1
|
Jowsey WJ, Cook GM, McNeil MB. Antibiotic resistance in Mycobacterium tuberculosis alters tolerance to cell wall-targeting inhibitors. JAC Antimicrob Resist 2024; 6:dlae086. [PMID: 38836195 PMCID: PMC11148391 DOI: 10.1093/jacamr/dlae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/11/2024] [Indexed: 06/06/2024] Open
Abstract
Background A limited ability to eliminate drug-resistant strains of Mycobacterium tuberculosis is a major contributor to the morbidity of TB. Complicating this problem, little is known about how drug resistance-conferring mutations alter the ability of M. tuberculosis to tolerate antibiotic killing. Here, we investigated if drug-resistant strains of M. tuberculosis have an altered ability to tolerate killing by cell wall-targeting inhibitors. Methods Bacterial killing and MIC assays were used to test for antibiotic tolerance and synergy against a panel of drug-resistant M. tuberculosis strains. Results Our results demonstrate that vancomycin and thioacetazone exhibit increased killing of diverse drug-resistant strains. Mutations in mmaA4 and mmpL3 increased vancomycin killing, which was consistent with vancomycin synergizing with thioacetazone and MmpL3-targeting inhibitors. In contrast, mutations in the mce1 operon conferred tolerance to vancomycin. Conclusions Overall, this work demonstrates how drug-resistant strains experience perturbations in cell-wall production that alters their tolerance to killing by cell wall-targeting inhibitors.
Collapse
Affiliation(s)
- William J Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Yang D, Zhang Y, Sow IS, Liang H, El Manssouri N, Gelbcke M, Dong L, Chen G, Dufrasne F, Fontaine V, Li R. Antimycobacterial Activities of Hydroxamic Acids and Their Iron(II/III), Nickel(II), Copper(II) and Zinc(II) Complexes. Microorganisms 2023; 11:2611. [PMID: 37894269 PMCID: PMC10609363 DOI: 10.3390/microorganisms11102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Hydroxamic acid (HA) derivatives display antibacterial and antifungal activities. HA with various numbers of carbon atoms (C2, C6, C8, C10, C12 and C17), complexed with different metal ions, including Fe(II/III), Ni(II), Cu(II) and Zn(II), were evaluated for their antimycobacterial activities and their anti-biofilm activities. Some derivatives showed antimycobacterial activities, especially in biofilm growth conditions. For example, 20-100 µM of HA10Fe2, HA10FeCl, HA10Fe3, HA10Ni2 or HA10Cu2 inhibited Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium marinum biofilm development. HA10Fe2, HA12Fe2 and HA12FeCl could even attack pre-formed Pseudomonas aeruginosa biofilms at higher concentrations (around 300 µM). The phthiocerol dimycocerosate (PDIM)-deficient Mycobacterium tuberculosis H37Ra was more sensitive to the ion complexes of HA compared to other mycobacterial strains. Furthermore, HA10FeCl could increase the susceptibility of Mycobacterium bovis BCG to vancomycin. Proteomic profiles showed that the potential targets of HA10FeCl were mainly related to mycobacterial stress adaptation, involving cell wall lipid biosynthesis, drug resistance and tolerance and siderophore metabolism. This study provides new insights regarding the antimycobacterial activities of HA and their complexes, especially about their potential anti-biofilm activities.
Collapse
Affiliation(s)
- Dong Yang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China; (D.Y.)
| | - Yanfang Zhang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China; (D.Y.)
| | - Ibrahima Sory Sow
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Hongping Liang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China; (D.Y.)
| | - Naïma El Manssouri
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Michel Gelbcke
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Lina Dong
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
| | - Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - François Dufrasne
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Véronique Fontaine
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Rongshan Li
- Department of Nephrology, Shanxi Kidney Disease Institute, The Affiliated People’s Hospital of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan 030001, China
| |
Collapse
|
3
|
Zhou Z, Wattiez R, Constant P, Marrakchi H, Soetaert K, Mathys V, Fontaine V, Zeng S. Telacebec Interferes with Virulence Lipid Biosynthesis Protein Expression and Sensitizes to Other Antibiotics. Microorganisms 2023; 11:2469. [PMID: 37894127 PMCID: PMC10609169 DOI: 10.3390/microorganisms11102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a public health issue, particularly due to multi-drug-resistant Mtb. The bacillus is wrapped in a waxy envelope containing lipids acting as essential virulence factors, accounting for the natural antibiotic resistance of mycobacteria. Telacebec (previously known as Q203) is a promising new anti-TB agent inhibiting the cytochrome bc1 complex of a mycobacterial electron transport chain (ETC). Here, we show that the telacebec-challenged M. bovis BCG exhibited a reduced expression of proteins involved in the synthesis of phthiocerol dimycocerosates (PDIMs)/phenolic glycolipids (PGLs), lipid virulence factors associated with cell envelope impermeability. Consistently, telacebec, at concentrations lower than its MIC, downregulated the transcription of a PDIM/PGL-synthesizing operon, suggesting a metabolic vulnerability triggered by the drug. The drug was able to synergize on BCG with rifampicin or vancomycin, the latter being a drug exerting a marginal effect on PDIM-bearing bacilli. Telacebec at a concentration higher than its MIC had no detectable effect on cell wall PDIMs, as shown by TLC analysis, a finding potentially explained by the retaining of previously synthesized PDIMs due to the inhibition of growth. The study extends the potential of telacebec, demonstrating an effect on mycobacterial virulence lipids, allowing for the development of new anti-TB strategies.
Collapse
Affiliation(s)
- Zhiyu Zhou
- Microbiology, Bioorganic & Macromolecular Chemistry Research Unit, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Patricia Constant
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), 31077 Toulouse, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), 31077 Toulouse, France
| | - Karine Soetaert
- National Reference Laboratory "Mycobacterium", Sciensano, 1180 Uccle, Belgium
| | - Vanessa Mathys
- National Reference Laboratory "Mycobacterium", Sciensano, 1180 Uccle, Belgium
| | - Véronique Fontaine
- Microbiology, Bioorganic & Macromolecular Chemistry Research Unit, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Sheng Zeng
- School of Nursing and Health, Nanfang College Guangzhou, Guangzhou 510970, China
| |
Collapse
|
4
|
He C, Li B, Gong Z, Huang S, Liu X, Wang J, Xie J, Shi T. Polyphosphate kinase 1 is involved in formation, the morphology and ultramicrostructure of biofilm of Mycobacterium smegmatis and its survivability in macrophage. Heliyon 2023; 9:e14513. [PMID: 36967885 PMCID: PMC10034464 DOI: 10.1016/j.heliyon.2023.e14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The most unique characteristic of Mycobacterium tuberculosis is persistence in the human host, and the biofilm formation is related to the persistance. Polyphosphate (polyP) kinase 1 (PPK1) is conserved in Mycobacteria and is responsible for polyP synthesis. polyP is a chain molecule linked by high-energy phosphate bonds, which is considered to play a very important role in bacterial persistence. However, the relationship of PPK1 and mycobacterial biofilm formation is still adequately unclear. In current study, ppk1-deficient mutant (MT), ppk1-complemented (CT) and wild-type strains of M. smegmatis mc2 155 were used to investigate the formation, morphology and ultramicrostructure of the biofilm and to analyze the lipid levels and susceptibility to vancomycin antibiotic. And then WT, MT and CT strains were used to infect macrophages and to analyze the expression levels of various inflammatory factors, respectively. We found that PPK1 was required for M. smegmatis polyP production in vivo and polyP deficiency not only attenuated the biofilm formation, but also altered the phenotype and ultramicrostructure of the biofilm and reduced the cell lipid composition (except for C16.1 and C17.1, most of the fatty acid components from C8-C24). Moreover, the ppk1-deficient mutant was also significantly more sensitive to vancomycin which targets the cell wall, and its ability to survive in macrophages was decreased, which was related to the change of the expression level of inflammatory factors in macrophage. This study demonstrates that the PPK1 can affect the biofilm structure through affecting the content of short chain fatty acid and promote intracellular survival of M. smegmatis by altering the expression of inflammatory factors. These findings establish a basis for investigating the role of PPK1 in the persistence of M. tuberculosis, and provide clues for treating latent infection of M. tuberculosis with PPK1 as a potential drug target.
