1
|
Freeman MT, Shen J, Meenach SA. An aerosol nanocomposite microparticle formulation using rifampicin-cyclodextrin inclusion complexes for the treatment of pulmonary diseases. Int J Pharm 2024; 665:124755. [PMID: 39321902 PMCID: PMC11464167 DOI: 10.1016/j.ijpharm.2024.124755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Rifampicin (RIF) is commonly used in the treatment of tuberculosis (TB), a bacterium that currently infects one fourth of the world's population. Despite the effectiveness of RIF in treating TB, current RIF treatment regimens require frequent and prolonged dosing, leading to decreased patient compliance and, ultimately, increased mortality rates. This project aims to provide an alternative to oral RIF by means of an inhalable spray-dried formulation. TB uses alveolar macrophages to hide and replicate until the cells rupture, further spreading the bacteria. Therefore, delivering RIF directly to the lungs can increase the drug concentration at the site of infection while reducing off-site side effects. Cyclodextrin (CD) was used to create a RIF-CD inclusion complex to increase RIF solubility and biodegradable RIF-loaded NP (RIF NP) were developed to provide sustained release of RIF. RIF NP and RIF-CD inclusion complex were spray dried to form a dry powder nanocomposite microparticles (nCmP) formulation (RIF-CD nCmP). RIF-CD nCmP displayed appropriate aerosol dispersion characteristics for effective deposition in the alveolar region of the lungs (4.0 µm) with a fine particle fraction of 89 %. The nCmP provided both a burst release of RIF due to the RIF-CD complex and pH-sensitive release of RIF due to the RIF NP incorporated into the formulation. RIF-CD nCmP did not adversely affect lung epithelial cell viability and RIF NP were able to effectively redisperse from the nCmP after spray drying. These results suggest that RIF-CD nCmP can successfully deliver RIF to the site of TB infection while providing both immediate and sustained release of RIF. Overall, the RIF-CD nCmP formulation has the potential to improve the efficacy for the treatment of TB.
Collapse
Affiliation(s)
- Matthew T Freeman
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI 02881, USA
| | - Jie Shen
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI 02881, USA; University of Rhode Island, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, Kingston, RI 02881, USA; Northeastern University, School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Boston, MA 02115, USA
| | - Samantha A Meenach
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI 02881, USA; University of Rhode Island, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, Kingston, RI 02881, USA.
| |
Collapse
|
2
|
Hasan Z, Razzak SA, Kanji A, Shakoor S, Hasan R. Efflux pump gene single-nucleotide variants associated with resistance in Mycobacterium tuberculosis isolates with discrepant drug genotypes. J Glob Antimicrob Resist 2024; 38:128-139. [PMID: 38789081 DOI: 10.1016/j.jgar.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Single-nucleotide variants (SNVs) in Mycobacterium tuberculosis (M. tuberculosis) genomes can predict multidrug resistance (MDR) but not all phenotype-genotype correlations can be explained. We investigated SNVs in efflux pumps (EPs) in the context of M. tuberculosis drug resistance. METHODS We analysed 2221 M. tuberculosis genomes from 1432 susceptible and 200 MDR, 172 pre-extensively drug resistant (XDR) and 417 XDR isolates. Analysis of 47 EP genes was conducted using MTB-VCF, an in-house bioinformatics pipeline. SNVs were categorized according to their SIFT/Polyphen scores. Resistance genotypes were also called using the TB-Profiler tool. RESULTS Genome comparisons between susceptible and drug resistant (DR) isolates identified 418 unique SNVs in EP of which; 53.5% were in MDR, 68.9% in pre-XDR and 61.3% in XDR isolates. Twenty EPs had unique SNVs with a high SIFT/PolyPhen score, comprising 38 unique SNVs. Sixteen SNVs across 12 EP genes were significantly associated with drug resistance and enriched in pre-XDR and XDR strains. These comprised 12 previously reported SNVs (in Rv0191, Rv0507, Rv0676, Rv1217, Rv1218, Rv1273, Rv1458, Rv1819, and Rv2688) and 4 novel SNVs (in Rv1877 and Rv2333). We investigated their presence in genomes of 52 MDR isolates with phenotype-genotype discrepancies to rifampicin (RIF), isoniazid (INH), or fluoroquinolones. SNVs associated with RIF and INH (Rv1217_1218, Rv1819, Rv0450, Rv1458, Rv3827, Rv0507, Rv0676, Rv1273, and Rv2333), and with fluoroquinolone (Rv2688) resistance were present in these discrepant strains. CONCLUSIONS Considering SNVs in EPs as part of M. tuberculosis genome-based resistance interpretation may add value, especially in evaluation of XDR resistance in strains with phenotype-genotype discrepancies.
Collapse
Affiliation(s)
- Zahra Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan.
| | - Safina Abdul Razzak
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Akbar Kanji
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Sadia Shakoor
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
3
|
Long Y, Wang B, Xie T, Luo R, Tang J, Deng J, Wang C. Overexpression of efflux pump genes is one of the mechanisms causing drug resistance in Mycobacterium tuberculosis. Microbiol Spectr 2024; 12:e0251023. [PMID: 38047702 PMCID: PMC10783012 DOI: 10.1128/spectrum.02510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Gene mutations cannot explain all drug resistance of Mycobacterium tuberculosis, and the overexpression of efflux pump genes is considered another important cause of drug resistance. A total of 46 clinical isolates were included in this study to analyze the overexpression of efflux pump genes in different resistant types of strains. The results showed that overexpression of efflux pump genes did not occur in sensitive strains. There was no significant trend in the overexpression of efflux pump genes before and after one-half of MIC drug induction. By adding the efflux pump inhibitor verapamil, we can observe the decrease of MIC of some drug-resistant strains. At the same time, this study ensured the reliability of calculating the relative expression level of efflux pump genes by screening reference genes and using two reference genes for the normalization of quantitative PCR. Therefore, this study confirms that the overexpression of efflux pump genes plays an important role in the drug resistance of clinical isolates of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ying Long
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bin Wang
- Zigong Center for Disease Control and Prevention, Zigong, China
| | - Tiancheng Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ruixin Luo
- Zigong Center for Disease Control and Prevention, Zigong, China
| | - Jing Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jianping Deng
- Zigong Center for Disease Control and Prevention, Zigong, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Alba P, Caprioli A, Cocumelli C, Eleni C, Diaconu EL, Donati V, Ianzano A, Sorbara L, Stravino F, Cerini N, Boniotti MB, Zanoni M, Franco A, Battisti A. Genomics insights into a Mycobacterium pinnipedii isolate causing tuberculosis in a captive South American sea lion ( Otaria flavescens) from Italy. Front Microbiol 2023; 14:1303682. [PMID: 38188565 PMCID: PMC10768177 DOI: 10.3389/fmicb.2023.1303682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Tuberculosis (TB) affects humans and other animals, and it is caused by bacteria within the Mycobacterium tuberculosis complex (MTBC). In this study, we report the characterisation of Mycobacterium pinnipedii that caused a TB case in a sea lion (Otaria flavescens) kept in an Italian zoo. The animal died due to severe, progressive disorders involving the respiratory and gastro-enteric systems and the skin. At necropsy, typical gross lesions referable to a TB generalised form were found. In particular, nodular granulomatous lesions were detected in the lungs and several lymph nodes, and colonies referable to Mycobacterium spp. were isolated from lung, mesenteric, and mediastinal lymph nodes. The isolate was identified by PCR as a MTBC, had a spoligotype SB 1480 ("seal lineage"), and was characterised and characterised by whole-genome sequencing analysis confirming that the MTBC involved was M. pinnipedii. The analysis of the resistome and virulome indicated the presence of macrolide and aminoglycoside resistance genes intrinsic in M. tuberculosis [erm-37 and aac(2')-Ic] and confirmed the presence of the region of difference 1 (RD1), harbouring the esxA and esxB virulence genes, differently from its closest taxon, M. microti. As for other MTCB members, M. pinnipedii infection can spill over into non-pinniped mammalian species; therefore, zoological gardens, veterinary practitioners, and public health officers should be aware of the hazard posed by tuberculosis from marine mammals. Since the isolate under study, as well as all available genomes of M. pinnipedii investigated in this study retains almost all the M. tuberculosis virulence genes, it could indeed cause infection, lesions, and disease in other animal species, including humans.
Collapse
Affiliation(s)
- Patricia Alba
- Department of General Diagnostics, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Andrea Caprioli
- Department of General Diagnostics, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Cristiano Cocumelli
- Department of General Diagnostics, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Claudia Eleni
- Department of General Diagnostics, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Elena Lavinia Diaconu
- Department of General Diagnostics, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Valentina Donati
- Department of General Diagnostics, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Angela Ianzano
- Department of General Diagnostics, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Luigi Sorbara
- Department of General Diagnostics, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Fiorentino Stravino
- Department of General Diagnostics, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Natalino Cerini
- Azienda Sanitaria Locale Roma 6, Servizi Veterinari, Rome, Italy
| | | | - Mariagrazia Zanoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| | - Alessia Franco
- Department of General Diagnostics, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Antonio Battisti
- Department of General Diagnostics, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| |
Collapse
|
5
|
Rostamian M, Kooti S, Abiri R, Khazayel S, Kadivarian S, Borji S, Alvandi A. Prevalence of Mycobacterium tuberculosis mutations associated with isoniazid and rifampicin resistance: A systematic review and meta-analysis. J Clin Tuberc Other Mycobact Dis 2023; 32:100379. [PMID: 37389010 PMCID: PMC10302537 DOI: 10.1016/j.jctube.2023.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Tuberculosis (TB) is still one of the leading causes of worldwide death, especially following the emergence of strains resistant to isoniazid (INH) and rifampicin (RIF). This study aimed to systematically review published articles focusing on the prevalence of INH and/or RIF resistance-associated mutations of Mycobacterium tuberculosis isolates in recent years. Literature databases were searched using appropriate keywords. The data of the included studies were extracted and used for a random-effects model meta-analysis. Of the initial 1442 studies, 29 were finally eligible to be included in the review. The overall resistance to INH and RIF was about 17.2% and 7.3%, respectively. There was no difference between the frequency of INH and RIF resistance using different phenotypic or genotypic methods. The INH and/or RIF resistance was higher in Asia. The S315T mutation in KatG (23.7 %), C-15 T in InhA (10.7 %), and S531L in RpoB (13.5 %) were the most prevalent mutations. Altogether, the results showed that due to S531L in RpoB, S315T in KatG, and C-15 T in InhA mutations INH- and RIF-resistant M. tuberculosis isolates were widely distributed. Thus, it would be diagnostically and epidemiologically beneficial to track these gene mutations among resistant isolates.
