1
|
Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview. Antimicrob Agents Chemother 2022; 66:e0044722. [PMID: 35980232 PMCID: PMC9487638 DOI: 10.1128/aac.00447-22] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
First variants of the Klebsiella pneumoniae carbapenemase (KPC), KPC-2 and KPC-3, have encountered a worldwide success, particularly in K. pneumoniae isolates. These beta-lactamases conferred resistance to most beta-lactams including carbapenems but remained susceptible to new beta-lactam/beta-lactamase inhibitors, such as ceftazidime-avibactam. After the marketing of ceftazidime-avibactam, numerous variants of KPC resistant to this association have been described among isolates recovered from clinical samples or derived from experimental studies. In KPC variants resistant to ceftazidime-avibactam, point mutations, insertions and/or deletions have been described in various hot spots. Deciphering the impact of these mutations is crucial, not only from a therapeutic point of view, but also to follow the evolution in time and space of KPC variants resistant to ceftazidime-avibactam. In this review, we describe the mutational landscape of the KPC beta-lactamase toward ceftazidime-avibactam resistance based on a multidisciplinary approach including epidemiology, microbiology, enzymology, and thermodynamics. We show that resistance is associated with three hot spots, with a high representation of insertions and deletions compared with other class A beta-lactamases. Moreover, extension of resistance to ceftazidime-avibactam is associated with a trade-off in the resistance to other beta-lactams and a decrease in enzyme stability. Nevertheless, the high natural stability of KPC could underlay the propensity of this enzyme to acquire in vivo mutations conferring resistance to ceftazidime-avibactam (CAZavi), particularly via insertions and deletions.
Collapse
|
2
|
Abstract
KPC-24, different from KPC-2 by a single amino acid alteration at codon 6 (R6P), was initially discovered in Klebsiella pneumoniae in Chile. Here, we reported KPC-24-producing Aeromonas veronii isolates from hospital sewage in China. The blaKPC-24 was cloned and the MICs were tested against β-lactams antimicrobial agents. KPC-24 exhibited a β-lactam susceptibility profile similar to that of KPC-2. Whole-genome sequencing and analysis revealed that blaKPC-24 was located within a Tn6296-related region on an IncP-6 plasmid. IMPORTANCE Our study described a variant of K. pneumoniae carbapenemase (KPC), KPC-24, from two A. veronii strains isolated from hospital sewage, in which antibiotics, biocides, pharmaceuticals, and heavy metals may supply an appropriate condition for the evolution of carbapenemases. Some variants exhibited stronger hydrolysis activity to antibiotics and gave rise to a major public health concern. More seriously, Aeromonas species are prevalent in aquatic environments and, thus, may act as a suitable vector for antibiotics-resistance genes and foster the transmission of resistance. We should attach importance to surveying the evolution and transmission of antibiotics-resistance genes.
Collapse
|
3
|
Moreira NK, Caierão J. Ceftazidime-avibactam: are we safe from class A carbapenemase producers' infections? Folia Microbiol (Praha) 2021; 66:879-896. [PMID: 34505209 DOI: 10.1007/s12223-021-00918-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 01/14/2023]
Abstract
Recently, new combinations of β-lactams and β-lactamase inhibitors became available, including ceftazidime-avibactam, and increased the ability to treat infections caused by carbapenem-resistant Enterobacterales (CRE). Despite the reduced time of clinical use, isolates expressing resistance to ceftazidime-avibactam have been reported, even during treatment or in patients with no previous contact with this drug. Here, we detailed review data on global ceftazidime-avibactam susceptibility, the mechanisms involved in resistance, and the molecular epidemiology of resistant isolates. Ceftazidime-avibactam susceptibility remains high (≥ 98.4%) among Enterobacterales worldwide, being lower among extended-spectrum β-lactamase (ESBL) producers and CRE. Alterations in class A β-lactamases are the major mechanism involved in ceftazidime-avibactam resistance, and mutations are mainly, but not exclusively, located in the Ω loop of these enzymes. Modifications in Klebsiella pneumoniae carbapenemase (KPC) 3 and KPC-2 have been observed by many authors, generating variants with different mutations, insertions, and/or deletions. Among these, the most commonly described is Asp179Tyr, both in KPC-3 (KPC-31 variant) and in KPC-2 (KPC-33 variant). Changes in membrane permeability and overexpression of efflux systems may also be associated with ceftazidime-avibactam resistance. Although several clones have been reported, ST258 with Asp179Tyr deserves special attention. Surveillance studies and rationale use are essential to retaining the activity of this and other antimicrobials against class A CRE.
Collapse
Affiliation(s)
- Natália Kehl Moreira
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil.