Collapse
Affiliation(s)
- Cailin He
- Medical School of Hubei Minzu University, Enshi, 445000, China
| | - Bo Li
- Medical School of Hubei Minzu University, Enshi, 445000, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Sheng Huang
- Medical School of Hubei Minzu University, Enshi, 445000, China
- Institute of Selenium Science and Industry of Hubei Minzu University, Enshi, 445000, China
| | - Xu Liu
- Medical School of Hubei Minzu University, Enshi, 445000, China
- Institute of Selenium Science and Industry of Hubei Minzu University, Enshi, 445000, China
| | - Jiajun Wang
- Medical School of Hubei Minzu University, Enshi, 445000, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Corresponding author. Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Tingyu Shi
- Medical School of Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Enshi, 445000, China
- Institute of Selenium Science and Industry of Hubei Minzu University, Enshi, 445000, China
- Corresponding author. Medical School of Hubei Minzu University, Enshi, 445000, China.
| |
Collapse
|
5
|
Ravon F, Menchi E, Lambot C, Al Kattar S, Chraibi S, Remmelink M, Fontaine V, Wauthoz N. In vitro and in vivo local tolerability of a synergistic anti-tuberculosis drug combination intended for pulmonary delivery. J Appl Toxicol 2023; 43:298-311. [PMID: 35997255 DOI: 10.1002/jat.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 01/17/2023]
Abstract
A drug combination, vancomycin (VAN) plus tetrahydrolipstatin (THL), has demonstrated an effective synergistic action in vitro against Mycobacterium tuberculosis (Mtb). The poor oral bioavailability of VAN and THL and the predominant tropism of Mtb infection to the lungs make their pulmonary administration very attractive. To evaluate their local tolerability, bronchial cells, alveolar cells and monocytes were exposed to concentrations around and above their minimal inhibitory concentration (MIC). The VAN had no inhibitory activity on the tested human cell lines, even at a concentration 125 times higher than its MIC, whereas the THL, alone or in combination with VAN, presented a cytostatic action. Monolayer epithelium showed no significant irreversible damage at concentrations up to 100 times the combination MIC. BALB/cAnNRj mice exposed to concentration of 50 times the combination MIC delivered endotracheally 3 times a week for 3 weeks showed no clinical signs or significant weight loss. The increase of proinflammatory biomarkers (i.e., IL-1, IL-6, TNF-α and proportion of inflammatory cells) and cytotoxicity in bronchoalveolar lavage fluid (BALF) were non-significant. Lung histopathology did not show significant tissue damage. The VAN/THL combination at doses up to 50 times the combination MIC is found to be thus well tolerated by pulmonary route. This study is a promising result and encouraging further investigations of pulmonary administration of VAN/THL combination as dry powder for anti-tuberculosis treatment.
Collapse
Affiliation(s)
- Faustine Ravon
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium.,Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Elena Menchi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Coralie Lambot
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Sahar Al Kattar
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium.,Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Selma Chraibi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Myriam Remmelink
- Department of Pathology, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Véronique Fontaine
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
6
|
Samukawa N, Yamaguchi T, Ozeki Y, Matsumoto S, Igarashi M, Kinoshita N, Hatano M, Tokudome K, Matsunaga S, Tomita S. An efficient CRISPR interference-based prediction method for synergistic/additive effects of novel combinations of anti-tuberculosis drugs. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748577 DOI: 10.1099/mic.0.001285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is treated by chemotherapy with multiple anti-TB drugs for a long period, spanning 6 months even in a standard course. In perspective, to prevent the emergence of antimicrobial resistance, novel drugs that act synergistically or additively in combination with major anti-TB drugs and, if possible, shorten the duration of TB therapy are needed. However, their combinatorial effect cannot be predicted until the lead identification phase of the drug development. Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is a powerful genetic tool that enables high-throughput screening of novel drug targets. The development of anti-TB drugs promises to be accelerated by CRISPRi. This study determined whether CRISPRi could be applicable for predictive screening of the combinatorial effect between major anti-TB drugs and an inhibitor of a novel target. In the checkerboard assay, isoniazid killed Mycobacterium smegmatis synergistically or additively in combinations with rifampicin or ethambutol, respectively. The susceptibility to rifampicin and ethambutol was increased by knockdown of inhA, which encodes a target molecule of isoniazid. Additionally, knockdown of rpoB, which encodes a target molecule of rifampicin, increased the susceptibility to isoniazid and ethambutol, which act synergistically with rifampicin in the checkerboard assay. Moreover, CRISPRi could successfully predict the synergistic action of cyclomarin A, a novel TB drug candidate, with isoniazid or rifampicin. These results demonstrate that CRISPRi is a useful tool not only for drug target exploration but also for screening the combinatorial effects of novel combinations of anti-TB drugs. This study provides a rationale for anti-TB drug development using CRISPRi.