Collapse
Affiliation(s)
- Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Kooti
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Ramin Abiri
- Fertility and Infertility Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Khazayel
- Deupty of Research and Technology Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepide Kadivarian
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Borji
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhooshang Alvandi
- Medical Technology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Rossini NDO, Dias MVB. Mutations and insights into the molecular mechanisms of resistance of Mycobacterium tuberculosis to first-line. Genet Mol Biol 2023; 46:e20220261. [PMID: 36718771 PMCID: PMC9887390 DOI: 10.1590/1678-4685-gmb-2022-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/18/2022] [Indexed: 01/28/2023] Open
Abstract
Genetically antimicrobial resistance in Mycobacterium tuberculosis is currently one of the most important aspects of tuberculosis, considering that there are emerging resistant strains for almost every known drug used for its treatment. There are multiple antimicrobials used for tuberculosis treatment, and the most effective ones are the first-line drugs, which include isoniazid, pyrazinamide, rifampicin, and ethambutol. In this context, understanding the mechanisms of action and resistance of these molecules is essential for proposing new therapies and strategies of treatment. Additionally, understanding how and where mutations arise conferring a resistance profile to the bacteria and their effect on bacterial metabolism is an important requisite to be taken in producing safer and less susceptible drugs to the emergence of resistance. In this review, we summarize the most recent literature regarding novel mutations reported between 2017 and 2022 and the advances in the molecular mechanisms of action and resistance against first-line drugs used in tuberculosis treatment, highlighting recent findings in pyrazinamide resistance involving PanD and, additionally, resistance-conferring mutations for novel drugs such as bedaquiline, pretomanid, delamanid and linezolid.
Collapse
Affiliation(s)
- Nicolas de Oliveira Rossini
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil. Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de MicrobiologiaSão PauloSPBrazil
| | - Marcio Vinicius Bertacine Dias
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil. Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de MicrobiologiaSão PauloSPBrazil
- University of Warwick, Department of Chemistry, Coventry, United Kingdom. University of WarwickDepartment of ChemistryCoventryUnited Kingdom
| |
Collapse
|
7
|
Li MC, Wang XY, Xiao TY, Lin SQ, Liu HC, Qian C, Xu D, Li GL, Zhao XQ, Liu ZG, Zhao LL, Wan KL. rpoB Mutations are Associated with Variable Levels of Rifampin and Rifabutin Resistance in Mycobacterium tuberculosis. Infect Drug Resist 2022; 15:6853-6861. [DOI: 10.2147/idr.s386863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
|
8
|
Yang JL, Sun H, Zhou X, Yang M, Zhan XY. Antimicrobial susceptibility profiles and tentative epidemiological cutoff values of Legionella pneumophila from environmental water and soil sources in China. Front Microbiol 2022; 13:924709. [PMID: 36312931 PMCID: PMC9597688 DOI: 10.3389/fmicb.2022.924709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Legionnaires’ disease (LD), caused by Legionella, including the most prevalent Legionella pneumophila, has been treated primarily with antibiotics. Environmental water and soil are the reservoirs for L. pneumophila. Studying antimicrobial susceptibility using a large number of isolates from various environmental sources and regions could provide an unbiased result. In the present study, antimicrobial susceptibility of 1464 environmental L. pneumophila isolates that were derived from various environmental water and soil sources of 12 cities in China to rifampin (RIF), erythromycin (ERY), clarithromycin (CLA), azithromycin (AZI), ciprofloxacin (CIP), moxifloxacin (MOX), levofloxacin (LEV), and doxycycline (DOX) was investigated, and minimum inhibitory concentration (MIC) data were obtained. We show that regarding macrolides, ERY was least active (MIC90 = 0.5 mg/L), while CLA was most active (MIC90 = 0.063 mg/L). A total of three fluoroquinolones have similar MICs on L. pneumophila. Among these antimicrobials, RIF was the most active agent, while DOX was the most inactive one. We observed different susceptibility profiles between serogroup 1 (sg1) and sg2-15 or between water and soil isolates from different regions. The ECOFFs were ERY and AZI (0.5 mg/L), RIF (0.002 mg/L), CIP, CLA and MOX (0.125 mg/L), LEV (0.063 mg/), and DOX (32 mg/L). Overall, two fluoroquinolone-resistant environmental isolates (0.14%) were first documented based on the wild-type MIC distribution. Not all azithromycin-resistant isolates (44/46, 95.65%) harbored the lpeAB efflux pump. The MICs of the ERY and CLA on the lpeAB + isolates were not elevated. These results suggested that the lpeAB efflux pump might be only responsible for AZI resistance, and undiscovered AZI-specific resistant mechanisms exist in L. pneumophila. Based on the big MIC data obtained in the present study, the same defense strategies, particularly against both CLA and RIF, may exist in L. pneumophila. The results determined in our study will guide further research on antimicrobial resistance mechanisms of L. pneumophila and could be used as a reference for setting clinical breakpoints and discovering antimicrobial-resistant isolates in the clinic, contributing to the antibiotic choice in the treatment of LD.
Collapse
|
9
|
A data compendium associating the genomes of 12,289 Mycobacterium tuberculosis isolates with quantitative resistance phenotypes to 13 antibiotics. PLoS Biol 2022; 20:e3001721. [PMID: 35944069 PMCID: PMC9363010 DOI: 10.1371/journal.pbio.3001721] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
The Comprehensive Resistance Prediction for Tuberculosis: an International Consortium (CRyPTIC) presents here a data compendium of 12,289 Mycobacterium tuberculosis global clinical isolates, all of which have undergone whole-genome sequencing and have had their minimum inhibitory concentrations to 13 antitubercular drugs measured in a single assay. It is the largest matched phenotypic and genotypic dataset for M. tuberculosis to date. Here, we provide a summary detailing the breadth of data collected, along with a description of how the isolates were selected, collected, and uniformly processed in CRyPTIC partner laboratories across 23 countries. The compendium contains 6,814 isolates resistant to at least 1 drug, including 2,129 samples that fully satisfy the clinical definitions of rifampicin resistant (RR), multidrug resistant (MDR), pre-extensively drug resistant (pre-XDR), or extensively drug resistant (XDR). The data are enriched for rare resistance-associated variants, and the current limits of genotypic prediction of resistance status (sensitive/resistant) are presented by using a genetic mutation catalogue, along with the presence of suspected resistance-conferring mutations for isolates resistant to the newly introduced drugs bedaquiline, clofazimine, delamanid, and linezolid. Finally, a case study of rifampicin monoresistance demonstrates how this compendium could be used to advance our genetic understanding of rare resistance phenotypes. The data compendium is fully open source and it is hoped that it will facilitate and inspire future research for years to come.
Collapse
|
10
|
Reevaluating Rifampicin Breakpoint Concentrations for Mycobacterium tuberculosis Isolates with Disputed rpoB Mutations and Discordant Susceptibility Phenotypes. Microbiol Spectr 2022; 10:e0208721. [PMID: 35107324 PMCID: PMC8809345 DOI: 10.1128/spectrum.02087-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, rifampicin resistance breakpoints based on MICs of disrupted rpoB mutants of Mycobacterium tuberculosis (MTB) were explored using the Mycobacteria Growth Indicator Tube (MGIT) system and microplate alamarBlue assay (MABA). Sixty-one MTB isolates with disputed low-level rifampicin resistance-associated rpoB mutations and 40 RIF-susceptible wild-type isolates were included. Among the 61 resistant isolates, 25 (41.0%) had MICs ≥2.0 mg/L via MABA, while 16 (26.2%) were identified as RIF resistant via MGIT. Epidemiological cut-off (ECOFF) values obtained using MABA and MGIT were 0.25 and 0.125 mg/L, respectively. Based on 0.125 mg/L as a tentative critical concentration (CC), MABA RIF resistance-detection sensitivity was 93.4%, prompting the reduction of the MGIT CC to 0.125 mg/L, given that only a single isolate (1.6%) with the borderline mutation would be misclassified as susceptible to RIF based on this CC. Based on DNA sequencing of RRDR as the gold standard, the diagnostic accuracy of MGIT (99.0%) was significantly higher than that of MABA (91.1%). MICs of Leu511Pro mutant isolates were negatively correlated with time to liquid culture positivity (TTP) in our analysis (R = 0.957, P < 0.01). In conclusion, our results demonstrated missed detection of a high proportion of rifampicin-resistant isolates based on the WHO-endorsed CC. Such missed detections would be avoided by reducing the optimal MGIT RIF CC to 0.125 mg/L. In addition, MGIT based on reduced CC outperformed MABA in detecting borderline RIF resistance, with MABA MIC results obtained for isolates with the same mutation correlating with MTB growth rate. IMPORTANCE Tuberculosis (TB) is still one of the world's leading infectious disease killers. The early and accurate diagnosis of RIF resistance is necessary to deliver timely and appropriate treatment for TB patients and improve their clinical outcome. Actually, a proportion of MTB isolates with disputed rpoB mutations present a diagnostic dilemma between Xpert and phenotypical drug susceptibility testing (pDST). Recently, WHO reported a pragmatic approach by lowering critical concentration (CC) to boost sensitivity of resistance detection of pDST. Therefore, a detailed analysis of the association between RIF susceptibility and disrupted mutations within rpoB gene would lay a foundation to assess the diagnostic accuracy of pDST with lowering RIF CC. In this study, we aim to determine the MICs of MTB isolates with disrupted mutations by MGIT and microplate alamarBlue assay (MABA). We also aimed to determine the optimal breakpoints for MTB isolates with these mutations.
Collapse
|
11
|
Inducible knockdown of Mycobacterium smegmatis MSMEG_2975 (glyoxalase II) affected bacterial growth, antibiotic susceptibility, biofilm, and transcriptome. Arch Microbiol 2021; 204:97. [DOI: 10.1007/s00203-021-02652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
|
12
|
Maladan Y, Krismawati H, Wahyuni T, Tanjung R, Awaludin K, Audah KA, Parikesit AA. The whole-genome sequencing in predicting Mycobacterium tuberculosis drug susceptibility and resistance in Papua, Indonesia. BMC Genomics 2021; 22:844. [PMID: 34802420 PMCID: PMC8607662 DOI: 10.1186/s12864-021-08139-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Tuberculosis is one of the deadliest disease caused by Mycobacterium tuberculosis. Its treatment still becomes a burden for many countries including Indonesia. Drug resistance is one of the problems in TB treatment. However, a development in the molecular field through Whole-genome sequencing (WGS) can be used as a solution in detecting mutations associated with TB- drugs. This investigation intended to implement this data for supporting the scientific community in deeply understanding any TB epidemiology and evolution in Papua along with detecting any mutations in genes associated with TB-Drugs. RESULT A whole-genome sequencing was performed on the random samples from TB Referral Laboratory in Papua utilizing MiSeq 600 cycle Reagent Kit (V3). Furthermore, TBProfiler was used for genome analysis, RAST Server was employed for annotation, while Gview server was applied for BLAST genome mapping and a Microscope server was implemented for Regions of Genomic Plasticity (RGP). The largest genome of M. tuberculosis obtained was at the size of 4,396,040 bp with subsystems number at 309 and the number of coding sequences at 4326. One sample (TB751) contained one RGP. The drug resistance analysis revealed that several mutations associated with TB-drug resistance existed. In details, mutations of rpoB gene which were identified as S450L, D435Y, H445Y, L430P, and Q432K had caused the reduced effectiveness of rifampicin; while the mutases in katG (S315T), kasA (312S), inhA (I21V), and Rv1482c-fabG1 (C-15 T) genes had contributed to the resistance in isoniazid. In streptomycin, the resistance was triggered by the mutations in rpsL (K43R) and rrs (A514C, A514T) genes, and, in Amikacin, its resistance was led by mutations in rrs (A514C) gene. Additionally, in Ethambutol and Pyrazinamide, their reduced effectiveness was provoked by embB gene mutases (M306L, M306V, D1024N) and pncA (W119R). CONCLUSIONS The results from whole-genome sequencing of TB clinical sample in Papua, Indonesia could contribute to the surveillance of TB-drug resistance. In the drug resistance profile, there were 15 Multi Drugs Resistance (MDR) samples. However, Extensively Drug-resistant (XDR) samples have not been found, but samples were resistant to only Amikacin, a second-line drug.
