patients infected by HCV G1a when initiating treatment with simeprevir and elbasvir/grazoprevir or in those with cirrhosis prior to daclatasvir/sofosbuvir treatment because of natural polymorphisms demonstrated in sites of resistance. On the basis of these observations, first-line strategies should be optimized to overcome treatment failure due to HCV resistance.
Collapse
|
8
|
Pessoa LS, Vidal LL, Costa ECBD, Abreu CM, Cunha RDD, Valadão ALC, Santos AFD, Tanuri A. Development of a rapid phenotypic test for HCV protease inhibitors with potential use in clinical decisions. Genet Mol Biol 2016; 39:358-64. [PMID: 27575432 PMCID: PMC5004841 DOI: 10.1590/1678-4685-gmb-2016-0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/25/2016] [Indexed: 11/24/2022] Open
Abstract
Approximately 185 million people worldwide are chronically infected with hepatitis C
virus (HCV). The first-wave of approved NS3 protease inhibitors (PIs) were Telaprevir
and Boceprevir, which are currently discontinued. Simeprevir is a second-wave PI
incorporated into the Brazilian hepatitis C treatment protocol. Drug resistance plays
a key role in patients' treatment regimen. Here, we developed a simple phenotypic
assay to evaluate the impact of resistance mutations in HCV NS3 protease to PIs,
using a protein expression vector containing wild type NS3 protease domain and NS4A
co-factor. We analyzed the impact of five resistance mutations (T54A, V36M, V158I,
V170I and T54S+V170I) against Telaprevir, Boceprevir and Simeprevir. Protein
purifications were performed with low cost methodology, and enzymatic inhibition
assays were measured by FRET. We obtained recombinant proteases with detectable
activity, and IC50 and fold change values for the evaluated PIs were
determined. The variant T54A showed the highest reduction of susceptibility for the
PIs, while the other four variants exhibited lower levels of reduced susceptibility.
Interestingly, V170I showed 3.2-fold change for Simeprevir, a new evidence about this
variant. These results emphasize the importance of enzymatic assays in phenotypic
tests to determine which therapeutic regimen should be implemented.
Collapse
Affiliation(s)
- Luciana Santos Pessoa
- Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Luãnna Liebscher Vidal
- Laboratório de Virologia Humana, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Celina Monteiro Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rodrigo Delvecchio da Cunha
- Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ana Luiza Chaves Valadão
- Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - André Felipe Dos Santos
- Laboratório de Virologia Humana, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Hepatitis C Virus Genotype 1 to 6 Protease Inhibitor Escape Variants: In Vitro Selection, Fitness, and Resistance Patterns in the Context of the Infectious Viral Life Cycle. Antimicrob Agents Chemother 2016; 60:3563-78. [PMID: 27021330 DOI: 10.1128/aac.02929-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/21/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) NS3 protease inhibitors (PIs) are important components of novel HCV therapy regimens. Studies of PI resistance initially focused on genotype 1. Therefore, knowledge about the determinants of PI resistance for the highly prevalent genotypes 2 to 6 remains limited. Using Huh7.5 cell culture-infectious HCV recombinants with genotype 1 to 6 NS3 protease, we identified protease positions 54, 155, and 156 as hot spots for the selection of resistance substitutions under treatment with the first licensed PIs, telaprevir and boceprevir. Treatment of a genotype 2 isolate with the newer PIs vaniprevir, faldaprevir, simeprevir, grazoprevir, paritaprevir, and deldeprevir identified positions 156 and 168 as hot spots for resistance; the Y56H substitution emerged for three newer PIs. Substitution selection also depended on the specific recombinant. The substitutions identified conferred cross-resistance to several PIs; however, most substitutions selected under telaprevir or boceprevir treatment conferred less resistance to certain newer PIs. In a single-cycle production assay, across genotypes, PI treatment primarily decreased viral replication, which was rescued by PI resistance substitutions. The substitutions identified resulted in differential effects on viral fitness, depending on the original recombinant and the substitution. Across genotypes, fitness impairment induced by resistance substitutions was due primarily to decreased replication. Most combinations of substitutions that were identified increased resistance or fitness. Combinations of resistance substitutions with fitness-compensating substitutions either rescued replication or compensated for decreased replication by increasing assembly. This comprehensive study provides insight into the selection patterns and effects of PI resistance substitutions for HCV genotypes 1 to 6 in the context of the infectious viral life cycle, which is of interest for clinical and virological HCV research.
Collapse
|
10
|
Geno2pheno[HCV] - A Web-based Interpretation System to Support Hepatitis C Treatment Decisions in the Era of Direct-Acting Antiviral Agents. PLoS One 2016; 11:e0155869. [PMID: 27196673 PMCID: PMC4873220 DOI: 10.1371/journal.pone.0155869] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022] Open
Abstract
The face of hepatitis C virus (HCV) therapy is changing dramatically. Direct-acting antiviral agents (DAAs) specifically targeting HCV proteins have been developed and entered clinical practice in 2011. However, despite high sustained viral response (SVR) rates of more than 90%, a fraction of patients do not eliminate the virus and in these cases treatment failure has been associated with the selection of drug resistance mutations (RAMs). RAMs may be prevalent prior to the start of treatment, or can be selected under therapy, and furthermore they can persist after cessation of treatment. Additionally, certain DAAs have been approved only for distinct HCV genotypes and may even have subtype specificity. Thus, sequence analysis before start of therapy is instrumental for managing DAA-based treatment strategies. We have created the interpretation system geno2pheno[HCV] (g2p[HCV]) to analyse HCV sequence data with respect to viral subtype and to predict drug resistance. Extensive reviewing and weighting of literature related to HCV drug resistance was performed to create a comprehensive list of drug resistance rules for inhibitors of the HCV protease in non-structural protein 3 (NS3-protease: Boceprevir, Paritaprevir, Simeprevir, Asunaprevir, Grazoprevir and Telaprevir), the NS5A replicase factor (Daclatasvir, Ledipasvir, Elbasvir and Ombitasvir), and the NS5B RNA-dependent RNA polymerase (Dasabuvir and Sofosbuvir). Upon submission of up to eight sequences, g2p[HCV] aligns the input sequences, identifies the genomic region(s), predicts the HCV geno- and subtypes, and generates for each DAA a drug resistance prediction report. g2p[HCV] offers easy-to-use and fast subtype and resistance analysis of HCV sequences, is continuously updated and freely accessible under http://hcv.geno2pheno.org/index.php. The system was partially validated with respect to the NS3-protease inhibitors Boceprevir, Telaprevir and Simeprevir by using data generated with recombinant, phenotypic cell culture assays obtained from patients’ virus variants.
Collapse
|
11
|
Kurt Yilmaz N, Swanstrom R, Schiffer CA. Improving Viral Protease Inhibitors to Counter Drug Resistance. Trends Microbiol 2016; 24:547-557. [PMID: 27090931 DOI: 10.1016/j.tim.2016.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022]
Abstract
Drug resistance is a major problem in health care, undermining therapy outcomes and necessitating novel approaches to drug design. Extensive studies on resistance to viral protease inhibitors, particularly those of HIV-1 and hepatitis C virus (HCV) protease, revealed a plethora of information on the structural and molecular mechanisms underlying resistance. These insights led to several strategies to improve viral protease inhibitors to counter resistance, such as exploiting the essential biological function and leveraging evolutionary constraints. Incorporation of these strategies into structure-based drug design can minimize vulnerability to resistance, not only for viral proteases but for other quickly evolving drug targets as well, toward designing inhibitors one step ahead of evolution to counter resistance with more intelligent and rational design.
Collapse
Affiliation(s)
- Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
12
|
Abdel-Hameed EA, Rouster SD, Ji H, Ulm A, Hetta HF, Anwar N, Sherman KE, Shata MTM. Evaluating the Role of Cellular Immune Responses in the Emergence of HCV NS3 Resistance Mutations During Protease Inhibitor Therapy. Viral Immunol 2016; 29:252-8. [PMID: 26885675 DOI: 10.1089/vim.2015.0093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The efficacy of protease inhibitor drugs in hepatitis C virus (HCV) treatment is limited by the selection and expansion of drug-resistant mutations. HCV replication is error-prone and genetic variability within the dominant epitopes ensures its persistence. The aims of this study are to evaluate the role of cellular immune response in the emergence of HCV protease resistance mutations and its effects on treatment outcome. Ten chronically HCV-infected subjects were treated with boceprevir (BOC)-based triple therapy. HCV-RNA was tested for BOC resistance-associated viral variants. HCV protease resistance mutations were investigated pretreatment and 24 weeks post-treatment. Synthetic peptides representing the wild-type and the potential nonstructural (NS)3 variants were used to evaluate T cell responses and human leukocyte antigen binding. Sustained viral response was achieved in 70% of patients, two patients were treatment nonresponders (NRs) and one was classified as a relapse. Pretreatment, the proportion of drug-resistant variants within individuals was higher in sustained viral responders (SVRs) than in NR patients. However, resistance-associated variants increased in NRs after BOC combined triple therapy. In contrast to NR patients, significant stronger cell-mediated immune responses were observed at the baseline among those who achieved sustained viral response for all T cell epitopes tested. Despite the increase in cell-mediated immune responses at week 24 in NRs, they failed to control the virus replication, leading to development of overt drug-resistant variants. Our data suggest that strong NS3-specific T cell immune responses at the baseline may predict a positive outcome of directly acting antiviral-based therapy, and the presence of pre-existent resistance mutations does not play a significant role in the outcome of anti-HCV combined therapy.
