1
|
Pham D, Sivalingam V, Tang HM, Montgomery JM, Chen SCA, Halliday CL. Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches. J Fungi (Basel) 2024; 10:447. [PMID: 39057332 PMCID: PMC11278267 DOI: 10.3390/jof10070447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive fungal diseases (IFDs) comprise a growing healthcare burden, especially given the expanding population of immunocompromised hosts. Early diagnosis of IFDs is required to optimise therapy with antifungals, especially in the setting of rising rates of antifungal resistance. Molecular techniques including nucleic acid amplification tests and whole genome sequencing have potential to offer utility in overcoming limitations with traditional phenotypic testing. However, standardisation of methodology and interpretations of these assays is an ongoing undertaking. The utility of targeted Aspergillus detection has been well-defined, with progress in investigations into the role of targeted assays for Candida, Pneumocystis, Cryptococcus, the Mucorales and endemic mycoses. Likewise, whilst broad-range polymerase chain reaction assays have been in use for some time, pathology stewardship and optimising diagnostic yield is a continuing exercise. As costs decrease, there is also now increased access and experience with whole genome sequencing, including metagenomic sequencing, which offers unparalleled resolution especially in the investigations of potential outbreaks. However, their role in routine diagnostic use remains uncommon and standardisation of techniques and workflow are required for wider implementation.
Collapse
Affiliation(s)
- David Pham
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Varsha Sivalingam
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Helen M. Tang
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - James M. Montgomery
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| |
Collapse
|
2
|
Zhou S, Ismail MAI, Buil JB, Gabr A, Verweij PE, Mahgoub ES, de Hoog S, Kang Y, Ahmed SA. Fungi involved in rhinosinusitis in arid regions: insights from molecular identification and antifungal susceptibility. Microbiol Spectr 2023; 11:e0183123. [PMID: 37772821 PMCID: PMC10580872 DOI: 10.1128/spectrum.01831-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
Fungal rhinosinusitis (FRS) is a common problem worldwide, with an increasing burden in arid climate regions. Aspergillus species are the most common causative agents involved. In the present study, we investigated the prevalence, molecular characterization, and antifungal susceptibility of opportunists causing FRS in Sudan on the basis of strains collected over a period of 5 years. β-Tubulin and calmodulin sequencing were used for species identification, and antifungal susceptibility profiles were evaluated by the protocol of the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Predominant species belonged to the Aspergillus flavus complex (n = 244), A. terreus complex (n = 16), A. fumigatus complex (n = 7), and other fungi (n = 17). Molecular identification of 94 strains of Aspergillus revealed the following species: A. flavus (n = 88), A. terreus (n = 1), A. citrinoterreus (n = 2), A. fumigatus (n = 1), A. caespitosus (n = 1), and A. sydowii (n = 1). Several A. flavus and an A. fumigatus isolates showed reduced susceptibility to azoles (minimum inhibitory concentrations above the clinical breakpoints or epidemiological cutoff values). Despite several mutations revealed in cyp51A of these isolates, none could be directly linked to azole resistance. Molecular identification of fungi causing FRS is useful to identify cryptic species and for epidemiologic studies. IMPORTANCE Fungal rhinosinusitis (FRS) is a significant clinical problem in arid regions. This study provides new insights into the prevalence, etiology, and antifungal susceptibility of FRS pathogens in Sudan, where the disease burden is high. Aspergillus species, particularly the A. flavus complex, were identified as the primary FRS pathogens in the region, with some evidence of antifungal resistance. The molecular identification of fungal species causing FRS is useful for detecting antifungal resistance, identifying cryptic species, and characterizing the epidemiology of the disease. The emergence of Azole resistance Aspergilli in Sudan highlights the need for continued surveillance and appropriate use of antifungal agents. These findings have important implications for clinical management, public health policy, and future research on FRS. Publishing this study in Microbiology Spectrum would enable other researchers and clinicians to build on these findings, ultimately improving the diagnosis, treatment, and prevention of FRS.
Collapse
Affiliation(s)
- Shaoqin Zhou
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | | | - Jochem B. Buil
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - Aida Gabr
- Mycology Reference Laboratory, University of Khartoum, Khartoum, Sudan
| | - Paul E. Verweij
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - El-Sheikh Mahgoub
- Mycology Reference Laboratory, University of Khartoum, Khartoum, Sudan
| | - Sybren de Hoog
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
- Foundation Atlas of Clinical Fungi, Hilversum, the Netherlands
| | - Yingqian Kang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Sarah A. Ahmed
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
- Foundation Atlas of Clinical Fungi, Hilversum, the Netherlands
| |
Collapse
|
3
|
Djenontin E, Costa JM, Mousavi B, Nguyen LDN, Guillot J, Delhaes L, Botterel F, Dannaoui E. The Molecular Identification and Antifungal Susceptibility of Clinical Isolates of Aspergillus Section Flavi from Three French Hospitals. Microorganisms 2023; 11:2429. [PMID: 37894087 PMCID: PMC10609271 DOI: 10.3390/microorganisms11102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Aspergillus flavus is a cosmopolitan mold with medical, veterinary, and agronomic concerns. Its morphological similarity to other cryptic species of the Flavi section requires molecular identification techniques that are not routinely performed. For clinical isolates of Aspergillus section Flavi, we present the molecular identification, susceptibility to six antifungal agents, and clinical context of source patients. (2) Methods: One hundred forty fungal clinical isolates were included in the study. These isolates, recovered over a 15-year period (2001-2015), were identified based on their morphological characteristics as belonging to section Flavi. After the subculture, sequencing of a part of the β-tubulin and calmodulin genes was performed, and resistance to azole antifungals was screened on agar plates containing itraconazole and voriconazole. Minimum inhibitory concentrations were determined for 120 isolates by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution method. (3) Results: Partial β-tubulin and calmodulin sequences analysis showed that 138/140 isolates were A. flavus sensu stricto, 1 isolate was A. parasiticus/sojae, and 1 was A. nomiae. Many of the isolates came from samples collected in the context of respiratory tract colonization. Among probable or proven aspergillosis, respiratory infections were the most frequent, followed by ENT infections. Antifungal susceptibility testing was available for isolates (n = 120, all A. flavus ss) from one hospital. The MIC range (geometric mean MIC) in mg/L was 0.5-8 (0.77), 0.5-8 (1.03), 0.125-2 (0.25), 0.03-2 (0.22), 0.25-8 (1.91), and 0.03-0.125 (0.061) for voriconazole, isavuconazole, itraconazole, posaconazole, amphotericin B, and caspofungin, respectively. Two (1.67%) isolates showed resistance to isavuconazole according to current EUCAST breakpoints with MICs at 8 mg/L for isavuconazole and voriconazole. One of these two isolates was also resistant to itraconazole with MIC at 2 mg/L. (4) Conclusions: The present characterization of a large collection of Aspergillus belonging to the Flavi section confirmed that A. flavus ss is the predominant species. It is mainly implicated in respiratory and ENT infections. The emergence of resistance highlights the need to perform susceptibility tests on section Flavi isolates.
Collapse
Affiliation(s)
- Elie Djenontin
- Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94010 Créteil, France; (E.D.); (B.M.); (F.B.)
