1
|
Malik A, Oludiran A, Poudel A, Alvarez OB, Woodward C, Purcell EB. RelQ-mediated alarmone signalling regulates growth, stress-induced biofilm formation and spore accumulation in Clostridioides difficile. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001479. [PMID: 39028551 PMCID: PMC11317968 DOI: 10.1099/mic.0.001479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The bacterial stringent response (SR) is a conserved transcriptional reprogramming pathway mediated by the nucleotide signalling alarmones, (pp)pGpp. The SR has been implicated in antibiotic survival in Clostridioides difficile, a biofilm- and spore-forming pathogen that causes resilient, highly recurrent C. difficile infections. The role of the SR in other processes and the effectors by which it regulates C. difficile physiology are unknown. C. difficile RelQ is a clostridial alarmone synthetase. Deletion of relQ dysregulates C. difficile growth in unstressed conditions, affects susceptibility to antibiotic and oxidative stressors and drastically reduces biofilm formation. While wild-type C. difficile displays increased biofilm formation in the presence of sublethal stress, the ΔrelQ strain cannot upregulate biofilm production in response to stress. Deletion of relQ slows spore accumulation in planktonic cultures but accelerates it in biofilms. This work establishes biofilm formation and spore accumulation as alarmone-mediated processes in C. difficile and reveals the importance of RelQ in stress-induced biofilm regulation.
Collapse
Affiliation(s)
- Areej Malik
- Biomedical Sciences Program, Old Dominion University, Norfolk, Virginia, 23529, USA
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Adenrele Oludiran
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Asia Poudel
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Orlando Berumen Alvarez
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Charles Woodward
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Erin B. Purcell
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| |
Collapse
|
2
|
Malik A, Oludiran A, Poudel A, Alvarez OB, Woodward C, Purcell EB. RelQ-mediated alarmone signaling regulates growth, sporulation, and stress-induced biofilm formation in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580318. [PMID: 38405794 PMCID: PMC10888890 DOI: 10.1101/2024.02.14.580318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The bacterial stringent response (SR) is a conserved transcriptional reprogramming pathway mediated by the nucleotide signaling alarmones, (pp)pGpp. The SR has been implicated in antibiotic survival in Clostridioides difficile, a biofilm- and spore-forming pathogen that causes resilient, highly recurrent C. difficile infections. The role of the SR in other processes and the effectors by which it regulates C. difficile physiology are unknown. C. difficile RelQ is a clostridial alarmone synthetase. Deletion of relQ dysregulates C. difficile growth in unstressed conditions, affects susceptibility to antibiotic and oxidative stressors, and drastically reduces biofilm formation. While wild-type C. difficile displays increased biofilm formation in the presence of sub-lethal stress, the ΔrelQ strain cannot upregulate biofilm production in response to stress. Deletion of relQ slows spore accumulation in planktonic cultures but accelerates it in biofilms. This work establishes biofilm formation and sporulation as alarmone-mediated processes in C. difficile and reveals the importance of RelQ in stress-induced biofilm regulation.