| | - Juliana Caierão
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil
| |
Collapse
|
4
|
Mehta SC, Furey IM, Pemberton OA, Boragine DM, Chen Y, Palzkill T. KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate. J Biol Chem 2021; 296:100155. [PMID: 33273017 PMCID: PMC7895804 DOI: 10.1074/jbc.ra120.015050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 01/23/2023] Open
Abstract
Serine active-site β-lactamases hydrolyze β-lactam antibiotics through the formation of a covalent acyl-enzyme intermediate followed by deacylation via an activated water molecule. Carbapenem antibiotics are poorly hydrolyzed by most β-lactamases owing to slow hydrolysis of the acyl-enzyme intermediate. However, the emergence of the KPC-2 carbapenemase has resulted in widespread resistance to these drugs, suggesting it operates more efficiently. Here, we investigated the unusual features of KPC-2 that enable this resistance. We show that KPC-2 has a 20,000-fold increased deacylation rate compared with the common TEM-1 β-lactamase. Furthermore, kinetic analysis of active site alanine mutants indicates that carbapenem hydrolysis is a concerted effort involving multiple residues. Substitution of Asn170 greatly decreases the deacylation rate, but this residue is conserved in both KPC-2 and non-carbapenemase β-lactamases, suggesting it promotes carbapenem hydrolysis only in the context of KPC-2. X-ray structure determination of the N170A enzyme in complex with hydrolyzed imipenem suggests Asn170 may prevent the inactivation of the deacylating water by the 6α-hydroxyethyl substituent of carbapenems. In addition, the Thr235 residue, which interacts with the C3 carboxylate of carbapenems, also contributes strongly to the deacylation reaction. In contrast, mutation of the Arg220 and Thr237 residues decreases the acylation rate and, paradoxically, improves binding affinity for carbapenems. Thus, the role of these residues may be ground state destabilization of the enzyme-substrate complex or, alternatively, to ensure proper alignment of the substrate with key catalytic residues to facilitate acylation. These findings suggest modifications of the carbapenem scaffold to avoid hydrolysis by KPC-2 β-lactamase.
Collapse
Affiliation(s)
- Shrenik C Mehta
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ian M Furey
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Orville A Pemberton
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - David M Boragine
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
5
|
Oueslati S, Iorga BI, Tlili L, Exilie C, Zavala A, Dortet L, Jousset AB, Bernabeu S, Bonnin RA, Naas T. Unravelling ceftazidime/avibactam resistance of KPC-28, a KPC-2 variant lacking carbapenemase activity. J Antimicrob Chemother 2020; 74:2239-2246. [PMID: 31127297 DOI: 10.1093/jac/dkz209] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND KPC-like carbapenemases have spread worldwide with more than 30 variants identified that differ by single or double amino-acid substitutions. OBJECTIVES To describe the steady-state kinetic parameters of KPC-28, which differs from KPC-2 by a H274Y substitution and the deletion of two amino acids (Δ242-GT-243). METHODS The blaKPC-2, blaKPC-3, blaKPC-14 and blaKPC-28 genes were cloned into a pTOPO vector for susceptibility testing or into pET41b for overexpression, purification and subsequent kinetic parameter (Km, kcat) determination. Molecular docking experiments were performed to explore the role of the amino-acid changes in the carbapenemase activity. RESULTS Susceptibility testing revealed that Escherichia coli producing KPC-28 displayed MICs that were lower for carbapenems and higher for ceftazidime and ceftazidime/avibactam as compared with KPC-2. The catalytic efficiencies of KPC-28 and KPC-14 for imipenem were 700-fold and 200-fold lower, respectively, than those of KPC-2, suggesting that Δ242-GT-243 in KPC-28 and KPC-14 is responsible for reduced carbapenem hydrolysis. Similarly, the H274Y substitution resulted in KPC-28 in a 50-fold increase in ceftazidime hydrolysis that was strongly reversed by clavulanate. CONCLUSIONS We have shown that KPC-28 lacks carbapenemase activity, has increased ceftazidime hydrolytic activity and is strongly inhibited by clavulanate. KPC-28-producing E. coli isolates display an avibactam-resistant ESBL profile, which may be wrongly identified by molecular and immunochromatographic assays as the presence of a carbapenemase. Accordingly, confirmation of carbapenem hydrolysis will be mandatory with assays based solely on blaKPC gene or gene product detection.
Collapse
Affiliation(s)
- Saoussen Oueslati
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Bogdan I Iorga
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, Gif-sur-Yvette, France
| | - Linda Tlili
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Cynthia Exilie
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Agustin Zavala
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, Gif-sur-Yvette, France
| | - Laurent Dortet
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Agnès B Jousset
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Sandrine Bernabeu
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Rémy A Bonnin
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Faculty of Medicine, Université Paris-Sud, LabEx Lermit, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| |
Collapse
|
6
|
Prado-Vivar MB, Ortiz L, Reyes J, Villacis E, Fornasini M, Baldeon ME, Cardenas PA. Molecular typing of a large nosocomial outbreak of KPC-producing bacteria in the biggest tertiary-care hospital of Quito, Ecuador. J Glob Antimicrob Resist 2019; 19:328-332. [PMID: 31116967 DOI: 10.1016/j.jgar.2019.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/14/2013] [Accepted: 06/21/2013] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Klebsiella pneumoniae is an opportunistic pathogen associated with nosocomial infections worldwide. Isolates with a K. pneumoniae carbapenemase (KPC)-producing phenotype show reduced susceptibility to first-choice antibiotics. Between 2012-2013, the largest public tertiary-care hospital in Quito (Ecuador) reported an outbreak of KPC-producing bacteria with more than 800 cases. We developed a molecular epidemiological approach to analyse the clonality of K. pneumoniae isolates recovered from selected hospital services and patient samples. METHODS A retrospective cohort study was performed based on microbial isolates and their corresponding records from the hospital and referred to Instituto Nacional de Investigación en Salud Pública (INSPI). From 800 isolates that were collected between 2012-2013, a total of 100 isolates were randomly selected for this study. Antimicrobial susceptibility testing was performed according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Genotypic detection and phylogenetic relationship analysis were performed by multilocus sequence typing (MLST). The blaKPC carbapenemase gene was also amplified by PCR and was sequenced using Sanger sequencing. RESULTS Molecular analysis showed that the outbreak had a polyclonal origin with two predominant genotypes, comprising sequence types ST25 and ST258, present in 38 and 36 cases, respectively. These genotypes were found in all studied hospital services including general surgery, intensive care unit and emergency. TheblaKPC-5 gene was the most prevalent blaKPC variant in this study. CONCLUSION These data indicate that KPC-producing polyclonal K. pneumoniae are frequent causes of nosocomial hospital outbreaks in South America. Similar genotypes have been reported in Colombia, Argentina, Brazil, North America and Asia.