- Service de Parasitologie-Mycologie, Hôpital Universitaire Mondor, AP-HP, 8 Rue du Général Sarrail, 94010 Créteil, France
| | - Jean-Marc Costa
- Laboratoire CERBA, 11 Rue de l’Équerre, 95310 Saint-Ouen-l’Aumône, France;
| | - Bita Mousavi
- Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94010 Créteil, France; (E.D.); (B.M.); (F.B.)
| | | | - Jacques Guillot
- Unité pédagogique de Dermatologie, Parasitologie, Mycologie, Ecole Nationale Vétérinaire Agroalimentaire et de l’Alimentation Nantes Atlantique, Oniris, 44300 Nantes, France;
| | - Laurence Delhaes
- Laboratoire de Parasitologie-Mycologie, CNR des Aspergilloses Chroniques—CHU de Bordeaux, INSERM U1045—Univ. Bordeaux, 33000 Bordeaux, France;
| | - Françoise Botterel
- Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94010 Créteil, France; (E.D.); (B.M.); (F.B.)
- Service de Parasitologie-Mycologie, Hôpital Universitaire Mondor, AP-HP, 8 Rue du Général Sarrail, 94010 Créteil, France
| | - Eric Dannaoui
- Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94010 Créteil, France; (E.D.); (B.M.); (F.B.)
- Faculté de Médecine, Université Paris Cité, 75006 Paris, France
- Unité de Parasitologie-Mycologie, Hôpital Necker Enfants Malades, AP-HP, 149 Rue de Sèvres, 75015 Paris, France
| |
Collapse
|
4
|
Faiyazuddin M, Sophia A, Ashique S, Gholap AD, Gowri S, Mohanto S, Karthikeyan C, Nag S, Hussain A, Akhtar MS, Bakht MA, Ahmed MG, Rustagi S, Rodriguez-Morales AJ, Salas-Matta LA, Mohanty A, Bonilla-Aldana DK, Sah R. Virulence traits and novel drug delivery strategies for mucormycosis post-COVID-19: a comprehensive review. Front Immunol 2023; 14:1264502. [PMID: 37818370 PMCID: PMC10561264 DOI: 10.3389/fimmu.2023.1264502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
The outbreak of a fatal black fungus infection after the resurgence of the cadaverous COVID-19 has exhorted scientists worldwide to develop a nutshell by repurposing or designing new formulations to address the crisis. Patients expressing COVID-19 are more susceptible to Mucormycosis (MCR) and thus fall easy prey to decease accounting for this global threat. Their mortality rates range around 32-70% depending on the organs affected and grow even higher despite the treatment. The many contemporary recommendations strongly advise using liposomal amphotericin B and surgery as first-line therapy whenever practicable. MCR is a dangerous infection that requires an antifungal drug administration on appropriate prescription, typically one of the following: Amphotericin B, Posaconazole, or Isavuconazole since the fungi that cause MCR are resistant to other medications like fluconazole, voriconazole, and echinocandins. Amphotericin B and Posaconazole are administered through veins (intravenously), and isavuconazole by mouth (orally). From last several years so many compounds are developed against invasive fungal disease but only few of them are able to induce effective treatment against the micorals. Adjuvant medicines, more particularly, are difficult to assess without prospective randomized controlled investigations, which are challenging to conduct given the lower incidence and higher mortality from Mucormycosis. The present analysis provides insight into pathogenesis, epidemiology, clinical manifestations, underlying fungal virulence, and growth mechanisms. In addition, current therapy for MCR in Post Covid-19 individuals includes conventional and novel nano-based advanced management systems for procuring against deadly fungal infection. The study urges involving nanomedicine to prevent fungal growth at the commencement of infection, delay the progression, and mitigate fatality risk.
Collapse
Affiliation(s)
- Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, Bihar, India
- Nano Drug Delivery®, Raleigh-Durham, NC, United States
| | - A. Sophia
- PG & Research Department of Physics, Cauvery College for Women (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal, India
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - S. Gowri
- PG & Research Department of Physics, Cauvery College for Women (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - C. Karthikeyan
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Tamil Nadu, India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Md. Afroz Bakht
- Chemistry Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas—Institución Universitaria Visión de las Américas, Pereira, Colombia
- Faculties of Health Sciences and Environmental Sciences, Universidad Científica del Sur, Lima, Peru
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Luis Andres Salas-Matta
- Faculties of Health Sciences and Environmental Sciences, Universidad Científica del Sur, Lima, Peru
| | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, India
| | | | - Ranjit Sah
- Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra, India
- Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, India
| |
Collapse
|
5
|
Vallejo C, Jarque I, Fortun J, Casado A, Peman J. IFISTRATEGY: Spanish National Survey of Invasive Fungal Infection in Hemato-Oncologic Patients. J Fungi (Basel) 2023; 9:628. [PMID: 37367564 DOI: 10.3390/jof9060628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Recent advances in the treatment of hematologic malignancies have improved the overall survival rate, but the number of patients at risk of developing an invasive fungal infection (IFI) has increased. Invasive infections caused by non-Candida albicans species, non-Aspergillus molds, and azole-resistant Aspergillus fumigatus have been increasingly reported in recent years. We developed a cross-sectional multicenter survey which involved a total of 55 hematologists and infectious disease specialists from a total of 31 Spanish hospitals, to determine the most frequent strategies used for the management of IFIs. Data collection was undertaken through an online survey which took place in 2022. Regarding key strategies, experts usually prefer early treatment for persistent febrile neutropenia, switching to another broad-spectrum antifungal family if azole-resistant Aspergillus is suspected, broad-spectrum azoles and echinocandins as prophylactic treatment in patients receiving midostaurin or venetoclax, and liposomal amphotericin B for breakthrough IFIs after prophylaxis with echinocandins in patients receiving new targeted therapies. For antifungals failing to reach adequate levels during the first days and suspected invasive aspergillosis, the most appropriate strategy would be to associate an antifungal from another family.
Collapse
Affiliation(s)
- Carlos Vallejo
- Hematology Department, Clinic University Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Isidro Jarque
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Jesus Fortun
- Infectious Diseases Department, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, 28034 Madrid, Spain
- Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28805 Madrid, Spain
| | - Araceli Casado
- Pharmacoeconomics and Outcomes Research Iberia (PORIB), 28224 Madrid, Spain
| | - Javier Peman
- Microbiology Department, Hospital La Fe de Valencia, 46026 Valencia, Spain
- Grupo de Investigación Infección Grave, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| |
Collapse
|
6
|
Caillet A, Bellanger AP, Navellou JC, Daguindau E, Rocchi S, Scherer E, Berceanu A, Millon L. Refractory invasive pulmonary aspergillosis due to Aspergillus flavus detected with the combination of two in-house Aspergillus qPCR. J Mycol Med 2023; 33:101350. [PMID: 36375310 DOI: 10.1016/j.mycmed.2022.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
We present a case of probable invasive pulmonary aspergillosis due to Aspergillus flavus, in a female patient treated for an acute myeloid leukemia. Two weeks after an allogenic stem cell transplantation a probable invasive pulmonary aspergillosis was diagnosed based on thoracic imaging combined with positive galactomannan antigen and positive in-house mitochondrial Aspergillus qPCR in serum. Although an antifungal treatment was initiated, Aspergillus qPCR and galactomannan antigen remained positive in serum and worsening of the thoracic lesions was observed. The discordance between the negativity of the in-house ribosomal Aspergillus qPCR (specific to A. fumigatus) and the positivity of the in-house mitochondrial Aspergillus qPCR (targeting A. fumigatus and some other Aspergillus) allowed the suspicion of a thermophilic Aspergillus species that was not A. fumigatus. No strain was obtained in culture but the involvement of A. flavus was confirmed using a specific A. flavus qPCR. This case illustrated the usefulness of our original strategy combining two different in-house Aspergillus qPCRs, in addition to galactomannan assay, to diagnose invasive aspergillosis in hematology patients.