Collapse
Affiliation(s)
- Yustinus Maladan
- Center for Papua Health Research and Development, Papua, Indonesia.
| | - Hana Krismawati
- Center for Papua Health Research and Development, Papua, Indonesia
| | - Tri Wahyuni
- Center for Papua Health Research and Development, Papua, Indonesia
| | - Ratna Tanjung
- Center for Papua Health Research and Development, Papua, Indonesia
| | | | | | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, International Institute for Life Sciences (I3L), Jakarta, Indonesia.
| |
Collapse
|
13
|
Analysis on Drug-Resistance-Associated Mutations among Multidrug-Resistant Mycobacterium tuberculosis Isolates in China. Antibiotics (Basel) 2021; 10:antibiotics10111367. [PMID: 34827305 PMCID: PMC8614678 DOI: 10.3390/antibiotics10111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
As the causative bacteria of tuberculosis, Mycobacteriumtuberculosis (M. tb) is aggravated by the emergence of its multidrug-resistant isolates in China. Mutations of six of the most frequently reported resistant genes (rpoB, katG, inhA, embB, gyrA, and rpsL) were detected for rifampicin (RIF), isoniazid (INH), ethambutol (EMB), ofloxacin (OFX), and streptomycin (STR) in this study. The amino acid missense mutations (MMs) and their corresponding single nucleotide polymorphism mutations for all drug-resistant (DR) isolates are described in detail. All isolates were divided into non-extensively drug-resistant (Non-XDR) and preXDR/XDR groups. No statistical differences were detected among MMs and linked MMs (LMs) between the two groups, except for rpsL 88 (p = 0.037). In the preXDR/XDR group, the occurrence of MMs in rpoB, katG, and inhA developed phenotypic resistance and MMs of rpoB 531, katG 315, rpsL 43, and rpsL 88 could develop high levels of DR. It is necessary to carry out epidemiological investigations of DR gene mutations in the local region, and thus provide necessary data to support the design of new technologies for rapid detection of resistant M. tb and the optimization of detection targets.
Collapse
|
14
|
Davies-Bolorunduro OF, Ajayi A, Adeleye IA, Kristanti AN, Aminah NS. Bioprospecting for antituberculosis natural products – A review. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
There has been an increase in the reported cases of tuberculosis, a disease caused by Mycobacterium tuberculosis, which is still currently affecting most of the world’s population, especially in resource-limited countries. The search for novel antitubercular chemotherapeutics from underexplored natural sources is therefore of paramount importance. The renewed interest in studies related to natural products, driven partly by the growing incidence of MDR-TB, has increased the prospects of discovering new antitubercular drug leads. This is because most of the currently available chemotherapeutics such as rifampicin and capreomycin used in the treatment of TB were derived from natural products, which are proven to be an abundant source of novel drugs used to treat many diseases. To meet the global need for novel antibiotics from natural sources, various strategies for high-throughput screening have been designed and implemented. This review highlights the current antitubercular drug discovery strategies from natural sources.
Collapse
Affiliation(s)
- Olabisi Flora Davies-Bolorunduro
- Centre for Tuberculosis Research, Nigerian Institute of Medical Research , Yaba , Lagos , Nigeria
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga , Surabaya , Indonesia
| | - Abraham Ajayi
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research , Yaba , Lagos , Nigeria
- Department of Microbiology, University of Lagos , Akoka , Lagos , Nigeria
| | | | - Alfinda Novi Kristanti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga , Surabaya , Indonesia
- Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga , Surabaya , Indonesia
| | - Nanik Siti Aminah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga , Surabaya , Indonesia
- Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga , Surabaya , Indonesia
| |
Collapse
|
15
|
Li MC, Lu J, Lu Y, Xiao TY, Liu HC, Lin SQ, Xu D, Li GL, Zhao XQ, Liu ZG, Zhao LL, Wan KL. rpoB Mutations and Effects on Rifampin Resistance in Mycobacterium tuberculosis. Infect Drug Resist 2021; 14:4119-4128. [PMID: 34675557 PMCID: PMC8502021 DOI: 10.2147/idr.s333433] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the mutations within the whole rpoB gene of Mycobacterium tuberculosis and analyze their effects on rifampin (RIF) resistance based on crystal structure. Methods We sequenced the entire rpoB gene in 175 tuberculosis isolates and quantified their minimum inhibitory concentrations using microplate-based assays. Additionally, the structural interactions between wild-type/mutant RpoB and RIF were also analyzed. Results Results revealed that a total of 34 mutations distributed across 17 different sites within the whole rpoB gene were identified. Of the 34 mutations, 25 could alter the structural interaction between RpoB and RIF and contribute to RIF resistance. Statistical analysis showed that S450L, H445D, H445Y and H445R mutations were associated with high-level RIF resistance, while D435V was associated with moderate-level RIF resistance. Conclusion Some mutations within the rpoB gene could affect the interaction between RpoB and RIF and thus are associated with RIF resistance. These findings could be helpful to design new antibiotics and develop novel diagnostic tools for drug resistance in TB.
Collapse
Affiliation(s)
- Ma-Chao Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yao Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tong-Yang Xiao
- Guangdong Key Laboratory for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Hai-Can Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shi-Qiang Lin
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Da Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Gui-Lian Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiu-Qin Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhi-Guang Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li-Li Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Kang-Lin Wan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
16
|
Mugumbate G, Nyathi B, Zindoga A, Munyuki G. Application of Computational Methods in Understanding Mutations in Mycobacterium tuberculosis Drug Resistance. Front Mol Biosci 2021; 8:643849. [PMID: 34651013 PMCID: PMC8505691 DOI: 10.3389/fmolb.2021.643849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) impedes the End TB Strategy by the World Health Organization aiming for zero deaths, disease, and suffering at the hands of tuberculosis (TB). Mutations within anti-TB drug targets play a major role in conferring drug resistance within Mtb; hence, computational methods and tools are being used to understand the mechanisms by which they facilitate drug resistance. In this article, computational techniques such as molecular docking and molecular dynamics are applied to explore point mutations and their roles in affecting binding affinities for anti-TB drugs, often times lowering the protein’s affinity for the drug. Advances and adoption of computational techniques, chemoinformatics, and bioinformatics in molecular biosciences and resources supporting machine learning techniques are in abundance, and this has seen a spike in its use to predict mutations in Mtb. This article highlights the importance of molecular modeling in deducing how point mutations in proteins confer resistance through destabilizing binding sites of drugs and effectively inhibiting the drug action.
Collapse
Affiliation(s)
- Grace Mugumbate
- Department of Chemical Sciences, Midlands State University, Gweru, Zimbabwe
| | - Brilliant Nyathi
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Albert Zindoga
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Gadzikano Munyuki
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
17
|
Novel mutations detected from drug resistant Mycobacterium tuberculosis isolated from North East of Thailand. World J Microbiol Biotechnol 2021; 37:194. [PMID: 34642828 DOI: 10.1007/s11274-021-03163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
The emergence of drug-resistant tuberculosis is a major global public health threat. Thailand is one of the top 14 countries with high tuberculosis and multi-drug resistant tuberculosis rates. Immediate detection of drug-resistant tuberculosis is necessary to reduce mortality and morbidity by effectively providing treatment to ameliorate the formation of resistant strains. Limited data exist of mutation profiles in Northeastern Thailand. Here, 65 drug-resistant Mycobacterium tuberculosis isolates were used to detect mutations by polymerase chain reaction (PCR) and DNA sequencing. In the katG gene, mutations were occurred in 47 (79.7%) among 59 isoniazid resistant samples. For rpoB gene, 31 (96.9%) were observed as mutations in 32 rifampicin resistant isolates. Of 47 katG mutation samples, 45 (95.7%) had mutations in katG315 codon and 2 (4.3%) showed novel mutations at katG365 with amino acid substitution of CCG-CGG (Pro-Arg). Moreover, out of 31 rpoB mutation isolates, the codon positions rpoB516, rpoB526, rpoB531 and rpoB533 were 3 (9.7%), 8 (25.8%), 11 (35.5%) and 1 (3.2%), respectively. Seven isolates of double point mutation were found [rpoB516, 526; 1 (3.2%) and rpoB516, 531; 6 (19.4%)]. In addition, 1 (3.2%) sample had triple point mutation at codon positions rpoB516, 526 and 531. Common and novel mutation codons of the rpoB and katG genes were generated. Although DNA sequencing showed high accuracy, conventional PCR could be applied as an initial marker for screening drug-resistant Mycobacterium tuberculosis isolates in limit resources region. Mutations reported here should be considered when developing new molecular diagnostic methods for implementation in Northeastern Thailand.
Collapse
|
18
|
Remm S, Earp JC, Dick T, Dartois V, Seeger MA. Critical discussion on drug efflux in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 46:6391500. [PMID: 34637511 PMCID: PMC8829022 DOI: 10.1093/femsre/fuab050] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can withstand months of antibiotic treatment. An important goal of tuberculosis research is to shorten the treatment to reduce the burden on patients, increase adherence to the drug regimen and thereby slow down the spread of drug resistance. Inhibition of drug efflux pumps by small molecules has been advocated as a promising strategy to attack persistent Mtb and shorten therapy. Although mycobacterial drug efflux pumps have been broadly investigated, mechanistic studies are scarce. In this critical review, we shed light on drug efflux in its larger mechanistic context by considering the intricate interplay between membrane transporters annotated as drug efflux pumps, membrane energetics, efflux inhibitors and cell wall biosynthesis processes. We conclude that a great wealth of data on mycobacterial transporters is insufficient to distinguish by what mechanism they contribute to drug resistance. Recent studies suggest that some drug efflux pumps transport structural lipids of the mycobacterial cell wall and that the action of certain drug efflux inhibitors involves dissipation of the proton motive force, thereby draining the energy source of all active membrane transporters. We propose recommendations on the generation and interpretation of drug efflux data to reduce ambiguities and promote assigning novel roles to mycobacterial membrane transporters.