Collapse
Affiliation(s)
- Areej Malik
- Biomedical Sciences Program, Old Dominion University, Norfolk, Virginia, 23529, USA
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Adenrele Oludiran
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Asia Poudel
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Orlando Berumen Alvarez
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Charles Woodward
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Erin B. Purcell
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| |
Collapse
|
3
|
Mursalin MH, Astley R, Coburn PS, Bagaruka E, Hunt JJ, Fischetti VA, Callegan MC. Therapeutic potential of Bacillus phage lysin PlyB in ocular infections. mSphere 2023; 8:e0004423. [PMID: 37273201 PMCID: PMC10449515 DOI: 10.1128/msphere.00044-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/19/2023] [Indexed: 06/06/2023] Open
Abstract
Bacteriophage lytic enzymes (i.e., phage lysins) are a trending alternative for general antibiotics to combat growing antimicrobial resistance. Gram-positive Bacillus cereus causes one of the most severe forms of intraocular infection, often resulting in complete vision loss. It is an inherently β-lactamase-resistant organism that is highly inflammogenic in the eye, and antibiotics are not often beneficial as the sole therapeutic option for these blinding infections. The use of phage lysins as a treatment for B. cereus ocular infection has never been tested or reported. In this study, the phage lysin PlyB was tested in vitro, demonstrating rapid killing of vegetative B. cereus but not its spores. PlyB was also highly group specific and effectively killed the bacteria in various bacterial growth conditions, including ex vivo rabbit vitreous (Vit). Furthermore, PlyB demonstrated no cytotoxic or hemolytic activity toward human retinal cells or erythrocytes and did not trigger innate activation. In in vivo therapeutic experiments, PlyB was effective in killing B. cereus when administered intravitreally in an experimental endophthalmitis model and topically in an experimental keratitis model. In both models of ocular infection, the effective bactericidal property of PlyB prevented pathological damage to ocular tissues. Thus, PlyB was found to be safe and effective in killing B. cereus in the eye, greatly improving an otherwise devastating outcome. Overall, this study demonstrates that PlyB is a promising therapeutic option for B. cereus eye infections.IMPORTANCEEye infections from antibiotic-resistant Bacillus cereus are devastating and can result in blindness with few available treatment options. Bacteriophage lysins are an alternative to conventional antibiotics with the potential to control antibiotic-resistant bacteria. This study demonstrates that a lysin called PlyB can effectively kill B. cereus in two models of B. cereus eye infections, thus treating and preventing the blinding effects of these infections.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Roger Astley
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Eddy Bagaruka
- Oklahoma Christian University, Edmond, Oklahoma, USA
| | | | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Michelle C. Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
Hu J, Ben Maamar S, Glawe AJ, Gottel N, Gilbert JA, Hartmann EM. Impacts of indoor surface finishes on bacterial viability. INDOOR AIR 2019; 29:551-562. [PMID: 30980566 PMCID: PMC6851865 DOI: 10.1111/ina.12558] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 05/21/2023]
Abstract
Microbes in indoor environments are constantly being exposed to antimicrobial surface finishes. Many are rendered non-viable after spending extended periods of time under low-moisture, low-nutrient surface conditions, regardless of whether those surfaces have been amended with antimicrobial chemicals. However, some microorganisms remain viable even after prolonged exposure to these hostile conditions. Work with specific model pathogens makes it difficult to draw general conclusions about how chemical and physical properties of surfaces affect microbes. Here, we explore the survival of a synthetic community of non-model microorganisms isolated from built environments following exposure to three chemically and physically distinct surface finishes. Our findings demonstrated the differences in bacterial survival associated with three chemically and physically distinct materials. Alkaline clay surfaces select for an alkaliphilic bacterium, Kocuria rosea, whereas acidic mold-resistant paint favors Bacillus timonensis, a Gram-negative spore-forming bacterium that also survives on antimicrobial surfaces after 24 hours of exposure. Additionally, antibiotic-resistant Pantoea allii did not exhibit prolonged retention on antimicrobial surfaces. Our controlled microcosm experiment integrates measurement of indoor chemistry and microbiology to elucidate the complex biochemical interactions that influence the indoor microbiome.