Collapse
Affiliation(s)
- Adrien Caillet
- Hematology Department, Besançon University Hospital, Besançon 25000, France
| | - Anne-Pauline Bellanger
- Chrono-Environnement CNRS 6249 Research Team, Franche-Comté University, Besançon 25000, France; Parasitology-Mycology Department, Besançon University Hospital, Besançon 25000, France.
| | | | - Etienne Daguindau
- Hematology Department, Besançon University Hospital, Besançon 25000, France
| | - Steffi Rocchi
- Chrono-Environnement CNRS 6249 Research Team, Franche-Comté University, Besançon 25000, France; Parasitology-Mycology Department, Besançon University Hospital, Besançon 25000, France
| | - Emeline Scherer
- Chrono-Environnement CNRS 6249 Research Team, Franche-Comté University, Besançon 25000, France; Parasitology-Mycology Department, Besançon University Hospital, Besançon 25000, France
| | - Ana Berceanu
- Hematology Department, Besançon University Hospital, Besançon 25000, France
| | - Laurence Millon
- Chrono-Environnement CNRS 6249 Research Team, Franche-Comté University, Besançon 25000, France; Parasitology-Mycology Department, Besançon University Hospital, Besançon 25000, France
| |
Collapse
|
7
|
Fakhim H, Badali H, Dannaoui E, Nasirian M, Jahangiri F, Raei M, Vaseghi N, Ahmadikia K, Vaezi A. Trends in the Prevalence of Amphotericin B-Resistance (AmBR) among Clinical Isolates of Aspergillus Species. J Mycol Med 2022; 32:101310. [PMID: 35907396 DOI: 10.1016/j.mycmed.2022.101310] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
The challenges of the invasive infections caused by the resistant Aspergillus species include the limited access to antifungals for treatment and high mortality. This study aimed to provide a global perspective of the prevalence of amphotericin B resistance (AmBR), geographic distribution, and the trend of AmBR from 2010 to 2020. To analyze the prevalence of in vitro AmBR in clinical Aspergillus species, we reviewed the literature and identified a total of 72 articles. AmBR was observed in 1128 out of 3061 Aspergillus terreus (36.8%), 538 out of 3663 Aspergillus flavus (14.9%), 141 out of 2691 Aspergillus niger (5.2%), and 353 out of 17,494 Aspergillus fumigatus isolates (2.01%). An increasing trend in AmB-resistant isolates of A. fumigatus and a decreasing trend in AmB-resistant A. terreus and A. flavus isolates were observed between 2016 and 2020. AmB-resistant A. terreus and A. niger isolates, accounting for 40.4% and 20.9%, respectively, were the common AmB-resistant Aspergillus species in Asian studies. However, common AmB-resistant Aspergillus species reported by European and American studies were A. terreus and A. flavus isolates, accounting for 40.1% and 14.3% in 31 studies from Europe and 25.1% and 11.7% in 14 studies from America, respectively. The prevalence of AmB-resistant A. niger in Asian isolates was higher than in American and European. We found a low prevalence of A. terreus in American isolates (25.1%) compared to Asian (40.4%) and European (40.1%). Future studies should focus on analyzing the trend of AmBR on a regional basis and using the same methodologies.
Collapse
Affiliation(s)
- Hamed Fakhim
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology/South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Eric Dannaoui
- Université de Paris, Faculté de Médecine, APHP, Hôpital Européen Georges Pompidou, Unité de Parasitologie-Mycologie, Service de Microbiologie, Paris, France
| | - Maryam Nasirian
- Infectious Diseases and Tropical Medicine Research Center; and Epidemiology and Biostatistics Department, Health School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fateme Jahangiri
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maedeh Raei
- Faculty of medicine, Sari branch, Islamic Azad University, Sari, Iran
| | - Narges Vaseghi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Ahmadikia
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsane Vaezi
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Ullah N, Sepulcri C, Mikulska M. Isavuconazole for COVID-19-Associated Invasive Mold Infections. J Fungi (Basel) 2022; 8:674. [PMID: 35887431 PMCID: PMC9323932 DOI: 10.3390/jof8070674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Isavuconazole is a broad-spectrum antifungal drug recently approved as a first-line treatment for invasive aspergillosis and as a first or alternative treatment for mucormycosis. The purpose of this review was to report and discuss the use of isavuconazole for the treatment of COVID-19-associated aspergillosis (CAPA), and COVID-19-associated mucormycosis (CAM). Among all studies which reported treatment of CAPA, approximately 10% of patients were reportedly treated with isavuconazole. Considering 14 identified studies that reported the use of isavuconazole for CAPA, isavuconazole was used in 40% of patients (95 of 235 treated patients), being first-line monotherapy in over half of them. We identified six studies that reported isavuconazole use in CAM, either alone or in combination therapy. Overall, isavuconazole was used as therapy in 13% of treated CAM patients, frequently as combination or sequential therapy. The use of isavuconazole in CAPA and CAM is complicated by the challenge of achieving adequate exposure in COVID-19 patients who are frequently obese and hospitalized in the ICU with concomitant renal replacement therapy (RRT) or extracorporeal membrane oxygenation (ECMO). The presence of data on high efficacy in the treatment of aspergillosis, lower potential for drug-drug interactions (DDIs) and for subtherapeutic levels, and no risk of QT prolongation compared to other mold-active azoles, better safety profile than voriconazole, and the possibility of using an intravenous formulation in the case of renal failure are the advantages of using isavuconazole in this setting.
Collapse
Affiliation(s)
- Nadir Ullah
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (N.U.); (C.S.)
| | - Chiara Sepulcri
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (N.U.); (C.S.)
- Division of Infectious Diseases, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (N.U.); (C.S.)
- Division of Infectious Diseases, Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
9
|
Nargesi S, Jafarzadeh J, Najafzadeh MJ, Nouripour-Sisakht S, Haghani I, Abastabar M, Ilkit M, Hedayati MT. Molecular identification and antifungal susceptibility of clinically relevant and cryptic species of Aspergillus sections Flavi and Nigri. J Med Microbiol 2022; 71. [PMID: 35451946 DOI: 10.1099/jmm.0.001480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction. Aspergillus sections Flavi and Nigri comprise clinically relevant and cryptic species that differ significantly in drug susceptibility, meaning that effective treatment depends on correct species identification.Hypothesis/Gap Statement. There are no comprehensive data for molecular identification and antifungal susceptibility testing (AFST) of clinically relevant and cryptic species of Aspergillus sections Flavi and Nigri as the main agents of invasive and non-invasive aspergillosis in Iran. We aimed to perform molecular identification and AFST of 213 clinical Aspergillus isolates belonging to sections Flavi and Nigri. Molecular identification of isolates was performed using sequencing of the β-tubulin gene and in vitro AFST was conducted according to the Clinical and Laboratory Standards Institute (CLSI) M38-A3 guidelines.Results. The most common isolates in sections Flavi and Nigri were Aspergillus flavus (110/113, 97.3 %) and Aspergillus tubingensis (49/100, 49.0 %), respectively. A total of 62/213 (29.1 %) isolates belonging to cryptic species were identified; among them, A. tubingensis was the most prevalent (49/62, 79.0%). Aspergillus flavus and A. niger isolates that responded to the minimum inhibitory concentrations (MICs) of itraconazole above the epidemiological cutoff values were the most frequently detected: 8/110 (7.3 %) and 3/41 (7.3 %), respectively. In section Flavi, Aspergillus alliaceus responded to amphotericin B at a high MIC (>16 µg mL-1) and in section Nigri, one of the three Aspergillus luchuensis/awamori isolates responded to itraconazole at an MIC >16 µg ml-1. Interestingly, for all Aspergillus welwitschiae isolates, the MIC50 and MIC90 of itraconazole were both 16 µg ml-1.Conclusion. A considerable presence of A. flavus and A. niger isolates showing non-wild-type responses to azoles in clinical cases of aspergillosis indicates the importance of classifying clinical Aspergillus isolates at the species level and performing antifungal susceptibility testing on the isolates, which would ensure appropriate treatment.