Collapse
Affiliation(s)
- M Belen Prado-Vivar
- Instituto de Microbiología, COCIBA, Universidad San Francisco de Quito, Diego de Robles s/n y Vía Interoceánica, Quito, Pichincha, Ecuador; Centro de Investigación Traslacional (CIT), Universidad de las Américas, Quito, Pichincha, Ecuador
| | - Lizeth Ortiz
- Centro de Investigación Traslacional (CIT), Universidad de las Américas, Quito, Pichincha, Ecuador
| | - Jorge Reyes
- Instituto de Microbiología, COCIBA, Universidad San Francisco de Quito, Diego de Robles s/n y Vía Interoceánica, Quito, Pichincha, Ecuador; Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Pichincha, Ecuador
| | - Eduardo Villacis
- Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Pichincha, Ecuador
| | - Marco Fornasini
- Centro de Investigación Traslacional (CIT), Universidad de las Américas, Quito, Pichincha, Ecuador; Center for Biomedical Research (CENBIO), Eugenio Espejo College of Health Science, Universidad Tecnológica Equinoccial, Quito, Pichincha, Ecuador
| | - Manuel E Baldeon
- Centro de Investigación Traslacional (CIT), Universidad de las Américas, Quito, Pichincha, Ecuador; Center for Biomedical Research (CENBIO), Eugenio Espejo College of Health Science, Universidad Tecnológica Equinoccial, Quito, Pichincha, Ecuador
| | - Paul A Cardenas
- Instituto de Microbiología, COCIBA, Universidad San Francisco de Quito, Diego de Robles s/n y Vía Interoceánica, Quito, Pichincha, Ecuador; Centro de Investigación Traslacional (CIT), Universidad de las Américas, Quito, Pichincha, Ecuador.
| |
Collapse
|
7
|
Genomic characterization of a KPC-23-producing Klebsiella pneumoniae ST258 clinical isolate resistant to ceftazidime-avibactam. Clin Microbiol Infect 2019; 25:763.e5-763.e8. [PMID: 30928562 DOI: 10.1016/j.cmi.2019.03.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/15/2019] [Accepted: 03/09/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVES We characterized the first ceftazidime-avibactam-resistant KPC-producing-Klebsiella pneumoniae clinical isolate detected in Greece, before the introduction of ceftazidime-avibactam in clinical practice. METHODS K. pneumoniae KP-90 was isolated from a hospitalized patient in Thessaloniki during a nationwide surveillance study conducted between 2014 and 2016. Antimicrobial susceptibility was tested against a panel of agents. Whole-genome sequencing (Ion Torrent TM platform) of the isolate was carried out to identify the acquired resistance genes and mutations that were associated with ceftazidime-avibactam resistance. RESULTS The K. pneumoniae isolate belonged to multilocus sequence type ST258 and harboured blaKPC-23 as the only carbapenemase gene. The isolate had a minimum inhibitory concentration (MIC) of 16 mg/L to ceftazidime-avibactam and was highly resistant to imipenem, meropenem (MICs, 512 mg/L) and ceftazidime (MIC, >1024 mg/L). blaKPC-23 was detected on a Tn4401a transposon, located on a pKPQIL-type plasmid. A non-functional outer membrane protein OmpK35 and an OmpK36 variant that had been previously associated with K. pneumoniae isolates of ST258 were detected. Transformation studies with Escherichia coli TOP10 showed that KPC-23 offered similar carbapenem MICs as KPC-2 and KPC-3. However, KPC-23 conferred a four-fold higher ceftazidime MIC (>1024 mg/L), which in the presence of avibactam was reduced (>7-fold) to 8 mg/L, which is just within the limit of the susceptibility breakpoint. CONCLUSIONS Ceftazidime-avibactam resistance in a KPC-23- producing K. pneumoniae clinical isolate was due to increased ceftazidime hydrolysis and was likely enhanced by OmpK35 porin deficiency.