Collapse
Affiliation(s)
- Sille Remm
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Jennifer C Earp
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Switzerland
| |
Collapse
|
19
|
Guo J, Liu R, Shi J, Huo F, Shang Y, Wang F, Gao M, Li S. Rarity of rpoB Mutations Outside the Rifampicin Resistance-Determining Region of Mycobacterium tuberculosis Isolates from Patients Responding Poorly to First-Line Tuberculosis Regimens in Beijing, China: A Retrospective Study. Infect Drug Resist 2021; 14:2607-2612. [PMID: 34262305 PMCID: PMC8275097 DOI: 10.2147/idr.s313717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background Early and accurate diagnosis of rifampicin (RIF)-resistant Mycobacterium tuberculosis (MTB) is essential for controlling community spread of drug-resistant tuberculosis (TB). In order to discover mutations residing outside the rifampicin resistance-determining region (RRDR) of the MTB rpoB gene, we conducted this retrospective study. Methods We retrospectively screened patient records to obtain Xpert MTB/RIF assay results for patients who received care at the Beijing Chest Hospital from 2016 to 2019 in order to identify subjects who met study selection criteria. Stored frozen patient isolates were cultured, harvested, and then subjected to drug susceptibility testing. Concurrently, entire rpoB gene DNA of each isolate was amplified and then sequenced to reveal rpoB mutations. Results Overall, 104 RIF-susceptible tuberculosis patients who were tested using the Xpert MTB/RIF assay also had poor first-line regimen treatment responses. Isolates obtained from these cases included 101 MTB isolates that possessed wild-type rpoB allelic profiles, as demonstrated using Sanger sequencing. However, sequences from the other three isolates confirmed that rpoB of one isolate harbored a mutation encoding the amino acid substitution Ile491Phe and that rpoB genes of two isolates contained a mutation encoding the amino acid substitution Ser450Leu. Conclusion Our data demonstrated that mutations found outside the RRDR of MTB rpoB are rare in Beijing, China, indicating that World Health Organization-approved molecular diagnostics are generally suitable for diagnosing RIF resistance.
Collapse
Affiliation(s)
- Jidong Guo
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, People's Republic of China
| | - Rongmei Liu
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, People's Republic of China
| | - Jin Shi
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, People's Republic of China
| | - Fengmin Huo
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, People's Republic of China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, People's Republic of China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, People's Republic of China
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, People's Republic of China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, People's Republic of China
| |
Collapse
|
20
|
Malenfant JH, Brewer TF. Rifampicin Mono-Resistant Tuberculosis-A Review of an Uncommon But Growing Challenge for Global Tuberculosis Control. Open Forum Infect Dis 2021; 8:ofab018. [PMID: 33623803 PMCID: PMC7888568 DOI: 10.1093/ofid/ofab018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/26/2021] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB) remains the leading cause of death by an infectious pathogen worldwide, and drug-resistant TB is a critical and rising obstacle to global control efforts. Most scientific studies and global TB efforts have focused on multidrug-resistant TB (MDR-TB), meaning isolates resistant to both isoniazid (INH) and rifampicin (RIF). Newer diagnostic tests are resulting in an increasing awareness of RIF-resistant TB in addition to MDR disease. To date, RIF resistance has been assumed to be synonymous with MDR-TB, but this approach may expose TB patients with RIF mono-resistance disease to unnecessarily long and toxic treatment regimens. We review what is currently known about RIF mono-resistant TB, its history and epidemiology, mechanisms of RIF resistance, available diagnostic techniques, treatment outcomes reported globally, and future directions for combatting this disease.
Collapse
Affiliation(s)
- Jason H Malenfant
- Public Health & Preventive Medicine Program, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Timothy F Brewer
- Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, California, USA.,Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
21
|
Lai LY, Hsu LY, Weng SH, Chung SE, Ke HE, Lin TL, Hsieh PF, Lee WT, Tsai HY, Lin WH, Jou R, Wang JT. A Glutamine Insertion at Codon 432 of RpoB Confers Rifampicin Resistance in Mycobacterium tuberculosis. Front Microbiol 2020; 11:583194. [PMID: 33193223 PMCID: PMC7604305 DOI: 10.3389/fmicb.2020.583194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) is an infectious respiratory disease caused by Mycobacterium tuberculosis and one of the top 10 causes of death worldwide. Treating TB is challenging; successful treatment requires a long course of multiple antibiotics. Rifampicin (RIF) is a first-line drug for treating TB, and the development of RIF-resistant M. tuberculosis makes treatment even more difficult. To determine the mechanism of RIF resistance in these strains, we searched for novel mutations by sequencing. Four isolates, CDC-1, CDC-2, CDC-3, and CDC-4, had high-level RIF resistance and unique mutations encoding RpoB G158R, RpoB V168A, RpoB S188P, and RpoB Q432insQ, respectively. To evaluate their correlation with RIF resistance, plasmids carrying rpoB genes encoding these mutant proteins were transfected into the H37Rv reference strain. The plasmid complementation of RpoB indicated that G158R, V168A, and S188P did not affect the MIC of RIF. However, the MIC of RIF was increased in H37Rv carrying RpoB Q432insQ. To confirm the correlation between RIF resistance and Q432insQ, we cloned an rpoB fragment carrying the insertion (encoding RpoB Q432insQ) into H37Rv by homologous recombination using a suicide vector. All replacement mutants expressing RpoB Q432insQ were resistant to RIF (MIC > 1 mg/L). These results indicate that RpoB Q432insQ causes RIF resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Li-Yin Lai
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Yu Hsu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shang-Hui Weng
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shuo-En Chung
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hui-En Ke
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Ting Lee
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan.,Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan
| | - Hsing-Yuan Tsai
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan.,Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan
| | - Wan-Hsuan Lin
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan.,Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan
| | - Ruwen Jou
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan.,Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare of Taiwan, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
22
|
Bhattacharyya K, Nemaysh V, Joon M, Pratap R, Varma-Basil M, Bose M, Brahmachari V. Correlation of drug resistance with single nucleotide variations through genome analysis and experimental validation in a multi-drug resistant clinical isolate of M. tuberculosis. BMC Microbiol 2020; 20:223. [PMID: 32711461 PMCID: PMC7382824 DOI: 10.1186/s12866-020-01912-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/19/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Genome sequencing and genetic polymorphism analysis of clinical isolates of M. tuberculosis is carried out to gain further insight into molecular pathogenesis and host-pathogen interaction. Therefore the functional evaluation of the effect of single nucleotide variation (SNV) is essential. At the same time, the identification of invariant sequences unique to M. tuberculosis contributes to infection detection by sensitive methods. In the present study, genome analysis is accompanied by evaluation of the functional implication of the SNVs in a MDR clinical isolate VPCI591. RESULT By sequencing and comparative analysis of VPCI591 genome with 1553 global clinical isolates of M. tuberculosis (GMTV and tbVar databases), we identified 141 unique strain specific SNVs. A novel intergenic variation in VPCI591 in the putative promoter/regulatory region mapping between embC (Rv3793) and embA (Rv3794) genes was found to enhance the expression of embAB, which correlates with the high resistance of the VPCI591 to ethambutol. Similarly, the unique combination of three genic SNVs in RNA polymerase β gene (rpoB) in VPCI591 was evaluated for its effect on rifampicin resistance through molecular docking analysis. The comparative genomics also showed that along with variations, there are genes that remain invariant. 173 such genes were identified in our analysis. CONCLUSION The genetic variation in M. tuberculosis clinical isolate VPCI591 is found in almost all functional classes of genes. We have shown that SNV in rpoB gene mapping outside the drug binding site along with two SNVs in the binding site can contribute to quantitative change in MIC for rifampicin. Our results show the collective effect of SNVs on the structure of the protein, impacting the interaction between the target protein and the drug molecule in rpoB as an example. The study shows that intergenic variations bring about quantitative changes in transcription in embAB and in turn can lead to drug resistance.
Collapse
Affiliation(s)
- Kausik Bhattacharyya
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, 110007, New Delhi, India.,Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Vishal Nemaysh
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Monika Joon
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, 110007, New Delhi, India
| | - Ramendra Pratap
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Mridula Bose
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Vani Brahmachari
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, 110007, New Delhi, India.
| |
Collapse
|
23
|
Huo F, Ma Y, Liu R, Ma L, Li S, Jiang G, Wang F, Shang Y, Dong L, Pang Y. Interpretation of Discordant Rifampicin Susceptibility Test Results Obtained Using GeneXpert vs Phenotypic Drug Susceptibility Testing. Open Forum Infect Dis 2020; 7:ofaa279. [PMID: 32766385 PMCID: PMC7397830 DOI: 10.1093/ofid/ofaa279] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background The 3-month difference in turnaround time between Xpert and conventional phenotypic drug susceptibility testing (pDST) causes patient treatment challenges when pDST rifampin (RIF) susceptibility results and earlier Xpert results disagree, resulting in unnecessary tuberculosis (TB) patient exposure to toxic second-line drugs. Here, the prevalence of discordant RIF susceptibility test results, specifically Xpert (resistant) vs pDST (susceptible) results, was determined. Methods Tuberculosis patients enrolled between January 2015 and June 2018 at Beijing Chest Hospital who consecutively tested positive for RIF resistance using Xpert then negative using pDST were studied. DNA sequences and minimal inhibitory concentration (MIC) results provided insights for understanding discordant results. Results Of 26 826 patients with suggestive TB symptoms undergoing Xpert MTB/RIF testing, 728 diagnosed as RIF-resistant were evaluated. Of these, 118 (16.2%) exhibiting Xpert RIF resistance and phenotypic RIF susceptibility yielded 104 successfully subcultured isolates; of these, 86 (82.7%) harbored rpoB gene RIF resistance–determining region mutations and 18 (17.3%) did not. The Leu511Pro (25.0%) and Leu533Pro (17.3%) mutations were most frequently associated with discordant RIF susceptibility test results. Of the 86 isolates with rpoB mutations, 42 (48.8%) with MICs ≤1.0 mg/L were assigned to the RIF-susceptible group, with Leu511Pro being the most common mutation observed. Isolates with a very low bacterial load were most frequently misdiagnosed as RIF-resistant by Xpert. Conclusions Approximately one-sixth of RIF-resistant TB isolates identified via Xpert yielded discordant pDST results due to questionable interpretation of specific “disputed” mutations. Thus, a diagnostic flowchart should be used to correctly interpret Xpert RIF resistance results to best guide patient treatment.
Collapse
Affiliation(s)
- Fengmin Huo
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yifeng Ma
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Rongmei Liu
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Liping Ma
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Shanshan Li
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yuanyuan Shang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lingling Dong
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yu Pang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| |
Collapse
|
24
|
Rodrigues L, Cravo P, Viveiros M. Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: a new strategy to revisit mycobacterial targets and repurpose old drugs. Expert Rev Anti Infect Ther 2020; 18:741-757. [PMID: 32434397 DOI: 10.1080/14787210.2020.1760845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In 2018, an estimated 377,000 people developed multidrug-resistant tuberculosis (MDR-TB), urging for new effective treatments. In the last years, it has been accepted that efflux pumps play an important role in the evolution of drug resistance. Strategies are required to mitigate the consequences of the activity of efflux pumps. AREAS COVERED Based upon the literature available in PubMed, up to February 2020, on the diversity of efflux pumps in Mycobacterium tuberculosis and their association with drug resistance, studies that identified efflux inhibitors and their effect on restoring the activity of antimicrobials subjected to efflux are reviewed. These support a new strategy for the development of anti-TB drugs, including efflux inhibitors, using in silico drug repurposing. EXPERT OPINION The current literature highlights the contribution of efflux pumps in drug resistance in M. tuberculosis and that efflux inhibitors may help to ensure the effectiveness of anti-TB drugs. However, despite the usefulness of efflux inhibitors in in vitro studies, in most cases their application in vivo is restricted due to toxicity. In a time when new drugs are needed to fight MDR-TB and extensively drug-resistant TB, cost-effective strategies to identify safer efflux inhibitors should be implemented in drug discovery programs.
