1
|
So B, Kim J, Jo JK, So H. Recent developments in preventing catheter-related infections based on biofilms: A comprehensive review. BIOMICROFLUIDICS 2024; 18:051506. [PMID: 39397894 PMCID: PMC11470810 DOI: 10.1063/5.0195165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Urinary and vascular catheters are among the most commonly used medical devices. However, infections caused by biofilm formation on the surface of catheters are a major cause of healthcare-associated infections. Traditional methods, such as using antimicrobials to prevent such infections, generally have short-term effects, and treatment is challenging owing to the emergence of antimicrobial-resistant bacteria. This review aims to evaluate the limitations of conventional catheter-related infection prevention efficacy, such as currently used antimicrobials, and analyze the efficacy and limitations of potential alternatives to prevent catheter-related infections that have not yet been commercialized, classified by the transition stages of biofilm formation. We intend to provide profound insights into the ideal technologies for preventing catheter-associated tract infections and present perspectives on future directions in this field.
Collapse
Affiliation(s)
- Byeongchan So
- Department of Medical and Digital Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jongwon Kim
- Department of Medical and Digital Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jung Ki Jo
- Department of Urology, College of Medicine, Hanyang University, Seoul 04763, South Korea
| | - Hongyun So
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
2
|
Teixeira-Santos R, Gomes LC, Vieira R, Sousa-Cardoso F, Soares OSGP, Mergulhão FJ. Exploring Nitrogen-Functionalized Graphene Composites for Urinary Catheter Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2604. [PMID: 37764632 PMCID: PMC10536687 DOI: 10.3390/nano13182604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Graphene has been broadly studied, particularly for the fabrication of biomedical devices, owing to its physicochemical and antimicrobial properties. In this study, the antibiofilm efficacy of graphene nanoplatelet (GNP)-based composites as coatings for urinary catheters (UCs) was investigated. GNPs were functionalized with nitrogen (N-GNP) and incorporated into a polydimethylsiloxane (PDMS) matrix. The resulting materials were characterized, and the N-GNP/PDMS composite was evaluated against single- and multi-species biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Both biofilm cell composition and structure were analyzed. Furthermore, the antibacterial mechanisms of action of N-GNP were explored. The N-GNP/PDMS composite showed increased hydrophobicity and roughness compared to PDMS. In single-species biofilms, this composite significantly reduced the number of S. aureus, P. aeruginosa, and K. pneumoniae cells (by 64, 41, and 29%, respectively), and decreased S. aureus biofilm culturability (by 50%). In tri-species biofilms, a 41% reduction in total cells was observed. These results are aligned with the outcomes of the biofilm structure analysis. Moreover, N-GNP caused changes in membrane permeability and triggered reactive oxygen species (ROS) synthesis in S. aureus, whereas in Gram-negative bacteria, it only induced changes in cell metabolism. Overall, the N-GNP/PDMS composite inhibited biofilm development, showing the potential of these carbon materials as coatings for UCs.