Collapse
|
8
|
Malathi K, Anbarasu A, Ramaiah S. Identification of potential inhibitors for Klebsiella pneumoniae carbapenemase-3: a molecular docking and dynamics study. J Biomol Struct Dyn 2019; 37:4601-4613. [PMID: 30632921 DOI: 10.1080/07391102.2018.1556737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative bacterium, which is a leading causal agent for nosocomial infections. Penicillin, cephalosporin and carbapenems along with the inhibitors such as tazobactam, sulbactam and clavulanic acid are prescribed for the treatment of K. pneumoniae infections. Prolonged exposure to β-lactam antibiotics leads to the development of resistance. The major reason for the β-lactam resistance in K. pneumoniae is the secretion of the enzyme K. pneumoniae carbapenemase (KPC). Secretion of KPC-2 and its variant KPC-3 by the K. pneumoniae strains causes resistance to both the substrate imipenem and the β-lactamase inhibitors. Hence, molecular docking and dynamics studies were carried out to analyze the resistance mechanism of KPC-2-imipenem and KPC-3-imipenem at the structural level. It reveals that KPC-3-imipenem has the highest c-score value of 4.03 with greater stability than the KPC-2-imipenem c-score value of 2.36. Greater the interaction between the substrate and the β-lactamase enzyme, higher the chances of hydrolysis of the substrate. Presently available β-lactamase inhibitors are also ineffective against KPC-3-expressing strains. This situation necessitates the need for development of novel and effective inhibitors for KPC-3. We have carried out the virtual screening process to identify more effective inhibitors for KPC-3, and this has resulted in ZINC48682523, ZINC50209041 and ZINC50420049 as the best binding energy compounds, having greater binding affinity and stability than KPC-3-tazobactam interactions. Our study provides a clear understanding of the mechanism of drug resistance and provides valuable inputs for the development of inhibitors against KPC-3 expressing K. pneumoniae. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kullappan Malathi
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology , Vellore , Tamil Nadu , India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology , Vellore , Tamil Nadu , India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology , Vellore , Tamil Nadu , India
| |
Collapse
|
9
|
Jousset AB, Rosinski-Chupin I, Takissian J, Glaser P, Bonnin RA, Naas T. Transcriptional Landscape of a bla KPC-2 Plasmid and Response to Imipenem Exposure in Escherichia coli TOP10. Front Microbiol 2018; 9:2929. [PMID: 30559731 PMCID: PMC6286996 DOI: 10.3389/fmicb.2018.02929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
The diffusion of KPC-2 carbapenemase is closely related to the spread of Klebsiella pneumoniae of the clonal-group 258 and linked to IncFIIK plasmids. Little is known about the biology of multi-drug resistant plasmids and the reasons of their successful dissemination. Using E. coli TOP10 strain harboring a multi-replicon IncFIIK-IncFIB blaKPC−2-gene carrying plasmid pBIC1a from K. pneumoniae ST-258 clinical isolate BIC-1, we aimed to identify basal gene expression and the effects of imipenem exposure using whole transcriptome approach by RNA sequencing (RNA-Seq). Independently of the antibiotic pressure, most of the plasmid-backbone genes were expressed at low levels. The most expressed pBIC1a genes were involved in antibiotic resistance (blaKPC−2, blaTEM and aph(3′)-I), in plasmid replication and conjugation, or associated to mobile elements. After antibiotic exposure, 34% of E. coli (pBIC1a) genome was differentially expressed. Induction of oxidative stress response was evidenced, with numerous upregulated genes of the SoxRS/OxyR oxydative stress regulons, the Fur regulon (for iron uptake machinery), and IscR regulon (for iron sulfur cluster synthesis). Nine genes carried by pBIC1a were up-regulated, including the murein DD-endopeptidase mepM and the copper resistance operon. Despite the presence of a carbapenemase, we observed a major impact on E. coli (pBIC1a) whole transcriptome after imipenem exposure, but no effect on the level of transcription of antimicrobial resistance genes. We describe adaptive responses of E. coli to imipenem-induced stress, and identified plasmid-encoded genes that could be involved in resistance to stressful environments.
Collapse
Affiliation(s)
- Agnès B Jousset
- Department of Bacteriology-Parasitology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Faculty of Medicine, Paris-Sud University, Le Kremlin-Bicêtre, France.,Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Isabelle Rosinski-Chupin
- Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France.,CNRS, UMRS 3525, Paris, France
| | - Julie Takissian
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Faculty of Medicine, Paris-Sud University, Le Kremlin-Bicêtre, France.,Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Philippe Glaser
- Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France.,CNRS, UMRS 3525, Paris, France
| | - Rémy A Bonnin
- Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Faculty of Medicine, Paris-Sud University, Le Kremlin-Bicêtre, France.,Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Thierry Naas
- Department of Bacteriology-Parasitology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Faculty of Medicine, Paris-Sud University, Le Kremlin-Bicêtre, France.,Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France
| |
Collapse
|
10
|
Shankar C, Karunasree S, Manesh A, Veeraraghavan B. First Report of Whole-Genome Sequence of Colistin-Resistant Klebsiella quasipneumoniae subsp. similipneumoniae Producing KPC-9 in India. Microb Drug Resist 2018; 25:489-493. [PMID: 30427763 DOI: 10.1089/mdr.2018.0116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Klebsiella pneumoniae carbapenemase (KPC) is a class A carbapenemase endemic in the United States, China, South America, and Europe but is rarely reported from India. A single report of KPC-9 from K. pneumoniae in Israel has been published. K. pneumoniae has been classified into three phylogenetic groups: group 1 consists of K. pneumoniae and its subspecies, group 2 consists of Klebsiella quasipneumoniae and its subspecies, and group 3 consists of Klebsiella variicola. This is the first report of whole-genome sequencing of colistin-resistant K. quasipneumoniae subsp. similipneumoniae harboring blaKPC-9 gene. Results: The isolate was obtained from the culture of a respiratory catheter tip from a 41-year-old woman with traumatic brain injury. Whole-genome sequencing showed the presence of blaOKP-B-3 gene and hence it was identified as K. quasipneumoniae subsp. similipneumoniae. The isolate was resistant to all antimicrobials except tigecycline. Colistin resistance was chromosomally mediated; mcr-1 to mcr-5 genes and their variants were not identified. The isolate belonged to the novel clonal type ST2957. Conclusion: The isolation of KPC-9 from India, a nonendemic region, and in an isolate of K. quasipneumoniae highlights the importance of accurate identification of Klebsiella species and determination of mechanism of resistance. The novel sequence type obtained indicates evolution of the organism and acquisition of plasmid-mediated resistance. The occurrence of KPC in India is a potential public health threat.