Collapse
Affiliation(s)
| | - Susan D Rouster
- 1 Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Hong Ji
- 2 Division of Asthma Research, Pyrosequencing Core for Genetic and Epigenetic Studies, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Ashley Ulm
- 2 Division of Asthma Research, Pyrosequencing Core for Genetic and Epigenetic Studies, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Helal F Hetta
- 3 Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Nadeem Anwar
- 1 Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Kenneth E Sherman
- 1 Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| | | |
Collapse
|
13
|
Bonsall D, Ansari MA, Ip C, Trebes A, Brown A, Klenerman P, Buck D, Piazza P, Barnes E, Bowden R. ve-SEQ: Robust, unbiased enrichment for streamlined detection and whole-genome sequencing of HCV and other highly diverse pathogens. F1000Res 2015; 4:1062. [PMID: 27092241 PMCID: PMC4821293 DOI: 10.12688/f1000research.7111.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
The routine availability of high-depth virus sequence data would allow the sensitive detection of resistance-associated variants that can jeopardize HIV or hepatitis C virus (HCV) treatment. We introduce ve-SEQ, a high-throughput method for sequence-specific enrichment and characterization of whole-virus genomes at up to 20% divergence from a reference sequence and 1,000-fold greater sensitivity than direct sequencing. The extreme genetic diversity of HCV led us to implement an algorithm for the efficient design of panels of oligonucleotide probes to capture any sequence among a defined set of targets without detectable bias. ve-SEQ enables efficient detection and sequencing of any HCV genome, including mixtures and intra-host variants, in a single experiment, with greater tolerance of sequence diversity than standard amplification methods and greater sensitivity than metagenomic sequencing, features that are directly applicable to other pathogens or arbitrary groups of target organisms, allowing the combination of sensitive detection with sequencing in many settings.
Collapse
Affiliation(s)
- David Bonsall
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK.,Oxford Martin School, University of Oxford, Oxford, OX1 4BH, UK
| | - Camilla Ip
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX1 4BH, UK
| | - Amy Trebes
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX1 4BH, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK.,National Institute for Health Research Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - David Buck
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX1 4BH, UK
| | | | - Paolo Piazza
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX1 4BH, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK.,National Institute for Health Research Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Rory Bowden
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX1 4BH, UK
| |
Collapse
|
14
|
Musser JMB, Heatley JJ, Koinis AV, Suchodolski PF, Guo J, Escandon P, Tizard IR. Ribavirin Inhibits Parrot Bornavirus 4 Replication in Cell Culture. PLoS One 2015. [PMID: 26222794 PMCID: PMC4519282 DOI: 10.1371/journal.pone.0134080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parrot bornavirus 4 is an etiological agent of proventricular dilatation disease, a fatal neurologic and gastrointestinal disease of psittacines and other birds. We tested the ability of ribavirin, an antiviral nucleoside analog with antiviral activity against a range of RNA and DNA viruses, to inhibit parrot bornavirus 4 replication in duck embryonic fibroblast cells. Two analytical methods that evaluate different products of viral replication, indirect immunocytochemistry for viral specific nucleoprotein and qRT-PCR for viral specific phosphoprotein gene mRNA, were used. Ribavirin at concentrations between 2.5 and 25 μg/mL inhibited parrot bornavirus 4 replication, decreasing viral mRNA and viral protein load, in infected duck embryonic fibroblast cells. The addition of guanosine diminished the antiviral activity of ribavirin suggesting that one possible mechanism of action against parrot bornavirus 4 may likely be through inosine monophosphate dehydrogenase inhibition. This study demonstrates parrot bornavirus 4 susceptibility to ribavirin in cell culture.
Collapse
Affiliation(s)
- Jeffrey M. B. Musser
- Schubot Exotic Bird Health Center, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - J. Jill Heatley
- Schubot Exotic Bird Health Center, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Zoological Medicine, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Anastasia V. Koinis
- Morris Animal Foundation Veterinary Student Scholar, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Paulette F. Suchodolski
- Schubot Exotic Bird Health Center, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jianhua Guo
- Schubot Exotic Bird Health Center, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Paulina Escandon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Ian R. Tizard
- Schubot Exotic Bird Health Center, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
15
|
Silva T, Cortes Martins H, Coutinho R, Leitão E, Silva R, Pádua E. Molecular characterization of hepatitis C virus for determination of subtypes and detection of resistance mutations to protease inhibitors in a group of intravenous drug users co-infected with HIV. J Med Virol 2015; 87:1549-57. [DOI: 10.1002/jmv.24213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Tânia Silva
- Department of Infectious Diseases; National Reference Laboratory of HIV and Hepatitis B and C; National Institute of Health; Lisbon Portugal
| | - Helena Cortes Martins
- Department of Infectious Diseases; National Reference Laboratory of HIV and Hepatitis B and C; National Institute of Health; Lisbon Portugal
| | - Rodrigo Coutinho
- Support office for Drug Addicts; Association of Ares do Pinhal; Lisboa Portugal
| | - Emília Leitão
- Support office for Drug Addicts; Association of Ares do Pinhal; Lisboa Portugal
| | - Rui Silva
- Support office for Drug Addicts; Association of Ares do Pinhal; Lisboa Portugal
| | - Elizabeth Pádua
- Department of Infectious Diseases; National Reference Laboratory of HIV and Hepatitis B and C; National Institute of Health; Lisbon Portugal
| |
Collapse
|
16
|
Cusato J, Allegra S, De Nicolò A, Boglione L, Fatiguso G, Cariti G, Ciancio A, Smedile A, Strona S, Troshina G, Rizzetto M, Di Perri G, D'Avolio A. ABCB11 and ABCB1 gene polymorphisms impact on telaprevir pharmacokinetic at one month of therapy. Biomed Pharmacother 2014; 69:63-9. [PMID: 25661339 DOI: 10.1016/j.biopha.2014.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/05/2014] [Indexed: 12/24/2022] Open
Abstract
In 2011 direct-acting antivirals, including telaprevir, have been developed to achieve a better antiviral effect. It was reported that telaprevir is a substrate of P-glycoprotein (ABCB1) and cytochrome P450 3A4. The aim of this retrospective study was the evaluation of the influence of some single nucleotide polymorphisms (SNPs) of genes (ABCB1, SLC28A2/3, SLC29A1) involved in TLV and RBV transport and their correlation with plasma TLV drug exposure at 1 month of therapy. We also investigated the association of a SNP in ABCB11 gene, whose role in TLV transport was not yet shown. Twenty-nine HCV-1 patients treated with telaprevir, ribavirin and pegylated-interferon-α were retrospectively analyzed; allelic discrimination was performed by real-time PCR. Telaprevir Ctrough levels were influenced by Metavir score (P=0.023), ABCB1 2677 G>T (P=0.006), ABCB1 1236 C>T (P=0.015) and ABCB11 1131 T>C (P=0.033) SNPs. Regarding ABCB1 3435 C>T, a not statistically significant trend in telaprevir plasma concentration was observed. Metavir score (P=0.002, OR -336; 95% CI -535;-138), ABCB1 2677 (P=0.020, OR 497; 95% CI 86; 910), ABCB11 1131 (P=0.002, OR 641; 95% CI 259;1023) and CNT2 -146 (P=0.006, OR -426; 95% CI -721;-132) were able to predict telaprevir plasma levels in the regression analysis. Other SNPs showed no association. This study reveals BSEP implication in telaprevir transport and confirms the involvement and influence of P-glycoprotein on telaprevir plasma levels. To date, no similar data concerning pharmacogenetics and pharmacokinetics were published, but further studies in different and bigger cohorts are needed.