Collapse
Affiliation(s)
- Jinglin Hu
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIllinois
| | - Sarah Ben Maamar
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIllinois
| | - Adam J. Glawe
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIllinois
| | - Neil Gottel
- Department of SurgeryThe University of ChicagoChicagoIllinois
| | - Jack A. Gilbert
- Department of SurgeryThe University of ChicagoChicagoIllinois
| | - Erica M. Hartmann
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIllinois
| |
Collapse
|
5
|
Stephan JG, Lamei S, Pettis JS, Riesbeck K, de Miranda JR, Forsgren E. Honeybee-Specific Lactic Acid Bacterium Supplements Have No Effect on American Foulbrood-Infected Honeybee Colonies. Appl Environ Microbiol 2019; 85:e00606-19. [PMID: 31003985 PMCID: PMC6581185 DOI: 10.1128/aem.00606-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/11/2019] [Indexed: 11/20/2022] Open
Abstract
Paenibacillus larvae, the causative agent of American foulbrood (AFB), is the primary bacterial pathogen affecting honeybees and beekeeping. The main methods for controlling AFB are incineration of diseased colonies or prophylactic antibiotic treatment (e.g., with tylosin), neither of which is fully satisfactory. The search for superior means for controlling AFB has led to an increased interest in the natural relationships between the honeybee-pathogenic and mutualistic microorganisms and, in particular, the antagonistic effects of honeybee-specific lactic acid bacteria (hbs-LAB) against P. larvae These effects have been demonstrated only on individual larvae in controlled laboratory bioassays. Here we investigated whether supplemental administration of hbs-LAB had a similar beneficial effect on P. larvae infection at colony level. We compared experimentally AFB-infected colonies treated with hbs-LAB supplements to untreated and tylosin-treated colonies and recorded AFB symptoms, bacterial spore levels, and two measures of colony health. To account for the complexity of a bee colony, we focused on (Bayesian) probabilities and magnitudes of effect sizes. Tylosin reduced AFB disease symptoms but also had a negative effect on colony strength. The tylosin treatment did not, however, affect P. larvae spore levels and might therefore "mask" the potential for disease. hbs-LAB tended to reduce brood size in the short term but was unlikely to affect AFB symptoms or spores. These results do not contradict demonstrated antagonistic effects of hbs-LAB against P. larvae at the individual bee level but rather suggest that supplementary administration of hbs-LAB may not be the most effective way to harness these beneficial effects at the colony level.IMPORTANCE The previously demonstrated antagonistic effects of honeybee-derived bacterial microbiota on the infectivity and pathogenicity of P. larvae in laboratory bioassays have identified a possible new approach to AFB control. However, honeybee colonies are complex superorganisms where social immune defenses play a major role in resistance against disease at the colony level. Few studies have investigated the effect of beneficial microorganisms on bee diseases at the colony level. Effects observed at the individual bee level do not necessarily translate into similar effects at the colony level. This study partially fills this gap by showing that, unlike at the individual level, hbs-LAB supplements did not affect AFB symptoms at the colony level. The inference is that the mechanisms regulating the honeybee microbial dynamics within a colony are too strong to manipulate positively through supplemental feeding of live hbs-LAB and that new potential remedies identified through laboratory research have to be tested thoroughly in situ, in colonies.
Collapse
Affiliation(s)
- Jörg G Stephan
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sepideh Lamei
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Jeffery S Pettis
- USDA ARS, Beltsville Agricultural Research Center-East, Beltsville, Maryland, USA
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Kendall LV, Owiny JR, Dohm ED, Knapek KJ, Lee ES, Kopanke JH, Fink M, Hansen SA, Ayers JD. Replacement, Refinement, and Reduction in Animal Studies With Biohazardous Agents. ILAR J 2019; 59:177-194. [DOI: 10.1093/ilar/ily021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Abstract
Animal models are critical to the advancement of our knowledge of infectious disease pathogenesis, diagnostics, therapeutics, and prevention strategies. The use of animal models requires thoughtful consideration for their well-being, as infections can significantly impact the general health of an animal and impair their welfare. Application of the 3Rs—replacement, refinement, and reduction—to animal models using biohazardous agents can improve the scientific merit and animal welfare. Replacement of animal models can use in vitro techniques such as cell culture systems, mathematical models, and engineered tissues or invertebrate animal hosts such as amoeba, worms, fruit flies, and cockroaches. Refinements can use a variety of techniques to more closely monitor the course of disease. These include the use of biomarkers, body temperature, behavioral observations, and clinical scoring systems. Reduction is possible using advanced technologies such as in vivo telemetry and imaging, allowing longitudinal assessment of animals during the course of disease. While there is no single method to universally replace, refine, or reduce animal models, the alternatives and techniques discussed are broadly applicable and they should be considered when infectious disease animal models are developed.