Collapse
Affiliation(s)
- Sanaz Nargesi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jalal Jafarzadeh
- Department of Medical Parasitology and Mycology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Javad Najafzadeh
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9199-91766, Iran
| | | | - Iman Haghani
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Mohammad Taghi Hedayati
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Dogra S, Arora A, Aggarwal A, Passi G, Sharma A, Singh G, Barnwal RP. Mucormycosis Amid COVID-19 Crisis: Pathogenesis, Diagnosis, and Novel Treatment Strategies to Combat the Spread. Front Microbiol 2022; 12:794176. [PMID: 35058909 PMCID: PMC8763841 DOI: 10.3389/fmicb.2021.794176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The havoc unleashed by COVID-19 pandemic has paved way for secondary ominous fungal infections like Mucormycosis. It is caused by a class of opportunistic pathogens from the order Mucorales. Fatality rates due to this contagious infection are extremely high. Numerous clinical manifestations result in damage to multiple organs subject to the patient's underlying condition. Lack of a proper detection method and reliable treatment has made the management of this infection troublesome. Several reports studying the behavior pattern of Mucorales inside the host by modulation of its defense mechanisms have helped in understanding the pathogenesis of this angio-invasive infection. Many recent advances in diagnosis and treatment of this fungal infection have not been much beneficial. Therefore, there is a need to foster more viable strategies. This article summarizes current and imminent approaches that could aid effective management of these secondary infections in these times of global pandemic. It is foreseen that the development of newer antifungal drugs, antimicrobial peptides, and nanotechnology-based approaches for drug delivery would help combat this infection and curb its spread.
Collapse
Affiliation(s)
- Shreya Dogra
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akanksha Arora
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Aashni Aggarwal
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gautam Passi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ravi P. Barnwal
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|
11
|
Rogers TR, Verweij PE, Castanheira M, Dannaoui E, White PL, Arendrup MC. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:2053-2073. [PMID: 35703391 PMCID: PMC9333407 DOI: 10.1093/jac/dkac161] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The increasing incidence and changing epidemiology of invasive fungal infections continue to present many challenges to their effective management. The repertoire of antifungal drugs available for treatment is still limited although there are new antifungals on the horizon. Successful treatment of invasive mycoses is dependent on a mix of pathogen-, host- and antifungal drug-related factors. Laboratories need to be adept at detection of fungal pathogens in clinical samples in order to effectively guide treatment by identifying isolates with acquired drug resistance. While there are international guidelines on how to conduct in vitro antifungal susceptibility testing, these are not performed as widely as for bacterial pathogens. Furthermore, fungi generally are recovered in cultures more slowly than bacteria, and often cannot be cultured in the laboratory. Therefore, non-culture-based methods, including molecular tests, to detect fungi in clinical specimens are increasingly important in patient management and are becoming more reliable as technology improves. Molecular methods can also be used for detection of target gene mutations or other mechanisms that predict antifungal drug resistance. This review addresses acquired antifungal drug resistance in the principal human fungal pathogens and describes known resistance mechanisms and what in-house and commercial tools are available for their detection. It is emphasized that this approach should be complementary to culture-based susceptibility testing, given the range of mutations, resistance mechanisms and target genes that may be present in clinical isolates, but may not be included in current molecular assays.
Collapse
Affiliation(s)
| | | | | | | | | | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Badali H, Shokohi T, Khodavaisy S, Moazeni M, Farhadi M, Nabili M. Molecular typing of clinical and environmental Aspergillus fumigatus isolates from Iran using microsatellites. Curr Med Mycol 2021; 7:25-30. [PMID: 34553094 PMCID: PMC8443879 DOI: 10.18502/cmm.7.1.6180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 12/30/2020] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose Because of the growing incidence of Aspergillus infection, typing methods of Aspergillus species are increasingly being used. Accordingly, studying the spread and population dynamics of strains isolating from clinical and environment, from a single host to large-scale ecosystems is definitely needed. In the current study, we carried out a genetic analysis of nine microsatellite loci in isolates from different regions of Iran to compare and explore the genetic diversity between environmental and clinical A. fumigatus strains. Materials and Methods Sixty-six clinical (n=43) and environmental (n= 23) isolates of A. fumigatus, have collected from six cities of Iran. All A. fumigatus isolates identified based on macroscopic and microscopic characters, the ability to grow at above 45°C, and confirmed using DNA sequencing of the partial b-tubulin gene. Sixty-six A. fumigatus isolates were subjected by microsatellite typing using three separate multiplex PCRs with a panel of nine short tandem repeats (STR) to evaluate the genetic relatedness. Results The STR typing of 66 A. fumigatus isolates revealed 38 distinct genotypes distributed among environmental and clinical isolates. We identified 12 clones including 40 different isolates representing 60% of all isolates tested, which each clone included 2-7 isolates. Conclusion The STR typing is considered as a valuable tool with excellent discriminatory power to study the molecular epidemiology and genotypic diversity of A. fumigatus isolates. These findings show that the high genetic diversity observed of Iranian A. fumigatus isolates with those outside Iran and formed a separate cluster.
Collapse
Affiliation(s)
- Hamid Badali
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tahereh Shokohi
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadegh Khodavaisy
- Department of Medical Mycology and Parasitology, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Moazeni
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoumeh Farhadi
- Department of Medical Laboratory Sciences, Faculty of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Mojtaba Nabili
- Department of Medical Laboratory Sciences, Faculty of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| |
Collapse
|
13
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
14
|
Jørgensen KM, Guinea J, Meletiadis J, Hare RK, Arendrup MC. Revision of EUCAST breakpoints: consequences for susceptibility of contemporary Danish mould isolates to isavuconazole and comparators. J Antimicrob Chemother 2021; 75:2573-2581. [PMID: 32556315 DOI: 10.1093/jac/dkaa212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND EUCAST recently revised the definition of the 'I' category from 'intermediate' to 'susceptible, increased exposure'. Consequently, all current antifungal breakpoints have been reviewed and revised breakpoints (v 10.0) have been released. OBJECTIVES We investigated isavuconazole and comparator MICs (mg/L) against contemporary moulds and the consequences of the breakpoint revision for susceptibility classification. METHODS Six hundred and ninety-six Aspergillus and 46 other moulds were included. EUCAST E.Def 10.1 azole resistance screening was performed for Aspergillus fumigatus and E.Def 9.3.1 testing of non-susceptible A. fumigatus and other moulds. Most non-wildtype/resistant isolates underwent cyp51A sequencing. RESULTS Isavuconazole MIC50/MIC90s were ≤1/≤2 mg/L for Aspergillus flavus, A. fumigatus and Aspergillus nidulans versus 2/4 mg/L for Aspergillus niger and 2/16 mg/L for Aspergillus terreus. For the remaining moulds, MICs were highest for Fusarium (16 to >16 mg/L), lowest for dermatophytes (0.06-0.5 mg/L) and in between for Mucorales and others (1 to >16 mg/L). A very strong isavuconazole-voriconazole MIC correlation was found for A. fumigatus (Pearson r = 0.888) and itraconazole-posaconazole correlation for A. fumigatus (r = 0.905) and A. terreus (r = 0.848). For A. fumigatus, the revised breakpoints lowered isavuconazole resistance (22.6% to 7.7%, P < 0.0001) and increased voriconazole resistance (3.8% to 6.7%, P = 0.025), resulting in similar resistance rates across the four azoles (range: 6.7%-7.7%). For A. terreus, isavuconazole resistance remained unchanged (81.3%) and higher than itraconazole (43.8%, P = 0.004) and posaconazole (53.1%, P = 0.03) resistance. Azole cross-resistance was found in 24/24, 13/20 and 4/90 isolates, and Cyp51A alterations in 16/18, 1/7 and 2/4 sequenced isolates with isavuconazole MICs of >4, 4 and 2 mg/L, respectively. CONCLUSIONS Isavuconazole displays broad anti-mould activity. The revised breakpoints result in fewer misclassifications of wildtype isolates without compromising detection of resistant mutants.