Collapse
Affiliation(s)
- Chaitra Shankar
- 1 Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Susmitha Karunasree
- 1 Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Abi Manesh
- 2 Department of Infectious Diseases, Christian Medical College, Vellore, India
| | - Balaji Veeraraghavan
- 1 Department of Clinical Microbiology, Christian Medical College, Vellore, India
| |
Collapse
|
11
|
Gartzonika K, Rossen J, Sakkas H, Rosema S, Priavali E, Friedrich A, Levidiotou S, Bathoorn E. Identification of a KPC-9-producing Klebsiella pneumoniae ST258 cluster among KPC-2-producing isolates of an ongoing outbreak in Northwestern Greece: a retrospective study. Clin Microbiol Infect 2018; 24:558-560. [DOI: 10.1016/j.cmi.2017.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
|
12
|
Scasso F, Ferrari G, DE Vincentiis GC, Arosio A, Bottero S, Carretti M, Ciardo A, Cocuzza S, Colombo A, Conti B, Cordone A, DE Ciccio M, Delehaye E, Della Vecchia L, DE Macina I, Dentone C, DI Mauro P, Dorati R, Fazio R, Ferrari A, Ferrea G, Giannantonio S, Genta I, Giuliani M, Lucidi D, Maiolino L, Marini G, Marsella P, Meucci D, Modena T, Montemurri B, Odone A, Palma S, Panatta ML, Piemonte M, Pisani P, Pisani S, Prioglio L, Scorpecci A, Scotto DI Santillo L, Serra A, Signorelli C, Sitzia E, Tropiano ML, Trozzi M, Tucci FM, Vezzosi L, Viaggi B. Emerging and re-emerging infectious disease in otorhinolaryngology. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2018; 38:S1-S106. [PMID: 29967548 PMCID: PMC6056203 DOI: 10.14639/0392-100x-suppl.1-38-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY Emerging and re-emerging infectious disease in otorhinolaryngology (ENT) are an area of growing epidemiological and clinical interest. The aim of this section is to comprehensively report on the epidemiology of key infectious disease in otorhinolaryngology, reporting on their burden at the national and international level, expanding of the need of promoting and implementing preventive interventions, and the rationale of applying evidence-based, effective and cost- effective diagnostic, curative and preventive approaches. In particular, we focus on i) ENT viral infections (HIV, Epstein-Barr virus, Human Papilloma virus), retrieving the available evidence on their oncogenic potential; ii) typical and atypical mycobacteria infections; iii) non-specific granulomatous lymphadenopathy; iv) emerging paediatric ENT infectious diseases and the prevention of their complications; v) the growing burden of antimicrobial resistance in ENT and the strategies for its control in different clinical settings. We conclude by outlining knowledge gaps and action needed in ENT infectious diseases research and clinical practice and we make references to economic analysis in the field of ENT infectious diseases prevention and care.
Collapse
Affiliation(s)
- F Scasso
- SOC Otorinolaringoiatria, ASL 3 Genovese, Ospedale P.A. Micone, Genova, Italy
| | - G Ferrari
- SOC Otorinolaringoiatria, ASL 5 Genovese, Ospedale P.A. Levante Ligure, La Spezia, Italy
| | - G C DE Vincentiis
- UOC Otorinolaringoiatria, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - A Arosio
- Clinica Otorinolaringoiatria, Ospedale Macchi, ASST Settelaghi, Varese, Italy
| | - S Bottero
- UOC Chirurgia delle Vie Aeree, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - M Carretti
- UOC Otorinolaringoiatria, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - A Ciardo
- SOC Otorinolaringoiatria, ASL 5 Genovese, Ospedale P.A. Levante Ligure, La Spezia, Italy
| | - S Cocuzza
- Clinica di Otorinolaringoiatria, Università degli Studi di Catania, Catania, Italy
| | - A Colombo
- SOC Otorinolaringoiatria, Ospedale Cardinal Massaia, Asti, Italy
| | - B Conti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Pavia, Italy
| | - A Cordone
- SOC Otorinolaringoiatria, ASL 3 Genovese, Ospedale P.A. Micone, Genova, Italy
| | - M DE Ciccio
- SOC Otorinolaringoiatria, ASL 5 Genovese, Ospedale P.A. Levante Ligure, La Spezia, Italy
| | - E Delehaye
- SOC Otorinolaringoiatria, ASL 5 Genovese, Ospedale P.A. Levante Ligure, La Spezia, Italy
| | - L Della Vecchia
- Clinica Otorinolaringoiatria, Ospedale Macchi, ASST Settelaghi, Varese, Italy
| | - I DE Macina
- SOC Malattie Infettive, ASL 1 Imperiese, Ospedale di Sanremo, Italy
| | - C Dentone
- SOC Malattie Infettive, ASL 1 Imperiese, Ospedale di Sanremo, Italy
| | - P DI Mauro
- Clinica di Otorinolaringoiatria, Università degli Studi di Catania, Catania, Italy
| | - R Dorati
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Pavia, Italy
| | - R Fazio
- SOC Otorinolaringoiatria, ASL 5 Genovese, Ospedale P.A. Levante Ligure, La Spezia, Italy
| | - A Ferrari
- Direzione Sanitaria, AOU Parma, Italy
| | - G Ferrea
- SOC Malattie Infettive, ASL 1 Imperiese, Ospedale di Sanremo, Italy
| | - S Giannantonio
- UOC Audiologia e Otochirurgia, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - I Genta
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Pavia, Italy
| | - M Giuliani
- UOC Otorinolaringoiatria, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - D Lucidi
- UOC Audiologia e Otochirurgia, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - L Maiolino
- Clinica di Otorinolaringoiatria, Università degli Studi di Catania, Catania, Italy
| | - G Marini
- UOC Otorinolaringoiatria, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - P Marsella
- UOC Audiologia e Otochirurgia, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - D Meucci
- UOC Chirurgia delle Vie Aeree, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - T Modena
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Pavia, Italy
| | - B Montemurri
- UOC Audiologia e Otochirurgia, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - A Odone
