1
|
Yi S, Zhou K, Xu X. Characterization of erm(B)-Carrying Integrative and Conjugative Elements Transferred from Streptococcus anginosus to Other Streptococci and Enterococci. Microb Drug Resist 2024; 30:243-253. [PMID: 38608246 DOI: 10.1089/mdr.2023.0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Integrative and conjugative elements (ICEs) are important vectors of lateral gene transfer and contribute to the evolution of bacterial pathogens. However, studies on the transfer among species and the physiological consequences of ICEs are rare. The objective of this study was to investigate the cross-species transferability of newly identified erm(B)-carried ICE in Streptococcus anginosus San95 and its physiological consequences after transfer. The erm(B)-carried ICE, characterized by a triple serine integrase module, integrated into hsdM genes, thus designated ICESan95_hsdM. Analysis of ICESan95_hsdM revealed 32 additional ICESan95-like ICEs in the available NCBI genome (n = 24) and sequence of clinical isolates (n = 8). Polymerase chain reaction (PCR) was used to evaluate the 467 clinical isolates, of which 84 were positive for core genes (integrase, relaxase, and T4SS genes) of ICESan95_hsdM. Cross-species transfer experiments demonstrated that ICESan95_hsdM could transfer from S. anginosus to different streptococcal and enterococcal recipients. Growth and competitive culture assays showed acquisition of ICESan95_hsdM incurred no fitness cost. Our work discovered a group of ICEs in Streptococci and Enterococci. For the first time, we demonstrated the broad cross-species transferability to different species or genera of ICEs with no fitness cost that enables commensal S. anginosus to deliver antimicrobial resistance genes to other streptococci and enterococci.
Collapse
Affiliation(s)
- Sida Yi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People's Republic of China, Shanghai, China
| | - Kaixin Zhou
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People's Republic of China, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People's Republic of China, Shanghai, China
| |
Collapse
|
2
|
Li L, Ma J, Yu Z, Li M, Zhang W, Sun H. Epidemiological characteristics and antibiotic resistance mechanisms of Streptococcus pneumoniae: An updated review. Microbiol Res 2023; 266:127221. [DOI: 10.1016/j.micres.2022.127221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022]
|
3
|
Uruén C, García C, Fraile L, Tommassen J, Arenas J. How Streptococcus suis escapes antibiotic treatments. Vet Res 2022; 53:91. [DOI: 10.1186/s13567-022-01111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractStreptococcus suis is a zoonotic agent that causes sepsis and meningitis in pigs and humans. S. suis infections are responsible for large economic losses in pig production. The lack of effective vaccines to prevent the disease has promoted the extensive use of antibiotics worldwide. This has been followed by the emergence of resistance against different classes of antibiotics. The rates of resistance to tetracyclines, lincosamides, and macrolides are extremely high, and resistance has spread worldwide. The genetic origin of S. suis resistance is multiple and includes the production of target-modifying and antibiotic-inactivating enzymes and mutations in antibiotic targets. S. suis genomes contain traits of horizontal gene transfer. Many mobile genetic elements carry a variety of genes that confer resistance to antibiotics as well as genes for autonomous DNA transfer and, thus, S. suis can rapidly acquire multiresistance. In addition, S. suis forms microcolonies on host tissues, which are associations of microorganisms that generate tolerance to antibiotics through a variety of mechanisms and favor the exchange of genetic material. Thus, alternatives to currently used antibiotics are highly demanded. A deep understanding of the mechanisms by which S. suis becomes resistant or tolerant to antibiotics may help to develop novel molecules or combinations of antimicrobials to fight these infections. Meanwhile, phage therapy and vaccination are promising alternative strategies, which could alleviate disease pressure and, thereby, antibiotic use.