Collapse
Affiliation(s)
- Lon V Kendall
- Department of Microbiology, Immunology and Pathology, and Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - James R Owiny
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Erik D Dohm
- Animal Resources Program, University of Alabama, Birmingham, Alabama
| | - Katie J Knapek
- Comparative Medicine Training Program, Colorado State University, Fort Collins, Colorado
| | - Erin S Lee
- Animal Resource Center, University of Texas Medical Branch, Galveston, Texas
| | - Jennifer H Kopanke
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Michael Fink
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Sarah A Hansen
- Office of Animal Resources, University of Iowa, Iowa City, Iowa
| | - Jessica D Ayers
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
7
|
Grossman TH, Anderson MS, Drabek L, Gooldy M, Heine HS, Henning LN, Lin W, Newman JV, Nevarez R, Siefkas-Patterson K, Radcliff AK, Sutcliffe JA. The Fluorocycline TP-271 Is Efficacious in Models of Aerosolized Bacillus anthracis Infection in BALB/c Mice and Cynomolgus Macaques. Antimicrob Agents Chemother 2017; 61:e01103-17. [PMID: 28784679 PMCID: PMC5610513 DOI: 10.1128/aac.01103-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023] Open
Abstract
The fluorocycline TP-271 was evaluated in mouse and nonhuman primate (NHP) models of inhalational anthrax. BALB/c mice were exposed by nose-only aerosol to Bacillus anthracis Ames spores at a level of 18 to 88 lethal doses sufficient to kill 50% of exposed individuals (LD50). When 21 days of once-daily dosing was initiated at 24 h postchallenge (the postexposure prophylaxis [PEP] study), the rates of survival for the groups treated with TP-271 at 3, 6, 12, and 18 mg/kg of body weight were 90%, 95%, 95%, and 84%, respectively. When 21 days of dosing was initiated at 48 h postchallenge (the treatment [Tx] study), the rates of survival for the groups treated with TP-271 at 6, 12, and 18 mg/kg TP-271 were 100%, 91%, and 81%, respectively. No deaths of TP-271-treated mice occurred during the 39-day posttreatment observation period. In the NHP model, cynomolgus macaques received an average dose of 197 LD50 of B. anthracis Ames spore equivalents using a head-only inhalation exposure chamber, and once-daily treatment of 1 mg/kg TP-271 lasting for 14 or 21 days was initiated within 3 h of detection of protective antigen (PA) in the blood. No (0/8) animals in the vehicle control-treated group survived, whereas all 8 infected macaques treated for 21 days and 4 of 6 macaques in the 14-day treatment group survived to the end of the study (56 days postchallenge). All survivors developed toxin-neutralizing and anti-PA IgG antibodies, indicating an immunologic response. On the basis of the results obtained with the mouse and NHP models, TP-271 shows promise as a countermeasure for the treatment of inhalational anthrax.
Collapse
Affiliation(s)
| | | | | | | | - Henry S Heine
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | | | - Winston Lin
- IIT Research Institute, Chicago, Illinois, USA
| | - Joseph V Newman
- Tetraphase Pharmaceuticals, Inc., Watertown, Massachusetts, USA
| | | | | | | | | |
Collapse
|
8
|
Tetrazole-Based trans-Translation Inhibitors Kill Bacillus anthracis Spores To Protect Host Cells. Antimicrob Agents Chemother 2017; 61:AAC.01199-17. [PMID: 28760903 DOI: 10.1128/aac.01199-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 12/29/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, remains a significant threat to humans, including potential use in bioterrorism and biowarfare. The capacity to engineer strains with increased pathogenicity coupled with the ease of disseminating lethal doses of B. anthracis spores makes it necessary to identify chemical agents that target and kill spores. Here, we demonstrate that a tetrazole-based trans-translation inhibitor, KKL-55, is bactericidal against vegetative cells of B. anthracis in culture. Using a fluorescent analog, we show that this class of compounds colocalizes with developing endospores and bind purified spores in vitro KKL-55 was effective against spores at concentrations close to its MIC for vegetative cells. Spore germination was inhibited at 1.2× MIC, and spores were killed at 2× MIC. In contrast, ciprofloxacin killed germinants at concentrations close to its MIC but did not prevent germination even at 32× MIC. Because toxins are released by germinants, macrophages infected by B. anthracis spores are killed early in the germination process. At ≥2× MIC, KKL-55 protected macrophages from death after infection with B. anthracis spores. Ciprofloxacin required concentrations of ≥8× MIC to exhibit a similar effect. Taken together, these data indicate that KKL-55 and related tetrazoles are good lead candidates for therapeutics targeting B. anthracis spores and suggest that there is an early requirement for trans-translation in germinating spores.