Collapse
Affiliation(s)
- Liliana Rodrigues
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| | - Pedro Cravo
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| |
Collapse
|
25
|
Uddin MKM, Rahman A, Ather MF, Ahmed T, Rahman SMM, Ahmed S, Banu S. Distribution and Frequency of rpoB Mutations Detected by Xpert MTB/RIF Assay Among Beijing and Non-Beijing Rifampicin Resistant Mycobacterium tuberculosis Isolates in Bangladesh. Infect Drug Resist 2020; 13:789-797. [PMID: 32210593 PMCID: PMC7073589 DOI: 10.2147/idr.s240408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Background Rifampicin resistance (RR) is a key indicator of multidrug-resistant tuberculosis (MDR-TB) and 95% of the RR is associated with the mutation in the 81-bp rifampicin resistance determining region (RRDR) of the rpoB gene of Mycobacterium tuberculosis complex (MTBC). The Xpert MTB/RIF (Xpert) assay uses five overlapping molecular beacon probes (A-E) complementary to RRDR region that detect MTBC and mutations associated with RR. The objective of the study was to investigate the distribution and frequency of mutations detected by Xpert assay among Beijing and non-Beijing RR-TB isolates. Methods A total of 205 randomly selected RR-TB specimens detected by Xpert assay were included in this study. A portion of specimens was further subjected to culture, MTBDRplus test and the positive culture isolates were genotyped by spoligotyping. Results We found that the most frequent mutation occurred at probe E (S531L) binding region in both Beijing and non-Beijing isolates (61.9% and 66.9%, respectively). The Beijing family had higher mutation rates than non-Beijing (19.0% vs 12.4%) at probe B (D516V) while the non-Beijing family had higher mutations at probe D (H526D or H526Y) than the Beijing (13.2% vs 10.7%) family. Mutations at probes Aand C were less common in both Beijing and non-Beijing isolates. There was no significant difference (P=0.36) in the occurrence of mutations at different probes between Beijing and non-Beijing isolates. Conclusions The study results revealed that the most frequent mutation occurs in the region of probe E and the least common mutations at probe A and C among both Beijing and non-Beijing RR-TB cases. This first insight into the probe mutation variation and frequencies among the RR-TB cases in Bangladesh forms the baseline information for further investigation.
Collapse
Affiliation(s)
| | - Arfatur Rahman
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville VIC 3052, Australia
| | - Md Fahim Ather
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Tanvir Ahmed
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | | | - Shahriar Ahmed
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Sayera Banu
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| |
Collapse
|
26
|
Genotypic characterization of 'inferred' rifampin mutations in GenoType MTBDRplus assay and its association with phenotypic susceptibility testing of Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 2020; 96:114995. [PMID: 32037037 DOI: 10.1016/j.diagmicrobio.2020.114995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/10/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022]
Abstract
In GenoType MTBDRplus assay [line probe assay (LPA)], when Mycobacterium tuberculosis (M. tuberculosis) sample DNA fails to hybridize to at least 1 rpoB wild-type probe and any mutation probe, it is inferred as rifampin (RIF)-resistant. In this study, we sought to identify such 'inferred' mutations in M. tuberculosis isolates (n = 203) by rpoB gene sequencing and determined their association with phenotypic resistance. D516Y, H526N, L511P mutations were associated with both phenotypically sensitive (59%, n = 38/64) and resistant (23.7%, n = 33/139) antimicrobial susceptibility testing (AST) results, whereas S531W mutation was associated with only RIF-resistant isolates (33%, n = 46/139). These results demonstrated that, at standard drug concentrations, some 'inferred' mutations may be missed by RIF-AST (phenotypically sensitive). The use of LPA permits identification of these RIF-resistant isolates, and incorporation of additional mutation probes (e.g., S531W) could further increase LPA specificity. Further studies are needed to establish the significance of the type of 'inferred' mutation with clinical/treatment outcomes.
Collapse
|
27
|
Bie P, Yang X, Zhang C, Wu Q. Identification of Small-Molecule Inhibitors of Brucella Diaminopimelate Decarboxylase by Using a High-Throughput Screening Assay. Front Microbiol 2020; 10:2936. [PMID: 32038511 PMCID: PMC6986272 DOI: 10.3389/fmicb.2019.02936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/06/2019] [Indexed: 11/13/2022] Open
Abstract
Brucellosis, caused by intracellular gram-negative pathogens of the genus Brucella, continues to be one of the most pandemic zoonotic diseases in most countries. At present, the therapeutic treatment of brucellosis relies on a combination of multiple antibiotics that involves a long course of treatment, easy relapse, and high side effects from the use of certain antibiotics (such as streptomycin). Thus, the need to identify novel drugs or targets to control this disease is urgent. Diaminopimelate decarboxylase (DAPDC), a key enzyme involved in the bacterial diaminopimelate (DAP) biosynthetic pathway, was suggested to be a promising anti-Brucella target in our previous study. In this work, the biological activity of Brucella melitensis DAPDC was characterized, and a library of 1,591 compounds was screened for inhibitors of DAPDC. The results of a high-throughput screening (HTS) assay showed that 24 compounds inhibited DAPDC activity. In a further in vitro bacterial inhibition experiment, five compounds exhibited anti-Brucella activity (SID3, SID4, SID14, SID15, and SID20). These results suggested that the identified compounds can be used as potent molecules against brucellosis and that the application ranges of these approved drugs can be expanded in the future.
Collapse
Affiliation(s)
- Pengfei Bie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaowen Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Cunrui Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qingmin Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Khosravi AD, Sirous M, Absalan Z, Tabandeh MR, Savari M. Comparison Of drrA And drrB Efflux Pump Genes Expression In Drug-Susceptible And -Resistant Mycobacterium tuberculosis Strains Isolated From Tuberculosis Patients In Iran. Infect Drug Resist 2019; 12:3437-3444. [PMID: 31807034 PMCID: PMC6842285 DOI: 10.2147/idr.s221823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Among different resistance mechanisms in Mycobacterium tuberculosis (MTB), efflux pumps may have a role in drug-resistance property of MTB. So, the aim of this study was to compare the relative overexpression of two important efflux pump genes, drrA and drrB, among MTB isolates from TB patients. METHODS A total of 37 clinical isolates of confirmed MTB isolates were analyzed. Drug susceptibility testing (DST) was performed using the conventional proportional method. Real-time semiquantitative PCR profiling of the efflux pump genes of drrA and drrB was performed for clinical isolates. The receiver operating curve (ROC) analysis for differentiation of resistant from susceptible isolates on the basis of efflux pump expression fold changes was also performed. RESULTS According to DST, 16 rifampin (RIF) monoresistant, 3 isoniazid (INH) monoresistant, 5 multidrug-resistant (MDR) and 13 pan-susceptible isolates of MTB were evaluated for gene expression. The highest values of drrA and drrB gene expression fold changes were seen in MDR isolates, which were significant in comparison with susceptible isolates and H37Rv reference strain. By using comparative ROC analysis, the obtained cutoff point for drrA and drrB gene overexpression was the folds of >1.6 and >2.3, respectively. CONCLUSION The results of the present study confirm the role of DrrA-DrrB efflux pump in antibiotic resistance in clinical MTB isolates. As the large number of efflux pumps are located in the cell envelope of MTB, we cannot correlate a single efflux pump overexpression to the drug-resistance phenotype, unless all the pumps simultaneously investigated.
Collapse
Affiliation(s)
- Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrandokht Sirous
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Absalan
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran of Ahvaz, Ahvaz, Iran
| | - Mohammad Savari
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
29
|
Whole genome sequencing, analyses of drug resistance-conferring mutations, and correlation with transmission of Mycobacterium tuberculosis carrying katG-S315T in Hanoi, Vietnam. Sci Rep 2019; 9:15354. [PMID: 31653940 PMCID: PMC6814805 DOI: 10.1038/s41598-019-51812-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Drug-resistant tuberculosis (TB) is a serious global problem, and pathogen factors involved in the transmission of isoniazid (INH)-resistant TB have not been fully investigated. We performed whole genome sequencing of 332 clinical Mycobacterium tuberculosis (Mtb) isolates collected from patients newly diagnosed with smear-positive pulmonary TB in Hanoi, Vietnam. Using a bacterial genome-wide approach based on linear mixed models, we investigated the associations between 31-bp k-mers and clustered strains harboring katG-S315T, a major INH-resistance mutation in the present cohort and in the second panel previously published in South Africa. Five statistically significant genes, namely, PPE18/19, gid, emrB, Rv1588c, and pncA, were shared by the two panels. We further identified variants of the genes responsible for these k-mers, which are relevant to the spread of INH-resistant strains. Phylogenetic convergence test showed that variants relevant to PPE46/47-like chimeric genes were significantly associated with the same phenotype in Hanoi. The associations were further confirmed after adjustment for the confounders. These findings suggest that genomic variations of the pathogen facilitate the expansion of INH-resistance TB, at least in part, and our study provides a new insight into the mechanisms by which drug-resistant Mtb maintains fitness and spreads in Asia and Africa.
Collapse
|
30
|
Possible Binding of Piperine in Mycobacterium tuberculosis RNA Polymerase and Rifampin Synergism. Antimicrob Agents Chemother 2019; 63:AAC.02520-18. [PMID: 31481438 DOI: 10.1128/aac.02520-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 08/20/2019] [Indexed: 11/20/2022] Open
Abstract
The activity of rifampin (RIF) and piperine was evaluated at the relative transcript levels of 12 efflux pumps (EPs), and an additional mechanism was proposed to be behind the synergic interactions of piperine plus RIF in Mycobacterium tuberculosis AutoDock v4.2.3 and Molegro v6 programs were used to evaluate PIP binding in M. tuberculosis RNA polymerase (RNAP). A hypothesis has been raised that piperine interferes in M. tuberculosis growth through RNAP inhibition, differently from what was previously endorsed for EP inhibition only.