Collapse
|
4
|
Varghese R, Daniel JL, Neeravi A, Baskar P, Manoharan A, Sundaram B, Manchanda V, Saigal K, Yesudhasan BL, Veeraraghavan B. Multicentric Analysis of Erythromycin Resistance Determinants in Invasive Streptococcus pneumoniae; Associated Serotypes and Sequence Types in India. Curr Microbiol 2021; 78:3239-3245. [PMID: 34223923 DOI: 10.1007/s00284-021-02594-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
Streptococcus pneumoniae is the major cause of childhood pneumonia and related deaths in India. Widespread use of erythromycin for the treatment of pneumonia has led to the emergence of erythromycin resistance. Despite this increase in erythromycin resistance, there are very little data on resistance determinants from India. Hence, we aimed to perform the molecular characterization of erythromycin-resistant invasive pneumococcal isolates in India. In this study, 250 erythromycin-resistant invasive isolates obtained from four Indian hospitals between 2014 and 2019 were included. The isolates were reconfirmed by standard CDC protocols, followed by detection of erm(B), mef(A/E) genes, and screening for mutations in 23S rRNA, ribosomal proteins L4 and L22. Among the 250 erythromycin-resistant isolates, 46% (n = 114) and 35% (n = 87) carried the mef(A/E) gene and erm(B) gene, respectively; both genes were present in 8% (n = 20) of the isolates and 12% (n = 29) of the studied strains did not bear any of them. The major mutations associated with erythromycin resistance in 23S rRNA, such as A2060C, A2061G, and C2613G, were absent. The predominant serotypes were 19F, 14, 23F, 6A, 6B, 19A, and 9V. The major clonal complexes were CC320, followed by CC230 and CC63. The predominant gene was mef(A/E), and most of the serotypes were PCV13 (54%). This study contributes to the baseline understanding of the erythromycin resistance determinants associated with the serotypes and sequence types (ST) of Indian invasive S. pneumoniae.
Collapse
Affiliation(s)
- Rosemol Varghese
- Department of Clinical Microbiology, Christian Medical College, Vellore, 632004, TN, India
| | - Jones Lionel Daniel
- Department of Clinical Microbiology, Christian Medical College, Vellore, 632004, TN, India
| | - Ayyanraj Neeravi
- Department of Clinical Microbiology, Christian Medical College, Vellore, 632004, TN, India
| | - Pavithra Baskar
- Department of Clinical Microbiology, Christian Medical College, Vellore, 632004, TN, India
| | - Anand Manoharan
- The CHILDS Trust Medical Research Foundation, Chennai, TN, India
| | | | - Vikas Manchanda
- Department of Microbiology, Maulana Azad Medical College, New Delhi, Delhi, India
| | - Karnika Saigal
- Department of Microbiology, Chacha Nehru Bal Chikitsalaya, New Delhi, Delhi, India
| | - Binesh Lal Yesudhasan
- Department of Clinical Microbiology, Christian Medical College, Vellore, 632004, TN, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, 632004, TN, India.
| |
Collapse
|
5
|
Oliver MB, Swords WE. Comparative Analysis of Streptococcus pneumoniae Type I Restriction-Modification Loci: Variation in hsdS Gene Target Recognition Domains. Pathogens 2020; 9:pathogens9090712. [PMID: 32872494 PMCID: PMC7557576 DOI: 10.3390/pathogens9090712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a respiratory commensal pathogen that causes a range of infections, particularly in young children and the elderly. Pneumococci undergo spontaneous phase variation in colony opacity phenotype, in which DNA rearrangements within the Type I restriction-modification (R-M) system specificity gene hsdS can potentially generate up to six different hsdS alleles with differential DNA methylation activity, resulting in changes in gene expression. To gain a broader perspective of this system, we performed bioinformatic analyses of Type I R-M loci from 18 published pneumococcal genomes, and one R-M locus sequenced for this study, to compare genetic content, organization, and homology. All 19 loci encoded the genes hsdR, hsdM, hsdS, and at least one hsdS pseudogene, but differed in gene order, gene orientation, and hsdS target recognition domain (TRD) content. We determined the coding sequences of 87 hsdS TRDs and excluded seven from further analysis due to the presence of premature stop codons. Comparative analyses revealed that the TRD 1.1, 1.2, and 2.1 protein sequences had single amino acid substitutions, and TRD 2.2 and 2.3 each had seven differences. The results of this study indicate that variability exists among the gene content and arrangements within Type I R-M loci may provide an additional level of divergence between pneumococcal strains, such that phase variation-mediated control of virulence factors may vary significantly between individual strains. These findings are consistent with presently available transcript profile data.