- Facoltà di Medicina e Chirurgia, Università Vita-Salute San Raffaele, Milano, Italy
| | - S Palma
- SOC Otorinolaringoiatria, Azienda Sanitaria Universitaria di Udine (ASUIUD), Italy
| | - M L Panatta
- UOC Otorinolaringoiatria, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - M Piemonte
- SOC Otorinolaringoiatria, Azienda Sanitaria Universitaria di Udine (ASUIUD), Italy
| | - P Pisani
- SOC Otorinolaringoiatria, Ospedale Cardinal Massaia, Asti, Italy
| | - S Pisani
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Pavia, Italy
| | - L Prioglio
- SOC Otorinolaringoiatria, ASL 3 Genovese, Ospedale P.A. Micone, Genova, Italy
| | - A Scorpecci
- UOC Audiologia e Otochirurgia, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | | | - A Serra
- Clinica di Otorinolaringoiatria, Università degli Studi di Catania, Catania, Italy
| | - C Signorelli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Italy; Facoltà di Medicina e Chirurgia, Università Vita-Salute San Raffaele, Milano, Italy
| | - E Sitzia
- UOC Otorinolaringoiatria, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - M L Tropiano
- UOC Chirurgia delle Vie Aeree, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - M Trozzi
- UOC Chirurgia delle Vie Aeree, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - F M Tucci
- UOS Chirurgia Cervicale ORL, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - L Vezzosi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Italy; Dipartimento di Medicina Sperimentale, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italy
| | - B Viaggi
- SOC Neuroanestesia e Rianimazione, A.O.U. Careggi, Firenze, Italy
| |
Collapse
|
13
|
Swathi CH, Chikala R, Ratnakar KS, Sritharan V. A structural, epidemiological & genetic overview of Klebsiella pneumoniae carbapenemases (KPCs). Indian J Med Res 2017; 144:21-31. [PMID: 27834322 PMCID: PMC5116894 DOI: 10.4103/0971-5916.193279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemases (KPCs) are plasmid encoded carbapenem hydrolyzing enzymes which have the potential to spread widely through gene transfer. The instability of upstream region of blaKPC accelerates emergence of different isoforms. Routine antibiotic susceptibility testing failed to detect KPC producers and some commercial kits have been launched for early identification of KPC producers. Notable among the drugs under development against KPC are mostly derivatives of polymixin; β-lactamase inhibitor NXL104 with combination of oxyimino cephalosporin as well as with ceftazidime; a novel tricyclic carbapenem, LK-157, potentially useful against class A and class C enzymes; BLI-489-a bicyclic penem derivative; PTK-0796, a tetracycline derivative and ACHN-490. Combination therapy might be preferable to control KPC infections in immediate future. Clinicians are likely to opt for unconventional combinations of antibiotics to treat KPC infections because of unavailability of alternative agents. The KPCs have become endemic in many countries but there is no optimal treatment recommendation available for bacteria expressing KPCs. Reports of outbreaks involving KPCs have focused mainly on laboratory identification, empirical treatment outcomes and molecular epidemiology. This review includes information on the emergence of KPC variants, limitations of phenotyping methods, available molecular methods for identification of the KPC variants and treatment options highlighting the drugs under development.
Collapse
Affiliation(s)
- C H Swathi
- Molecular Diagnostics & Biomarkers Laboratory, Global Hospitals, Hyderabad, India
| | - Rosy Chikala
- Molecular Diagnostics & Biomarkers Laboratory, Global Hospitals, Hyderabad, India
| | - K S Ratnakar
- Department of Academics & Research, Global Hospitals, Hyderabad, India
| | - V Sritharan
- Molecular Diagnostics & Biomarkers Laboratory, Global Hospitals, Hyderabad, India
| |
Collapse
|
14
|
Chow DC, Rice K, Huang W, Atmar RL, Palzkill T. Engineering Specificity from Broad to Narrow: Design of a β-Lactamase Inhibitory Protein (BLIP) Variant That Exclusively Binds and Detects KPC β-Lactamase. ACS Infect Dis 2016; 2:969-979. [PMID: 27756125 DOI: 10.1021/acsinfecdis.6b00160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The β-lactamase inhibitory protein (BLIP) binds and inhibits a wide range of class A β-lactamases including the TEM-1 β-lactamase (Ki = 0.5 nM), which is widely present in Gram-negative bacteria, and the KPC-2 β-lactamase (Ki = 1.2 nM), which hydrolyzes virtually all clinically useful β-lactam antibiotics. The extent to which the specificity of a protein that binds a broad range of targets can be modified to display narrow specificity was explored in this study by engineering BLIP to bind selectively to KPC-2 β-lactamase. A genetic screen for BLIP function in Escherichia coli was used to narrow the binding specificity of BLIP by identifying amino acid substitutions that retain affinity for KPC-2 while losing affinity for TEM-1 β-lactamase. The combination of single substitutions yielded the K74T:W112D BLIP variant, which was shown by inhibition assays to retain high affinity for KPC-2 with a Ki of 0.4 nM, while drastically losing affinity for TEM-1 with a Ki > 10 μM. The K74T:W112D mutant therefore binds KPC-2 β-lactamase 3 times more tightly while binding TEM-1 > 20000-fold more weakly than wild-type BLIP. The K74T:W112D BLIP variant also exhibited low affinity (Ki > 10 μM) for other class A β-lactamases. The high affinity and narrow specificity of BLIP K74T:W112D for KPC-2 β-lactamase suggest it could be a useful sensor for the presence of this enzyme in multidrug-resistant bacteria. This was demonstrated with an assay employing BLIP K74T:W112D conjugated to a bead to specifically pull-down and detect KPC-2 β-lactamase in lysates from clinical bacterial isolates containing multiple β-lactamases.