Collapse
Affiliation(s)
- Jessica Cusato
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Turin, Italy.
| | - Sarah Allegra
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Turin, Italy
| | - Amedeo De Nicolò
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Turin, Italy
| | - Lucio Boglione
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Turin, Italy
| | - Giovanna Fatiguso
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Turin, Italy
| | - Giuseppe Cariti
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Turin, Italy
| | - Alessia Ciancio
- Unit of Gastroenterology, University of Turin, Department of Medical Sciences, S. Giovanni Battista (Molinette) Hospital, Turin, Italy
| | - Antonina Smedile
- Unit of Gastroenterology, University of Turin, Department of Medical Sciences, S. Giovanni Battista (Molinette) Hospital, Turin, Italy
| | - Silvia Strona
- Unit of Gastroenterology, University of Turin, Department of Medical Sciences, S. Giovanni Battista (Molinette) Hospital, Turin, Italy
| | - Giulia Troshina
- Unit of Gastroenterology, University of Turin, Department of Medical Sciences, S. Giovanni Battista (Molinette) Hospital, Turin, Italy
| | - Mario Rizzetto
- Unit of Gastroenterology, University of Turin, Department of Medical Sciences, S. Giovanni Battista (Molinette) Hospital, Turin, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Turin, Italy
| | - Antonio D'Avolio
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Turin, Italy
| |
Collapse
|
17
|
Aissa Larousse J, Trimoulet P, Recordon-Pinson P, Papuchon J, Azzouz MM, Ben Mami N, Cheikh I, Triki H, Fleury H. Natural prevalence of hepatitis C virus (HCV) variants resistant to protease and polymerase inhibitors in patients infected with HCV genotype 1 in Tunisia. J Med Virol 2014; 86:1350-9. [DOI: 10.1002/jmv.23958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Jameleddine Aissa Larousse
- LR11-IPT-09, Epidémiologie et diversité génétique des virus hépatiques et entériques humain; Institut Pasteur de Tunis; Tunis Tunisia
- CNRS-UMR 5234, Microbiologie fondamentale et Pathogénicité; University of Bordeaux 2; Bordeaux France
- Virology Laboratory; Bordeaux University Hospital; Bordeaux France
| | - Pascale Trimoulet
- CNRS-UMR 5234, Microbiologie fondamentale et Pathogénicité; University of Bordeaux 2; Bordeaux France
- Virology Laboratory; Bordeaux University Hospital; Bordeaux France
| | - Patricia Recordon-Pinson
- CNRS-UMR 5234, Microbiologie fondamentale et Pathogénicité; University of Bordeaux 2; Bordeaux France
- Virology Laboratory; Bordeaux University Hospital; Bordeaux France
| | - Jennnifer Papuchon
- CNRS-UMR 5234, Microbiologie fondamentale et Pathogénicité; University of Bordeaux 2; Bordeaux France
- Virology Laboratory; Bordeaux University Hospital; Bordeaux France
| | | | - Nabyl Ben Mami
- Department of Gastroenterology; Habib Bougatfa Hospital; Bizerte Tunisia
| | - Imed Cheikh
- Department of Gastroenterology B; La Rabta Hospital; Tunis Tunisia
| | - Henda Triki
- LR11-IPT-09, Epidémiologie et diversité génétique des virus hépatiques et entériques humain; Institut Pasteur de Tunis; Tunis Tunisia
| | - Hervé Fleury
- CNRS-UMR 5234, Microbiologie fondamentale et Pathogénicité; University of Bordeaux 2; Bordeaux France
- Virology Laboratory; Bordeaux University Hospital; Bordeaux France
| |
Collapse
|
18
|
Ferraro D, Urone N, Di Marco V, Craxì A. HCV-1b intra-subtype variability: Impact on genetic barrier to protease inhibitors. INFECTION GENETICS AND EVOLUTION 2014; 23:80-5. [PMID: 24508244 DOI: 10.1016/j.meegid.2014.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/23/2014] [Accepted: 01/26/2014] [Indexed: 12/28/2022]
Abstract
Due to error-prone RNA polymerase and the lack of proofreading mechanisms, to the spread worldwide and probable long-term presence in human population, HCV showed a high degree of inter- and intra-subtype genetic variability. Protease inhibitors (PIs), a new class of drugs, have been designed specifically on the HCV genotype 1 NS3 protease three-dimensional structure. The viral genetic barrier limits the efficacy of PIs, and fourteen loci in the HCV NS3 gene are involved in resistance to PIs. A sensitive method (15UI/ml) for study the HCV genetic profile of 125 strains from patients naïve to PIs, was developed through the use of new degenerate primers for subtype 1b. We observed the presence of naturally resistance-associated variants in 14% of the HCV strains (V36L, F43S, T54S, I153V, R155Q, D168A/G). T54S was the most common mutation (4%) detected. We investigated, through minimal score (m.s.) calculating, how the HCV intra-subtype 1b variability modifies the genetic barrier to PIs. For >60% of strains a single transition (m.s. of 1) was required for selection of low to medium resistance mutations, while more than one transition/transversion (m.s. ⩾2.5) or one transition plus one transversion (m.s. ⩾3.5) was necessary for most of the high level PI-resistant-associated mutations, except for A156V, for which a single transition was sufficient (m.s. of 1). However, the presence at locus 36 of the amino acid polymorphism S36 in one case and the wild type V36 in 6 isolates, encoded by unusual GTA or GTG codons, might determined a higher probability of V36L/M mutations because of the reduction of the genetic barrier. Instead, the presence of the CGA and CGT codons in the 155(th) position increases the genetic barrier for R155M or R155Q/M. The large intra-subtype variability, suggests that a routine baseline resistance test must be used before PIs-treatment.
Collapse
Affiliation(s)
- Donatella Ferraro
- Sezione di Microbiologia, Dipartimento di Scienze per la Promozione della Salute ''G. D'Alessandro'', Università degli Studi di Palermo, Palermo, Italy.
| | - Noemi Urone
- Sezione di Microbiologia, Dipartimento di Scienze per la Promozione della Salute ''G. D'Alessandro'', Università degli Studi di Palermo, Palermo, Italy
| | - Vito Di Marco
- Sezione di Gastroenterologia, Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S.), Università degli Studi di Palermo, Palermo, Italy
| | - Antonio Craxì
- Sezione di Gastroenterologia, Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S.), Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
19
|
Rong L, Guedj J, Dahari H, Perelson AS. Treatment of hepatitis C with an interferon-based lead-in phase: a perspective from mathematical modelling. Antivir Ther 2014; 19:469-77. [PMID: 24434478 DOI: 10.3851/imp2725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND The standard of care for HCV genotype 1 is a protease inhibitor (telaprevir or boceprevir) combined with pegylated interferon (PEG-IFN) and ribavirin (RBV). A lead-in phase of PEG-IFN/RBV therapy before addition of the protease inhibitor has been used, with the aim of improving response rates by reducing the development of protease inhibitor resistance. However, whether such a strategy can bring benefit to patients is unclear. METHODS A viral dynamic model was used to compare in silico HCV dynamics in patients treated with a period of PEG-IFN/RBV lead-in therapy followed by the addition of a protease inhibitor versus immediate triple therapy without lead-in. RESULTS The model predicts that both regimens result in a similar end-of-treatment viral load change (viral decline or breakthrough). Thus, the current lead-in strategy may not decrease the rate of viral breakthrough/relapse or increase the rate of sustained virological response. This agrees with available data from clinical trials of several HCV protease inhibitors, such as telaprevir, boceprevir and faldaprevir. CONCLUSIONS These results suggest that current PEG-IFN/RBV lead-in strategies may not improve treatment outcomes. However, viral kinetics during a period of PEG-IFN/RBV therapy, combined with other factors, such as the IL28B polymorphism and baseline viral load, can identify IFN-sensitive patients and help develop response-guided therapies.