Collapse
Affiliation(s)
- Melissa B. Oliver
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine University of Alabama at Birmingham, Birmingham, 35294 AL, USA;
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, 35294 AL, USA
| | - W. Edward Swords
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine University of Alabama at Birmingham, Birmingham, 35294 AL, USA;
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, 35294 AL, USA
- Correspondence:
| |
Collapse
|
6
|
Flórez AB, Mayo B. Antibiotic Resistance-Susceptibility Profiles of Streptococcus thermophilus Isolated from Raw Milk and Genome Analysis of the Genetic Basis of Acquired Resistances. Front Microbiol 2017; 8:2608. [PMID: 29312272 PMCID: PMC5744436 DOI: 10.3389/fmicb.2017.02608] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 12/26/2022] Open
Abstract
The food chain is thought to play an important role in the transmission of antibiotic resistances from commensal and beneficial bacteria to pathogens. Streptococcus thermophilus is a lactic acid bacterium of major importance as a starter for the dairy industry. This study reports the minimum inhibitory concentration (MIC) of 16 representative antimicrobial agents to 41 isolates of S. thermophilus derived from raw milk. Strains showing resistance to tetracycline (seven), erythromycin and clindamycin (two), and streptomycin and neomycin (one) were found. PCR amplification identified tet(S) in all the tetracycline-resistant strains, and ermB in the two erythromycin/clindamycin-resistant strains. Hybridisation experiments suggested each resistance gene to be located in the chromosome with a similar genetic organization. Five antibiotic-resistant strains -two resistant to tetracycline (St-2 and St-9), two resistant to erythromycin/clindamycin (St-5 and St-6), and one resistant to streptomycin/neomycin (St-10)- were subjected to genome sequencing and analysis. The tet(S) gene was identified in small contigs of 3.2 and 3.7 kbp in St-2 and St-9, respectively, flanked by truncated copies of insertion sequence (IS) elements. Similarly, ermB in St-6 and St-5 was found in contigs of 1.6 and 28.1 kbp, respectively. Sequence analysis and comparison of the largest contig showed it to contain three segments (21.9, 3.7, and 1.4 kbp long) highly homologous to non-collinear sequences of pRE25 from Enterococcus faecalis. These segments contained the ermB gene, a transference module with an origin of transfer (oriT) plus 15 open reading frames encoding proteins involved in conjugation, and modules for plasmid replication and segregation. Homologous stretches were separated by short, IS-related sequences, resembling the genetic organization of the integrative and conjugative elements (ICEs) found in Streptococcus species. No gene known to provide aminoglycoside resistance was seen in St-10. Four strain-specific amino acid substitutions in the RsmG methyltransferase were scored in this strain; these might be associated to its streptomycin/neomycin resistance. Under yogurt manufacturing and storage conditions, no transfer of either tet(S) or ermB from S. thermophilus to L. delbrueckii was detected. The present results contribute toward characterisation of the antibiotic resistance profiles in S. thermophilus, provide evidence for the genetic basis of acquired resistances and deepen on their transference capability.
Collapse
Affiliation(s)
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (CSIC), Paseo Río Linares s/n, Asturias, Spain
| |
Collapse
|
7
|
Schroeder MR, Stephens DS. Macrolide Resistance in Streptococcus pneumoniae. Front Cell Infect Microbiol 2016; 6:98. [PMID: 27709102 PMCID: PMC5030221 DOI: 10.3389/fcimb.2016.00098] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/26/2016] [Indexed: 01/21/2023] Open
Abstract
Streptococcus pneumoniae is a common commensal and an opportunistic pathogen. Suspected pneumococcal upper respiratory infections and pneumonia are often treated with macrolide antibiotics. Macrolides are bacteriostatic antibiotics and inhibit protein synthesis by binding to the 50S ribosomal subunit. The widespread use of macrolides is associated with increased macrolide resistance in S. pneumoniae, and the treatment of pneumococcal infections with macrolides may be associated with clinical failures. In S. pneumoniae, macrolide resistance is due to ribosomal dimethylation by an enzyme encoded by erm(B), efflux by a two-component efflux pump encoded by mef (E)/mel(msr(D)) and, less commonly, mutations of the ribosomal target site of macrolides. A wide array of genetic elements have emerged that facilitate macrolide resistance in S. pneumoniae; for example erm(B) is found on Tn917, while the mef (E)/mel operon is carried on the 5.4- or 5.5-kb Mega element. The macrolide resistance determinants, erm(B) and mef (E)/mel, are also found on large composite Tn916-like elements most notably Tn6002, Tn2009, and Tn2010. Introductions of 7-valent and 13-valent pneumococcal conjugate vaccines (PCV-7 and PCV-13) have decreased the incidence of macrolide-resistant invasive pneumococcal disease, but serotype replacement and emergence of macrolide resistance remain an important concern.