Collapse
|
31
|
Narang A, Garima K, Porwal S, Bhandekar A, Shrivastava K, Giri A, Sharma NK, Bose M, Varma-Basil M. Potential impact of efflux pump genes in mediating rifampicin resistance in clinical isolates of Mycobacterium tuberculosis from India. PLoS One 2019; 14:e0223163. [PMID: 31557231 PMCID: PMC6762166 DOI: 10.1371/journal.pone.0223163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/12/2019] [Indexed: 01/16/2023] Open
Abstract
Despite the consideration of chromosomal mutations as the major cause of rifampicin (RIF) resistance in M. tuberculosis, the role of other mechanisms such as efflux pumps cannot be ruled out. We evaluated the role of four efflux pumps viz., MmpL2 (Rv0507), MmpL5 (Rv0676c), Rv0194 and Rv1250 in providing RIF resistance in M. tuberculosis. The real time expression of the efflux pumps was analyzed in 16 RIF resistant and 11 RIF susceptible clinical isolates of M. tuberculosis after exposure to RIF. Expression of efflux pumps in these isolates was also correlated with mutations in the rpoB gene and MICs of RIF in the presence and absence of efflux pump inhibitors. Under RIF stress, Rv0194 was induced in 8/16 (50%) RIF resistant and 2/11 (18%) RIF susceptible isolates; mmpL5 in 7/16 (44%) RIF resistant and 1/11 (9%) RIF susceptible isolates; Rv1250 in 4/16 (25%) RIF resistant and 2/11 (18%) RIF susceptible isolates; and mmpL2 was upregulated in 2/16 (12.5%) RIF resistant and 1/11 (9%) RIF susceptible isolates. This preliminary study did not find any association between Rv0194, MmpL2, MmpL5 and Rv1250 and RIF resistance. However, the overexpression of Rv0194 and mmpL5 in greater number of RIF resistant isolates as compared to RIF susceptible isolates and expression of Rv0194 in wild type (WT) resistant isolates suggests a need for further investigations.
Collapse
Affiliation(s)
- Anshika Narang
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kushal Garima
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Shraddha Porwal
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Archana Bhandekar
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kamal Shrivastava
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Astha Giri
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Naresh Kumar Sharma
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Mridula Bose
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
32
|
Lin M, Zhong Y, Chen Z, Lin C, Pei H, Shu W, Pang Y. High incidence of drug-resistant Mycobacterium tuberculosis in Hainan Island, China. Trop Med Int Health 2019; 24:1098-1103. [PMID: 31278806 DOI: 10.1111/tmi.13285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To assess the proportion of drug-resistant tuberculosis (TB) cases and to identify independent risk factors associated with drug-resistant TB in Hainan. METHODS Descriptive analysis of demographic and clinical data of culture-positive TB patients to assess the trends in drug-resistant TB at the Provincial Clinical Center on Tuberculosis of Hainan between 2014 and 2017. RESULTS 994 patients were recruited into the study. Overall, the proportion of patients resistant to at least one TB drug tested was 36.1% (359/994). The most frequent resistance was to isoniazid (INH, 29.8%), followed by rifampin (RIF, 29.3%), streptomycin (19.3%), ofloxacin (OFX, 17.4%), ethambutol (9.5%) and kanamycin (KAN, 3.2%). Of 291 RIF-resistant isolates, 228 (78.4%) were also resistant to INH, while the remaining 63 (21.6%) were susceptible to INH. Among those with multidrug-resistant tuberculosis (MDR-TB), 41.2% had additional resistance to OFX and 3.9% to KAN. 8.8% of MDR-TB patients were affected by extensively drug-resistant (XDR-TB). Females were more likely to infected with MDR-TB than males, and young people (<20 years old) were more likely to have MDR-TB; patients exhibited decreasing MDR-TB risk with increasing age. CONCLUSIONS Our data provide the first primary understanding of the drug-resistant TB epidemic in Hainan. The high incidence of drug resistance, especially RIF and FQ resistance, highlight the importance of interventions for preventing epidemics of drug-resistant TB. Younger age is an independent predictor of MDR-TB, reflecting the potential transmission in this population.
Collapse
Affiliation(s)
- Mingguan Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yeteng Zhong
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Zhuolin Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Chong Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Wei Shu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yu Pang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China.,Biobank of Tuberculosis, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Sun J, Zhu D, Xu J, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, You Y, Wang M, Cheng A. Rifampin resistance and its fitness cost in Riemerella anatipestifer. BMC Microbiol 2019; 19:107. [PMID: 31122209 PMCID: PMC6533769 DOI: 10.1186/s12866-019-1478-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/07/2019] [Indexed: 11/25/2022] Open
Abstract
Background Riemerella anatipestifer (R. anatipestifer) is one of the most important poultry pathogens worldwide, with associated infections causing significant economic losses. Rifampin Resistance is an important mechanism of drug resistance. However, there is no information about rpoB mutations conferring rifampin resistance and its fitness cost in Riemerella anatipestifer. Results Comparative analysis of 18 R.anatipestifer rpoB sequences and the determination of rifampin minimum inhibitory concentrations showed that five point mutations, V382I, H491N, G502K, R494K and S539Y, were related to rifampin resistance. Five overexpression strains were constructed using site-directed mutagenesis to validate these sites. To investigate the origin and fitness costs of the rpoB mutations, 15 types of rpoB mutations were isolated from R. anatipestifer ATCC 11845 by using spontaneous mutation in which R494K was identical to the type of mutation detected in the isolates. The mutation frequency of the rpoB gene was calculated to be 10− 8. A total of 98.8% (247/250) of the obtained mutants were located in cluster I of the rifampin resistance-determining region of the rpoB gene. With the exception of D481Y, I537N and S539F, the rifampin minimum inhibitory concentrations of the remaining mutants were at least 64 μg/mL. The growth performance and competitive experiments of the mutant strains in vitro showed that H491D and 485::TAA exhibit growth delay and severely impaired fitness. Finally, the colonization abilities and sensitivities of the R494K and H491D mutants were investigated. The sensitivity of the two mutants to hydrogen peroxide (H2O2) and sodium nitroprusside (SNP) increased compared to the parental strain. The number of live colonies colonized by the two mutants in the duckling brain and trachea were lower than that of the parental strain within 24 h. Conclusions Mutations of rpoB gene in R. anatipestifer mediate rifampin resistance and result in fitness costs. And different single mutations confer different levels of fitness costs. Our study provides, to our knowledge, the first estimates of the fitness cost associated with the R. anatipestifer rifampin resistance in vitro and in vivo. Electronic supplementary material The online version of this article (10.1186/s12866-019-1478-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiakai Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Jinge Xu
- Guizhou Animal Husbandry and Veterinary Research Institute, Guiyang, 550005, Guizhou, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Yunya Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanling Yu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu You
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
34
|
Ghajavand H, Kargarpour Kamakoli M, Khanipour S, Pourazar Dizaji S, Masoumi M, Rahimi Jamnani F, Fateh A, Yaseri M, Siadat SD, Vaziri F. Scrutinizing the drug resistance mechanism of multi- and extensively-drug resistant Mycobacterium tuberculosis: mutations versus efflux pumps. Antimicrob Resist Infect Control 2019; 8:70. [PMID: 31073401 PMCID: PMC6498538 DOI: 10.1186/s13756-019-0516-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/29/2019] [Indexed: 02/03/2023] Open
Abstract
Background In order to shorten the course of treatment and its effectiveness, it is essential to gain an in-depth insight into the drug resistance mechanisms of Mycobacterium tuberculosis (M. tuberculosis). Methods In this study, we evaluated the contribution of 26 drug efflux pumps plus target gene mutations to the drug resistance levels in multi-drug resistant (MDR)/pre-extensively drug-resistant (pre-XDR)/extensively drug-resistant (XDR) and mono-drug resistant clinical isolates of M. tuberculosis. The panels of 25 M. tuberculosis clinical strains were characterized for drug resistance-associated mutations with whole-genome sequencing and antibiotic profiles in the presence and absence of efflux inhibitor verapamil (VP). Results Different MICs were observed for the same target gene mutations. Out of the 16 MDR/pre-XDR/XDR isolates, 6 (37.5%) and 3 (18.8%) isolates demonstrated a significant decrease in rifampicin (RIF) MIC and isoniazid (INH) MIC due to the VP exposure (64 μg/mL), respectively. Susceptibility to RIF was fully restored in two isolates after VP exposure. Moreover, the efflux pump genes of Rv2938, Rv2936, Rv1145, Rv1146, Rv933, Rv1250, Rv876, Rv2333, Rv2459, Rv849, and Rv1819 were overexpressed in the presence of anti-TB drugs, showing the contribution of these efflux pumps to the overall resistance phenotype. Conclusions Our results clearly showed that efflux systems, besides spontaneous mutations, play a role in the development of INH/RIF resistance. In addition, although VP was effective in reducing the expression of some efflux pumps, it was not very successful at the phenotypic level.
Collapse
Affiliation(s)
- Hasan Ghajavand
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Mansour Kargarpour Kamakoli
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Sharareh Khanipour
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Shahin Pourazar Dizaji
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Morteza Masoumi
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Fatemeh Rahimi Jamnani
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Abolfazl Fateh
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Mehdi Yaseri
- 3Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Farzam Vaziri
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| |
Collapse
|
35
|
A First Insight into the katG and rpoB Gene Mutations of Multidrug-Resistant Mycobacterium tuberculosis Strains from Ecuador. Microb Drug Resist 2019; 25:524-527. [DOI: 10.1089/mdr.2018.0203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
36
|
Hu P, Zhang H, Fleming J, Zhu G, Zhang S, Wang Y, Liu F, Yi S, Chen Z, Chen Z, Liu B, Gong D, Wan L, Wang X, Tan Y, Bai L, Bi L. Retrospective Analysis of False-Positive and Disputed Rifampin Resistance Xpert MTB/RIF Assay Results in Clinical Samples from a Referral Hospital in Hunan, China. J Clin Microbiol 2019; 57:e01707-18. [PMID: 30674578 PMCID: PMC6440781 DOI: 10.1128/jcm.01707-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/16/2019] [Indexed: 11/20/2022] Open
Abstract
Concerns about the specificity of the Xpert MTB/RIF (Xpert) assay have arisen, as false-positive errors in the determination of Mycobacterium tuberculosis complex (MTBC) infection and rifampin (RIF) resistance in clinical practice have been reported. Here, we investigated 33 cases where patients were determined to be RIF susceptible using the Bactec MGIT 960 (MGIT) culture system but RIF resistant using the Xpert assay. Isolates from two of these patients were found not to have any mutations in the rifampin resistance determining region (RRDR) region of rpoB and had good treatment outcomes with first-line antituberculosis (anti-TB) drugs. The remaining 31 patients included 5 new cases and 26 previously treated patients. A large number of well-documented disputed mutations, including Leu511Pro, Asp516Tyr, His526Asn, His526Leu, His526Cys, and Leu533Pro, were detected, and mutations, including a 508 to 509 deletion and His526Gly, were described here as disputed mutations for the first time. Twenty-one (81%) of the 26 previously treated patients had poor treatment outcomes, and isolates from 19 (90%) of these 21 patients were resistant to isoniazid (INH) as determined using the MGIT culture system. Twenty-seven of the 31 isolates with disputed rpoB mutations were phenotypically resistant to INH, 21 (78%) being predicted by GenoType MTBDRplus to have a high level of INH resistance. Most (77.4%) of the isolates with disputed mutations were of the Beijing lineage. These findings have implications for the interpretation of false-positive and disputed rifampin resistance Xpert MTB/RIF results in clinical samples and provide guidance on how clinicians should manage patients carrying isolates with disputed rpoB mutations.