Collapse
Affiliation(s)
- Rita Teixeira-Santos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.T.-S.); (L.C.G.); (R.V.); (F.S.-C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.T.-S.); (L.C.G.); (R.V.); (F.S.-C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Rita Vieira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.T.-S.); (L.C.G.); (R.V.); (F.S.-C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Francisca Sousa-Cardoso
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.T.-S.); (L.C.G.); (R.V.); (F.S.-C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Olívia S. G. P. Soares
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.T.-S.); (L.C.G.); (R.V.); (F.S.-C.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| |
Collapse
|
3
|
Roy S, Darabdhara J, Ahmaruzzaman M. ZnO-based Cu metal-organic framework (MOF) nanocomposite for boosting and tuning the photocatalytic degradation performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95673-95691. [PMID: 37556061 DOI: 10.1007/s11356-023-29105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Although metal-organic frameworks (MOFs) are a viable choice for photocatalysts with large surface area and tunable pore structure, the rapid recombination of excited photogenerated charges results in low activity towards photodegradation. Aiming at improving the photocatalytic activities of MOFs, different strategies to incorporate MOF with light-harvesting semiconductors have been developed. In this research, we report an effective photocatalyst designed by incorporating Cu-MOF with ZnO for the photocatalytic degradation of Rose Bengal exhibiting excellent degradation efficiency of 97.4% in 45 min under natural sunlight with catalyst dosage of 320 mg/L. The optical, morphology and surface characteristics of the prepared nanocomposite were studied using scanning electron microscopy (SEM-EDX), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (PXRD), Brunauer-Emmett-Teller (BET) analysis, thermogravimetric (TGA) analysis, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and ultraviolet diffused reflectance spectroscopy (UV-DRS) techniques. Further studies showed that the degradation followed first-order kinetics with a rate constant of 0.077869 min-1. The degradation mechanism was investigated by photoluminescence (PL) study, XPS, zeta potential and quenching experiment in presence of different scavengers. Meanwhile, the fabricated composite displayed good recovery and reuse properties up to 5 cycles as revealed by XRD analysis proving itself a potential MOF-based photocatalyst towards environmental remediation process.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Jnyanashree Darabdhara
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Mohammed Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
4
|
Nanomaterials and Coatings for Managing Antibiotic-Resistant Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020310. [PMID: 36830221 PMCID: PMC9952333 DOI: 10.3390/antibiotics12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Biofilms are a global health concern responsible for 65 to 80% of the total number of acute and persistent nosocomial infections, which lead to prolonged hospitalization and a huge economic burden to the healthcare systems. Biofilms are organized assemblages of surface-bound cells, which are enclosed in a self-produced extracellular polymer matrix (EPM) of polysaccharides, nucleic acids, lipids, and proteins. The EPM holds the pathogens together and provides a functional environment, enabling adhesion to living and non-living surfaces, mechanical stability, next to enhanced tolerance to host immune responses and conventional antibiotics compared to free-floating cells. Furthermore, the close proximity of cells in biofilms facilitates the horizontal transfer of genes, which is responsible for the development of antibiotic resistance. Given the growing number and impact of resistant bacteria, there is an urgent need to design novel strategies in order to outsmart bacterial evolutionary mechanisms. Antibiotic-free approaches that attenuate virulence through interruption of quorum sensing, prevent adhesion via EPM degradation, or kill pathogens by novel mechanisms that are less likely to cause resistance have gained considerable attention in the war against biofilm infections. Thereby, nanoformulation offers significant advantages due to the enhanced antibacterial efficacy and better penetration into the biofilm compared to bulk therapeutics of the same composition. This review highlights the latest developments in the field of nanoformulated quorum-quenching actives, antiadhesives, and bactericides, and their use as colloid suspensions and coatings on medical devices to reduce the incidence of biofilm-related infections.
Collapse
|
5
|
Bello-Lopez JM, Silva-Bermudez P, Prado G, Martínez A, Ibáñez-Cervantes G, Cureño-Díaz MA, Rocha-Zavaleta L, Manzo-Merino J, Almaguer-Flores A, Ramos-Vilchis C, Rodil SE. Biocide effect against SARS-CoV-2 and ESKAPE pathogens of a noncytotoxic silver-copper nanofilm. Biomed Mater 2021; 17. [PMID: 34673548 DOI: 10.1088/1748-605x/ac3208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Nanometric materials with biocidal properties effective against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and pathogenic bacteria could be used to modify surfaces, reducing the risk of touching transmission. In this work, we showed that a nanometric layer of bimetallic AgCu can be effectively deposited on polypropylene (PP) fibers. The virucidal properties of the AgCu nanofilm were evaluated by comparing the viral loads remaining on uncoated and coated PP after contact times between 2 and 24 h. Quantification of virion numbers for different initial concentrations indicated a reduction of more than 95% after 2 h of contact. The bactericidal action of the AgCu nanofilm was also confirmed by inoculating uncoated and coated PP with a pool of pathogenic bacteria associated with pneumonia (ESKAPE). Meanwhile, no cytotoxicity was observed for human fibroblasts and keratinocyte cells, indicating that the nanofilm could be in contact with human skin without threat. The deposition of the AgCu nanofilm on the nonwoven component of reusable cloth masks might help to prevent virus and bacterial infection while reducing the pollution burden related to the disposable masks. The possible mechanism of biocide contact action was studied by quantum chemistry calculations that show that the addition of Ag and/or Cu makes the polymeric fiber a better electron acceptor. This can promote the oxidation of the phospholipids present at both the virus and bacterial membranes. The rupture at the membrane exposes and damages the genetic material of the virus. More studies are needed to determine the mechanism of action, but the results reported here indicate that Cu and Ag ions are good allies, which can help protect us from the virus that has caused this disturbing pandemic.