Collapse
Affiliation(s)
- Libin Rong
- Department of Mathematics and Statistics and Center for Biomedical Research, Oakland University, Rochester, MI, USA
| | | | | | | |
Collapse
|
20
|
Burney T, Dusheiko G. Overview of the PROVE studies evaluating the use of telaprevir in chronic hepatitis C genotype 1 patients. Expert Rev Anti Infect Ther 2014; 9:151-60. [DOI: 10.1586/eri.10.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
de Bruijne J, Thomas XV, Rebers SP, Weegink CJ, Treitel MA, Hughes E, Bergmann JF, de Knegt RJ, Janssen HLA, Reesink HW, Molenkamp R, Schinkel J. Evolutionary dynamics of hepatitis C virus NS3 protease domain during and following treatment with narlaprevir, a potent NS3 protease inhibitor. J Viral Hepat 2013; 20:779-89. [PMID: 24168257 DOI: 10.1111/jvh.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/03/2013] [Indexed: 12/09/2022]
Abstract
Narlaprevir, a hepatitis C virus (HCV) NS3/4A serine protease inhibitor, has demonstrated robust antiviral activity in a placebo-controlled phase 1 study. To study evolutionary dynamics of resistant variants, the NS3 protease sequence was clonally analysed in thirty-two HCV genotype 1-infected patients following treatment with narlaprevir. Narlaprevir monotherapy was administered for one week (period 1) followed by narlaprevir/pegylated interferon-alpha-2b combination therapy with or without ritonavir (period 2) during two weeks, interrupted by a washout period of one month. Thereafter, all patients initiated pegylated interferon-alpha-2b/ribavirin combination therapy. Longitudinal clonal analysis was performed in those patients with NS3 mutations. After narlaprevir re-exposure, resistance-associated mutations at position V36, T54, R155 and A156 were detected in five patients in >95% of the clones. Narlaprevir retreatment resulted in a 2.58 and 5.06 log10 IU/mL viral load decline in patients with and without mutations, respectively (P=<0.01). After treatment, resistant variants were replaced with wild-type virus within 2-24 weeks in three patients. However, the R155K mutation was still observed 3.1 years after narlaprevir dosing in two patients in 5% and 45% of the viral population. Resistant variants could be detected early during treatment with narlaprevir. A slower viral load decline was observed in those patients with resistance-associated mutations detectable by direct population sequencing. These mutations disappeared within six months following treatment with the exception of R155K mutation, which persisted in two patients.
Collapse
Affiliation(s)
- J de Bruijne
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ke R, Loverdo C, Qi H, Olson CA, Wu NC, Sun R, Lloyd-Smith JO. Modelling clinical data shows active tissue concentration of daclatasvir is 10-fold lower than its plasma concentration. J Antimicrob Chemother 2013; 69:724-7. [PMID: 24169581 DOI: 10.1093/jac/dkt423] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Daclatasvir is a highly potent inhibitor of hepatitis C virus. We estimated the active tissue concentration of daclatasvir in vivo. METHODS We developed a mathematical model incorporating pharmacokinetic/pharmacodynamic and viral dynamics. By fitting the model to clinical data reported previously, we estimated the ratio between plasma drug concentration and active tissue concentration in vivo. RESULTS The modelling results show that the active tissue concentration of daclatasvir is ∼9% of the concentration measured in plasma (95% CI 1%-29%). CONCLUSIONS Using plasma concentrations as surrogates for clinical recommendations may lead to substantial underestimation of the risk of resistance.
Collapse
Affiliation(s)
- Ruian Ke
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Natural NS3 resistance polymorphisms occur frequently prior to treatment in HIV-positive patients with acute hepatitis C. AIDS 2013; 27:2485-8. [PMID: 23770494 DOI: 10.1097/qad.0b013e328363b1f9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
NS3 protease inhibitors are set to improve sustained virological response rates in HIV-positive patients with hepatitis C. We measured the prevalence of natural resistance polymorphisms in 38 acutely infected treatment-naive patients using direct and deep sequencing. Twenty six percent of patients (10/38) had a majority variant resistance mutation (in order of frequency; Q80K - 16%, V36M - 5%, T54S - 3%, V55A - 3%, and D168A - 3%). Low-frequency mutations were detected in all samples. Further studies are required to determine threshold levels associated with treatment failure.
Collapse
|
24
|
Ogawa E, Furusyo N, Murata M, Toyoda K, Eiraku K, Shimizu M, Harada Y, Mitsumoto F, Takayama K, Okada K, Kainuma M, Hayashi J. Early phase viral kinetics of chronic hepatitis C patients receiving telaprevir-based triple therapy: A comparison of two real-time PCR assays. Antiviral Res 2013; 99:119-24. [DOI: 10.1016/j.antiviral.2013.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/12/2022]
|
25
|
|
26
|
Alves R, Queiroz ATL, Pessoa MG, da Silva EF, Mazo DFC, Carrilho FJ, Carvalho-Filho RJ, de Carvalho IMVG. The presence of resistance mutations to protease and polymerase inhibitors in Hepatitis C virus sequences from the Los Alamos databank. J Viral Hepat 2013; 20:414-21. [PMID: 23647958 DOI: 10.1111/jvh.12051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/15/2012] [Indexed: 12/14/2022]
Abstract
Several new direct-acting antiviral (DAA) drugs are in development for chronic hepatitis C viral (HCV) infection, and NS3-NS4A serine protease and the NS5B RNA-dependent RNA polymerase have been the major targets. HCV variants displaying drug-resistant phenotypes have been observed both in vitro and during clinical trials. Our aim was to characterize amino acid changes at positions previously associated with resistance in protease (NS3) and polymerase (NS5B) regions from treatment-naïve HCV patients infected with genotypes 1a, 1b and 3a. All 1383 NS3 protease sequences (genotype 1a = 680, 1b = 498 and 3a = 205) and 806 NS5B polymerase sequences (genotypes 1a = 471, 1b = 329, 3a = 6) were collected from Los Alamos databank. Genotype 3a protease sequences showed the typical low-level resistance mutation V36L. NS3 sequences from other genotypes presented mutations on positions 36, 39, 41, 43, 54, 80, 109, 155 and 168 in a frequency lower than 2%, except for the mutation Q80R found in 35% of genotype 1a isolates. Polymerase sequences from genotype 3a patients showed five typical mutations: L419I, I424V, I482L, V499A and S556G. Two positions presented high polymorphism in the NS5B region from genotype 1a (V499A) and genotype 1b (C316N) subjects. Our results demonstrated a natural profile of genotype 3a that can be associated with the pre-existence of HCV variants resistant to first-generation protease inhibitors and to non-nucleoside polymerase inhibitors. Likewise, genotype 1b isolates and genotype 1a sequences exhibited pre-existing mutations associated with resistance to Palm II and Thumb I polymerase inhibitors, respectively.
Collapse
Affiliation(s)
- R Alves
- Laboratório de Hepatologia Molecular Aplicada, Setor de Hepatites, Divisão de Gastroenterologia, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Toyota J, Ozeki I, Karino Y, Asahina Y, Izumi N, Takahashi S, Kawakami Y, Chayama K, Kamiya N, Aoki K, Yamada I, Suzuki Y, Suzuki F, Kumada H. Virological response and safety of 24-week telaprevir alone in Japanese patients infected with hepatitis C virus subtype 1b. J Viral Hepat 2013; 20:167-73. [PMID: 23383655 PMCID: PMC3592988 DOI: 10.1111/j.1365-2893.2012.01640.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) subtype 1b, which infects approximately 70% of Japanese carriers, is likely to be more eradicable by a telaprevir regimen than subtype 1a because of the higher genetic barrier of Val(36) and Arg(155) substitutions. The aims of this exploratory study were to evaluate the virological response and safety of 24-week oral administration of telaprevir alone in chronic HCV subtype 1b infection. Fifteen treatment-naïve patients were treated with telaprevir 750 mg every 8 h for 24 weeks. All patients were Japanese whose median age was 58.0 years (range: 45-68), and six patients (40%) were men. Median baseline HCV RNA level was 6.80 log(10) IU/mL (range: 3.55-7.10). The HCV RNA levels decreased to undetectable in five patients (33%) within 8 weeks. Three patients (20%) with negative HCV RNA by Week 4 achieved end of treatment response. One patient (7%) who achieved sustained virological response had a low baseline viraemia of 3.55 log(10) IU/mL. Most of the adverse events including anaemia and skin disorders were mild to moderate. Developed variants were T54A and A156V/T/F/Y with or without secondary substitutions rather than V36M ± R155K. Telaprevir alone for 24 weeks in Japanese patients with HCV subtype 1b resulted in an sustained viral response rate of 7% (1/15) and was well tolerated for 24 weeks. These results will support the implementation of further studies on oral combination of telaprevir with other direct-acting antiviral agents in patients infected with HCV subtype 1b.