Collapse
Affiliation(s)
- Peilei Hu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Hongtai Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Joy Fleming
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guofeng Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shuai Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaguo Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fengping Liu
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Songlin Yi
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Zhongnan Chen
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Zhenhua Chen
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Binbin Liu
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Daofang Gong
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Li Wan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xingyun Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yunhong Tan
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Liqiong Bai
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Lijun Bi
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
- Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan, Guangdong, China
| |
Collapse
|
37
|
Caleffi-Ferracioli KR, Cardoso RF, de Souza JV, Murase LS, Canezin PH, Scodro RB, Ld Siqueira V, Pavan FR. Modulatory effects of verapamil in rifampicin activity against Mycobacterium tuberculosis. Future Microbiol 2019; 14:185-194. [PMID: 30648892 DOI: 10.2217/fmb-2018-0277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate modulatory effect of verapamil (VP) in rifampicin (RIF) activity and its effect in efflux pumps (EPs) transcript levels in Mycobacterium tuberculosis. MATERIALS & METHODS RIF and VP minimal inhibitory concentration, combinatory effect and detection of mutations were determined in 16 isolates. EPs transcript levels were determined in four isolates by real-time PCR after exposure to drugs. RESULTS VP showed good combinatory effect among RIF-resistant isolates. This effect was also observed in the relative transcript levels of EPs, mainly after 72 h of exposure, depending on the EP gene, genotype and the resistance profile of the isolate. CONCLUSION Additional regulatory mechanisms in the EP activities, as well as, interactions with other drug-specific resistance mechanisms need further investigation in M. tuberculosis.
Collapse
Affiliation(s)
- Katiany R Caleffi-Ferracioli
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Rosilene F Cardoso
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - João Vp de Souza
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Letícia S Murase
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Pedro H Canezin
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Regiane Bl Scodro
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Vera Ld Siqueira
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Fernando R Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, Paulista State University, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
38
|
Du Preez I, Loots DT. Novel insights into the pharmacometabonomics of first-line tuberculosis drugs relating to metabolism, mechanism of action and drug-resistance. Drug Metab Rev 2019; 50:466-481. [PMID: 30558443 DOI: 10.1080/03602532.2018.1559184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ilse Du Preez
- Human Metabolomics, North-West University , Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University , Potchefstroom, South Africa
| |
Collapse
|
39
|
Li M, Kang ET, Chua KL, Neoh KG. Sugar-powered nanoantimicrobials for combating bacterial biofilms. Biomater Sci 2019; 7:2961-2974. [DOI: 10.1039/c9bm00471h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sugar-modified cyclodextrin complexed with quorum sensing inhibitor and antibiotics showed enhanced efficacy in preventing and eradicating bacterial biofilms.
Collapse
Affiliation(s)
- Min Li
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| | - Kim Lee Chua
- Department of Biochemistry
- National University of Singapore
- Singapore 117543
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| |
Collapse
|
40
|
Ravan P, Nejad Sattari T, Siadat SD, Vaziri F. Evaluation of the expression of cytokines and chemokines in macrophages in response to rifampin-monoresistant Mycobacterium tuberculosis and H37Rv strain. Cytokine 2018; 115:127-134. [PMID: 30594437 DOI: 10.1016/j.cyto.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/17/2018] [Accepted: 12/02/2018] [Indexed: 01/02/2023]
Abstract
Macrophages are the primary phagocytes in the lungs and a part of the host defense system against Mycobacterium tuberculosis (Mtb), involved in the primary immune response. While several studies have assessed the effects of resistance to rifampin on Mtb physiology, the consequences of mutations in genes encoding the beta subunit of RNA polymerase (rpoB) for host-pathogen interactions remain poorly understood. In this study, rifampin-monoresistant (RMR) Mtb and H37Rv strains were used to infect the THP-1-derived macrophages. Real-time quantitative reverse transcription PCR assay was carried out to determine mRNA expression in 84 cytokine and chemokine genes. Production of specific cytokines and chemokines was measured by ELISA assay. In conclusion, the current study shed more light on the fitness cost of RMR strain and the potential effects of rpoB gene mutations on Mtb-host interactions. These results initially demonstrate that the Mtb carrying the rpoB-S450L can modulate macrophage responses to mediate bacterial survival.
Collapse
Affiliation(s)
- Parvaneh Ravan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Taher Nejad Sattari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
41
|
Evolution of Rifampin Resistance in Escherichia coli and Mycobacterium smegmatis Due to Substandard Drugs. Antimicrob Agents Chemother 2018; 63:AAC.01243-18. [PMID: 30397062 DOI: 10.1128/aac.01243-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/31/2018] [Indexed: 01/25/2023] Open
Abstract
Poor-quality medicines undermine the treatment of infectious diseases, such as tuberculosis, which require months of treatment with rifampin and other drugs. Rifampin resistance is a critical concern for tuberculosis treatment. While subtherapeutic doses of medicine are known to select for antibiotic resistance, the effect of drug degradation products on the evolution of resistance is unknown. Here, we demonstrate that substandard drugs that contain degraded active pharmaceutical ingredients select for gene alterations that confer resistance to standard drugs. We generated drug-resistant Escherichia coli and Mycobacterium smegmatis strains by serially culturing bacteria in the presence of the rifampin degradation product rifampin quinone. We conducted Sanger sequencing to identify mutations in rifampin-resistant populations. Strains resistant to rifampin quinone developed cross-resistance to the standard drug rifampin, with some populations showing no growth inhibition at maximum concentrations of rifampin. Sequencing of the rifampin quinone-treated strains indicated that they acquired mutations in the DNA-dependent RNA polymerase B subunit. These mutations were localized in the rifampin resistance-determining region (RRDR), consistent with other reports of rifampin-resistant E. coli and mycobacteria. Rifampin quinone-treated mycobacteria also had cross-resistance to other rifamycin class drugs, including rifabutin and rifapentine. Our results strongly suggest that substandard drugs not only hinder individual patient outcomes but also restrict future treatment options by actively contributing to the development of resistance to standard medicines.
Collapse
|
42
|
Machado D, Lecorche E, Mougari F, Cambau E, Viveiros M. Insights on Mycobacterium leprae Efflux Pumps and Their Implications in Drug Resistance and Virulence. Front Microbiol 2018; 9:3072. [PMID: 30619157 PMCID: PMC6300501 DOI: 10.3389/fmicb.2018.03072] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022] Open
Abstract
Drug resistance in Mycobacterium leprae is assumed to be due to genetic alterations in the drug targets and reduced cell wall permeability. However, as observed in Mycobacterium tuberculosis, drug resistance may also result from the overactivity of efflux systems, which is mostly unexplored. In this perspective, we discuss known efflux pumps involved in M. tuberculosis drug resistance and virulence and investigate similar regions in the genome of M. leprae. In silico analysis reveals that the major M. tuberculosis efflux pumps known to be associated with drug resistance and virulence have been retained during the reductive evolutionary process that M. leprae underwent, e.g., RND superfamily, the ABC transporter BacA, and the MFS P55. However, some are absent (DinF, MATE) while others are derepressed (Mmr, SMR) in M. leprae reflecting the specific environment where M. leprae may live. The occurrence of several multidrug resistance efflux transporters shared between M. leprae and M. tuberculosis reveals potential implications in drug resistance and virulence. The conservation of the described efflux systems in M. leprae upon genome reduction indicates that these systems are potentially required for its intracellular survival and lifestyle. They potentially are involved in M. leprae drug resistance, which could hamper leprosy treatment success. Studying M. leprae efflux pumps as new drug targets is useful for future leprosy therapeutics, enhancing the global efforts to eradicate endemic leprosy, and prevent the emergence of drug resistance in afflicted countries.
Collapse
Affiliation(s)
- Diana Machado
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Study Group for Mycobacterial Infections (ESGMYC), European Society for Clinical Microbiology and Infectious Diseases (ESCMID), Basel, Switzerland
| | - Emmanuel Lecorche
- Université Paris Diderot, INSERM IAME UMR1137, Sorbonne Paris Cité, Paris, France.,APHP, Groupe Hospitalier Lariboisière Fernand-Widal, Laboratoire de Bacteriologie, Paris, France.,Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Faiza Mougari
- Université Paris Diderot, INSERM IAME UMR1137, Sorbonne Paris Cité, Paris, France.,APHP, Groupe Hospitalier Lariboisière Fernand-Widal, Laboratoire de Bacteriologie, Paris, France.,Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Emmanuelle Cambau
- Study Group for Mycobacterial Infections (ESGMYC), European Society for Clinical Microbiology and Infectious Diseases (ESCMID), Basel, Switzerland.,Université Paris Diderot, INSERM IAME UMR1137, Sorbonne Paris Cité, Paris, France.,APHP, Groupe Hospitalier Lariboisière Fernand-Widal, Laboratoire de Bacteriologie, Paris, France.,Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Miguel Viveiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Study Group for Mycobacterial Infections (ESGMYC), European Society for Clinical Microbiology and Infectious Diseases (ESCMID), Basel, Switzerland
| |
Collapse
|
43
|
Srivastava G, Tripathi S, Kumar A, Sharma A. Molecular insight into multiple RpoB clinical mutants of Mycobacterium tuberculosis: An attempt to probe structural variations in rifampicin binding site underlying drug resistance. Int J Biol Macromol 2018; 120:2200-2214. [DOI: 10.1016/j.ijbiomac.2018.06.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
|
44
|
Antimycobacterial activity of an anthracycline produced by an endophyte isolated from Amphipterygium adstringens. Mol Biol Rep 2018; 45:2563-2570. [PMID: 30311126 DOI: 10.1007/s11033-018-4424-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
Abstract
The search for new compounds effective against Mycobacterium tuberculosis is still a priority in medicine. The evaluation of microorganisms isolated from non-conventional locations offers an alternative to look for new compounds with antimicrobial activity. Endophytes have been successfully explored as source of bioactive compounds. In the present work we studied the nature and antimycobacterial activity of a compound produced by Streptomyces scabrisporus, an endophyte isolated from the medicinal plant Amphipterygium adstringens. The active compound was detected as the main secondary metabolite present in organic extracts of the streptomycete and identified by NMR spectroscopic data as steffimycin B (StefB). This anthracycline displayed a good activity against M. tuberculosis H37Rv ATCC 27294 strain, with MIC100 and SI values of 7.8 µg/mL and 6.42, respectively. When tested against the rifampin mono resistant M. tuberculosis Mtb-209 pathogen strain, a better activity was observed (MIC100 of 3.9 µg/mL), suggesting a different action mechanism of StefB from that of rifampin. Our results supported the endophyte Streptomyces scabrisporus as a good source of StefB for tuberculosis treatment, as this anthracycline displayed a strong bactericidal effect against M. tuberculosis, one of the oldest and more dangerous human pathogens causing human mortality.