Collapse
Affiliation(s)
- J M Bello-Lopez
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - P Silva-Bermudez
- Unidad de ingeniería de Téjidos, Terapia Celular y Medicina Regenerativa; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, C.P. 14389 CDMX, México
| | - G Prado
- Laboratorio de Biotecnología; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, C.P. 14389 CDMX, México
| | - A Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| | - Gabriela Ibáñez-Cervantes
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - Mónica Alethia Cureño-Díaz
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - L Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar sn, Ciudad Universitaria, 04510 CDMX, México
| | - J Manzo-Merino
- Cátedras CONACyT-Instituto Nacional de Cancerología, CDMX, México
| | - A Almaguer-Flores
- Laboratorio de Biointerfases, Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, 04510 CDMX, México
| | - C Ramos-Vilchis
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| | - S E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| |
Collapse
|
6
|
Advances in the Application of Nanomaterials as Treatments for Bacterial Infectious Diseases. Pharmaceutics 2021; 13:pharmaceutics13111913. [PMID: 34834328 PMCID: PMC8618949 DOI: 10.3390/pharmaceutics13111913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Bacteria-targeting nanomaterials have been widely used in the diagnosis and treatment of bacterial infectious diseases. These nanomaterials show great potential as antimicrobial agents due to their broad-spectrum antibacterial capacity and relatively low toxicity. Recently, nanomaterials have improved the accurate detection of pathogens, provided therapeutic strategies against nosocomial infections and facilitated the delivery of antigenic protein vaccines that induce humoral and cellular immunity. Biomaterial implants, which have traditionally been hindered by bacterial colonization, benefit from their ability to prevent bacteria from forming biofilms and spreading into adjacent tissues. Wound repair is improving in terms of both the function and prevention of bacterial infection, as we tailor nanomaterials to their needs, select encapsulation methods and materials, incorporate activation systems and add immune-activating adjuvants. Recent years have produced numerous advances in their antibacterial applications, but even further expansion in the diagnosis and treatment of infectious diseases is expected in the future.
Collapse
|
7
|
Effects of Mullite, Maghemite, and Silver Nanoparticles Incorporated in β-Wollastonite on Tensile Strength, Magnetism, Bioactivity, and Antimicrobial Activity. MATERIALS 2021; 14:ma14164643. [PMID: 34443166 PMCID: PMC8401836 DOI: 10.3390/ma14164643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 11/19/2022]
Abstract
β-wollastonite (βW) has sparked much interest in bone defect recovery and regeneration. Biomaterial-associated infections and reactions between implants with human cells have become a standard clinical concern. In this study, a green synthesized βW, synthesized from rice husk ash and a calcined limestone precursor, was incorporated with mullite, maghemite, and silver to produce β wollastonite composite (βWMAF) to enhance the tensile strength and antibacterial properties. The addition of mullite to the βWMAF increased the tensile strength compared to βW. In vitro bioactivity, antibacterial efficacy, and physicochemical properties of the β-wollastonite and βWMAF were characterized. βW and βWMAF samples formed apatite spherules when immersed in simulated body fluid (SBF) for 1 day. In conclusion, βWMAF, according to the tensile strength, bioactivity, and antibacterial activity, was observed in this research and appropriate for the reconstruction of cancellous bone defects.