Collapse
Affiliation(s)
| | - David S Stephens
- Departments of Medicine, Emory UniversityAtlanta, GA, USA; Departments of Microbiology and Immunology, Emory UniversityAtlanta, GA, USA; Departments of Epidemiology, Emory UniversityAtlanta, GA, USA
| |
Collapse
|
8
|
ICESpy009, a Conjugative Genetic Element Carrying mef(E) in Streptococcus pyogenes. Antimicrob Agents Chemother 2016; 60:3906-12. [PMID: 27067338 DOI: 10.1128/aac.03082-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/01/2016] [Indexed: 01/19/2023] Open
Abstract
Efflux-mediated macrolide resistance due to mef(E) and mel, carried by the mega element, is common in Streptococcus pneumoniae, for which it was originally characterized, but it is rare in Streptococcus pyogenes In S. pyogenes, mega was previously found to be enclosed in Tn2009, a composite genetic element of the Tn916 family containing tet(M) and conferring erythromycin and tetracycline resistance. In this study, S. pyogenes isolates containing mef(E), apparently not associated with other resistance determinants, were examined to characterize the genetic context of mega. By whole-genome sequencing of one isolate, MB56Spyo009, we identified a novel composite integrative and conjugative element (ICE) carrying mega, designated ICESpy009, belonging to the ICESa2603 family. ICESpy009 was 55 kb long, contained 61 putative open reading frames (ORFs), and was found to be integrated into hylA, a novel integration site for the ICESa2603 family. The modular organization of the ICE was similar to that of members of the ICESa2603 family carried by different streptococcal species. In addition, a novel cluster of accessory resistance genes was found inside a region that encloses mega. PCR mapping targeting ICESpy009 revealed the presence of a similar ICE in five other isolates under study. While in three isolates the integration site was the same as that of ICESpy009, in two isolates the ICE was integrated into rplL, the typical integration site of the ICESa2603 family. ICESpy009 was able to transfer macrolide resistance by conjugation to both S. pyogenes and S. pneumoniae, showing the first evidence of the transferability of mega from S. pyogenes.
Collapse
|
9
|
Mingoia M, Morici E, Marini E, Brenciani A, Giovanetti E, Varaldo PE. Macrolide resistance gene erm(TR) and erm(TR)-carrying genetic elements in Streptococcus agalactiae: characterization of ICESagTR7, a new composite element containing IMESp2907. J Antimicrob Chemother 2015; 71:593-600. [PMID: 26679245 DOI: 10.1093/jac/dkv408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/03/2015] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The objective of this study was to investigate macrolide-resistant Streptococcus agalactiae isolates harbouring erm(TR), an erm(A) gene subclass, with emphasis on their erm(TR)-carrying genetic elements. Four erm(TR)-carrying elements have been described to date: three closely related (ICE10750-RD.2, Tn1806 and ICESp1108) in Streptococcus pyogenes, Streptococcus pneumoniae and S. pyogenes, respectively; and one completely different (IMESp2907, embedded in ICESp2906 to form ICESp2905) in S. pyogenes. METHODS Seventeen macrolide-resistant erm(TR)-positive S. agalactiae isolates were phenotypically and genotypically characterized. Their erm(TR)-carrying elements were explored by analysing the distinctive recombination genes of known erm(TR)-carrying integrative and conjugative elements (ICEs) and by PCR mapping. The new genetic context and organization of IMESp2907 in S. agalactiae were explored using several experimental procedures and in silico analyses. RESULTS Five isolates harboured ICE10750-RD.2/Tn1806, five isolates harboured ICESp1108 and five isolates bore unknown erm(TR)-carrying elements. The remaining two isolates, exhibiting identical serotypes and pulsotypes, harboured IMESp2907 in a new genetic environment, which was further investigated in one of the two isolates, SagTR7. IMESp2907 was circularizable in S. agalactiae, as described in S. pyogenes. The new IMESp2907 junctions were identified based on its site-specific integration; the att sites were almost identical to those in S. pyogenes. In strain SagTR7, erm(TR)-carrying IMESp2907 was embedded in an erm(TR)-less internal element related to ICE10750-RD.2/Tn1806, which, in turn, was embedded in an ICESde3396-like element. The resulting whole ICE, ICESagTR7 (∼129 kb), was integrated into the chromosome downstream of the rplL gene, and was excisable in circular form and transferable by conjugation. CONCLUSIONS This is the first study exploring erm(TR)-carrying genetic elements in S. agalactiae.