Collapse
Affiliation(s)
| | - Jesus Guinea
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Athens, Greece
| | | | - Maiken Cavling Arendrup
- Unit for Mycology, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
15
|
James JE, Lamping E, Santhanam J, Cannon RD. PDR Transporter ABC1 Is Involved in the Innate Azole Resistance of the Human Fungal Pathogen Fusarium keratoplasticum. Front Microbiol 2021; 12:673206. [PMID: 34149660 PMCID: PMC8211738 DOI: 10.3389/fmicb.2021.673206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Fusarium keratoplasticum is arguably the most common Fusarium solani species complex (FSSC) species associated with human infections. Invasive fusariosis is a life-threatening fungal infection that is difficult to treat with conventional azole antifungals. Azole drug resistance is often caused by the increased expression of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG sub-family. Most investigations of Fusarium ABC transporters associated with azole antifungal drug resistance are limited to plant pathogens. Through the manual curation of the entire ABCG protein family of four FSSC species including the fully annotated genome of the plant pathogen Nectria haematococca we identified PDR transporters ABC1 and ABC2 as the efflux pump candidates most likely to be associated with the innate azole resistance phenotype of Fusarium keratoplasticum. An initial investigation of the transcriptional response of logarithmic phase F. keratoplasticum cells to 16 mg/L voriconazole confirmed strong upregulation (372-fold) of ABC1 while ABC2 mRNA levels were unaffected by voriconazole exposure over a 4 h time-period. Overexpression of F. keratoplasticum ABC1 and ABC2 in the genetically modified Saccharomyces cerevisiae host ADΔΔ caused up to ∼1,024-fold increased resistance to a number of xenobiotics, including azole antifungals. Although ABC1 and ABC2 were only moderately (20% and 10%, respectively) expressed compared to the Candida albicans multidrug efflux pump CDR1, overexpression of F. keratoplasticum ABC1 caused even higher resistance levels to certain xenobiotics (e.g., rhodamine 6G and nigericin) than CDR1. Our investigations suggest an important role for ABC1 orthologues in the innate azole resistance phenotype of FSSC species.
Collapse
Affiliation(s)
- Jasper Elvin James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Richard David Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Emergence of Triazole Resistance in Aspergillus spp. in Latin America. CURRENT FUNGAL INFECTION REPORTS 2021; 15:93-103. [PMID: 34025901 PMCID: PMC8132279 DOI: 10.1007/s12281-021-00418-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 11/26/2022]
Abstract
Purpose of Review Azole resistance in Aspergillus spp. is becoming a public health problem worldwide. However, data about this subject is lacking in Latin American countries. This review focuses in the epidemiology and molecular mechanisms of azole resistance in Aspergillus spp. emphasizing in Latin America. Data on Aspergillus fumigatus stands out because it is the most prevalent Aspergillus spp. pathogen. Recent Findings Azole resistance in Aspergillus spp. emergence was linked with intensive use of these antifungals both in the clinical setting and in the environment (as pesticides). Reports on azole-resistant A. fumigatus strains are being constantly published in different countries. Molecular mechanisms of resistance mainly involve substitution in the azole target (CYP51A) and/or overexpression of this gene. However, several other non-CYP51A-related mechanisms were described. Moreover, intrinsically resistant cryptic Aspergillus species are starting to be reported as human pathogens. Summary After a comprehensive literature review, it is clear that azole resistance in Aspergillus spp. is emerging in Latin America and perhaps it is underestimated. All the main molecular mechanisms of azole resistance were described in patients and/or environmental samples. Moreover, one of the molecular mechanisms was described only in South America. Cryptic intrinsic azole-resistant species are also described.
Collapse
|
17
|
Neofytos D, Garcia-Vidal C, Lamoth F, Lichtenstern C, Perrella A, Vehreschild JJ. Invasive aspergillosis in solid organ transplant patients: diagnosis, prophylaxis, treatment, and assessment of response. BMC Infect Dis 2021; 21:296. [PMID: 33761875 PMCID: PMC7989085 DOI: 10.1186/s12879-021-05958-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) is a rare complication in solid organ transplant (SOT) recipients. Although IA has significant implications on graft and patient survival, data on diagnosis and management of this infection in SOT recipients are still limited. METHODS Discussion of current practices and limitations in the diagnosis, prophylaxis, and treatment of IA and proposal of means of assessing treatment response in SOT recipients. RESULTS Liver, lung, heart or kidney transplant recipients have common as well as different risk factors to the development of IA, thus each category needs a separate evaluation. Diagnosis of IA in SOT recipients requires a high degree of awareness, because established diagnostic tools may not provide the same sensitivity and specificity observed in the neutropenic population. IA treatment relies primarily on mold-active triazoles, but potential interactions with immunosuppressants and other concomitant therapies need special attention. CONCLUSIONS Criteria to assess response have not been sufficiently evaluated in the SOT population and CT lesion dynamics, and serologic markers may be influenced by the underlying disease and type and severity of immunosuppression. There is a need for well-orchestrated efforts to study IA diagnosis and management in SOT recipients and to develop comprehensive guidelines for this population.
Collapse
Affiliation(s)
- Dionysios Neofytos
- Service des Maladies Infectieuses, Hôpitaux Universitaires de Genève, Rue Gabrielle-Perret-Gentil 4, Geneva, Switzerland.
| | - Carolina Garcia-Vidal
- Servicio de Enfermedades Infecciosas, Hospital Clínic de Barcelona-IDIBAPS, Universitat de Barcelona, FungiCLINIC Research group (AGAUR), Barcelona, Spain
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, 1011, Lausanne, Switzerland
- Department of Laboratories, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Christoph Lichtenstern
- Department of Anaesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Germany
| | - Alessandro Perrella
- VII Department of Infectious Disease and Immunology, Hospital D. Cotugno, Naples, Italy
- CLSE-Liver Transplant Unit, Hospital A. Cardarelli, Naples, Italy
| | - Jörg Janne Vehreschild
- Medical Department II, Hematology and Oncology, University Hospital of Frankfurt, Frankfurt, Germany
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
- German Centre for Infection Research, partner site Bonn-Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Jørgensen KM, Helleberg M, Hare RK, Jørgensen LN, Arendrup MC. Dissection of the Activity of Agricultural Fungicides against Clinical Aspergillus Isolates with and without Environmentally and Medically Induced Azole Resistance. J Fungi (Basel) 2021; 7:jof7030205. [PMID: 33799556 PMCID: PMC8001900 DOI: 10.3390/jof7030205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Azole resistance is an emerging problem in patients with aspergillosis. The role of fungicides for resistance development and occurrence is not fully elucidated. EUCAST reference MICs of 17 fungicides (11 azoles and 6 others), five azole fungicide metabolites and four medical triazoles were examined against two reference and 28 clinical isolates of A. fumigatus, A. flavus and A. terreus with (n = 12) and without (n = 16) resistance mutations. Eight/11 azole fungicides were active against wild-type A. fumigatus, A. flavus and A. terreus, including four (metconazole, prothioconazole-desthio, prochloraz and imazalil) with low MIC50 (≤2 mg/L) against all three species and epoxiconazole, propiconazole, tebuconazole and difenoconazole also against wild-type A. terreus. Mefentrifluconazole, azole metabolites and non-azole fungicides MICs were >16 mg/L against A. fumigatus although partial growth inhibition was found with mefentrifluconazole. Moreover, mefentrifluconazole and axozystrobin were active against wild-type A. terreus. Increased MICs (≥3 dilutions) were found for TR34/L98H, TR34(3)/L98H, TR46/Y121F/T289A and G432S compared to wild-type A. fumigatus for epoxiconazole, propiconazole, tebuconazole, difenoconazole, prochloraz, imazalil and metconazole (except G432S), and for prothioconazole-desthio against TR46/Y121F/T289A, specifically. Increased MICs were found in A. fumigatus harbouring G54R, M220K and M220R alterations for five, one and one azole fungicides, respectively, compared to MICs against wild-type A. fumigatus. Similarly, increased MICs wer found for A. terreus with G51A, M217I and Y491H alterations for five, six and two azole fungicides, respectively. Azole fungicides showed activity against wild-type A. fumigatus, A. terreus and A. flavus, but not against all mutant isolates, suggesting the environmental route of azole resistance may have a role for all three species.