Collapse
|
8
|
van Hengel IAJ, Tierolf MWAM, Valerio VPM, Minneboo M, Fluit AC, Fratila-Apachitei LE, Apachitei I, Zadpoor AA. Self-defending additively manufactured bone implants bearing silver and copper nanoparticles. J Mater Chem B 2021; 8:1589-1602. [PMID: 31848564 DOI: 10.1039/c9tb02434d] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effective preventive measures against implant-associated infection (IAI) are desperately needed. Therefore, the development of self-defending implants with intrinsic antibacterial properties has gained significant momentum. Biomaterials biofunctionalized with silver (Ag) have resulted in effective antibacterial biomaterials, yet regularly induce cytotoxicity. In this study, the use of both Ag and copper (Cu) nanoparticles (NPs) on TiO2 surfaces was investigated to generate antibacterial and osteoconductive biomaterials. Hence, additively manufactured Ti-6Al-4V volume-porous implants were biofunctionalized with plasma electrolytic oxidation (PEO) through the incorporation of varying ratios of Ag and/or Cu NPs in the TiO2 layer covering the implant surface. For all experimental groups, the surface morphology, chemical composition, ion release profile, generation of reactive ion species, antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and ex vivo, as well as the response of pre-osteoblastic MC3T3-E1 cells in metabolic activity and differentiation assays were determined. PEO biofunctionalization resulted in rough and highly porous surfaces that released Ag and Cu ions for 28 days and generated hydroxyl as well as methyl radicals. A strong synergistic bactericidal behavior between Ag and Cu ions was detected, which allowed to decrease the concentration of Ag ions by 10-fold, while maintaining the same level of antibacterial activity. Antibacterial agar diffusion and quantitative assays indicated strong antibacterial activity in vitro for the implants containing Ag and Ag/Cu, while no antibacterial activity was observed for implants bearing only Cu NPs. Moreover, the biofunctionalized implants with ratios of up to 75% Ag and 25% Cu NP totally eradicated all bacteria in an ex vivo model using murine femora. Meanwhile, the biofunctionalized implants did not show any signs of cytotoxicity, while implants bearing only Cu NPs improved the metabolic activity after 7 and 11 days. The biomaterials developed here, therefore, exploit the synergistic behavior of Ag and Cu to simultaneously offer strong antibacterial behavior while fully mitigating the cytotoxicity of Ag against mammalian cells.
Collapse
Affiliation(s)
- I A J van Hengel
- Additive Manufacturing Laboratory, Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.
| | - M W A M Tierolf
- Additive Manufacturing Laboratory, Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.
| | - V P M Valerio
- Additive Manufacturing Laboratory, Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.
| | - M Minneboo
- Additive Manufacturing Laboratory, Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.
| | - A C Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L E Fratila-Apachitei
- Additive Manufacturing Laboratory, Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.
| | - I Apachitei
- Additive Manufacturing Laboratory, Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.
| | - A A Zadpoor
- Additive Manufacturing Laboratory, Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
9
|
Fan X, Yahia L, Sacher E. Antimicrobial Properties of the Ag, Cu Nanoparticle System. BIOLOGY 2021; 10:137. [PMID: 33578705 PMCID: PMC7916421 DOI: 10.3390/biology10020137] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
Microbes, including bacteria and fungi, easily form stable biofilms on many surfaces. Such biofilms have high resistance to antibiotics, and cause nosocomial and postoperative infections. The antimicrobial and antiviral behaviors of Ag and Cu nanoparticles (NPs) are well known, and possible mechanisms for their actions, such as released ions, reactive oxygen species (ROS), contact killing, the immunostimulatory effect, and others have been proposed. Ag and Cu NPs, and their derivative NPs, have different antimicrobial capacities and cytotoxicities. Factors, such as size, shape and surface treatment, influence their antimicrobial activities. The biomedical application of antimicrobial Ag and Cu NPs involves coating onto substrates, including textiles, polymers, ceramics, and metals. Because Ag and Cu are immiscible, synthetic AgCu nanoalloys have different microstructures, which impact their antimicrobial effects. When mixed, the combination of Ag and Cu NPs act synergistically, offering substantially enhanced antimicrobial behavior. However, when alloyed in Ag-Cu NPs, the antimicrobial behavior is even more enhanced. The reason for this enhancement is unclear. Here, we discuss these results and the possible behavior mechanisms that underlie them.