Collapse
Affiliation(s)
- Marina Mingoia
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Morici
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Emanuela Marini
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Pietro E Varaldo
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
10
|
Naito M, Ogura Y, Itoh T, Shoji M, Okamoto M, Hayashi T, Nakayama K. The complete genome sequencing of Prevotella intermedia strain OMA14 and a subsequent fine-scale, intra-species genomic comparison reveal an unusual amplification of conjugative and mobile transposons and identify a novel Prevotella-lineage-specific repeat. DNA Res 2015; 23:11-9. [PMID: 26645327 PMCID: PMC4755523 DOI: 10.1093/dnares/dsv032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022] Open
Abstract
Prevotella intermedia is a pathogenic bacterium involved in periodontal diseases. Here, we present the complete genome sequence of a clinical strain, OMA14, of this bacterium along with the results of comparative genome analysis with strain 17 of the same species whose genome has also been sequenced, but not fully analysed yet. The genomes of both strains consist of two circular chromosomes: the larger chromosomes are similar in size and exhibit a high overall linearity of gene organizations, whereas the smaller chromosomes show a significant size variation and have undergone remarkable genome rearrangements. Unique features of the Pre. intermedia genomes are the presence of a remarkable number of essential genes on the second chromosomes and the abundance of conjugative and mobilizable transposons (CTns and MTns). The CTns/MTns are particularly abundant in the second chromosomes, involved in its extensive genome rearrangement, and have introduced a number of strain-specific genes into each strain. We also found a novel 188-bp repeat sequence that has been highly amplified in Pre. intermedia and are specifically distributed among the Pre. intermedia-related species. These findings expand our understanding of the genetic features of Pre. intermedia and the roles of CTns and MTns in the evolution of bacteria.
Collapse
Affiliation(s)
- Mariko Naito
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunity, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehiko Itoh
- Department of Biological Information, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunity, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Masaaki Okamoto
- Department of Oral Microbiology, Tsurumi University, School of Dental Medicine, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunity, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
11
|
Amy J, Johanesen P, Lyras D. Extrachromosomal and integrated genetic elements in Clostridium difficile. Plasmid 2015; 80:97-110. [PMID: 25929174 DOI: 10.1016/j.plasmid.2015.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/21/2022]
Abstract
Clostridium difficile is a major nosocomial pathogen, causing gastrointestinal disease in patients undergoing antibiotic therapy. This bacterium contains many extrachromosomal and integrated genetic elements, with recent genomic work giving new insights into their variability and distribution. This review summarises research conducted in this area over the last 30 years and includes a discussion on the functional contributions of these elements to host cell phenotypes, as well as encompassing recent genome sequencing studies that have contributed to our understanding of their evolution and dissemination. Importantly, we also include a review of antibiotic resistance determinants associated with mobile genetic elements since antibiotic use and the spread of antibiotic resistance are currently of significant global clinical importance.