Collapse
Affiliation(s)
- Noriaki Samukawa
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takehiro Yamaguchi
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Present address: Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Toyama 1-23-1, Shinjuku-ku, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Masayuki Igarashi
- Laboratory of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Naoko Kinoshita
- Laboratory of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Masaki Hatano
- Laboratory of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Kentaro Tokudome
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shinji Matsunaga
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Tomita
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Babin BM, Keller LJ, Pinto Y, Li VL, Eneim AS, Vance SE, Terrell SM, Bhatt AS, Long JZ, Bogyo M. Identification of covalent inhibitors that disrupt M. tuberculosis growth by targeting multiple serine hydrolases involved in lipid metabolism. Cell Chem Biol 2022; 29:897-909.e7. [PMID: 34599874 PMCID: PMC9252067 DOI: 10.1016/j.chembiol.2021.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
The increasing incidence of antibiotic-resistant Mycobacterium tuberculosis infections is a global health threat necessitating the development of new antibiotics. Serine hydrolases (SHs) are a promising class of targets because of their importance for the synthesis of the mycobacterial cell envelope. We screen a library of small molecules containing serine-reactive electrophiles and identify narrow-spectrum inhibitors of M. tuberculosis growth. Using these lead molecules, we perform competitive activity-based protein profiling and identify multiple SH targets, including enzymes with uncharacterized functions. Lipidomic analyses of compound-treated cultures reveal an accumulation of free lipids and a substantial decrease in lipooligosaccharides, linking SH inhibition to defects in cell envelope biogenesis. Mutant analysis reveals a path to resistance via the synthesis of mycocerates, but not through mutations to SH targets. Our results suggest that simultaneous inhibition of multiple SH enzymes is likely to be an effective therapeutic strategy for the treatment of M. tuberculosis infections.
Collapse
Affiliation(s)
- Brett M Babin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura J Keller
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yishay Pinto
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Veronica L Li
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Andrew S Eneim
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Summer E Vance
- Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie M Terrell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Fouotsa H, Mkounga P, Lannang AM, Vanheuverzwijn J, Zhou Z, Leblanc K, Rharrabti S, Nkengfack AE, Gallard JF, Fontaine V, Meyer F, Poupon E, Le Pogam P, Beniddir MA. Pyrrovobasine, hybrid alkylated pyrraline monoterpene indole alkaloid pseudodimer discovered using a combination of mass spectral and NMR-based machine learning annotations. Org Biomol Chem 2021; 20:98-105. [PMID: 34596204 DOI: 10.1039/d1ob01791h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new vobasine-tryptamine-based monoterpene indole alkaloid pseudodimer was isolated from the stem bark of Voacanga africana. As a minor constituent occurring in a thoroughly investigated plant, this molecule was targeted based on a molecular networking strategy and a rational MS2-guided phytochemical investigation led to its isolation. Its structure was formally established based on HRMS, 1D/2D NMR data, and the application of the tool Small Molecule Accurate Recognition Technology (SMART 2.0). Its absolute configuration was assigned by the exciton chirality method and TD-DFT ECD calculations. Besides featuring an unprecedented intermonomeric linkage in the small group of vobasine/tryptamine hybrids, pyrrovobasine also represents the first pyrraline-containing representative in the whole monoterpene indole alkaloids group. Biosynthetic hypotheses possibly underpinning these structural oddities are proposed here.
Collapse
Affiliation(s)
- Hugues Fouotsa
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France. .,Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, Po Box 1050, Belgium.,Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Pierre Mkounga
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Alain Meli Lannang
- Department of Chemistry, Higher Teachers Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon
| | - Jérôme Vanheuverzwijn
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, Po Box 1050, Belgium
| | - Zhiyu Zhou
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, Po Box 1050, Belgium
| | - Karine Leblanc
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| | - Somia Rharrabti
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| | - Augustin Ephrem Nkengfack
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Véronique Fontaine
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, Po Box 1050, Belgium
| | - Franck Meyer
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, Po Box 1050, Belgium
| | - Erwan Poupon
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| | - Pierre Le Pogam
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| | - Mehdi A Beniddir
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| |
Collapse
|
9
|
Fouotsa H, Le Pogam P, Mkounga P, Lannang AM, Bernadat G, Vanheuverzwijn J, Zhou Z, Leblanc K, Rharrabti S, Nkengfack AE, Gallard JF, Fontaine V, Meyer F, Poupon E, Beniddir MA. Voatriafricanines A and B, Trimeric Vobasine-Aspidosperma-Aspidosperma Alkaloids from Voacanga africana. JOURNAL OF NATURAL PRODUCTS 2021; 84:2755-2761. [PMID: 34569237 DOI: 10.1021/acs.jnatprod.1c00812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Voatriafricanines A and B (1 and 2), the first examples of vobasine-aspidosperma-aspidosperma monoterpene trisindole alkaloids, were isolated from the stem barks of Voacanga africana, guided by a molecular networking strategy. Their structures, including absolute configurations, were elucidated by spectroscopic methods and ECD calculations. Compounds 1 and 2 possess intramolecular hydrogen bonding, sufficiently robust to transfer homonuclear and heteronuclear magnetizations. Compound 1 exhibited potent antimycobacterial activity with no discernible cytotoxic activity.
Collapse
Affiliation(s)
- Hugues Fouotsa
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, PO Box 1050, 1050 Bruxelles, Belgium
| | - Pierre Le Pogam
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Pierre Mkounga
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Alain Meli Lannang
- Department of Chemistry, Higher Teachers Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon
| | - Guillaume Bernadat
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Jérôme Vanheuverzwijn
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, PO Box 1050, 1050 Bruxelles, Belgium
| | - Zhiyu Zhou
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, PO Box 1050, 1050 Bruxelles, Belgium
| | - Karine Leblanc
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Somia Rharrabti
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Augustin Ephrem Nkengfack
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Véronique Fontaine
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, PO Box 1050, 1050 Bruxelles, Belgium
| | - Franck Meyer
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, PO Box 1050, 1050 Bruxelles, Belgium
| | - Erwan Poupon
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Mehdi A Beniddir
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| |
Collapse
|
10
|