Collapse
Affiliation(s)
- Xinzhen Fan
- Laboratoire d’Innovation et d’Analyse de Bioperformance, Département de Génie Mécanique, Polytechnique Montréal, CP 6079, Succursale C-V, Montréal, QC H3C 3A7, Canada; (X.F.); (L.Y.)
| | - L’Hocine Yahia
- Laboratoire d’Innovation et d’Analyse de Bioperformance, Département de Génie Mécanique, Polytechnique Montréal, CP 6079, Succursale C-V, Montréal, QC H3C 3A7, Canada; (X.F.); (L.Y.)
| | - Edward Sacher
- Département de Génie Physique, Polytechnique Montréal, CP 6079, Succursale C-V, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
10
|
Update on Interfacial Charge Transfer (IFTC) Processes on Films Inactivating Viruses/Bacteria under Visible Light: Mechanistic Considerations and Critical Issues. Catalysts 2021. [DOI: 10.3390/catal11020201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This review presents an update describing binary and ternary semiconductors involving interfacial charge transfer (IFCT) in composites made up by TiO2, CuO, Ag2O and Fe2O3 used in microbial disinfection (bacteria and viruses). The disinfection mechanism, kinetics and generation of reactive oxygen species (ROS) in solution under solar/visible light are discussed. The surface properties of the photocatalysts and their active catalytic sites are described in detail. Pathogenic biofilm inactivation by photocatalytic thin films is addressed since biofilms are the most dangerous agents of spreading pathogens into the environment.
Collapse
|
11
|
Vasudevan S, Durai RD, Chellappan DR, Narayanan VHB, Prabu PC, Solomon AP. A polymer-based anti-quorum catheter coating to challenge MDR Staphylococcus aureus: in vivo and in vitro approaches. J Antimicrob Chemother 2020; 74:1618-1626. [PMID: 30863862 DOI: 10.1093/jac/dkz094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND MDR Staphylococcus aureus is a major aetiological agent of catheter-associated infections. A quorum sensing targeted drug development approach proves to be an effective alternative strategy to combat such infections. METHODS Intravenous catheters were coated with polymethacrylate copolymers loaded with the antivirulent compound 2-[(methylamino)methyl]phenol (2MAMP). The in vitro drug release profile and kinetics were established. The anti-biofilm effect of the coated catheters was tested against clinical isolates of MDR S. aureus. The in vivo studies were carried out using adult male Wistar rats by implanting coated catheters in subcutaneous pockets. Histopathological analysis was done to understand the immunological reactions induced by 2MAMP. RESULTS A uniform catheter coating of thickness 0.1 mm was achieved with linear sustained release of 2MAMP for 6 h. The coating formulation was cytocompatible. The in vitro and in vivo anti-adherence studies showed reduced bacterial accumulation in coated catheters after 48 h. The histopathological results confirmed that the coated catheter did not bring about any adverse inflammatory response. CONCLUSIONS The developed anti-quorum-coated catheter that is non-toxic and biocompatible has the potential to be used in other medical devices, thereby preventing catheter-associated infections.
Collapse
Affiliation(s)
- Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Ramya Devi Durai
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | | | - Vedha Hari B Narayanan
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - P C Prabu
- Department of Veterinary Pathology, Madras Veterinary College, Chennai, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
12
|
Antimicrobial Nanostructured Coatings: A Gas Phase Deposition and Magnetron Sputtering Perspective. MATERIALS 2020; 13:ma13030784. [PMID: 32046363 PMCID: PMC7040917 DOI: 10.3390/ma13030784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022]
Abstract
Counteracting the spreading of multi-drug-resistant pathogens, taking place through surface-mediated cross-contamination, is amongst the higher priorities in public health policies. For these reason an appropriate design of antimicrobial nanostructured coatings may allow to exploit different antimicrobial mechanisms pathways, to be specifically activated by tailoring the coatings composition and morphology. Furthermore, their mechanical properties are of the utmost importance in view of the antimicrobial surface durability. Indeed, the coating properties might be tuned differently according to the specific synthesis method. The present review focuses on nanoparticle based bactericidal coatings obtained via magneton-spattering and supersonic cluster beam deposition. The bacteria–NP interaction mechanisms are first reviewed, thus making clear the requirements that a nanoparticle-based film should meet in order to serve as a bactericidal coating. Paradigmatic examples of coatings, obtained by magnetron sputtering and supersonic cluster beam deposition, are discussed. The emphasis is on widening the bactericidal spectrum so as to be effective both against gram-positive and gram-negative bacteria, while ensuring a good adhesion to a variety of substrates and mechanical durability. It is discussed how this goal may be achieved combining different elements into the coating.