Collapse
|
9
|
Head BM, Rubinstein E, Meyers AFA. Alternative pre-approved and novel therapies for the treatment of anthrax. BMC Infect Dis 2016; 16:621. [PMID: 27809794 PMCID: PMC5094018 DOI: 10.1186/s12879-016-1951-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 10/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus anthracis, the causative agent of anthrax, is a spore forming and toxin producing rod-shaped bacterium that is classified as a category A bioterror agent. This pathogenic microbe can be transmitted to both animals and humans. Clinical presentation depends on the route of entry (direct contact, ingestion, injection or aerosolization) with symptoms ranging from isolated skin infections to more severe manifestations such as cardiac or pulmonary shock, meningitis, and death. To date, anthrax is treatable if antibiotics are administered promptly and continued for 60 days. However, if treatment is delayed or administered improperly, the patient's chances of survival are decreased drastically. In addition, antibiotics are ineffective against the harmful anthrax toxins and spores. Therefore, alternative therapeutics are essential. In this review article, we explore and discuss advances that have been made in anthrax therapy with a primary focus on alternative pre-approved and novel antibiotics as well as anti-toxin therapies. METHODS A literature search was conducted using the University of Manitoba search engine. Using this search engine allowed access to a greater variety of journals/articles that would have otherwise been restricted for general use. In order to be considered for discussion for this review, all articles must have been published later than 2009. RESULTS The alternative pre-approved antibiotics demonstrated high efficacy against B. anthracis both in vitro and in vivo. In addition, the safety profile and clinical pharmacology of these drugs were already known. Compounds that targeted underexploited bacterial processes (DNA replication, RNA synthesis, and cell division) were also very effective in combatting B. anthracis. In addition, these novel compounds prevented bacterial resistance. Targeting B. anthracis virulence, more specifically the anthrax toxins, increased the length of which treatment could be administered. CONCLUSIONS Several novel and pre-existing antibiotics, as well as toxin inhibitors, have shown increasing promise. A combination treatment that targets both bacterial growth and toxin production would be ideal and probably necessary for effectively combatting this armed bacterium.
Collapse
Affiliation(s)
- Breanne M. Head
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| | - Ethan Rubinstein
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| | - Adrienne F. A. Meyers
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
- National Laboratory for HIV Immunology, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
10
|
Head BM, Alfa M, Sitar DS, Rubinstein E, Meyers AFA. In vitro evaluation of the effect of linezolid and levofloxacin on Bacillus anthracis toxin production, spore formation and cell growth. J Antimicrob Chemother 2016; 72:417-420. [PMID: 27798209 DOI: 10.1093/jac/dkw427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Owing to its ability to form spores and toxins, Bacillus anthracis is considered a bioterror agent. Although current therapeutic strategies can be effective, treatment does not prevent sporulation and toxin production. OBJECTIVES To quantify the combined effect of a protein synthesis inhibitor and a bactericidal agent on B. anthracis toxin production, sporulation and cell growth. METHODS Susceptibility and synergy titrations were conducted on B. anthracis Sterne and 03-0191 strains using linezolid and levofloxacin. The effect of antibiotic exposure on cell viability was evaluated using a continuous medium replacement model. In vitro static models were used to study the effect of linezolid and levofloxacin on sporulation and toxin production. Spores were quantified using the heat shock method. Toxin was quantified via commercial ELISA. RESULTS Synergy titrations indicated that the combination was synergistic or indifferent; however, in all models antagonism was observed. In the spore model, linezolid resulted in the lowest sporulation rates, while combination therapy resulted in the highest. In the toxin model, linezolid prevented toxin production altogether. CONCLUSIONS This study advances our understanding of the effects of combination therapy on B. anthracis infection. Used alone, linezolid therapy abolishes toxin production and reduces sporulation. These results suggest that studies using a step-wise approach using linezolid initially to stop sporulation and toxin production followed by levofloxacin to rapidly kill vegetative B. anthracis can be recommended.