Khan SS, Sudasinghe TD, Landgraf AD, Ronning DR, Sucheck SJ. Total Synthesis of Tetrahydrolipstatin, Its Derivatives, and Evaluation of Their Ability to Potentiate Multiple Antibiotic Classes against Mycobacterium Species. ACS Infect Dis 2021; 7:2876-2888. [PMID: 34478259 PMCID: PMC8630808 DOI: 10.1021/acsinfecdis.1c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrahydrolipstatin (THL, 1a) has been shown to inhibit both mammalian and bacterial α/β hydrolases. In the case of bacterial systems, THL is a known inhibitor of several Mycobacterium tuberculosis hydrolases involved in mycomembrane biosynthesis. Herein we report a highly efficient eight-step asymmetric synthesis of THL using a route that allows modification of the THL α-chain substituent to afford compounds 1a through 1e. The key transformation in the synthesis was use of a (TPP)CrCl/Co2(CO)8-catalyzed regioselective and stereospecific carbonylation on an advanced epoxide intermediate to yield a trans-β-lactone. These compounds are modest inhibitors of Ag85A and Ag85C, two α/β hydrolases of M. tuberculosis involved in the biosynthesis of the mycomembrane. Among these compounds, 10d showed the highest inhibitory effect on Ag85A (34 ± 22 μM) and Ag85C (66 ± 8 μM), and its X-ray structure was solved in complex with Ag85C to 2.5 Å resolution. In contrast, compound 1e exhibited the best-in-class MICs of 50 μM (25 μg/mL) and 16 μM (8.4 μg/mL) against M. smegmatis and M. tuberculosis H37Ra, respectively, using a microtiter assay plate. Combination of 1e with 13 well-established antibiotics synergistically enhanced the potency of few of these antibiotics in M. smegmatis and M. tuberculosis H37Ra. Compound 1e applied at concentrations 4-fold lower than its MIC enhanced the MIC of the synergistic antibiotic by 2-256-fold. In addition to observing synergy with first-line drugs, rifamycin and isoniazid, the MIC of vancomycin against M. tuberculosis H37Ra was 65 μg/mL; however, the MIC was lowered to 0.25 μg/mL in the presence of 2.1 μg/mL 1e demonstrating the potential of targeting mycobacterial hydrolases involved in mycomembrane and peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Saniya S Khan
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Thanuja D Sudasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Alexander D Landgraf
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Steven J Sucheck
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
11
|
Zhang S, Qu X, Tang H, Wang Y, Yang H, Yuan W, Yue B. Diclofenac Resensitizes Methicillin-Resistant Staphylococcus aureus to β-Lactams and Prevents Implant Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100681. [PMID: 34258168 PMCID: PMC8261494 DOI: 10.1002/advs.202100681] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Indexed: 05/25/2023]
Abstract
Implant infections caused by methicillin-resistant Staphylococcus aureus (MRSA) can cause major complications during the perioperative period. Diclofenac, one of the most widely used nonsteroidal anti-inflammatory drugs, is often used to relieve pain and inflammation. In this study, it is found that high-dose diclofenac can inhibit the growth of MRSA, and does not easily induce drug-resistant mutations after continuous passage. However, low-doses diclofenac can resensitize bacteria to β-lactams, which help to circumvent drug resistance and improve the antibacterial efficacy of conventional antibiotics. Further, low-dose diclofenac in combination with β-lactams inhibit MRSA associated biofilm formation in implants. Transcriptomic and proteomic analyses indicate that diclofenac can reduce the expression of genes and proteins associated with β-lactam resistance: mecA, mecR, and blaZ; peptidoglycan biosynthesis: murA, murC, femA, and femB; and biofilm formation: altE and fnbP. Murine implant infection models indicate that diclofenac combined with β-lactams, can substantially alleviate MRSA infections in vivo. In addition, it is investigated that low dose diclofenac can inhibit MRSA antibiotic resistance via the mecA/blaZ pathway and related biofilms in implants. The synergistic effect of diclofenac and β-lactams might have promising applications for preventing perioperative infection, considering its multitarget effects against MRSA.
Collapse
Affiliation(s)
- Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - You Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Hongtao Yang
- Department of Plastic & Reconstructive SurgeryThe Ohio State UniversityColumbusOH43210USA
- School of Medical Science and EngineeringBeihang UniversityBeijing100191China
| | - Weien Yuan
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationSchool of PharmacyShanghai Jiao Tong UniversityShanghai200240China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghai200127China
| |
Collapse
|
12
|
Cavalier JF, Spilling CD, Durand T, Camoin L, Canaan S. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery. Eur J Med Chem 2020; 209:112908. [PMID: 33071055 DOI: 10.1016/j.ejmech.2020.112908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains the deadliest infectious disease worldwide with 1.5 million deaths in 2018, of which about 15% are attributed to resistant strains. Another significant example is Mycobacterium abscessus (M. abscessus), a nontuberculous mycobacteria (NTM) responsible for cutaneous and pulmonary infections, representing up to 95% of NTM infections in cystic fibrosis (CF) patients. M. abscessus is a new clinically relevant pathogen and is considered one of the most drug-resistant mycobacteria for which standardized chemotherapeutic regimens are still lacking. Together the emergence of M. tb and M. abscessus multi-drug resistant strains with ineffective and expensive therapeutics, have paved the way to the development of new classes of anti-mycobacterial agents offering additional therapeutic options. In this context, specific inhibitors of mycobacterial lipolytic enzymes represent novel and promising antibacterial molecules to address this challenging issue. The results highlighted here include a complete overview of the antibacterial activities, either in broth medium or inside infected macrophages, of two families of promising and potent anti-mycobacterial multi-target agents, i.e. oxadiazolone-core compounds (OX) and Cyclophostin & Cyclipostins analogs (CyC); the identification and biochemical validation of their effective targets (e.g., the antigen 85 complex and TesA playing key roles in mycolic acid metabolism) together with their respective crystal structures. To our knowledge, these are the first families of compounds able to target and impair replicating as well as intracellular bacteria. We are still impelled in deciphering their mode of action and finding new potential therapeutic targets against mycobacterial-related diseases.
Collapse
Affiliation(s)
- Jean-François Cavalier
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| | - Christopher D Spilling
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, United States
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Luc Camoin
- Aix-Marseille Univ., INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| |
Collapse
|
13
|
Wu Z, Wei W, Zhou Y, Guo H, Zhao J, Liao Q, Chen L, Zhang X, Zhou L. Integrated Quantitative Proteomics and Metabolome Profiling Reveal MSMEG_6171 Overexpression Perturbing Lipid Metabolism of Mycobacterium smegmatis Leading to Increased Vancomycin Resistance. Front Microbiol 2020; 11:1572. [PMID: 32793136 PMCID: PMC7393984 DOI: 10.3389/fmicb.2020.01572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 06/17/2020] [Indexed: 01/29/2023] Open
Abstract
In recent years, the treatment of tuberculosis is once again facing a severe situation because the existing antituberculosis drugs have become weaker and weaker with the emergence of drug-resistant Mycobacterium tuberculosis (Mtb). The studies of cell division and cell cycle-related factors in Mtb are particularly important for the development of new drugs with broad-spectrum effects. Mycobacterium smegmatis (Msm) has been used as a model organism to study the molecular, physiological, and drug-resistant mechanisms of Mtb. Bioinformatics analysis has predicted that MSMEG_6171 is a MinD-like protein of the septum site-determining protein family associated with cell division in Mycobacterium smegmatis. In our study, we use ultrastructural analysis, proteomics, metabolomics, and molecular biology techniques to comprehensively investigate the function of MSMEG_6171. Overexpression of MSMEG_6171 in Msm resulted in elongated cells, suggesting an important role of MSMEG_6171 in regulating cell wall morphology. The MSMEG_6171 overexpression could enhance the bacterial resistance to vancomycin, ethionamide, meropenem, and cefamandole. The MSMEG_6171 overexpression could alter the lipid metabolism of Msm to cause the changes on cellular biofilm property and function, which enhances bacterial resistance to antibiotics targeting cell wall synthesis. MSMEG_6171 could also induce the glyceride and phospholipid alteration in vivo to exhibit the pleiotropic phenotypes and various cellular responses. The results showed that amino acid R249 in MSMEG_6171 was a key site that can affect the level of bacterial drug resistance, suggesting that ATPase activity is required for function.