Collapse
|
13
|
Rtimi S, Kiwi J. Recent advances on sputtered films with Cu in ppm concentrations leading to an acceleration of the bacterial inactivation. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Padmavathi AR, P SM, Das A, Priya A, Sushmitha TJ, Pandian SK, Toleti SR. Impediment to growth and yeast-to-hyphae transition in Candida albicans by copper oxide nanoparticles. BIOFOULING 2020; 36:56-72. [PMID: 31997658 DOI: 10.1080/08927014.2020.1715371] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 05/28/2023]
Abstract
The effects of two prominent copper oxide nanoparticles (CuO-NP and Cu2O-NP), with the oxidation state of Cu++ (cupric) and Cu+ (cuprous), on Candida albicans were evaluated. CuO-NP and Cu2O-NP were synthesized and characterized by XRD, FESEM, HR-TEM and Zeta potential. At sub-MIC (50 µg ml-1), both cupric and cuprous oxide NPs prevented yeast-to-hyphae switching and wrinkling behaviour in C. albicans. The mechanism for the antifungal action of the two NPs differed; CuO-NP significantly elicited reactive oxygen species, whereas membrane damage was more pronounced with Cu2O-NP. Real time PCR analysis revealed that CuO-NP suppressed the morphological switching of yeast-to-hyphae by down-regulating cph1, hst7 and ras1 and by up-regulation of the negative regulator tup1. In comparison, Cu2O-NP resulted in down-regulation of ras1 and up-regulation of the negative regulators nrg1 and tup1. Between the two NPs, CuO exhibited increased antifungal activity due to its stable oxidation state (Cu++) and its smaller dimensions compared with Cu2O-NP.
Collapse
Affiliation(s)
- Alwar Ramanujam Padmavathi
- Biofouling and Thermal Ecology Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, India
| | - Sriyutha Murthy P
- Biofouling and Thermal Ecology Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, India
- Life sciences Department, Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Arindam Das
- Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
- Chemical sciences Department, Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Arumugam Priya
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - T J Sushmitha
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | | | - Subba Rao Toleti
- Biofouling and Thermal Ecology Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, India
- Life sciences Department, Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
15
|
Nakamura S, Sato M, Sato Y, Ando N, Takayama T, Fujita M, Ishihara M. Synthesis and Application of Silver Nanoparticles (Ag NPs) for the Prevention of Infection in Healthcare Workers. Int J Mol Sci 2019; 20:E3620. [PMID: 31344881 PMCID: PMC6695748 DOI: 10.3390/ijms20153620] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
Silver is easily available and is known to have microbicidal effect; moreover, it does not impose any adverse effects on the human body. The microbicidal effect is mainly due to silver ions, which have a wide antibacterial spectrum. Furthermore, the development of multidrug-resistant bacteria, as in the case of antibiotics, is less likely. Silver ions bind to halide ions, such as chloride, and precipitate; therefore, when used directly, their microbicidal activity is shortened. To overcome this issue, silver nanoparticles (Ag NPs) have been recently synthesized and frequently used as microbicidal agents that release silver ions from particle surface. Depending on the specific surface area of the nanoparticles, silver ions are released with high efficiency. In addition to their bactericidal activity, small Ag NPs (<10 nm in diameter) affect viruses although the microbicidal effect of silver mass is weak. Because of their characteristics, Ag NPs are useful countermeasures against infectious diseases, which constitute a major issue in the medical field. Thus, medical tools coated with Ag NPs are being developed. This review outlines the synthesis and utilization of Ag NPs in the medical field, focusing on environment-friendly synthesis and the suppression of infections in healthcare workers (HCWs).
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan.