Collapse
Affiliation(s)
- J Toyota
- Department of Gastroenterology, Sapporo Kosei General HospitalHokkaido, Japan
| | - I Ozeki
- Department of Gastroenterology, Sapporo Kosei General HospitalHokkaido, Japan
| | - Y Karino
- Department of Gastroenterology, Sapporo Kosei General HospitalHokkaido, Japan
| | - Y Asahina
- Division of Gastroenterology and Hepatology, Musashino Red Cross HospitalTokyo, Japan
| | - N Izumi
- Division of Gastroenterology and Hepatology, Musashino Red Cross HospitalTokyo, Japan
| | - S Takahashi
- Division of Frontier Medical Science, Department of Medical and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Science, Hiroshima UniversityHiroshima, Japan
| | - Y Kawakami
- Division of Frontier Medical Science, Department of Medical and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Science, Hiroshima UniversityHiroshima, Japan
| | - K Chayama
- Division of Frontier Medical Science, Department of Medical and Molecular Science, Programs for Biomedical Research, Graduate School of Biomedical Science, Hiroshima UniversityHiroshima, Japan
| | - N Kamiya
- Research and Development Division, Mitsubishi Tanabe Pharma CorporationTokyo, Japan
| | - K Aoki
- Research and Development Division, Mitsubishi Tanabe Pharma CorporationTokyo, Japan
| | - I Yamada
- Research and Development Division, Mitsubishi Tanabe Pharma CorporationTokyo, Japan
| | - Y Suzuki
- Department of Hepatology, Toranomon HospitalTokyo, Japan
| | - F Suzuki
- Department of Hepatology, Toranomon HospitalTokyo, Japan
| | - H Kumada
- Department of Hepatology, Toranomon HospitalTokyo, Japan
| |
Collapse
|
28
|
Paolucci S, Fiorina L, Piralla A, Gulminetti R, Novati S, Barbarini G, Sacchi P, Gatti M, Dossena L, Baldanti F. Naturally occurring mutations to HCV protease inhibitors in treatment-naïve patients. Virol J 2012; 9:245. [PMID: 23095680 PMCID: PMC3493344 DOI: 10.1186/1743-422x-9-245] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 10/18/2012] [Indexed: 01/09/2023] Open
Abstract
Background Protease inhibitors (PIs) to treat hepatitis C (HCV) virus infection have been approved and others are under development. Results The aims of this study were to illustrate natural polymorphisms in the HCV protease and measure the frequency of PI resistance mutations in different HCV genotypes from PI-naïve patients. Direct sequencing of HCV NS3/4A protease was performed in 156 HCV patients naïve to PIs who were infected with genotype 1a (n = 31), 1b (n = 39), 2 (n = 30), 3 (n = 33) and 4 (n = 23). Amino acid (aa) substitutions associated with HCV PI resistance were found in 17/156 (10.8%) sequences. Mutations V36L, T54S, V55A/I, and Q80K/L were observed in 29% of patients with genotype 1a, and V55F, Q80L/N and M175L in 10% of patients with genotype 1b. The mutation V158M was found in 3% of patients with genotype 2, D168Q was present in 100% of patients with genotype 3 and D168E was observed in 13% of patients with genotype 4. In addition, multiple aa polymorphisms not associated with PI resistance were detected in patients with genotypes 1a, 1b and 4. Conclusions Although major PI resistance mutations were not detected, other resistance mutations conferring low level resistance to PIs together with a number of natural polymorphisms were observed in proteases of PI naïve HCV patients. A more extensive analysis is needed to better evaluate the impact of baseline resistance and compensatory mutations in the efficacy of HCV PI treatment.
Collapse
Affiliation(s)
- Stefania Paolucci
- Molecular Virology Unit, Virology and Microbiology Department, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sullivan JC, Zhang EZ, Bartels DJ, Tigges A, Dorrian JL, Kwong AD, Kieffer TL. Compensatory substitutions in the HCV NS3/4A protease cleavage sites are not observed in patients treated unsuccessfully with telaprevir combination treatment. Virol J 2012; 9:147. [PMID: 22866919 PMCID: PMC3499439 DOI: 10.1186/1743-422x-9-147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/18/2012] [Indexed: 01/15/2023] Open
Abstract
Background Development of compensatory mutations within the HIV p7/p1 and p1/p6 protease cleavage site region has been observed in HIV-infected patients treated with protease inhibitors. Mechanisms of fitness compensation may occur in HCV populations upon treatment of HCV protease inhibitors as well. Findings In this study, we investigated whether substitutions in protease cleavage site regions of HCV occur in response to a treatment regimen containing the NS3/4A protease inhibitor telaprevir (TVR). Evaluation of viral populations from 569 patients prior to treatment showed that the four NS3/4A cleavage sites were well conserved. Few changes in the cleavage site regions were observed in the 159 patients who failed TVR combination treatment, and no residues displayed evidence of directional selection after the acquisition of TVR-resistance. Conclusions Cleavage site mutations did not occur after treatment with the HCV protease inhibitor telaprevir.
Collapse
Affiliation(s)
- James C Sullivan
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Characterization of hepatitis C virus (HCV) quasispecies dynamics upon short-term dual therapy with the HCV NS5B nucleoside polymerase inhibitor mericitabine and the NS3/4 protease inhibitor danoprevir. Antimicrob Agents Chemother 2012; 56:5494-502. [PMID: 22869576 DOI: 10.1128/aac.01035-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the INFORM-1 study, 73 patients with chronic hepatitis C virus infection received mericitabine plus danoprevir for up to 13 days. Seventy-two patients experienced a continuous decline in HCV RNA levels during treatment, and of these patients, 14 had viral loads that remained >1,000 IU/ml by day 13 and 1 met the definition for viral breakthrough. In-depth NS5B and NS3/4A population and clonal sequencing studies and mericitabine and danoprevir drug susceptibility testing were performed to assess the variability and quasispecies dynamics before and upon monotherapy or dual therapy. Sequence analysis of the viral quasispecies indicated that the mericitabine resistance mutation S282T was not present at baseline, nor was it selected (even at a low level) during treatment. Protease inhibitor resistance mutations, either as predominant or as minority species, were detected in 18 patients at baseline. No enrichment of minority protease inhibitor-resistant variants present at baseline was observed during treatment; viral population samples were fully susceptible to mericitabine and/or danoprevir, despite the presence within their quasispecies of minority variants confirmed to have reduced susceptibility to danoprevir or other protease inhibitors. It was also observed that certain NS3 amino acid substitutions affected protease inhibitor drug susceptibility in a compound-specific manner and varied with the genetic context. In summary, the slower kinetics of viral load decline observed in some patients was not due to the selection of danoprevir or mericitabine resistance during treatment. Over 2 weeks' therapy, mericitabine suppressed the selection of danoprevir resistance, results that could differ upon longer treatment periods.
Collapse
|
31
|
Hepatitis C variability, patterns of resistance, and impact on therapy. Adv Virol 2012; 2012:267483. [PMID: 22851970 PMCID: PMC3407602 DOI: 10.1155/2012/267483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/10/2012] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C (HCV), a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma, is the most common indication for liver transplantation in the United States. Although annual incidence of infection has declined since the 1980s, aging of the currently infected population is expected to result in an increase in HCV burden. HCV is prone to develop resistance to antiviral drugs, and despite considerable efforts to understand the virus for effective treatments, our knowledge remains incomplete. This paper reviews HCV resistance mechanisms, the traditional treatment with and the new standard of care for hepatitis C treatment. Although these new treatments remain PEG-IFN-α- and ribavirin-based, they add one of the newly FDA approved direct antiviral agents, telaprevir or boceprevir. This new “triple therapy” has resulted in greater viral cure rates, although treatment failure remains a possibility. The future may belong to nucleoside/nucleotide analogues, non-nucleoside RNA-dependent RNA polymerase inhibitors, or cyclophilin inhibitors, and the treatment of HCV may ultimately parallel that of HIV. However, research should focus not only on effective treatments, but also on the development of a HCV vaccine, as this may prove to be the most cost-effective method of eradicating this disease.
Collapse
|
32
|
Shiryaev SA, Cheltsov AV, Strongin AY. Probing of exosites leads to novel inhibitor scaffolds of HCV NS3/4A proteinase. PLoS One 2012; 7:e40029. [PMID: 22768327 PMCID: PMC3388044 DOI: 10.1371/journal.pone.0040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/01/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hepatitis C is a treatment-resistant disease affecting millions of people worldwide. The hepatitis C virus (HCV) genome is a single-stranded RNA molecule. After infection of the host cell, viral RNA is translated into a polyprotein that is cleaved by host and viral proteinases into functional, structural and non-structural, viral proteins. Cleavage of the polyprotein involves the viral NS3/4A proteinase, a proven drug target. HCV mutates as it replicates and, as a result, multiple emerging quasispecies become rapidly resistant to anti-virals, including NS3/4A inhibitors. METHODOLOGY/PRINCIPAL FINDINGS To circumvent drug resistance and complement the existing anti-virals, NS3/4A inhibitors, which are additional and distinct from the FDA-approved telaprevir and boceprevir α-ketoamide inhibitors, are required. To test potential new avenues for inhibitor development, we have probed several distinct exosites of NS3/4A which are either outside of or partially overlapping with the active site groove of the proteinase. For this purpose, we employed virtual ligand screening using the 275,000 compound library of the Developmental Therapeutics Program (NCI/NIH) and the X-ray crystal structure of NS3/4A as a ligand source and a target, respectively. As a result, we identified several novel, previously uncharacterized, nanomolar range inhibitory scaffolds, which suppressed of the NS3/4A activity in vitro and replication of a sub-genomic HCV RNA replicon with a luciferase reporter in human hepatocarcinoma cells. The binding sites of these novel inhibitors do not significantly overlap with those of α-ketoamides. As a result, the most common resistant mutations, including V36M, R155K, A156T, D168A and V170A, did not considerably diminish the inhibitory potency of certain novel inhibitor scaffolds we identified. CONCLUSIONS/SIGNIFICANCE Overall, the further optimization of both the in silico strategy and software platform we developed and lead compounds we identified may lead to advances in novel anti-virals.