Collapse
Affiliation(s)
- Dar-Chone Chow
- Departments of Pharmacology, ‡Medicine, and §Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Kacie Rice
- Departments of Pharmacology, ‡Medicine, and §Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Wanzhi Huang
- Departments of Pharmacology, ‡Medicine, and §Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Robert L. Atmar
- Departments of Pharmacology, ‡Medicine, and §Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Timothy Palzkill
- Departments of Pharmacology, ‡Medicine, and §Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| |
Collapse
|
15
|
Horizontal Transfer of Carbapenemase-Encoding Plasmids and Comparison with Hospital Epidemiology Data. Antimicrob Agents Chemother 2016; 60:4910-9. [PMID: 27270289 DOI: 10.1128/aac.00014-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/28/2016] [Indexed: 12/19/2022] Open
Abstract
Carbapenemase-producing organisms have spread worldwide, and infections with these bacteria cause significant morbidity. Horizontal transfer of plasmids carrying genes that encode carbapenemases plays an important role in the spread of multidrug-resistant Gram-negative bacteria. Here we investigate parameters regulating conjugation using an Escherichia coli laboratory strain that lacks plasmids or restriction enzyme modification systems as a recipient and also using patient isolates as donors and recipients. Because conjugation is tightly regulated, we performed a systematic analysis of the transfer of Klebsiella pneumoniae carbapenemase (blaKPC)-encoding plasmids into multiple strains under different environmental conditions to investigate critical variables. We used four blaKPC-carrying plasmids isolated from patient strains obtained from two hospitals: pKpQIL and pKPC-47e from the National Institutes of Health, and pKPC_UVA01 and pKPC_UVA02 from the University of Virginia. Plasmid transfer frequency differed substantially between different donor and recipient pairs, and the frequency was influenced by plasmid content, temperature, and substrate, in addition to donor and recipient strain. pKPC-47e was attenuated in conjugation efficiency across all conditions tested. Despite its presence in multiple clinical species, pKPC_UVA01 had lower conjugation efficiencies than pKpQIL into recipient strains. The conjugation frequency of these plasmids into K. pneumoniae and E. coli patient isolates ranged widely without a clear correlation with clinical epidemiological data. Our results highlight the importance of each variable examined in these controlled experiments. The in vitro models did not reliably predict plasmid mobilization observed in a patient population, indicating that further studies are needed to understand the most important variables affecting horizontal transfer in vivo.
Collapse
|
16
|
Papagiannitsis CC, Di Pilato V, Giani T, Giakkoupi P, Riccobono E, Landini G, Miriagou V, Vatopoulos AC, Rossolini GM. Characterization of KPC-encoding plasmids from two endemic settings, Greece and Italy. J Antimicrob Chemother 2016; 71:2824-30. [PMID: 27334661 DOI: 10.1093/jac/dkw227] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/13/2016] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Global dissemination of KPC-type carbapenemases is mainly associated with the spread of high-risk clones of Klebsiella pneumoniae and of KPC-encoding plasmids. In this study, we explored the population structure of KPC-encoding plasmids from the recent epidemics of KPC-producing K. pneumoniae (KPC-Kp) in Greece and Italy, the two major European endemic settings. METHODS Thirty-four non-replicate clinical strains of KPC-Kp representative of the early phases (2008-11) of the Greek (n = 22) and Italian (n = 12) epidemics were studied. Isolates were typed by MLST, and blaKPC-carrying plasmids were characterized by S1 profiling, PCR-based replicon typing and RFLP. Transfer experiments by conjugation or transformation were carried out with Escherichia coli recipients. Eleven plasmids, representative of all different restriction profiles, were completely sequenced. RESULTS The representative Greek strains belonged to 14 sequence types (STs), with a predominance of ST258. The representative Italian strains belonged to three STs, with a predominance of clonal complex 258 (ST258, ST512). The 34 strains carried plasmids of variable size (78-166 kb), either with blaKPC-2 or blaKPC-3 gene embedded in a Tn4401a transposon. Plasmids from Greek strains were mostly of a single RFLP type (A) and resembled the archetypal pKpQIL KPC-encoding plasmid, while plasmids from Italian strains belonged to a more heterogeneous population, showing five RFLP profiles (A, C-F). Types A and C resembled pKpQIL or deletion derivatives thereof, while types D-F included plasmids with hybrid structures between pKpQIL, pKPN3 and pKPN101-IT. CONCLUSIONS pKpQIL-like plasmids played a major role in the dissemination of blaKPC in Greece and Italy, but evolved with different dynamics in these endemic settings.