Collapse
Affiliation(s)
- Breanne M Head
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Michelle Alfa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.,St Boniface Research Centre, Winnipeg, Canada
| | - Daniel S Sitar
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Ethan Rubinstein
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Adrienne F A Meyers
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.,National Laboratory for HIV Immunology, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
11
|
Impact on resistance of the use of therapeutically equivalent generics: the case of ciprofloxacin. Antimicrob Agents Chemother 2014; 59:53-8. [PMID: 25313208 DOI: 10.1128/aac.03633-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Therapeutic nonequivalence of generic antibiotics may lead to treatment failure and enrichment of resistance. However, there has been no demonstration that an equivalent generic displays the same resistance selection profile as the innovator drug. We aimed to test this hypothesis with five generic versions of ciprofloxacin by assessing their pharmaceutical equivalence with microbiological assays and their efficacy against Pseudomonas aeruginosa PAO1 in the neutropenic murine thigh infection model. One equivalent generic was selected for analysis by high-pressure liquid chromatography-tandem mass spectrometry (LC-MS/MS), to confirm chemical identity, and resistance selection experiments in a hollow-fiber (HF) system simulating two clinical dosing regimens. Total and resistant populations were measured, and the MICs of the resistant cells with and without an efflux pump inhibitor were determined. LC-MS/MS found no differences between products, and the innovator and the generic selected resistance with the same magnitude and mechanism after 7 days of treatment in the HF system, supporting the fact that a generic with demonstrated equivalence in vivo is also equivalent regarding resistance selection.
Collapse
|
12
|
Evaluation of meropenem regimens suppressing emergence of resistance in Acinetobacter baumannii with human simulated exposure in an in vitro intravenous-infusion hollow-fiber infection model. Antimicrob Agents Chemother 2014; 58:6773-81. [PMID: 25182633 DOI: 10.1128/aac.03505-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The emergence of resistance to carbapenems in Pseudomonas aeruginosa can be suppressed by optimizing the administration of meropenem. However, whether the same is true for Acinetobacter baumannii is not fully understood. We assessed the bactericidal activity of meropenem and its potency to suppress the emergence of resistance in A. baumannii with human simulated exposure in an in vitro intravenous-infusion hollow-fiber infection model (HFIM). Two clinical strains of carbapenem-susceptible multidrug-resistant A. baumannii (CS-MDRAB), CSRA24 and CSRA91, were used, and their MICs and mutant prevention concentrations (MPCs) were determined. Six meropenem dosage regimens (0.5, 1.0, or 2.0 g given every 8 h [q8h] with a 0.5-h or 3-h infusion for seven consecutive days) were simulated and then evaluated in the HFIM. Both the total population and resistant subpopulations of the two strains were quantified. Drug concentrations were measured by high-performance liquid chromatography. All dosage regimens, except for the lowest dosage (0.5 g for both the 0.5-h and 3-h infusions), showed 3-log CFU/ml bacterial killing. Dosage regimens of 2.0 g with 0.5-h and 3-h infusions exhibited an obvious bactericidal effect and suppressed resistance. Selective amplification of subpopulations with reduced susceptibility to meropenem was suppressed with a percentage of the dosage interval in which meropenem concentrations exceeded the MPC (T>MPC) of ≥20% or with a ratio of T>MPC to the percentage of the dosage interval in which drug concentrations are within the mutant selection window of ≥0.25. Our in vitro data support the use of a high dosage of meropenem (2.0 g q8h) for the treatment of severe infection caused by CS-MDRAB.