Collapse
Affiliation(s)
- Zhuhua Wu
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Wenjing Wei
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Ying Zhou
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Huixin Guo
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Jiao Zhao
- School of Medicine, Jinan University, Guangzhou, China
| | - Qinghua Liao
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Liang Chen
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Xiaoli Zhang
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Lin Zhou
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
14
|
Tsenova L, Singhal A. Effects of host-directed therapies on the pathology of tuberculosis. J Pathol 2020; 250:636-646. [PMID: 32108337 DOI: 10.1002/path.5407] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has co-evolved with the human immune system and utilizes multiple strategies to persist within infected cells, to hijack several immune mechanisms, and to cause severe pathology and tissue damage in the host. This delays the efficacy of current antibiotic therapy and contributes to the evolution of multi-drug-resistant strains. These challenges led to the development of the novel approach in TB treatment that involves therapeutic targeting of host immune response to control disease pathogenesis and pathogen growth, namely, host-directed therapies (HDTs). Such HDT approaches can (1) enhance the effect of antibiotics, (2) shorten treatment duration for any clinical form of TB, (3) promote development of immunological memory that could protect against relapse, and (4) ameliorate the immunopathology including matrix destruction and fibrosis associated with TB. In this review we discuss TB-HDT candidates shown to be of clinical relevance that thus could be developed to reduce pathology, tissue damage, and subsequent impairment of pulmonary function. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liana Tsenova
- Department of Biological Sciences, New York City College of Technology, Brooklyn, NY, USA
| | - Amit Singhal
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Vaccine and Infectious Disease Research Centre (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
15
|
Guerra-De-Blas PDC, Bobadilla-Del-Valle M, Sada-Ovalle I, Estrada-García I, Torres-González P, López-Saavedra A, Guzmán-Beltrán S, Ponce-de-León A, Sifuentes-Osornio J. Simvastatin Enhances the Immune Response Against Mycobacterium tuberculosis. Front Microbiol 2019; 10:2097. [PMID: 31616387 PMCID: PMC6764081 DOI: 10.3389/fmicb.2019.02097] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis remains a serious threat worldwide. For this reason, it is necessary to identify agents that shorten the duration of treatment, strengthen the host immune system, and/or decrease the damage caused by the infection. Statins are drugs that reduce plasma cholesterol levels and have immunomodulatory, anti-inflammatory and antimicrobial effects. Although there is evidence that statins may contribute to the containment of Mycobacterium tuberculosis infection, their effects on peripheral blood mononuclear cells (PBMCs) involved in the immune response have not been previously described. Using PBMCs from 10 healthy subjects infected with M. tuberculosis H37Rv, we analyzed the effects of simvastatin on the treatment of the infections in an in vitro experimental model. Direct quantification of M. tuberculosis growth (in CFU/mL) was performed. Phenotypes and cell activation were assessed via multi-color flow cytometry. Culture supernatant cytokine levels were determined via cytokine bead arrays. The induction of apoptosis and autophagy was evaluated via flow cytometry and confocal microscopy. Simvastatin decreased the growth of M. tuberculosis in PBMCs, increased the proportion of NKT cells in culture, increased the expression of co-stimulatory molecules in monocytes, promoted the secretion of the cytokines IL-1β and IL-12p70, and activated apoptosis and autophagy in monocytes, resulting in a significant reduction in bacterial load. We also observed an increase in IL-10 production. We did not observe any direct antimycobacterial activity. This study provides new insight into the mechanism through which simvastatin reduces the mycobacterial load in infected PBMCs. These results demonstrate that simvastatin activates several immune mechanisms that favor the containment of M. tuberculosis infection, providing relevant evidence to consider statins as candidates for host-directed therapy. They also suggest that future studies are needed to define the roles of statin-induced anti-inflammatory mechanisms in tuberculosis treatment.
Collapse
Affiliation(s)
- Paola Del Carmen Guerra-De-Blas
- Laboratorio de Microbiología Clínica, Departamento de Infectología, Dirección de Medicina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miriam Bobadilla-Del-Valle
- Laboratorio de Microbiología Clínica, Departamento de Infectología, Dirección de Medicina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Isabel Sada-Ovalle
- Laboratorio de Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Iris Estrada-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Pedro Torres-González
- Laboratorio de Microbiología Clínica, Departamento de Infectología, Dirección de Medicina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alejandro López-Saavedra
- Unidad Biomédica de Investigación en Cáncer, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Silvia Guzmán-Beltrán
- Laboratorio de Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Alfredo Ponce-de-León
- Laboratorio de Microbiología Clínica, Departamento de Infectología, Dirección de Medicina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Sifuentes-Osornio
- Laboratorio de Microbiología Clínica, Departamento de Infectología, Dirección de Medicina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
16
|
Yang D, Vandenbussche G, Vertommen D, Evrard D, Abskharon R, Cavalier JF, Berger G, Canaan S, Khan MS, Zeng S, Wohlkönig A, Prévost M, Soumillion P, Fontaine V. Methyl arachidonyl fluorophosphonate inhibits Mycobacterium tuberculosis thioesterase TesA and globally affects vancomycin susceptibility. FEBS Lett 2019; 594:79-93. [PMID: 31388991 DOI: 10.1002/1873-3468.13555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 11/11/2022]
Abstract
Phthiocerol dimycocerosates and phenolic glycolipids (PGL) are considered as major virulence elements of Mycobacterium tuberculosis, in particular because of their involvement in cell wall impermeability and drug resistance. The biosynthesis of these waxy lipids involves multiple enzymes, including thioesterase A (TesA). We observed that purified recombinant M. tuberculosis TesA is able to dimerize in the presence of palmitoyl-CoA and our 3D structure model of TesA with this acyl-CoA suggests hydrophobic interaction requirement for dimerization. Furthermore, we identified that methyl arachidonyl fluorophosphonate, which inhibits TesA by covalently modifying the catalytic serine, also displays a synergistic antimicrobial activity with vancomycin further warranting the development of TesA inhibitors as valuable antituberculous drug candidates.