Collapse
|
45
|
Diagnostic Accuracy and Utility of FluoroType MTBDR, a New Molecular Assay for Multidrug-Resistant Tuberculosis. J Clin Microbiol 2018; 56:JCM.00531-18. [PMID: 29976588 DOI: 10.1128/jcm.00531-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/23/2018] [Indexed: 11/20/2022] Open
Abstract
Most cases of multidrug-resistant (MDR) tuberculosis (TB) are never diagnosed (328,300 of the ∼490,000 cases in 2016 were missed). The Xpert MTB/RIF assay detects resistance only to rifampin, despite ∼20% of rifampin-resistant cases being susceptible to isoniazid (a critical first-line drug). Consequently, many countries require further testing with the GenoType MTBDRplus assay. However, MTBDRplus is not recommended for use on smear-negative specimens, and thus, many specimens require culture-based drug susceptibility testing. Furthermore, MTBDRplus requires specialized expertise, lengthy hands-on time, and significant laboratory infrastructure and interpretation is not automated. To address these gaps, we evaluated the accuracy of the FluoroType MTBDR (FluoroType) assay. Sputa from 244 smear-positive and 204 smear-negative patients with presumptive TB (Xpert MTB positive, n = 343) were tested. Culture and MTBDRplus on isolates served as reference standards (for active TB and MDR-TB, respectively). Sanger sequencing and MTBDRplus, both of which were performed on sputa, were used to resolve discrepancies. The sensitivity of FluoroType for the detection of M. tuberculosis complex was 98% (95% confidence interval [CI], 95 to 99%) and 92% (95% CI, 84 to 96%) for smear-positive and smear-negative specimens, respectively (232/237 versus 90/98 specimens; P < 0.009). The sensitivity and specificity for smear-negative specimens were 100% and 97%, respectively, for rifampin resistance; 100% and 98%, respectively, for isoniazid resistance; and 100% and 100%, respectively, for MDR-TB. FluoroType identified 98%, 97%, and 97% of the rpoB, katG, and inhA promoter mutations, respectively. FluoroType has excellent sensitivity with sputa equivalent to that of MTBDRplus with the isolates and can provide rapid drug susceptibility testing for rifampin and isoniazid. In addition, the capacity of FluoroType to simultaneously identify virtually all mutations in the rpoB, katG, and inhA promoter may be useful for individualized treatment regimens.
Collapse
|
46
|
Yan H, Xu R, Zhang X, Wang Q, Pang J, Zhang X, Chang X, Zhang Y. Identifying differentially expressed long non-coding RNAs in PBMCs in response to the infection of multidrug-resistant tuberculosis. Infect Drug Resist 2018; 11:945-959. [PMID: 30034244 PMCID: PMC6047615 DOI: 10.2147/idr.s154255] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this paper was to identify differentially expressed long non-coding RNAs (lncRNAs) in peripheral blood mononuclear cells (PBMCs) influenced by the infection of multidrug-resistant tuberculosis (MDR-TB). Materials and methods IncRNA and mRNA expression profiles in PBMCs derived from healthy controls (HCs) and individuals with MDR-TB and drug-sensitive tuberculosis (DS-TB) were analyzed and compared by microarray assay. Six lncRNAs were randomly selected for validation by using real-time quantitative polymerase chain reaction (RT-qPCR). The biological functions and signaling pathways affected by the differentially expressed mRNAs were investigated by using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-based approaches. Results Compared with the HC group, 1,429 lncRNAs (983 mRNAs) and 2,040 lncRNAs (1,407 mRNAs) were identified to be deregulated in the MDR-TB group and in the DS-TB group, respectively, and 1,511 lncRNAs and 1,047 mRNAs were identified to be differentially expressed in both MDR-TB and DS-TB groups. Between the three groups, 22 lncRNAs and 38 mRNAs were found deregulated. Most deregulated lncRNAs were from intergenic regions (~55% of the total), natural antisense to protein-coding loci (~32% of the total), or intronic antisense to protein-coding loci (~5% of the total). Significantly enriched signaling pathways regulated by the deregulated mRNAs were mainly associated with natural killer cell-mediated cytotoxicity, antigen processing and presentation, graft-vs-host disease, the transforming growth factor-β signaling pathway, and the Hippo signaling pathway. Conclusion This study is the first to report differentially expressed lncRNAs in PBMCs in response to MDR-TB infection. It revealed that some lncRNAs might be associated with regulating host immune response to MDR-TB infection. Further elucidation of the potential of these deregulated lncRNAs in MDR-TB and its reactivation requires further study.
Collapse
Affiliation(s)
- Hong Yan
- Department of Laboratory Medicine, Nanjing Chest Hospital, Nanjing 210029, China
| | - Rufeng Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 210029, China,
| | - Xiangrong Zhang
- Nanjing Public Health Clinical Center, Nanjing, Jiangsu 211133, China
| | - Qian Wang
- Department of Laboratory Medicine, Nanjing Chest Hospital, Nanjing 210029, China
| | - Jing Pang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 210029, China,
| | - Xia Zhang
- Nanjing Public Health Clinical Center, Nanjing, Jiangsu 211133, China
| | - Xiaoai Chang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 210029, China,
| | - Yaqin Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 210029, China,
| |
Collapse
|
47
|
Kigozi E, Kasule GW, Musisi K, Lukoye D, Kyobe S, Katabazi FA, Wampande EM, Joloba ML, Kateete DP. Prevalence and patterns of rifampicin and isoniazid resistance conferring mutations in Mycobacterium tuberculosis isolates from Uganda. PLoS One 2018; 13:e0198091. [PMID: 29847567 PMCID: PMC5976185 DOI: 10.1371/journal.pone.0198091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/14/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Accurate diagnosis of tuberculosis, especially by using rapid molecular assays, can reduce transmission of drug resistant tuberculosis in communities. However, the frequency of resistance conferring mutations varies with geographic location of Mycobacterium tuberculosis, and this affects the efficiency of rapid molecular assays in detecting resistance. This has created need for characterizing drug resistant isolates from different settings to investigate frequencies of resistance conferring mutations. Here, we describe the prevalence and patterns of rifampicin- and isoniazid- resistance conferring mutations in isolates from Uganda, which could be useful in the management of MDR-TB patients in Uganda and other countries in sub-Saharan Africa. RESULTS Ninety seven M. tuberculosis isolates were characterized, of which 38 were MDR, seven rifampicin-resistant, 12 isoniazid-mono-resistant, and 40 susceptible to rifampicin and isoniazid. Sequence analysis of the rpoB rifampicin-resistance determining region (rpoB/RRDR) revealed mutations in six codons: 588, 531, 526, 516, 513, and 511, of which Ser531Leu was the most frequent (40%, 18/45). Overall, the three mutations (Ser531Leu, His526Tyr, Asp516Tyr) frequently associated with rifampicin-resistance occurred in 76% of the rifampicin resistant isolates while 18% (8/45) of the rifampicin-resistant isolates lacked mutations in rpoB/RRDR. Furthermore, sequence analysis of katG and inhA gene promoter revealed mainly the Ser315Thr (76%, 38/50) and C(-15)T (8%, 4/50) mutations, respectively. These two mutations combined, which are frequently associated with isoniazid-resistance, occurred in 88% of the isoniazid resistant isolates. However, 20% (10/50) of the isoniazid-resistant isolates lacked mutations both in katG and inhA gene promoter. The sensitivity of sequence analysis of rpoB/RRDR for rifampicin-resistance via detection of high confidence mutations (Ser531Leu, His526Tyr, Asp516Tyr) was 81%, while it was 77% for analysis of katG and inhA gene promoter to detect isoniazid-resistance via detection of high confidence mutations (Ser315Thr, C(-15)T, T(-8)C). Furthermore, considering the circulating TB genotypes in Uganda, the isoniazid-resistance conferring mutations were more frequent in M. tuberculosis lineage 4/sub-lineage Uganda, perhaps explaining why this genotype is weakly associated with MDR-TB. CONCLUSION Sequence analysis of rpoB/RRDR, katG and inhA gene promoter is useful in detecting rifampicin/isoniazid resistant M. tuberculosis isolates in Uganda however, about ≤20% of the resistant isolates lack known resistance-conferring mutations hence rapid molecular assays may not detect them as resistant.
Collapse
Affiliation(s)
- Edgar Kigozi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Kenneth Musisi
- National Tuberculosis Reference Laboratory, Kampala, Uganda
| | - Deus Lukoye
- National Tuberculosis/Leprosy Program Ministry of Health, Kampala, Uganda
| | - Samuel Kyobe
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Fred Ashaba Katabazi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Eddie M. Wampande
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
48
|
A 10-Year Comparative Analysis Shows that Increasing Prevalence of Rifampin-Resistant Mycobacterium tuberculosis in China Is Associated with the Transmission of Strains Harboring Compensatory Mutations. Antimicrob Agents Chemother 2018; 62:AAC.02303-17. [PMID: 29378712 DOI: 10.1128/aac.02303-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/20/2018] [Indexed: 11/20/2022] Open
Abstract
In this work, we conducted bacterial population profile studies to assess trends of rifampin (RIF) resistance of Mycobacterium tuberculosis isolates collected across China from 2005 to 2015. Totals of 273 and 269 randomly selected M. tuberculosis isolates from 2005 and 2015, respectively, were analyzed. The rates of RIF resistance (36.4%), isoniazid resistance (39.0%), and levofloxacin resistance (25.7%) in 2015 were significantly higher than those in 2005 (28.2%, 30.0%, and 15.4%, respectively; P < 0.05). Genotypic data revealed 256 (95.2%) Beijing-type isolates in 2015, a rate significantly higher than that in 2005 (86.4%) (P < 0.01). A higher proportion of mutations was identified within the rifampin resistance-determining region (RRDR) of rpoB in isolates from 2015 (99.0%) than in 2005 isolates (85.7%, P < 0.01). In addition, a significantly higher proportion of RIF-resistant isolates carrying compensatory mutations was observed in 2015 (31.6%) than in 2005 (7.8%). Notably, the great majority of these compensatory mutations (91.9%) were observed in isolates that harbored a mutation of codon 531 of the rpoB gene. In conclusion, our data demonstrate that resistance to RIF, isoniazid, and levofloxacin has become significantly more prevalent during the past decade. In addition, the prevalence of the Beijing genotype significantly increased from 2005 to 2015. Notably, a significantly increased frequency of strains with mutations in rpoC or rpoA is observed among those that have codon 531 mutations, which suggests that they may be compensatory and may play a role in facilitating transmission.
Collapse
|
49
|
Analysis of isoniazid and rifampicin resistance in Mycobacterium tuberculosis isolates in Morocco using GenoType® MTBDRplus assay. J Glob Antimicrob Resist 2018; 12:197-201. [DOI: 10.1016/j.jgar.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 01/13/2023] Open
|
50
|
The Effect of Ubiquitin Like Protein-Proteasome System on the Drug Resistance of Isoniazid Mono-Resistant Mycobacterium tuberculosis. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.58591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|