Collapse
Affiliation(s)
| | - Marie Helleberg
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Rasmus Krøger Hare
- Unit for Mycology, Statens Serum Institut, 2300 Copenhagen, Denmark; (K.M.J.); (R.K.H.)
| | - Lise Nistrup Jørgensen
- Department of Agroecology—Crop Health, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark;
| | - Maiken Cavling Arendrup
- Unit for Mycology, Statens Serum Institut, 2300 Copenhagen, Denmark; (K.M.J.); (R.K.H.)
- Department of Clinical Medicine, Copenhagen University, 2100 Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
19
|
Rosam K, Monk BC, Lackner M. Sterol 14α-Demethylase Ligand-Binding Pocket-Mediated Acquired and Intrinsic Azole Resistance in Fungal Pathogens. J Fungi (Basel) 2020; 7:jof7010001. [PMID: 33374996 PMCID: PMC7822023 DOI: 10.3390/jof7010001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
The fungal cytochrome P450 enzyme sterol 14α-demethylase (SDM) is a key enzyme in the ergosterol biosynthesis pathway. The binding of azoles to the active site of SDM results in a depletion of ergosterol, the accumulation of toxic intermediates and growth inhibition. The prevalence of azole-resistant strains and fungi is increasing in both agriculture and medicine. This can lead to major yield loss during food production and therapeutic failure in medical settings. Diverse mechanisms are responsible for azole resistance. They include amino acid (AA) substitutions in SDM and overexpression of SDM and/or efflux pumps. This review considers AA affecting the ligand-binding pocket of SDMs with a primary focus on substitutions that affect interactions between the active site and the substrate and inhibitory ligands. Some of these interactions are particularly important for the binding of short-tailed azoles (e.g., voriconazole). We highlight the occurrence throughout the fungal kingdom of some key AA substitutions. Elucidation of the role of these AAs and their substitutions may assist drug design in overcoming some common forms of innate and acquired azole resistance.
Collapse
Affiliation(s)
- Katharina Rosam
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria;
| | - Brian C. Monk
- Sir John Walsh Research Institute and Department of Oral Biology, Faculty of Dentistry, University of Otago, PO Box 56, 9054 Dunedin, New Zealand;
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria;
- Correspondence: ; Tel.: +43-512-003-70725
| |
Collapse
|
20
|
Guinea J. Updated EUCAST Clinical Breakpoints against Aspergillus, Implications for the Clinical Microbiology Laboratory. J Fungi (Basel) 2020; 6:E343. [PMID: 33291313 PMCID: PMC7762142 DOI: 10.3390/jof6040343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Azole resistance poses a problem for the management of patients with invasive aspergillosis. Former species are in fact groups of closely related species (or complexes); cryptic species frequently show high antifungal resistance. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) EUCAST Definitive Document (E.Def) 9.3.2 includes guidelines for antifungal susceptibility testing on Aspergillus spp. and clinical breakpoints for amphotericin B, itraconazole, voriconazole, posaconazole, and isavuconazole against A. flavus, A. fumigatus, A. nidulans, A. niger, and A. terreus. New clinical breakpoints were released in February 2020 and one of the most relevant modifications was the definition of the new "susceptible, increased exposure" (formerly "intermediate") category. Another relevant change was the adoption of the concept of area of technical uncertainty (ATU) that refers to problematic areas which involve uncertainty of susceptibility categorisation (e.g., when minimum inhibitory concentrations (MICs) for susceptible and resistant organisms overlap). To accommodate both the new "susceptible, increased exposure" category and the concept of ATU, MICs of azoles and amphotericin B that fall in the former "intermediate" category have been automatically categorized as either R (amphotericin B) or ATU (triazoles). Finally, EUCAST-AFST (Antifungal Susceptibility Testing) decided to adopt new breakpoints for less common species provided that the epidemiological cut-off value (ECOFF) is below or comparable to the breakpoint for the type species (A. fumigatus).
Collapse
Affiliation(s)
- Jesús Guinea
- Instituto de Investigación Sanitaria Gregorio Marañón, C/ Dr. Esquerdo, 46, 28007 Madrid, Spain; ; Tel.: +34-91-586-7163
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/ Dr. Esquerdo, 46, 28007 Madrid, Spain
| |
Collapse
|
21
|
Lucio J, Gonzalez-Jimenez I, Rivero-Menendez O, Alastruey-Izquierdo A, Pelaez T, Alcazar-Fuoli L, Mellado E. Point Mutations in the 14-α Sterol Demethylase Cyp51A or Cyp51C Could Contribute to Azole Resistance in Aspergillus flavus. Genes (Basel) 2020; 11:genes11101217. [PMID: 33080784 PMCID: PMC7602989 DOI: 10.3390/genes11101217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022] Open
Abstract
Infections caused by Aspergillus species are being increasingly reported. Aspergillus flavus is the second most common species within this genus causing invasive infections in humans, and isolates showing azole resistance have been recently described. A. flavus has three cyp51-related genes (cyp51A, cyp51B, and cyp51C) encoding 14-α sterol demethylase-like enzymes which are the target of azole drugs. In order to study triazole drug resistance in A. flavus, three strains showing reduced azole susceptibility and 17 azole susceptible isolates were compared. The three cyp51-related genes were amplified and sequenced. A comparison of the deduced Cyp51A, Cyp51B, and Cyp51C protein sequences with other protein sequences from orthologous genes in different filamentous fungi led to a protein identity that ranged from 50% to 80%. Cyp51A and Cyp51C presented several synonymous and non-synonymous point mutations among both susceptible and non-susceptible strains. However, two amino acid mutations were present only in two resistant isolates: one strain harbored a P214L substitution in Cyp51A, and another a H349R in Cyp51C that also showed an increase of cyp51A and cyp51C gene expression compared to the susceptible strain ATCC2004304. Isolates that showed reduced in vitro susceptibility to clinical azoles exhibited a different susceptibility profile to demethylation inhibitors (DMIs). Although P214L substitution might contribute to azole resistance, the role of H349R substitution together with changes in gene expression remains unclear.