Collapse
Affiliation(s)
- Dong Yang
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Belgium
| | - Guy Vandenbussche
- Laboratory for the Structure and Function of Biological Membranes, Faculty of Sciences, Université Libre de Bruxelles (ULB), Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Damien Evrard
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Romany Abskharon
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.,VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Gilles Berger
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Belgium
| | | | - Mohammad Shahneawz Khan
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Sheng Zeng
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Belgium
| | - Alexandre Wohlkönig
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Martine Prévost
- Laboratory for the Structure and Function of Biological Membranes, Faculty of Sciences, Université Libre de Bruxelles (ULB), Belgium
| | - Patrice Soumillion
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Véronique Fontaine
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Belgium
| |
Collapse
|
17
|
Santucci P, Johansen MD, Point V, Poncin I, Viljoen A, Cavalier JF, Kremer L, Canaan S. Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria. Sci Rep 2019; 9:8667. [PMID: 31209261 PMCID: PMC6572852 DOI: 10.1038/s41598-019-45164-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/29/2019] [Indexed: 11/09/2022] Open
Abstract
Mycobacteria share with other actinomycetes the ability to produce large quantities of triacylglycerol (TAG), which accumulate as intracytoplasmic lipid inclusions (ILI) also known as lipid droplets (LD). Mycobacterium tuberculosis (M. tb), the etiologic agent of tuberculosis, acquires fatty acids from the human host which are utilized to synthesize TAG, subsequently stored in the form of ILI to meet the carbon and nutrient requirements of the bacterium during long periods of persistence. However, environmental factors governing mycobacterial ILI formation and degradation remain poorly understood. Herein, we demonstrated that in the absence of host cells, carbon excess and nitrogen starvation promote TAG accumulation in the form of ILI in M. smegmatis and M. abscessus, used as surrogate species of M. tb. Based on these findings, we developed a simple and reversible in vitro model to regulate ILI biosynthesis and hydrolysis in mycobacteria. We also showed that TAG formation is tgs1 dependent and that lipolytic enzymes mediate TAG breakdown. Moreover, we confirmed that the nitrogen-deprived and ILI-rich phenotype was associated with an increased tolerance towards several drugs used for treating mycobacterial infections. Importantly, we showed that the presence of ILI substantially enhanced the bacterial burden and granuloma abundance in zebrafish embryos infected with lipid-rich M. abscessus as compared to embryos infected with lipid-poor M. abscessus, suggesting that ILI are actively contributing to mycobacterial virulence and pathogenesis.
Collapse
Affiliation(s)
- Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Matt D Johansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France
| | | | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France.,INSERM, IRIM, 34293, Montpellier, France
| | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.
| |
Collapse
|
18
|
Isoniazid Bactericidal Activity Involves Electron Transport Chain Perturbation. Antimicrob Agents Chemother 2019; 63:AAC.01841-18. [PMID: 30642937 DOI: 10.1128/aac.01841-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence suggests that the bactericidal activity of some antibiotics may not be directly initiated by target inhibition. The activity of isoniazid (INH), a key first-line bactericidal antituberculosis drug currently known to inhibit mycolic acid synthesis, becomes extremely poor under stress conditions, such as hypoxia and starvation. This suggests that the target inhibition may not fully explain the bactericidal activity of the drug. Here, we report that INH rapidly increased Mycobacterium bovis BCG cellular ATP levels and enhanced oxygen consumption. The INH-triggered ATP increase and bactericidal activity were strongly compromised by Q203 and bedaquiline, which inhibit mycobacterial cytochrome bc 1 and FoF1 ATP synthase, respectively. Moreover, the antioxidant N-acetylcysteine (NAC) but not 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL) abrogated the INH-triggered ATP increase and killing. These results reveal a link between the energetic (ATP) perturbation and INH's killing. Furthermore, the INH-induced energetic perturbation and killing were also abrogated by chemical inhibition of NADH dehydrogenases (NDHs) and succinate dehydrogenases (SDHs), linking INH's bactericidal activity further to the electron transport chain (ETC) perturbation. This notion was also supported by the observation that INH dissipated mycobacterial membrane potential. Importantly, inhibition of cytochrome bd oxidase significantly reduced cell recovery during INH challenge in a culture settling model, suggesting that the respiratory reprogramming to the cytochrome bd oxidase contributes to the escape of INH killing. This study implicates mycobacterial ETC perturbation through NDHs, SDHs, cytochrome bc 1, and FoF1 ATP synthase in INH's bactericidal activity and pinpoints the participation of the cytochrome bd oxidase in protection against this drug under stress conditions.
Collapse
|
19
|
Santucci P, Dedaki C, Athanasoulis A, Gallorini L, Munoz A, Canaan S, Cavalier J, Magrioti V. Synthesis of Long‐Chain β‐Lactones and Their Antibacterial Activities against Pathogenic Mycobacteria. ChemMedChem 2019; 14:349-358. [DOI: 10.1002/cmdc.201800720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Pierre Santucci
- Aix-Marseille UniversitéCNRS, LISM, IMM FR3479 Marseille France
| | - Christina Dedaki
- Department of ChemistryNational and Kapodistrian University of Athens, Panepistimiopolis Athens 15771 Greece
| | - Alexandros Athanasoulis
- Department of ChemistryNational and Kapodistrian University of Athens, Panepistimiopolis Athens 15771 Greece
| | - Laura Gallorini
- Aix-Marseille UniversitéCNRS, LISM, IMM FR3479 Marseille France
| | - Anaïs Munoz
- Aix-Marseille UniversitéCNRS, LISM, IMM FR3479 Marseille France
| | - Stéphane Canaan
- Aix-Marseille UniversitéCNRS, LISM, IMM FR3479 Marseille France
| | | | - Victoria Magrioti
- Department of ChemistryNational and Kapodistrian University of Athens, Panepistimiopolis Athens 15771 Greece
| |
Collapse
|
20
|
Guerra-De-Blas PDC, Torres-González P, Bobadilla-Del-Valle M, Sada-Ovalle I, Ponce-De-León-Garduño A, Sifuentes-Osornio J. Potential Effect of Statins on Mycobacterium tuberculosis Infection. J Immunol Res 2018; 2018:7617023. [PMID: 30581876 PMCID: PMC6276473 DOI: 10.1155/2018/7617023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/11/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis is one of the 10 leading causes of death in the world. The current treatment is based on a combination of antimicrobials administered for six months. It is essential to find therapeutic agents with which the treatment time can be shortened and strengthen the host immune response against Mycobacterium tuberculosis. M. tuberculosis needs cholesterol to infect and survive inside the host, but the progression of the infection depends to a large extent on the capacity of the immune response to contain the infection. Statins inhibit the synthesis of cholesterol and have pleiotropic effects on the immune system, which have been associated with better results in the treatment of several infectious diseases. Recently, it has been reported that cells treated with statins are more resistant to M. tuberculosis infection, and they have even been proposed as adjuvants in the treatment of M. tuberculosis infection. The aim of this review is to summarize the immunopathogenesis of tuberculosis and its mechanisms of evasion and to compile the available scientific information on the effect of statins in the treatment of tuberculosis.
Collapse
Affiliation(s)
- Paola Del Carmen Guerra-De-Blas
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Pedro Torres-González
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miriam Bobadilla-Del-Valle
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Isabel Sada-Ovalle
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Alfredo Ponce-De-León-Garduño
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Sifuentes-Osornio
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
21
|
Larsen EM, Johnson RJ. Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance. Drug Dev Res 2018; 80:33-47. [PMID: 30302779 DOI: 10.1002/ddr.21468] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The rise of antibiotic resistance necessitates the search for new platforms for drug development. Prodrugs are common tools for overcoming drawbacks typically associated with drug formulation and delivery, with ester prodrugs providing a classic strategy for masking polar alcohol and carboxylic acid functionalities and improving cell permeability. Ester prodrugs are normally designed to have simple ester groups, as they are expected to be cleaved and reactivated by a wide spectrum of cellular esterases. However, a number of pathogenic and commensal microbial esterases have been found to possess significant substrate specificity and can play an unexpected role in drug metabolism. Ester protection can also introduce antimicrobial properties into previously nontoxic drugs through alterations in cell permeability or solubility. Finally, mutation to microbial esterases is a novel mechanism for the development of antibiotic resistance. In this review, we highlight the important pathogenic and xenobiotic functions of microbial esterases and discuss the development and application of ester prodrugs for targeting microbial infections and combating antibiotic resistance. Esterases are often overlooked as therapeutic targets. Yet, with the growing need to develop new antibiotics, a thorough understanding of the specificity and function of microbial esterases and their combined action with ester prodrug antibiotics will support the design of future therapeutics.