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yoko Sato
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Naoko Ando
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College Hospital, Saitama 359-8513, Japan
| | - Masanori Fujita
- Division of Environmental Medicine, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| |
Collapse
|
16
|
Schroeder M, Horne SM, Prüß BM. Efficacy of β-phenylethylamine as a novel anti-microbial and application as a liquid catheter flush. J Med Microbiol 2018; 67:1778-1788. [PMID: 30325301 DOI: 10.1099/jmm.0.000840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
With this study, we introduce a liquid flush for catheters and other tubing-based applications that consists of a solution of β-phenylethylamine (PEA) in tryptic soy broth. The initial experiments in multiwell polystyrene plates were conducted with Escherichia coli K-12 to assess the effectiveness of PEA at reducing planktonic growth, as well as the biomass and adenosine triphosphate (ATP) content of biofilm; PEA reduced these growth parameters as a function of increasing concentration. This effect was also seen in mutants of PEA catabolism, which leads us to believe that the PEA effect is due to PEA itself and not one of its degradation products. Since PEA reduced planktonic growth and biofilm when added at the time of inoculation, as well as at later time points, we propose PEA as a novel compound for the prevention and treatment of biofilm. PEA reduced planktonic growth and the ATP content of the biofilm for five bacterial pathogens, including an enterohemorrhagic E. coli, two uropathogenic E. coli, Pseudomonas aeruginosa and Staphylococcus aureus. A major finding of this study is the reduction of the ATP content of biofilm that formed in silicone tubing by periodic flushes of PEA. This experiment was performed to model antibiotic-lock treatment of an intravenous catheter. It was found that 10 mg ml-1 of PEA reduced the ATP content of biofilm of five bacterial strains by 96.3 % or more after 2 weeks of incubation and three treatments with PEA. For P. aeruginosa, the reduction in ATP content was paralleled by an identical percentage reduction in viable cells in the biofilm.
Collapse
Affiliation(s)
- Meredith Schroeder
- Department of Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd, Fargo ND, 58108-6050, USA
| | - Shelley M Horne
- Department of Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd, Fargo ND, 58108-6050, USA
| | - Birgit M Prüß
- Department of Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd, Fargo ND, 58108-6050, USA
| |
Collapse
|
17
|
Wang M, Tang T. Surface treatment strategies to combat implant-related infection from the beginning. J Orthop Translat 2018; 17:42-54. [PMID: 31194031 PMCID: PMC6551355 DOI: 10.1016/j.jot.2018.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 02/08/2023] Open
Abstract
Orthopaedic implants are recognised as important therapeutic devices in the successful clinical management of a wide range of orthopaedic conditions. However, implant-related infections remain a challenging and not uncommon issue in patients with implanted instrumentation or medical devices. Bacterial adhesion and formation of biofilm on the surface of the implant represent important processes towards progression of infection. Given the intimate association between infection and the implant surface, adequate treatment of the implant surface may help mitigate the risk of infection. This review summarises the current surface treatment technologies and their role in prevention of implant-related infection from the beginning. Translational potential of this article Despite great technological advancements, the prevalence of implant-related infections remains high. Four main challenges can be identified. (i) Insufficient mechanical stability can cause detachment of the implant surface coating, altering the antimicrobial ability of functionalized surfaces. (ii) Regarding drug-loaded coatings, a stable drug release profile is of vital importance for achieving effective bactericidal effect locally; however, burst release of the loaded antibacterial agents remains common. (iii) Although many coatings and modified surfaces provide superior antibacterial action, such functionalisation of surfaces sometimes has a detrimental effect on tissue biocompatibility, impairing the integration of the implants into the surrounding tissue. (iv) Biofilm eradication at the implant surface remains particularly challenging. This review summarised the recent progress made to address the aforementioned problems. By providing a perspective on state-of-the-art surface treatment strategies for medical implants, we hope to support the timely adoption of modern materials and techniques into clinical practice.
Collapse
Affiliation(s)
- Minqi Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E681. [PMID: 30200373 PMCID: PMC6163202 DOI: 10.3390/nano8090681] [Citation(s) in RCA: 634] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022]
Abstract
During the past few years, silver nanoparticles (AgNPs) became one of the most investigated and explored nanotechnology-derived nanostructures, given the fact that nanosilver-based materials proved to have interesting, challenging, and promising characteristics suitable for various biomedical applications. Among modern biomedical potential of AgNPs, tremendous interest is oriented toward the therapeutically enhanced personalized healthcare practice. AgNPs proved to have genuine features and impressive potential for the development of novel antimicrobial agents, drug-delivery formulations, detection and diagnosis platforms, biomaterial and medical device coatings, tissue restoration and regeneration materials, complex healthcare condition strategies, and performance-enhanced therapeutic alternatives. Given the impressive biomedical-related potential applications of AgNPs, impressive efforts were undertaken on understanding the intricate mechanisms of their biological interactions and possible toxic effects. Within this review, we focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based nanostructures.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 313 Splaiul Independenței, Bucharest 060042, Romania.