Collapse
Affiliation(s)
- Jacob Amy
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Priscilla Johanesen
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Dena Lyras
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
12
|
Corver J, Bakker D, Brouwer MSM, Harmanus C, Hensgens MP, Roberts AP, Lipman LJA, Kuijper EJ, van Leeuwen HC. Analysis of a Clostridium difficile PCR ribotype 078 100 kilobase island reveals the presence of a novel transposon, Tn6164. BMC Microbiol 2012; 12:130. [PMID: 22747711 PMCID: PMC3485107 DOI: 10.1186/1471-2180-12-130] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/25/2012] [Indexed: 11/28/2022] Open
Abstract
Background Clostridium difficile is the main cause of antibiotic associated diarrhea. In the past decade, the number of C. difficile patients has increased dramatically, coinciding with the emergence of two PCR ribotypes 027 and 078. PCR ribotype 078 is also frequently found during C. difficile outbreaks in pigfarms. Previously, the genome of the PCR ribotype 078 strain M120, a human isolate, was described to contain a unique insert of 100 kilobases. Results Analysis of this insert revealed over 90 open reading frames, encoding proteins originating from transposons, phages and plasmids. The insert was shown to be a transposon (Tn6164), as evidenced by the presence of an excised and circularised molecule, containing the ligated 5’and 3’ends of the insert. Transfer of the element could not be shown through filter-mating experiments. Whole genome sequencing of PCR ribotype 078 strain 31618, isolated from a diarrheic piglet, showed that Tn6164 was not present in this strain. To test the prevalence of Tn6164, a collection of 231 Clostridium difficile PCR ribotype 078 isolates from human (n = 173) and porcine (n = 58) origin was tested for the presence of this element by PCR. The transposon was present in 9 human, tetracycline resistant isolates, originating from various countries in Europe, and none of the pig strains. Nine other strains, also tetracycline resistant human isolates, contained half of the transposon, suggesting multiple insertion steps yielding the full Tn6164. Other PCR ribotypes (n = 66) were all negative for the presence of the transposon. Multi locus variable tandem repeat analysis revealed genetic relatedness among transposon containing isolates. Although the element contained several potential antibiotic resistance genes, it did not yield a readily distinguishable phenotype. Conclusions Tn6164 is a newly described transposon, occurring sporadically in C. difficile PCR ribotype 078 strains. Although no transfer of the element could be shown, we hypothesize that the element could serve as a reservoir of antibiotic resistance genes for other bacteria. Further research is needed to investigate the transfer capabilities of the element and to substantiate the possible role of Tn6164 as a source of antibiotic resistance genes for other gut pathogens.
Collapse
Affiliation(s)
- Jeroen Corver
- Department of Medical Microbiology, Section Experimental Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cornick J, Bentley S. Streptococcus pneumoniae: the evolution of antimicrobial resistance to beta-lactams, fluoroquinolones and macrolides. Microbes Infect 2012; 14:573-83. [DOI: 10.1016/j.micinf.2012.01.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 11/29/2022]
|
14
|
ICESp2905, the erm(TR)-tet(O) element of Streptococcus pyogenes, is formed by two independent integrative and conjugative elements. Antimicrob Agents Chemother 2011; 56:591-4. [PMID: 21986826 DOI: 10.1128/aac.05352-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In ICESp2905, a widespread erm(TR)- and tet(O)-carrying genetic element of Streptococcus pyogenes, the two resistance determinants are contained in separate fragments inserted into a scaffold of clostridial origin. ICESp2905 (∼65.6 kb) was transferable not only in its regular form but also in a defective form lacking the erm(TR) fragment (ICESp2906, ∼53.0 kb). The erm(TR) fragment was also an independent integrative and conjugative element (ICE) (ICESp2907, ∼12.6 kb). ICESp2905 thus results from one ICE (ICESp2907) being integrated into another (ICESp2906).