Collapse
Affiliation(s)
- Jose Lucio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
| | - Irene Gonzalez-Jimenez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
| | - Olga Rivero-Menendez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), ISCIII, Majadahonda, 28220 Madrid, Spain
| | - Teresa Pelaez
- Hospital Universitario Central de Asturias, Fundación para la Investigación Biosanitaria del Principado de Asturias (FINBA), Oviedo, 33011 Asturias, Spain;
| | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), ISCIII, Majadahonda, 28220 Madrid, Spain
| | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (J.L.); (I.G.-J.); (O.R.-M.); (A.A.-I.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), ISCIII, Majadahonda, 28220 Madrid, Spain
- Correspondence:
| |
Collapse
|
22
|
Escribano P, Rodríguez-Sánchez B, Díaz-García J, Martín-Gómez MT, Ibáñez-Martínez E, Rodríguez-Mayo M, Peláez T, García-Gómez de la Pedrosa E, Tejero-García R, Marimón JM, Reigadas E, Rezusta A, Labayru-Echeverría C, Pérez-Ayala A, Ayats J, Cobo F, Pazos C, López-Soria L, Alastruey-Izquierdo A, Muñoz P, Guinea J. Azole resistance survey on clinical Aspergillus fumigatus isolates in Spain. Clin Microbiol Infect 2020; 27:1170.e1-1170.e7. [PMID: 33010446 DOI: 10.1016/j.cmi.2020.09.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We aimed to assess the percentage of azole resistance in Aspergillus fumigatus in Spain. METHODS Thirty participating Spanish hospitals stored all morphologically identified A. fumigatus sensu lato clinical isolates-regardless their clinical significance-from 15 February to 14 May 2019. Isolates showing azole resistance according to the EUCAST 9.3.2 methodology were molecularly identified and the cyp51A gene was studied in A. fumigatus sensu stricto isolates. RESULTS Eight hundred and forty-seven isolates from 725 patients were collected in 29 hospitals (A. fumigatus sensu stricto (n = 828) and cryptic species (n = 19)). Isolates were mostly from the lower respiratory tract (94.0%; 797/847). Only cryptic species were amphotericin B resistant. Sixty-three (7.4%) out of the 847 isolates were resistant to ≥1 azole(s). Azole resistance was higher in cryptic species than in A. fumigatus sensu stricto (95%, 18/19 vs. 5.5%, 45/828); isavuconazole was associated to the lowest number of non-wild type isolates. The dominant mechanism of resistance was the presence of TR34-L98H substitutions (n = 24 out of 63). Out of the 725 patients, 48 (6.6%) carried either cryptic species (n = 14) or A. fumigatus sensu stricto (n = 34; 4.7%) resistant isolates. Aspergillus fumigatus sensu stricto harbouring either the TR34-L98H (n = 19) or TR46/Y121F/T289A (n = 1) mutations were detected in patients in hospitals located at 7/24 studied cities. DISCUSSION Of the patients, 6.6% carry azole-resistant A. fumigatus sensu lato isolates in Spain. TR34-L98H is the dominant cyp51A gene substitutions, although its presence is not widespread.
Collapse
Affiliation(s)
- Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Belén Rodríguez-Sánchez
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - Judith Díaz-García
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | | | - María Rodríguez-Mayo
- Servicio de Microbiología Clínica, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Teresa Peláez
- Servicio de Microbiología, Hospital Universitario Central de Asturias, Oviedo, Spain; Fundacion para la Investigación y la Innovación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Elia García-Gómez de la Pedrosa
- Servicio de Microbiología, Hospital Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Tejero-García
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología Clínica del Hospital Universitario Reina Sofía, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica, Córdoba, Spain
| | - José María Marimón
- Biodonostia, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group; Donostialdea Integrated Health Organisation, Microbiology Department, Donostia, Spain
| | - Elena Reigadas
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Antonio Rezusta
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Ana Pérez-Ayala
- Servicio de Microbiología, Hospital 12 de Octubre, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Josefina Ayats
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Fernando Cobo
- Instituto de Investigación Biosanitaria IBS, Granada, Spain; Department of Microbiology, University Hospital Virgen de las Nieves, Granada, Spain
| | - Carmen Pazos
- Servicio de Microbiología Clínica, Complejo Hospitalario Universitario de Cáceres, Cáceres, Spain
| | - Leyre López-Soria
- Servicio de Microbiología, Hospital Universitario Cruces, Barakaldo, Spain; Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Spain
| | - Ana Alastruey-Izquierdo
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Mycology Reference Laboratory, National Centre for Microbiology (ISCIII), Madrid, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Spain
| | - Jesús Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain.
| | | |
Collapse
|
23
|
Risum M, Hare RK, Gertsen JB, Kristensen L, Johansen HK, Helweg-Larsen J, Abou-Chakra N, Pressler T, Skov M, Jensen-Fangel S, Arendrup MC. Azole-Resistant Aspergillus fumigatus Among Danish Cystic Fibrosis Patients: Increasing Prevalence and Dominance of TR 34/L98H. Front Microbiol 2020; 11:1850. [PMID: 32903400 PMCID: PMC7438406 DOI: 10.3389/fmicb.2020.01850] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
Azole-resistant (azole-R) Aspergillus is an increasing challenge worldwide. Patients with cystic fibrosis (CF) are at risk of Aspergillus colonization and disease due to a favorable lung environment for microorganisms. We performed a nationwide study in 2018 of azole-non-susceptible Aspergillus in CF patients and compared with data from two prior studies. All airway samples with mold isolates from patients monitored at the two CF centers in Denmark (RH, Jan-Sept and AUH, Jan-Jun) were included. Classical species identification (morphology and thermo-tolerance) was performed and MALDI-TOF/β-tubulin sequencing was performed if needed. Susceptibility was determined using EUCAST E.Def 10.1, and E.Def 9.3.2. cyp51A sequencing and STRAf genotyping were performed for azole-non-susceptible isolates and relevant sequential isolates. In total, 340 mold isolates from 159 CF patients were obtained. The most frequent species were Aspergillus fumigatus (266/340, 78.2%) and Aspergillus terreus (26/340, 7.6%). Azole-R A. fumigatus was cultured from 7.3% (10/137) of patients, including 9.5% (9/95) of patients at RH and 2.4% at AUH (1/42), respectively. In a 10-year perspective, azole-non-susceptibility increased numerically among patients at RH (10.5% in 2018 vs 4.5% in 2007-2009). Cyp51A resistance mechanisms were found in nine azole-R A. fumigatus from eight CF patients. Five were of environmental origin (TR34/L98H), three were human medicine-driven (two M220K and one M220R), and one was novel (TR34 3/L98H) and found in a patient who also harbored a TR34/L98H isolate. STRAf genotyping identified 27 unique genotypes among 45 isolates and ≥2 genotypes in 8 of 12 patients. This included one patient carrying two unique TR34/L98H isolates, a rare phenomenon. Genotyping of sequential TR34 3/L98H and TR34/L98H isolates from the same patient showed only minor differences in 1/9 markers. Finally, azole-R A. terreus was found in three patients including two with Cyp51A alterations (M217I and G51A, respectively). Azole-R A. fumigatus is increasing among CF patients in Denmark with the environmentally associated resistance TR34/L98H mechanism being dominant. Mixed infections (wildtype/non-wildtype and several non-wildtypes) and a case of potential additional tandem repeat acquisition in vivo were found. However, similar genotypes were identified from another patient (and outside this study), potentially suggesting a predominant TR34/L98H clone in DK. These findings suggest an increasing prevalence and complexity of azole resistance in A. fumigatus.