Collapse
|
13
|
Daptomycin exerts rapid bactericidal activity against Bacillus anthracis without disrupting membrane integrity. Acta Pharmacol Sin 2014; 35:211-8. [PMID: 24362329 DOI: 10.1038/aps.2013.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/28/2013] [Indexed: 12/29/2022] Open
Abstract
AIM To examine whether the novel cyclic lipopeptide antibiotic daptomycin could be used to treat anthrax and to study the mechanisms underlying its bactericidal action against Bacillus anthracis. METHODS Spore-forming B anthracis AP422 was tested. MIC values of antibiotics were determined. Cell membrane potential was measured using flow cytometric assays with membrane potential-sensitive fluorescent dyes. Cell membrane integrity was detected using To-Pro-3 iodide staining and transmission electron microscopy. K(+) efflux and Na(+) influx were measured using the fluorescent probes PBFI and SBFI-AM, respectively. RESULTS Daptomycin exhibited rapid bactericidal activity against vegetative B anthracis with a MIC value of 0.78 μg/mL, which was comparable to those of ciprofloxacin and penicillin G. Furthermore, daptomycin prevented the germinated spores from growing into vegetative bacteria. Daptomycin concentration-dependently dissipated the membrane potential of B anthracis and caused K(+) efflux and Na(+) influx without disrupting membrane integrity. In contrast, both ciprofloxacin and penicillin G did not change the membrane potential of vegetative bacteria or spores. Penicillin G disrupted membrane integrity of B anthracis, whereas ciprofloxacin had no such effect. CONCLUSION Daptomycin exerts rapid bactericidal action against B anthracis via reducing membrane potential without disrupting membrane integrity. This antibiotic can be used as an alternate therapy for B anthracis infections.
Collapse
|
14
|
Hollow-fiber pharmacodynamic studies and mathematical modeling to predict the efficacy of amoxicillin for anthrax postexposure prophylaxis in pregnant women and children. Antimicrob Agents Chemother 2013; 57:5946-60. [PMID: 24041894 DOI: 10.1128/aac.02616-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amoxicillin is considered an option for postexposure prophylaxis of Bacillus anthracis in pregnant and postpartum women who are breastfeeding and in children because of the potential toxicities of ciprofloxacin and doxycycline to the fetus and child. The amoxicillin regimen that effectively kills B. anthracis and prevents resistance is unknown. Fourteen-day dose range and dose fractionation studies were conducted in in vitro pharmacodynamic models to identify the exposure intensity and pharmacodynamic index of amoxicillin that are linked with optimized killing of B. anthracis and resistance prevention. Studies with dicloxacillin, a drug resistant to B. anthracis beta-lactamase, evaluated the role of beta-lactamase production in the pharmacodynamic indices for B. anthracis killing and resistance prevention. Dose fractionation studies showed that trough/MIC and not time above MIC was the index for amoxicillin that was linked to successful outcome through resistance prevention. Failure of amoxicillin regimens was due to inducible or stable high level expression of beta-lactamases. Studies with dicloxacillin demonstrated that a time above MIC of ≥94% was linked with treatment success when B. anthracis beta-lactamase activity was negated. Recursive partitioning analysis showed that amoxicillin regimens that produced peak concentrations of <10.99 μg/ml and troughs of >1.75 μg/ml provided a 100% success rate. Other amoxicillin peak and trough values produced success rates of 28 to 67%. For postpartum and pregnant women and children, Monte Carlo simulations predicted success rates for amoxicillin at 1 g every 8 h (q8h) of 53, 33, and 44% (30 mg/kg q8h), respectively. We conclude that amoxicillin is suboptimal for postexposure prophylaxis of B. anthracis in pregnant and postpartum women and in children.
Collapse
|
15
|
Martins A, Santos MS, Dias C, Serra P, Cachatra V, Pais J, Caio J, Teixeira VH, Machuqueiro M, Silva MS, Pelerito A, Justino J, Goulart M, Silva FV, Rauter AP. Tuning the Bioactivity of Tensioactive Deoxy Glycosides to Structure: Antibacterial Activity Versus Selective Cholinesterase Inhibition Rationalized by Molecular Docking. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|