Collapse
Affiliation(s)
- Sergey A. Shiryaev
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Anton V. Cheltsov
- R&D Department, Q-MOL L.L.C., San Diego, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| | - Alex Y. Strongin
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| |
Collapse
|
33
|
Abstract
Telaprevir (Incivo®, Incivek®), an orally administered inhibitor of the hepatitis C virus non-structural protein NS3-4A serine protease, is used in combination with pegylated interferon (peginterferon)-alpha and ribavirin in the treatment of adults with genotype 1 chronic hepatitis C virus (HCV) infection (chronic hepatitis C). This article reviews data on the clinical efficacy and tolerability of telaprevir in adults with genotype 1 chronic hepatitis C and provides a summary of its pharmacological properties. In in vitro studies, telaprevir shows good activity against genotype 1 HCV, including viral isolates from patients with chronic hepatitis C. Numerous resistant variants of HCV have been identified in clinical isolates from patients receiving treatment with telaprevir-based therapy. However, the clinical relevance of viral variants emerging during treatment requires further study. Telaprevir administered for 12 weeks in combination with peginterferon-alpha-2a and ribavirin for up to 48 weeks was effective in the treatment of previously untreated or previously treated adults with genotype 1 chronic hepatitis C in three major randomized phase III trials. Sustained virological response rates (i.e. percentages of patients with undetectable HCV RNA levels 24 weeks after the last planned dose of study medication: the primary endpoint) achieved with the telaprevir-based regimens were significantly higher than those produced with peginterferon-alpha-2a and ribavirin alone (the 'current standard of care'). In the largest trial (the ADVANCE trial) in previously untreated patients, 24 weeks after the last planned dose of study drug, recipients of 12 weeks' treatment with telaprevir in combination with peginterferon-alpha-2a and ribavirin followed by treatment with peginterferon-alpha-2a and ribavirin for a further 12 or 36 weeks experienced significantly (p < 0.001) higher sustained virological response rates than patients who received peginterferon-alpha-2a and ribavirin dual therapy for 48 weeks (75% vs 44%). Adverse events were reported more frequently with telaprevir-based regimens than with peginterferon-alpha-2a and ribavirin dual therapy in the major trials. The most common adverse events included fatigue, rash, pruritus, anaemia and nausea. In conclusion, telaprevir in combination with peginterferon-alpha and ribavirin is an effective treatment for treatment-naive and previously treated adults with genotype 1 chronic hepatitis C - patient groups in whom peginterferon-alpha and ribavirin dual therapy may not be successful. Thus, telaprevir is a valuable new treatment option for use in combination with peginterferon-alpha and ribavirin in treatment-naive or previously treated adults with genotype 1 chronic hepatitis C.
Collapse
|
34
|
Protease inhibitors for the treatment of chronic hepatitis C genotype-1 infection: the new standard of care. THE LANCET. INFECTIOUS DISEASES 2012; 12:717-28. [PMID: 22647717 DOI: 10.1016/s1473-3099(12)70060-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For the past decade, the standard treatment for chronic hepatitis C infection has been pegylated-interferon plus ribavirin. With US Food and Drug Administration approval of boceprevir and telaprevir--two protease inhibitors--the standard-of-care treatment for genotype-1 infection, the main genotype worldwide, is now peginterferon plus ribavirin and a protease inhibitor. Rates of sustained virological response or cure with triple combination treatment have improved substantially, both in patients who have had previous treatment and in those who have not. Improvements have been most substantial in populations regarded as difficult to treat, such as individuals with cirrhosis. However, despite improved response rates, protease inhibitors have incremental toxic effects, high costs, increased pill burden, and many drug interactions. Moreover, because new antiviral drugs directly inhibit hepatitis C virus, viral resistance has become an important issue, essentially precluding use of protease inhibitor monotherapy, and potentially restricting future treatment options for patients who consequently do not achieve sustained virological response. Protease inhibitors are the first of many antiviral medications that will probably be combined in future interferon-free regimens.
Collapse
|
35
|
Rong L, Ribeiro RM, Perelson AS. Modeling quasispecies and drug resistance in hepatitis C patients treated with a protease inhibitor. Bull Math Biol 2012; 74:1789-817. [PMID: 22639338 DOI: 10.1007/s11538-012-9736-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 05/04/2012] [Indexed: 01/20/2023]
Abstract
Telaprevir, a novel hepatitis C virus (HCV) NS3-4A serine protease inhibitor, has demonstrated substantial antiviral activity in patients infected with HCV. However, drug-resistant HCV variants were detected in vivo at relatively high frequency a few days after drug administration. Here we use a two-strain mathematical model to explain the rapid emergence of drug resistance in HCV patients treated with telaprevir monotherapy. We examine the effects of backward mutation and liver cell proliferation on the preexistence of the mutant virus and the competition between wild-type and drug-resistant virus during therapy. We also extend the two-strain model to a general model with multiple viral strains. Mutations during therapy only have a minor effect on the dynamics of various viral strains, although they are capable of generating low levels of HCV variants that would otherwise be completely suppressed because of fitness disadvantages. Liver cell proliferation may not affect the pretreatment frequency of mutant variants, but is able to influence the quasispecies dynamics during therapy. It is the relative fitness of each mutant strain compared with wild-type that determines which strain(s) will dominate the virus population. This study provides a theoretical framework for exploring the prevalence of preexisting mutant variants and the evolution of drug resistance during treatment with other HCV protease inhibitors or polymerase inhibitors.
Collapse
Affiliation(s)
- Libin Rong
- Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA
| | | | | |
Collapse
|
36
|
Vallet S, Viron F, Henquell C, Le Guillou-Guillemette H, Lagathu G, Abravanel F, Trimoulet P, Soussan P, Schvoerer E, Rosenberg A, Gouriou S, Colson P, Izopet J, Payan C. NS3 protease polymorphism and natural resistance to protease inhibitors in French patients infected with HCV genotypes 1-5. Antivir Ther 2012; 16:1093-102. [PMID: 22024525 DOI: 10.3851/imp1900] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Resistant HCV populations may pre-exist in patients before NS3 protease inhibitor therapy and would likely be selected under specific antiviral pressure. The higher prevalence and lower rate of response to treatment associated with HCV genotype 1 infections has led to drug discovery efforts being focused primarily on enzymes produced by this genotype. Protease inhibitors may also be useful for non-genotype-1-infected patients, notably for non-responders. METHODS We investigated the prevalence of dominant resistance mutations and polymorphism in 298 HCV protease-inhibitor-naive patients infected with HCV genotypes 1, 2, 3, 4 or 5. Genotype-specific NS3 primers were designed to amplify and sequence the NS3 protease gene. RESULTS None of the 233 analysed sequences contained major telaprevir (TVR) or boceprevir (BOC) resistance mutations (R155K/T/M, A156S/V/T and V170A). Some substitutions (V36L, T54S, Q80K/R, D168Q and V170T) linked to low or moderate decreases in HCV sensitivity to protease inhibitors were prevalent according to genotype (between 2% and 100%). Other than genotype signature mutations at positions 36, 80 and 168, the most frequent substitution was T54S (4 genotype 1 and 2 genotype 4 sequences). All genotype 2-5 sequences had the non-genotype-1 signature V36L mutation known to confer low-level resistance to both TVR and BOC. CONCLUSIONS We have developed an HCV protease NS3 inhibitor resistance genotyping tool suitable for use with HCV genotypes 1-5. Polymorphism data is valuable for interpreting genotypic resistance profiles in cases of failure of anti-HCV NS3 protease treatment.
Collapse
Affiliation(s)
- Sophie Vallet
- Université de Brest, UFR Médecine et des Sciences de la Santé, LUBEM, EA3882, Brest, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Duvignaud JB, Majeau N, Delisle P, Voyer N, Gagné SM, Leclerc D. Interfering with hepatitis C virus assembly in vitro using affinity peptides directed towards core protein. Can J Microbiol 2012; 58:475-82. [DOI: 10.1139/w2012-009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Viral assembly is a crucial key step in the life cycle of every virus. In the case of Hepatitis C virus (HCV), the core protein is the only structural protein to interact directly with the viral genomic RNA. Purified recombinant core protein is able to self-assemble in vitro into nucleocapsid-like particles upon addition of a structured RNA, providing a robust assay with which to study HCV assembly. Inhibition of self-assembly of the C170 core protein (first 170 amino acids) was tested using short peptides derived from the HCV core, from HCV NS5A protein, and from diverse proteins (p21 and p73) known to interact with HCV core protein. Interestingly, peptides derived from the core were the best inhibitors. These peptides are derived from regions of the core predicted to be involved in the interaction between core subunits during viral assembly. We also demonstrated that a peptide derived from the C-terminal end of NS5A protein moderately inhibits the assembly process.