Collapse
Affiliation(s)
- Erik M Larsen
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana.,Department of Chemistry and Biochemistry, Bloomsburg University, Bloomsburg, Pennsylvania
| | - R Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana
| |
Collapse
|
22
|
Oxadiazolone derivatives, new promising multi-target inhibitors against M. tuberculosis. Bioorg Chem 2018; 81:414-424. [PMID: 30212765 DOI: 10.1016/j.bioorg.2018.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
A set of 19 oxadiazolone (OX) derivatives have been investigated for their antimycobacterial activity against two pathogenic slow-growing mycobacteria, Mycobacterium marinum and Mycobacterium bovis BCG, and the avirulent Mycobacterium tuberculosis (M. tb) mc26230. The encouraging minimal inhibitory concentrations (MIC) values obtained prompted us to test them against virulent M. tb H37Rv growth either in broth medium or inside macrophages. The OX compounds displayed a diversity of action and were found to act either on extracellular M. tb growth only with moderated MIC50, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth. Of interest, all OX derivatives exhibited very low toxicity towards host macrophages. Among the six potential OXs identified, HPOX, a selective inhibitor of extracellular M. tb growth, was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP, in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 18 potential candidates, all being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA, TesA, KasA and MetA have been reported as essential for in vitro growth of M. tb and/or its survival and persistence inside macrophages. Overall, our findings support the assumption that OX derivatives may represent a novel class of multi-target inhibitors leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes involved in various important physiological processes.
Collapse
|
23
|
Rens C, Ceyssens PJ, Laval F, Lefèvre P, Mathys V, Daffé M, Fontaine V. Aloe Emodin Reduces Phthiodiolone Dimycocerosate Potentiating Vancomycin Susceptibility on Mycobacteria. Indian J Microbiol 2018; 58:393-396. [PMID: 30013284 DOI: 10.1007/s12088-018-0734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/22/2018] [Indexed: 10/17/2022] Open
Abstract
Treatment of tuberculosis still represent a major public health issue. The emergence of multi-and extensively-drug resistant (MDR and XDR) Mycobacterium tuberculosis clinical strains further pinpoint the urgent need for new anti-tuberculous drugs. We previously showed that vancomycin can target mycobacteria lacking cell wall integrity, especially those lacking related phthiocerol and phthiodolone dimycocerosates, PDIM A and PDIM B, respectively. As aloe emodin was previously hypothesized to be able to target the synthesis of mycobacterial cell wall lipids, we tested its ability to potentiate glycopeptides antimycobacterial activity. The aloe emodin with the vancomycin induced a combination effect beyond simple addition, close to synergism, at a concentration lower to reported IC50 cytotoxic value, on M. bovis BCG and on H37Rv M. tuberculosis. Interestingly, out of six MDR and pre-XDR clinical strains, one showed a strong synergic susceptibility to the drug combination. Mycobacterial cell wall lipid analyses highlighted a selective reduction of PDIM B by aloe emodin.
Collapse
Affiliation(s)
- Céline Rens
- 1Unit of Pharmaceutical Microbiology and Hygiene, Université Libre de Bruxelles (ULB), CP205/2, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Pieter-Jan Ceyssens
- 2NRC Mycobacteria and Tuberculosis, Scientific Institute of Public Health, J. Wytsman Street, 14, 1050 Brussels, Belgium
| | - Françoise Laval
- Department of "Tuberculosis and Infection Biology", Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, University Paul Sabatier, UMR 5089, 205 Route de Narbonne, BP64182, 31077 Toulouse Cedex 04, France
| | - Philippe Lefèvre
- 1Unit of Pharmaceutical Microbiology and Hygiene, Université Libre de Bruxelles (ULB), CP205/2, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Vanessa Mathys
- 2NRC Mycobacteria and Tuberculosis, Scientific Institute of Public Health, J. Wytsman Street, 14, 1050 Brussels, Belgium
| | - Mamadou Daffé
- Department of "Tuberculosis and Infection Biology", Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, University Paul Sabatier, UMR 5089, 205 Route de Narbonne, BP64182, 31077 Toulouse Cedex 04, France
| | - Véronique Fontaine
- 1Unit of Pharmaceutical Microbiology and Hygiene, Université Libre de Bruxelles (ULB), CP205/2, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
24
|
Campodónico VL, Rifat D, Chuang YM, Ioerger TR, Karakousis PC. Altered Mycobacterium tuberculosis Cell Wall Metabolism and Physiology Associated With RpoB Mutation H526D. Front Microbiol 2018; 9:494. [PMID: 29616007 PMCID: PMC5867343 DOI: 10.3389/fmicb.2018.00494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/02/2018] [Indexed: 11/13/2022] Open
Abstract
Background:Mycobacterium tuberculosis (Mtb) rpoB mutations are associated with global metabolic remodeling. However, the net effects of rpoB mutations on Mtb physiology, metabolism and function are not completely understood. Based on previous work, we hypothesized that changes in the expression of cell wall molecules in Mtb mutant RpoB 526D lead to changes in cell wall permeability and to altered resistance to environmental stresses and drugs. Methods: The phenotypes of a fully drug-susceptible clinical strain of Mtb and its paired rifampin-monoresistant, RpoB H526D mutant progeny strain were compared. Results: The rpoB mutant showed altered colony morphology, bacillary length and cell wall thickness, which were associated with increased cell wall permeability and susceptibility to the cell wall detergent sodium dodecyl sulfate (SDS) after exposure to nutrient starvation. Relative to the isogenic rifampin-susceptible strain, the RpoB H526D mutant showed altered bacterial cellular metabolic activity and an eightfold increase in susceptibility to the cell-wall acting drug vancomycin. Conclusion: Our data suggest that RpoB mutation H526D is associated with altered cell wall physiology and resistance to cell wall-related stress. These findings are expected to contribute to an improved understanding of the pathogenesis of drug-resistant M. tuberculosis infections.