Collapse
|
15
|
Genetic resistance elements carrying mef subclasses other than mef(A) in Streptococcus pyogenes. Antimicrob Agents Chemother 2011; 55:3226-30. [PMID: 21502613 DOI: 10.1128/aac.01713-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Streptococcus pyogenes, efflux-mediated erythromycin resistance is associated with the mef gene, represented mostly by mef(A), although a small portion of strains carry different mef subclasses. We characterized the composite genetic elements, including mef subclasses other than mef(A), associated with other resistance genes in S. pyogenes isolates. Determination of the genetic elements was performed by PCR mapping. The strains carrying mosaic mef(A/E), in which the 5' region was identical to mef(A) and the 3' region was identical to mef(E), also carried tet(O). The two genes were found enclosed in an element similar to S. pyogenes prophage Φm46.1, designated the Φm46.1-like element. In S. pyogenes strains carrying mef(E) and tet(M), mef(E) was included in a typical mega element, and in some strains, it was physically associated with tet(M) in the composite element Tn2009. S. pyogenes strains carrying mef(I) also carried catQ; the two genes were linked in a fragment representing a portion of the 5216IQ complex of Streptococcus pneumoniae, designated the defective IQ element. In the only isolate carrying a novel mef gene, this was associated with catQ and tet(M) in a genetic element similar to the 5216IQ complex of S. pneumoniae (5216IQ-like complex), suggesting that the novel mef is in fact a variant of mef(I). This study demonstrates that the composite elements containing mef are shared between S. pyogenes and S. pneumoniae and suggests that it is important to distinguish the mef subclass on the basis of the genetic element containing it.
Collapse
|
16
|
Two distinct genetic elements are responsible for erm(TR)-mediated erythromycin resistance in tetracycline-susceptible and tetracycline-resistant strains of Streptococcus pyogenes. Antimicrob Agents Chemother 2011; 55:2106-12. [PMID: 21343455 DOI: 10.1128/aac.01378-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Streptococcus pyogenes, inducible erythromycin (ERY) resistance is due to posttranscriptional methylation of an adenine residue in 23S rRNA that can be encoded either by the erm(B) gene or by the more recently described erm(TR) gene. Two erm(TR)-carrying genetic elements, showing extensive DNA identities, have thus far been sequenced: ICE10750-RD.2 (∼49 kb) and Tn1806 (∼54 kb), from tetracycline (TET)-susceptible strains of S. pyogenes and Streptococcus pneumoniae, respectively. However, TET resistance, commonly mediated by the tet(O) gene, is widespread in erm(TR)-positive S. pyogenes. In this study, 23 S. pyogenes clinical strains with erm(TR)-mediated ERY resistance-3 TET susceptible and 20 TET resistant-were investigated. Two erm(TR)-carrying elements sharing only a short, high-identity erm(TR)-containing core sequence were comprehensively characterized: ICESp1108 (45,456 bp) from the TET-susceptible strain C1 and ICESp2905 (65,575 bp) from the TET-resistant strain iB21. While ICESp1108 exhibited extensive identities to ICE10750-RD.2 and Tn1806, ICESp2905 showed a previously unreported genetic organization resulting from the insertion of separate erm(TR)- and tet(O)-containing fragments in a scaffold of clostridial origin. Transferability by conjugation of the erm(TR) elements from the same strains used in this study had been demonstrated in earlier investigations. Unlike ICE10750-RD.2 and Tn1806, which are integrated into an hsdM chromosomal gene, both ICESp1108 and ICESp2905 shared the chromosomal integration site at the 3' end of the conserved rum gene, which is an integration hot spot for several mobile streptococcal elements. By using PCR-mapping assays, erm(TR)-carrying elements closely resembling ICESp1108 and ICESp2905 were shown in the other TET-susceptible and TET-resistant test strains, respectively.