Collapse
Affiliation(s)
- Malene Risum
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
| | | | - Jan Berg Gertsen
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Kristensen
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Tacjana Pressler
- Cystic Fibrosis Center Copenhagen, Department of Pediatrics and Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Marianne Skov
- Cystic Fibrosis Center Copenhagen, Department of Pediatrics and Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Søren Jensen-Fangel
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Although clinical outcomes in the treatment of aspergillosis have markedly improved with the availability of newer triazoles, the development of resistance to these antifungals, especially in Aspergillus fumigatus, is a growing concern. The purpose of this review is to provide an update on azole resistance mechanisms and their epidemiology in A. fumigatus, the clinical implications of azole resistance, and to discuss future treatment options against azole-resistant aspergillosis. RECENT FINDINGS Resistance may develop through either patient or environmental azole exposure. Environmental exposure is the most prevalent means of resistance development, and these isolates can cause disease in various at-risk groups, which now include those with influenza, and potentially COVID-19. Although current treatment options are limited, newer therapies are in clinical development. These include agents with novel mechanisms of action which have in vitro and in vivo activity against azole-resistant A. fumigatus. SUMMARY Azole-resistant A. fumigatus is an emerging threat that hampers our ability to successfully treat patients with aspergillosis. Certain geographic regions and patient populations appear to be at increased risk for this pathogen. As new patient groups are increasingly recognized to be at increased risk for invasive aspergillosis, studies to define the epidemiology and management of azole-resistant A. fumigatus are critically needed. While treatment options are currently limited, new agents under clinical development may offer hope.
Collapse
|
25
|
Ahangarkani F, Puts Y, Nabili M, Khodavaisy S, Moazeni M, Salehi Z, Laal Kargar M, Badali H, Meis JF. First azole-resistant Aspergillus fumigatus isolates with the environmental TR 46 /Y121F/T289A mutation in Iran. Mycoses 2020; 63:430-436. [PMID: 32056319 PMCID: PMC7217147 DOI: 10.1111/myc.13064] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Background Azole resistance in Aspergillus fumigatus is an emerging problem and reported from all continents. As triazole antifungals are the mainstay of therapy in the management of invasive aspergillosis, azole‐resistant A fumigatus has become a major medical concern and with complicated clinical management. Objective Screening of environmental presence of azole‐resistant A fumigatus in Iran. Methods Compost from Northern Iran, collected between 2017 and 2018, was screened for the presence of azole‐resistant A fumigatus with azole‐containing agar. Phenotypic MICs were obtained from selected, molecularly confirmed isolates. cyp51A gene sequencing and genotyping of azole‐resistant isolates were done. Results Among 300 compost samples, three A fumigatus isolates had high voriconazole MICs (≥16 mg/L) and harboured the TR46/Y121F/T289A mutation in the cyp51A gene. Microsatellite typing of these isolates showed that two strains had the same allele across all nine examined microsatellite loci and were genotypically related to Indian azole‐resistant strains. The other isolate had a different genotype. Conclusion This is the first report of A fumigatus with TR46/Y121F/T289A mutation from the region. Monitoring and surveillance of antifungal susceptibility of clinical A fumigatus is warranted in Iran and elsewhere in the region.
Collapse
Affiliation(s)
- Fatemeh Ahangarkani
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Ynze Puts
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Mojtaba Nabili
- Department of Medical Sciences, Sari Branch, Islamic Azad University, Sari, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Moazeni
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Salehi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Melika Laal Kargar
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamid Badali
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,ECMM Excellence Center for Medical Mycology, Centre of Expertise in Mycology Radboudumc, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Aspergillus fumigatus Clinical Isolates Carrying CYP51A with TR34/L98H/S297T/F495I Substitutions Detected after Four-Year Retrospective Azole Resistance Screening in Brazil. Antimicrob Agents Chemother 2020; 64:AAC.02059-19. [PMID: 31871090 DOI: 10.1128/aac.02059-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Azole antifungal resistance in Aspergillus fumigatus is a worldwide concern. As in most public hospitals in Brazil, antifungal susceptibility tests are not routinely performed for filamentous fungi at our institution. A 4-year retrospective azole antifungal resistance screening revealed two azole-resistant A. fumigatus clinical isolates carrying the CYP51A TR34 (34-bp tandem repeat)/L98H (change of L to H at position 98)/S297T/F495I resistance mechanism mutations, obtained from two unrelated patients. Broth microdilution antifungal susceptibility testing showed high MICs for itraconazole, posaconazole, and miconazole. Short tandem repeat (STR) typing analysis presented high levels of similarity between these two isolates and clinical isolates with the same mutations reported from the Netherlands, Denmark, and China, as well as environmental isolates from Taiwan. Our findings might indicate that active searching for resistant A. fumigatus is necessary. They also represent a concern considering that our hospital provides tertiary care assistance to immunocompromised patients who may be exposed to resistant environmental isolates. We also serve patients who receive prophylactic antifungal therapy or treatment for invasive fungal infections for years. In these two situations, isolates resistant to the antifungal in use may be selected within the patients themselves. We do not know the potential of this azole-resistant A. fumigatus strain to spread throughout our country. In this scenario, the impact on the epidemiology and use of antifungal drugs will significantly alter patient care, as in other parts of the world. In summary, this finding is an important contribution to alert hospital laboratories conducting routine microbiological testing to perform azole resistance surveillance and antifungal susceptibility tests of A. fumigatus isolates causing infection or colonization in patients at high risk for systemic aspergillosis.
Collapse
|
27
|
van der Torre MH, Novak-Frazer L, Rautemaa-Richardson R. Detecting Azole-Antifungal Resistance in Aspergillus fumigatus by Pyrosequencing. J Fungi (Basel) 2020; 6:jof6010012. [PMID: 31936898 PMCID: PMC7151159 DOI: 10.3390/jof6010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Guidelines on the diagnosis and management of Aspergillus disease recommend a multi-test approach including CT scans, culture, fungal biomarker tests, microscopy and fungal PCR. The first-line treatment of confirmed invasive aspergillosis (IA) consists of drugs in the azole family; however, the emergence of azole-resistant isolates has negatively impacted the management of IA. Failure to detect azole-resistance dramatically increases the mortality rates of azole-treated patients. Despite drug susceptibility tests not being routinely performed currently, we suggest including resistance testing whilst diagnosing Aspergillus disease. Multiple tools, including DNA sequencing, are available to screen for drug-resistant Aspergillus in clinical samples. This is particularly beneficial as a large proportion of IA samples are culture negative, consequently impeding susceptibility testing through conventional methods. Pyrosequencing is a promising in-house DNA sequencing method that can rapidly screen for genetic hotspots associated with antifungal resistance. Pyrosequencing outperforms other susceptibility testing methods due to its fast turnaround time, accurate detection of polymorphisms within critical genes, including simultaneous detection of wild type and mutated sequences, and—most importantly—it is not limited to specific genes nor fungal species. Here we review current diagnostic methods and highlight the potential of pyrosequencing to aid in a diagnosis complete with a resistance profile to improve clinical outcomes.
Collapse
Affiliation(s)
- Mireille H. van der Torre
- Mycology Reference Centre, Excellence Centre of Medical Mycology (ECMM), Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (L.N.-F.)
| | - Lilyann Novak-Frazer
- Mycology Reference Centre, Excellence Centre of Medical Mycology (ECMM), Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (L.N.-F.)
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, NIHR Manchester Biomedical Research Centre (BRC) at the Manchester Academic Health Science Centre, The University of Manchester, Manchester M23 9LT, UK
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre, Excellence Centre of Medical Mycology (ECMM), Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (L.N.-F.)
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, NIHR Manchester Biomedical Research Centre (BRC) at the Manchester Academic Health Science Centre, The University of Manchester, Manchester M23 9LT, UK
- Department of Infectious Diseases, Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK
- Correspondence: ; Tel.: +44-161-291-5941
| |
Collapse
|