Collapse
Affiliation(s)
- Victoria L. Campodónico
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dalin Rifat
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu-Min Chuang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, United States
| | - Petros C. Karakousis
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
25
|
Rens C, Laval F, Wattiez R, Lefèvre P, Dufrasne F, Daffé M, Fontaine V. I3-Ag85 effect on phthiodiolone dimycocerosate synthesis. Tuberculosis (Edinb) 2017. [PMID: 29523333 DOI: 10.1016/j.tube.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The multiplicity of drug resistant Mycobacterium tuberculosis (Mtb) strains is a growing health issue. New therapies are needed, acting on new targets. The I3-Ag85 was already reported to reduce the amount of trehalose dimycolate lipid of the mycobacterial cell wall. This inhibitor of Ag85C increased the mycobacterial wall permeability. We previously showed that M. tuberculosis strains, even multi-drug resistant and extensively-drug resistant strains, can be susceptible to vancomycin when concomitantly treated with a drug altering the cell envelope integrity. We investigated the effect of the I3-Ag85 on vancomycin susceptibility of M. tuberculosis. Although no synergy was observed, a new target of this drug was discovered: the production of phthiodiolone dimycocerosate (PDIM B).
Collapse
Affiliation(s)
- Céline Rens
- Université Libre de Bruxelles (ULB), Unit of Pharmaceutical Microbiology and Hygiene, CP205/2, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Françoise Laval
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, University Paul Sabatier (UMR 5089), Department of "Tuberculosis and Infection Biology", 205 route de Narbonne, BP64182, 31077 Toulouse cedex 04, France
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, 20, Place du Parc, B-7000 Mons, Belgium
| | - Philippe Lefèvre
- Université Libre de Bruxelles (ULB), Unit of Pharmaceutical Microbiology and Hygiene, CP205/2, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - François Dufrasne
- Université Libre de Bruxelles (ULB), Therapeutic Chemistry, CP205/05, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Mamadou Daffé
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, University Paul Sabatier (UMR 5089), Department of "Tuberculosis and Infection Biology", 205 route de Narbonne, BP64182, 31077 Toulouse cedex 04, France
| | - Véronique Fontaine
- Université Libre de Bruxelles (ULB), Unit of Pharmaceutical Microbiology and Hygiene, CP205/2, Boulevard du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
26
|
Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis. Sci Rep 2017; 7:11751. [PMID: 28924204 PMCID: PMC5603573 DOI: 10.1038/s41598-017-11843-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023] Open
Abstract
A new class of Cyclophostin and Cyclipostins (CyC) analogs have been investigated against Mycobacterium tuberculosis H37Rv (M. tb) grown either in broth medium or inside macrophages. Our compounds displayed a diversity of action by acting either on extracellular M. tb bacterial growth only, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth with very low toxicity towards host macrophages. Among the eight potential CyCs identified, CyC17 exhibited the best extracellular antitubercular activity (MIC50 = 500 nM). This compound was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 23 potential candidates, most of them being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA and HsaD, have previously been reported as essential for in vitro growth of M. tb and/or survival and persistence in macrophages. Overall, our findings support the assumption that CyC17 may thus represent a novel class of multi-target inhibitor leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes participating in important physiological processes.
Collapse
|
27
|
Abstract
Mycobacterial 6-kDa early secreted antigenic target (ESAT-6) system (ESX) exporters transport proteins across the cytoplasmic membrane. Many proteins transported by ESX systems are then translocated across the mycobacterial cell envelope and secreted from the cell. Although the mechanism underlying protein transport across the mycolate outer membrane remains elusive, the ESX systems are closely connected with and localize to the cell envelope. Links between ESX-associated proteins, cell wall synthesis, and the maintenance of cell envelope integrity have been reported. Genes encoding the ESX systems and those required for biosynthesis of the mycobacterial envelope are coregulated. Here, we review the interplay between ESX systems and the mycobacterial cell envelope.
Collapse
|
28
|
Rodriguez-Rivera FP, Zhou X, Theriot JA, Bertozzi CR. Visualization of mycobacterial membrane dynamics in live cells. J Am Chem Soc 2017; 139:3488-3495. [PMID: 28075574 PMCID: PMC5345120 DOI: 10.1021/jacs.6b12541] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mycobacteria are endowed with a highly impermeable mycomembrane that confers intrinsic resistance to many antibiotics. Several unique mycomembrane glycolipids have been isolated and structurally characterized, but the underlying organization and dynamics of glycolipids within the cell envelope remain poorly understood. We report here a study of mycomembrane dynamics that was enabled by trehalose-fluorophore conjugates capable of labeling trehalose glycolipids in live actinomycetes. We identified fluorescein-trehalose analogues that are metabolically incorporated into the trehalose mycolates of representative Mycobacterium, Corynebacterium, Nocardia, and Rhodococcus species. Using these probes, we studied the mobilities of labeled glycolipids by time-lapse microscopy and fluorescence recovery after photobleaching experiments and found that mycomembrane fluidity varies widely across species and correlates with mycolic acid structure. Finally, we discovered that treatment of mycobacteria with ethambutol, a front-line tuberculosis (TB) drug, significantly increases mycomembrane fluidity. These findings enhance our understanding of mycobacterial cell envelope structure and dynamics and have implications for development of TB drug cocktails.
Collapse
Affiliation(s)
- Frances P Rodriguez-Rivera
- Department of Chemistry, University of California , Berkeley, California 94720, United States.,Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | - Julie A Theriot
- Howard Hughes Medical Institute , Chevy Chase, Maryland 20815, United States
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University , Stanford, California 94305, United States.,Howard Hughes Medical Institute , Chevy Chase, Maryland 20815, United States
| |
Collapse
|
29
|
Brindha S, Sundaramurthi JC, Velmurugan D, Vincent S, Gnanadoss JJ. Docking-based virtual screening of known drugs against murE of Mycobacterium tuberculosis towards repurposing for TB. Bioinformation 2016; 12:359-367. [PMID: 28275291 PMCID: PMC5312000 DOI: 10.6026/97320630012368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/08/2016] [Indexed: 01/04/2023] Open
Abstract
Repurposing has gained momentum globally and become an alternative avenue for drug discovery because of its better success rate,
and reduced cost, time and issues related to safety than the conventional drug discovery process. Several drugs have already been
successfully repurposed for other clinical conditions including drug resistant tuberculosis (DR-TB). Though TB can be cured
completely with the use of currently available anti-tubercular drugs, emergence of drug resistant strains of Mycobacterium tuberculosis
and the huge death toll globally, together necessitate urgently newer and effective drugs for TB. Therefore, we performed virtual
screening of 1554 FDA approved drugs against murE, which is essential for peptidoglycan biosynthesis of M. tuberculosis. We used
Glide and AutoDock Vina for virtual screening and applied rigid docking algorithm followed by induced fit docking algorithm in
order to enhance the quality of the docking prediction and to prioritize drugs for repurposing. We found 17 drugs binding strongly
with murE and three of them, namely, lymecycline, acarbose and desmopressin were consistently present within top 10 ranks by both
Glide and AutoDock Vina in the induced fit docking algorithm, which strongly indicates that these three drugs are potential
candidates for further studies towards repurposing for TB.
Collapse
Affiliation(s)
| | | | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai - 600025, Tamil Nadu, India
| | - Savariar Vincent
- Loyola College, Nungambakkam, Chennai - 600034, Tamil Nadu, India
| | | |
Collapse
|