Collapse
|
17
|
Camilli R, Bonnal RJP, Del Grosso M, Iacono M, Corti G, Rizzi E, Marchetti M, Mulas L, Iannelli F, Superti F, Oggioni MR, De Bellis G, Pantosti A. Complete genome sequence of a serotype 11A, ST62 Streptococcus pneumoniae invasive isolate. BMC Microbiol 2011; 11:25. [PMID: 21284853 PMCID: PMC3055811 DOI: 10.1186/1471-2180-11-25] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/01/2011] [Indexed: 11/13/2022] Open
Abstract
Background Streptococcus pneumoniae is an important human pathogen representing a major cause of morbidity and mortality worldwide. We sequenced the genome of a serotype 11A, ST62 S. pneumoniae invasive isolate (AP200), that was erythromycin-resistant due to the presence of the erm(TR) determinant, and carried out analysis of the genome organization and comparison with other pneumococcal genomes. Results The genome sequence of S. pneumoniae AP200 is 2,130,580 base pair in length. The genome carries 2216 coding sequences (CDS), 56 tRNA, and 12 rRNA genes. Of the CDSs, 72.9% have a predicted biological known function. AP200 contains the pilus islet 2 and, although its phenotype corresponds to serotype 11A, it contains an 11D capsular locus. Chromosomal rearrangements resulting from a large inversion across the replication axis, and horizontal gene transfer events were observed. The chromosomal inversion is likely implicated in the rebalance of the chromosomal architecture affected by the insertions of two large exogenous elements, the erm(TR)-carrying Tn1806 and a functional prophage designated ϕSpn_200. Tn1806 is 52,457 bp in size and comprises 49 ORFs. Comparative analysis of Tn1806 revealed the presence of a similar genetic element or part of it in related species such as Streptococcus pyogenes and also in the anaerobic species Finegoldia magna, Anaerococcus prevotii and Clostridium difficile. The genome of ϕSpn_200 is 35,989 bp in size and is organized in 47 ORFs grouped into five functional modules. Prophages similar to ϕSpn_200 were found in pneumococci and in other streptococcal species, showing a high degree of exchange of functional modules. ϕSpn_200 viral particles have morphologic characteristics typical of the Siphoviridae family and are capable of infecting a pneumococcal recipient strain. Conclusions The sequence of S. pneumoniae AP200 chromosome revealed a dynamic genome, characterized by chromosomal rearrangements and horizontal gene transfers. The overall diversity of AP200 is driven mainly by the presence of the exogenous elements Tn1806 and ϕSpn_200 that show large gene exchanges with other genetic elements of different bacterial species. These genetic elements likely provide AP200 with additional genes, such as those conferring antibiotic-resistance, promoting its adaptation to the environment.
Collapse
Affiliation(s)
- Romina Camilli
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Analysis of the mobilization functions of the vancomycin resistance transposon Tn1549, a member of a new family of conjugative elements. J Bacteriol 2009; 192:702-13. [PMID: 19966009 DOI: 10.1128/jb.00680-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugative transfer from Clostridium symbiosum to enterococci of Tn1549, which confers VanB-type vancomycin resistance, has been reported. This indicates the presence of a transfer origin (oriT) in the element. Transcription analysis of Tn1549 indicated that orf29, orf28, orfz, and orf27 were cotranscribed. A pACYC184 derivative containing 250 bp intergenic to orf29-orf30 of Tn1549 was mobilized in Escherichia coli recA::RP4::Delta nic provided that orf28 and orf29 were delivered simultaneously. These open reading frame (ORF) genes were able to promote mobilization in trans, but a cis-acting preference was observed. On the basis of a mobilization assay, a minimal 28-bp oriT was delimited, although the frequency of transfer was significantly reduced compared to that of a 130-bp oriT fragment. The minimal oriT contained an inverted repeat and a core, which was homologous to the cleavage sequence found in certain Gram-positive rolling-circle replicating (RCR) plasmids. While Orf29 was a mobilization accessory component similar to MobC proteins, Orf28 was identified as a relaxase belonging to a new phyletic cluster of the MOB(p) superfamily. The nick site was identified within oriT by an oligonucleotide cleavage assay. Closely related oriTs linked to mobilization genes were detected in data banks; they were found in various integrative and conjugative elements (ICEs) originating mainly from anaerobes. These results support the notion that Tn1549 is a member of a MOB(p) clade. Interestingly, the Tn1549-derived constructs were mobilized by RP4 in E. coli, suggesting that a relaxosome resulting from DNA cleavage by Orf28 interacted with the coupling protein TraG. This demonstrates the capacity of Tn1549 to be mobilized by a heterologous transfer system.
Collapse
|
19
|
Genetic elements responsible for erythromycin resistance in streptococci. Antimicrob Agents Chemother 2008; 53:343-53. [PMID: 19001115 DOI: 10.1128/aac.00781-08] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|