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, Magurele 077125, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| | - Laurențiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, Craiova 200349, Romania.
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| |
Collapse
|
19
|
Fungicidal activity of copper-sputtered flexible surfaces under dark and actinic light against azole-resistant Candida albicans and Candida glabrata. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:229-234. [DOI: 10.1016/j.jphotobiol.2017.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/16/2023]
|
20
|
Lin CX, Yang SY, Gu JL, Meng J, Xu HY, Cao JM. The acute toxic effects of silver nanoparticles on myocardial transmembrane potential, I Na and I K1 channels and heart rhythm in mice. Nanotoxicology 2017; 11:827-837. [PMID: 28830271 DOI: 10.1080/17435390.2017.1367047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study focused on the potential toxicity of silver nanoparticles (AgNPs) on cardiac electrophysiology which is rarely investigated. We found that AgNPs (10-9-10-6 g/ml) concentration-dependently depolarized the resting potential, diminished the action potential, and finally led to loss of excitability in mice cardiac papillary muscle cells in vitro. In cultured neonatal mice cardiomyocytes, AgNPs (10-9-10-7 g/ml) concentration-dependently decreased the Na+ currents (INa), accelerated the activation, and delayed the inactivation and recovery of Na+ channels from inactivation within 5 min. AgNPs at 10-8 g/ml also rapidly decreased the inwardly rectifying K+ currents (IK1) and delayed the activation of IK1 channels. Intravenous injection of AgNPs at 3 mg/kg only decreased the heart rate, while at ≥4 mg/kg sequentially induced sinus bradycardia, complete atrio-ventricular conduction block, and cardiac asystole. AgNPs at 10-10-10-6 g/ml did not increase reactive oxygen species (ROS) generation and only at 10-6 g/ml mildly induced lactate dehydrogenase (LDH) release in the cardiomyocytes within 5 min. Endocytosis of AgNPs by cardiomyocytes was not observed within 5 min, but was observed 1 h after exposing to AgNPs. Comparative Ag+ (≤0.02% of the AgNPs) could not induce above toxicities. We conclude that AgNPs exert rapid toxic effects on myocardial electrophysiology and induce lethal bradyarrhythmias. These acute toxicities are likely due to direct effects of AgNPs on ion channels at the nano-scale level, but not caused by Ag+, ROS, and membrane injury. These findings provide warning to the nanomedical practice using AgNPs.
Collapse
Affiliation(s)
- Cai-Xia Lin
- a Department of Physiology , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College , Beijing , China
| | - Su-Yu Yang
- a Department of Physiology , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College , Beijing , China
| | - Jing-Li Gu
- a Department of Physiology , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College , Beijing , China
| | - Jie Meng
- b Department of Biomedical Engineering , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College , Beijing , China
| | - Hai-Yan Xu
- b Department of Biomedical Engineering , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College , Beijing , China
| | - Ji-Min Cao
- a Department of Physiology , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College , Beijing , China.,c Department of Physiology , Shanxi Medical University , Taiyuan , China
| |
Collapse
|
21
|
Recent Developments in Accelerated Antibacterial Inactivation on 2D Cu-Titania Surfaces under Indoor Visible Light. COATINGS 2017. [DOI: 10.3390/coatings7020020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Evaluation of Some Biosynthesized Silver Nanoparticles for Biomedical Applications: Hydrogen Peroxide Scavenging, Anticoagulant and Thrombolytic Activities. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1146-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Tamayo L, Azócar M, Kogan M, Riveros A, Páez M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1391-409. [DOI: 10.1016/j.msec.2016.08.041] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/25/2016] [Accepted: 08/14/2016] [Indexed: 12/15/2022]
|