Collapse
Affiliation(s)
- Jean-Baptiste Duvignaud
- PROTEO, IBIS and Department of Biochemistry and Microbiology, Université Laval, Québec, QC G1V 0A6, Canada
- Infectious Diseases Research Centre, CHUL, Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Nathalie Majeau
- Infectious Diseases Research Centre, CHUL, Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Priscilla Delisle
- PROTEO and Department of Chemistry, Université Laval, Québec, QC G1V 0A6, Canada
| | - Normand Voyer
- PROTEO and Department of Chemistry, Université Laval, Québec, QC G1V 0A6, Canada
| | - Stéphane M. Gagné
- PROTEO, IBIS and Department of Biochemistry and Microbiology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Denis Leclerc
- Infectious Diseases Research Centre, CHUL, Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
| |
Collapse
|
38
|
Schultz B, Yang H, Delaney WE. Biochemical evaluation of HCV NS3 protease inhibitors. ACTA ACUST UNITED AC 2012; Chapter 13:Unit13B.7. [PMID: 21898332 DOI: 10.1002/0471141755.ph13b07s54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit describes assays for characterizing the potency and mechanism of action of NS3 protease inhibitors. Determination of IC(50) values is described using in vitro expressed and purified NS3 protease. This assay can also be used for the rapid exploration of structure-activity relationships. Another protocol describes using the full-length NS3/4A complexes expressed in HCV replicon cell lines for a rapid alternative method for assessing protease activity without requiring conventional protein expression and purification. A method is then provided for determination of inhibitor K(i), which more accurately assesses the potency of inhibitors compared to the IC(50) assay, particularly for potent inhibitors that reach the sensitivity limit for the basic IC(50) assay. The final protocol describes how to determine the reversibility of inhibitor binding to the enzyme, an important parameter that can affect the pharmacodynamic properties of a compound.
Collapse
|
39
|
Gambarin-Gelwan M, Jacobson IM. Resistance-associated variants in chronic hepatitis C patients treated with protease inhibitors. Curr Gastroenterol Rep 2012; 14:47-54. [PMID: 22161022 DOI: 10.1007/s11894-011-0237-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Direct-acting antiviral agents in combination with pegylated interferon (PEG-IFN) and ribavirin (RBV) significantly improve sustained virologic response rate and reduce duration of therapy among both treatment-naïve and treatment-experienced patients with genotype 1 chronic hepatitis C. One of the most important considerations with both boceprevir and telaprevir is the potential development of resistant variants with therapy. Patients with poor intrinsic responsiveness to interferon, and those with incomplete virological suppression on protease inhibitor therapy, appear to be at higher risk for resistance. In this article we will define antiviral resistance and review the data on both in vitro and in vivo resistance to protease inhibitors, concentrating on data on boceprevir and telaprevir. We will also explore the significance of resistant variants present at the baseline, as well as the fate of the resistant variants and the ways to minimize the development of resistance to protease inhibitors.
Collapse
Affiliation(s)
- Maya Gambarin-Gelwan
- Division of Gastroenterology and Hepatology, Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, NY 10021, USA.
| | | |
Collapse
|
40
|
Adiwijaya BS, Kieffer TL, Henshaw J, Eisenhauer K, Kimko H, Alam JJ, Kauffman RS, Garg V. A viral dynamic model for treatment regimens with direct-acting antivirals for chronic hepatitis C infection. PLoS Comput Biol 2012; 8:e1002339. [PMID: 22241977 PMCID: PMC3252270 DOI: 10.1371/journal.pcbi.1002339] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 11/16/2011] [Indexed: 12/22/2022] Open
Abstract
We propose an integrative, mechanistic model that integrates in vitro virology data, pharmacokinetics, and viral response to a combination regimen of a direct-acting antiviral (telaprevir, an HCV NS3-4A protease inhibitor) and peginterferon alfa-2a/ribavirin (PR) in patients with genotype 1 chronic hepatitis C (CHC). This model, which was parameterized with on-treatment data from early phase clinical studies in treatment-naïve patients, prospectively predicted sustained virologic response (SVR) rates that were comparable to observed rates in subsequent clinical trials of regimens with different treatment durations in treatment-naïve and treatment-experienced populations. The model explains the clinically-observed responses, taking into account the IC50, fitness, and prevalence prior to treatment of viral resistant variants and patient diversity in treatment responses, which result in different eradication times of each variant. The proposed model provides a framework to optimize treatment strategies and to integrate multifaceted mechanistic information and give insight into novel CHC treatments that include direct-acting antiviral agents.
Collapse
|
41
|
Building the Machines: Scaffolding Protein Functions During Bacteriophage Morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:325-50. [DOI: 10.1007/978-1-4614-0980-9_14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Pharmacodynamic analysis of a serine protease inhibitor, MK-4519, against hepatitis C virus using a novel in vitro pharmacodynamic system. Antimicrob Agents Chemother 2011; 56:1170-81. [PMID: 22155837 DOI: 10.1128/aac.05383-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of new antiviral compounds active against hepatitis C virus (HCV) has surged in recent years. In order for these new compounds to be efficacious in humans, optimal dosage regimens for each compound must be elucidated. We have developed a novel in vitro pharmacokinetic/pharmacodynamic system, the BelloCell system, to identify optimal dosage regimens for anti-HCV compounds. In these experiments, genotype 1b HCV replicon-bearing cells (2209-23 cells) were inoculated onto carrier flakes in BelloCell bottles and treated with MK-4519, a serine protease inhibitor. Our dose-ranging studies illustrated that MK-4519 inhibited replicon replication in a dose-dependent manner, yielding a 50% effective concentration (EC(50)) of 1.8 nM. Dose-fractionation studies showed that shorter dosing intervals resulted in greater replicon suppression, indicating that the time that the concentration is greater than the EC(50) is the pharmacodynamic parameter for MK-4519 linked with inhibition of replicon replication. Mutations associated with resistance to serine protease inhibitors were detected in replicons harvested from all treatment arms. These data suggest that MK-4519 is highly active against genotype 1b HCV, but monotherapy is not sufficient to prevent the amplification of resistant replicons. In summary, our findings show that the BelloCell system is a useful and clinically relevant tool for predicting optimal dosage regimens for anti-HCV compounds.
Collapse
|
43
|
Resistance to anti-HCV protease inhibitors. Curr Opin Virol 2011; 1:599-606. [DOI: 10.1016/j.coviro.2011.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/01/2011] [Indexed: 02/07/2023]
|
44
|
Abstract
Treatment of chronic hepatitis C is currently based on a combination of pegylated interferon-o! and ribavirin. Neither drug exerts direct selective pressure on viral functions, meaning that interferon-a/ribavirin treatment failure is not due to selection of interferon-a- or ribavirin-resistant viral variants. Several novel antiviral approaches are currently in preclinical or clinical development, and most target viral enzymes and functions, such as hepatitis C virus protease and polymerase. These new drugs all potentially select resistant viral variants both in vitro and in vivo, and resistance is therefore likely to become an important issue in clinical practice.
Collapse
Affiliation(s)
- Jean-Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C and Delta, Department of Virology, Hôpital Henri Mondor, Université Paris 12, Créteil, France; and INSERM U955, Créteil, France
| |
Collapse
|
45
|
Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nat Biotechnol 2011; 29:993-1003. [PMID: 22068541 DOI: 10.1038/nbt.2020] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infection with hepatitis C virus (HCV) is a major medical problem with over 170 million people infected worldwide. Substantial morbidity and mortality are associated with hepatic manifestations (cirrhosis and hepatocellular carcinoma), which develop with increasing frequency in people infected with HCV for more than 20 years. Less well known is the burden of HCV disease associated with extrahepatic manifestations (diabetes, B-cell proliferative disorders, depression, cognitive disorders, arthritis and Sjögren's syndrome). For patients infected with genotype 1 HCV, treatment with polyethylene glycol decorated interferon (peginterferon) α and ribavirin (PR) is associated with a low (40-50%) success rate, substantial treatment-limiting side effects and a long (48-week) duration of treatment. In the past 15 years, major scientific advances have enabled the development of new classes of HCV therapy, the direct-acting antiviral agents, also known as specifically targeted antiviral therapy for hepatitis C (STAT-C). In combination with PR, the HCV NS3-4A protease inhibitor telaprevir has recently been approved for treatment of genotype 1 chronic HCV in the United States, Canada, European Union and Japan. Compared with PR, telaprevir combination therapy offers significantly improved viral cure rates and the possibility of shortened treatment duration for diverse patient populations. Developers of innovative drugs have to blaze a new path with few validated sign posts to guide the way. Indeed, telaprevir's development was once put on hold because of its performance in a standard IC(50) assay. Data from new hypotheses and novel experiments were required to justify further investment and reduce risk that the drug might fail in the clinic. In addition, the poor drug-like properties of telaprevir were a formidable hurdle, which the manufacturing and formulation teams had to overcome to make the drug. Finally, novel clinical trial designs were developed to improve efficacy and shorten treatment in parallel instead of sequentially. Lessons learned from the development of telaprevir suggest that makers of innovative medicines cannot rely solely on traditional drug discovery metrics, but must develop innovative, scientifically guided pathways for success.
Collapse
|
46
|
In vitro resistance profile of the hepatitis C virus NS3 protease inhibitor BI 201335. Antimicrob Agents Chemother 2011; 56:569-72. [PMID: 22024816 DOI: 10.1128/aac.05166-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The in vitro resistance profile of BI 201335 was evaluated through selection and characterization of variants in genotype 1a (GT 1a) and genotype 1b (GT 1b) replicons. NS3 R155K and D168V were the most frequently observed resistant variants. Phenotypic characterization of the mutants revealed shifts in sensitivity specific to BI 201335 that did not alter susceptibility to alpha interferon. In contrast to macrocyclic and covalent protease inhibitors, changes at V36, T54, F43, and Q80 did not confer resistance to BI 201335.
Collapse
|
47
|
Reiter J, Pérez-Vilaró G, Scheller N, Mina LB, Díez J, Meyerhans A. Hepatitis C virus RNA recombination in cell culture. J Hepatol 2011; 55:777-83. [PMID: 21334392 DOI: 10.1016/j.jhep.2010.12.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/14/2010] [Accepted: 12/20/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The Hepatitis C virus (HCV) exhibits large genetic diversity, both on a global scale and at the level of the infected individual. A major underlying mechanism of the observed sequence differences is error-prone virus replication by the viral RNA polymerase NS5B. In addition, based on phylogenetic comparisons of patient-derived HCV sequences, there is evidence of HCV recombination. However, to date little is known about the frequency by which recombination events occur in HCV and under what conditions recombination may become important in HCV evolution. We, therefore, aimed to set up an experimental model system that would allow us to analyze and to characterize recombination events during HCV replication. METHODS A neomycin-selectable, HCV replicon-based recombination detection system was established. HCV replicons were mutated within either the neomycin-phosphotransferase gene or the NS5B polymerase. Upon co-transfection of hepatic cells lines, recombination between the mutated sites is necessary to restore the selectable phenotype. RESULTS Recombinants were readily detected with frequencies correlating to the distance between the mutations. The recombinant frequency normalized to a crossover range of one nucleotide was around 4 × 10(-8). CONCLUSIONS An experimental system to select for HCV recombinants in cell culture was successfully established. It allowed deriving first estimates of recombinant frequencies. Based on these, recombination in HCV seems rare. However, due to the rapid virus turnover and the large number of HCV-infected liver cells in vivo, it is expected that recombination will be of biological importance when strong selection pressures are operative.
Collapse
Affiliation(s)
- Jochen Reiter
- Department of Virology, Saarland University, D-66421 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Klibanov OM, Williams SH, Smith LS, Olin JL, Vickery SB. Telaprevir: A Novel NS3/4 Protease Inhibitor for the Treatment of Hepatitis C. Pharmacotherapy 2011; 31:951-74. [DOI: 10.1592/phco.31.10.951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Shindo H, Maekawa S, Komase K, Sueki R, Miura M, Kadokura M, Shindo K, Amemiya F, Kitamura T, Nakayama Y, Inoue T, Sakamoto M, Okada SI, Asahina Y, Izumi N, Honda M, Kaneko S, Enomoto N. Characterization of naturally occurring protease inhibitor-resistance mutations in genotype 1b hepatitis C virus patients. Hepatol Int 2011; 6:482-90. [PMID: 22020822 DOI: 10.1007/s12072-011-9306-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/22/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS Protease inhibitor (PI)-resistant hepatitis C virus (HCV) variants may be present in substantial numbers in PI-untreated patients according to recent reports. However, influence of these viruses in the clinical course of chronic hepatitis C has not been well characterized. METHODS The dominant HCV nonstructural 3 (NS3) amino acid sequences were determined in 261 HCV genotype 1b-infected Japanese patients before pegylated interferon plus ribavirin (PEG-IFN/RBV) therapy, and investigated the patients' clinical characteristics as well as treatment responses including sustained virological response (SVR) rate. HCV-NS3 sequences were also determined in 39 non-SVR patients after completion of the therapy. RESULTS Four single mutations (T54S, Q80K, I153V, and D168E) known to confer PI resistance were found in 35 of 261 patients (13.4%), and double mutations (I153V plus T54S/D168E) were found in 6 patients (2.3%). Responses to PEG-IFN/RBV therapy did not differ between patients with and without PI-resistance mutations (mutation group, SVR 48%; wild-type group, SVR 40%; P = 0.38). On the other hand, two mutations appeared in two non-SVR patients after PEG-IFN/RBV therapy (I153V and E168D, 5.1%). CONCLUSIONS PI-resistance-associated NS3 mutations exist in a substantial proportion of untreated HCV-1b-infected patients. The impact of these mutations in the treatment of PIs is unclear, but clinicians should pay attention to avoid further development of PI resistance.
Collapse
Affiliation(s)
- Hiroko Shindo
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Shinya Maekawa
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Kazuki Komase
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Ryota Sueki
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Mika Miura
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Makoto Kadokura
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Kuniaki Shindo
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Fumitake Amemiya
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Takatoshi Kitamura
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Yasuhiro Nakayama
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Taisuke Inoue
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Minoru Sakamoto
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Shun-Ichi Okada
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Yasuhiro Asahina
- Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Namiki Izumi
- Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Nobuyuki Enomoto
- First Department of Internal Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
50
|
Halfon P, Locarnini S. Hepatitis C virus resistance to protease inhibitors. J Hepatol 2011; 55:192-206. [PMID: 21284949 DOI: 10.1016/j.jhep.2011.01.011] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 12/17/2022]
Abstract
Recent advances in molecular biology have led to the development of novel small molecules that target specific viral proteins of the hepatitis C virus (HCV) life cycle. These drugs, collectively termed directly acting antivirals (DAA) against HCV, include a range of non-structural (NS) 3/NS4A protease, NS5B polymerase, and NS5A inhibitors at various stages of clinical development. The rapid replication rate of HCV, along with the low fidelity of its polymerase, gives rise to generations of mutations throughout the viral genome resulting in remarkable sequence variation in the HCV population, known as a quasispecies. The efficacy of DAAs is limited by the presence of those mutations that give rise to amino-acid substitutions within the targeted protein, and that affect the viral sensitivity to these compounds. Thus, due to the high genetic variability of HCV, variants with reduced susceptibility to DAA can occur naturally even before treatment begins, but usually at low levels. Not surprisingly then, these changes are selected in patients either breaking through or not responding to potent DAA treatment. In vitro or in vivo, six major position mutations in the NS3 HCV protease (36, 54, 155, 156, 168, and 170) have now been reported associated with different levels of resistance. The amino acid composition at several of the drug resistance sites can vary between the HCV genotypes/subtypes, resulting in different consensus amino acids leading to a reduction in replicative fitness as well as reduced DAA sensitivity. Different amino acid diversity profiles for HCV genotypes/subtypes suggest differences in the position/type of immune escape and drug resistance mutations. Also, different pathways of resistance profiles based on the chemical scaffold (linear or macrocyclic) of the protease inhibitors have been described. This review first describes how resistance to a protease inhibitor can develop and then provides an overview of the mechanism of how particular mutations confer varying levels of resistance to protease inhibitor, which have been identified and characterized using both genotypic and phenotypic tools. Future potential therapeutic strategies to assist patients who do develop resistance to protease inhibitors are also outlined. The challenge developing new HCV protease inhibitors should take into consideration not only the antiviral potency of the drugs, the occurrence and importance of side effects, the frequency of oral administration, but also the resistance profiles of these agents.
Collapse
Affiliation(s)
- Philippe Halfon
- Virological Departement Laboratoire Alphabio, Hôpital Ambroise Paré, Marseille, France.
| | | |
Collapse
|