Collapse
Affiliation(s)
- Costas C Papagiannitsis
- Department of Microbiology, National School of Public Health, Athens, Greece Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Plzen, Czech Republic
| | - Vincenzo Di Pilato
- Department of Medical Biotechnologies, University of Siena, Siena, Italy Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Tommaso Giani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Panagiota Giakkoupi
- Department of Microbiology, National School of Public Health, Athens, Greece
| | - Eleonora Riccobono
- Department of Medical Biotechnologies, University of Siena, Siena, Italy Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Landini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Vivi Miriagou
- Laboratory of Bacteriology, Hellenic Pasteur Institute, Athens, Greece
| | - Alkiviadis C Vatopoulos
- Department of Microbiology, National School of Public Health, Athens, Greece Central Public Health Laboratory, Hellenic Centre of Disease Control and Prevention, Vari, Greece
| | - Gian Maria Rossolini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy Don Carlo Gnocchi Foundation, Florence, Italy
| |
Collapse
|
17
|
Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol 2016; 7:895. [PMID: 27379038 PMCID: PMC4904035 DOI: 10.3389/fmicb.2016.00895] [Citation(s) in RCA: 471] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023] Open
Abstract
The emergence of carbapenem-resistant Gram-negative pathogens poses a serious threat to public health worldwide. In particular, the increasing prevalence of carbapenem-resistant Klebsiella pneumoniae is a major source of concern. K. pneumoniae carbapenemases (KPCs) and carbapenemases of the oxacillinase-48 (OXA-48) type have been reported worldwide. New Delhi metallo-β-lactamase (NDM) carbapenemases were originally identified in Sweden in 2008 and have spread worldwide rapidly. In this review, we summarize the epidemiology of K. pneumoniae producing three carbapenemases (KPCs, NDMs, and OXA-48-like). Although the prevalence of each resistant strain varies geographically, K. pneumoniae producing KPCs, NDMs, and OXA-48-like carbapenemases have become rapidly disseminated. In addition, we used recently published molecular and genetic studies to analyze the mechanisms by which these three carbapenemases, and major K. pneumoniae clones, such as ST258 and ST11, have become globally prevalent. Because carbapenemase-producing K. pneumoniae are often resistant to most β-lactam antibiotics and many other non-β-lactam molecules, the therapeutic options available to treat infection with these strains are limited to colistin, polymyxin B, fosfomycin, tigecycline, and selected aminoglycosides. Although, combination therapy has been recommended for the treatment of severe carbapenemase-producing K. pneumoniae infections, the clinical evidence for this strategy is currently limited, and more accurate randomized controlled trials will be required to establish the most effective treatment regimen. Moreover, because rapid and accurate identification of the carbapenemase type found in K. pneumoniae may be difficult to achieve through phenotypic antibiotic susceptibility tests, novel molecular detection techniques are currently being developed.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Young Bae Kim
- Division of STEM, North Shore Community College, Danvers MA, USA
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
18
|
Mehta SC, Rice K, Palzkill T. Natural Variants of the KPC-2 Carbapenemase have Evolved Increased Catalytic Efficiency for Ceftazidime Hydrolysis at the Cost of Enzyme Stability. PLoS Pathog 2015; 11:e1004949. [PMID: 26030609 PMCID: PMC4452179 DOI: 10.1371/journal.ppat.1004949] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023] Open
Abstract
The spread of β-lactamases that hydrolyze penicillins, cephalosporins and carbapenems among Gram-negative bacteria has limited options for treating bacterial infections. Initially, Klebsiella pneumoniae carbapenemase-2 (KPC-2) emerged as a widespread carbapenem hydrolyzing β-lactamase that also hydrolyzes penicillins and cephalosporins but not cephamycins and ceftazidime. In recent years, single and double amino acid substitution variants of KPC-2 have emerged among clinical isolates that show increased resistance to ceftazidime. Because it confers multi-drug resistance, KPC β-lactamase is a threat to public health. In this study, the evolution of KPC-2 function was determined in nine clinically isolated variants by examining the effects of the substitutions on enzyme kinetic parameters, protein stability and antibiotic resistance profile. The results indicate that the amino acid substitutions associated with KPC-2 natural variants lead to increased catalytic efficiency for ceftazidime hydrolysis and a consequent increase in ceftazidime resistance. Single substitutions lead to modest increases in catalytic activity while the double mutants exhibit significantly increased ceftazidime hydrolysis and resistance levels. The P104R, V240G and H274Y substitutions in single and double mutant combinations lead to the largest increases in ceftazidime hydrolysis and resistance. Molecular modeling suggests that the P104R and H274Y mutations could facilitate ceftazidime hydrolysis through increased hydrogen bonding interactions with the substrate while the V240G substitution may enhance backbone flexibility so that larger substrates might be accommodated in the active site. Additionally, we observed a strong correlation between gain of catalytic function for ceftazidime hydrolysis and loss of enzyme stability, which is in agreement with the ‘stability-function tradeoff’ phenomenon. The high Tm of KPC-2 (66.5°C) provides an evolutionary advantage as compared to other class A enzymes such as TEM (51.5°C) and CTX-M (51°C) in that it can acquire multiple destabilizing substitutions without losing the ability to fold into a functional enzyme. The absence of new antibiotics combined with the emergence of antibiotic-resistance enzymes like KPC-2 that can inactivate most β-lactam antibiotics has resulted in a longer duration of medical treatment, higher costs of medical care, and increased mortality. In recent years, a number of amino acid sequence variants of KPC-2 have been identified in clinical isolates worldwide suggesting continued evolution of resistance in KPC-2. In this study we have characterized nine clinically isolated variants of KPC-2 (KPC-3 to -11) that differ from the initial KPC-2 isolate by one to two amino acids. The KPC variants confer increased resistance to the antibiotic ceftazidime as compared to KPC-2. This increase in resistance is correlated with improved ability of the variant enzymes to hydrolyze the antibiotic. Additionally, the changes associated with increased ceftazidime hydrolysis also reduce the thermal stability of the enzyme, indicating the mutations that assist catalysis come with a cost on the overall stability of the enzyme. The high thermal stability of KPC-2 allows destabilizing mutations that enhance catalysis to accumulate while the enzyme retains a folded, functional structure. Thus, the high stability of KPC-2 provides an evolutionary advantage to acquire multiple mutations and retain function as compared to other β-lactamase enzymes.
Collapse
Affiliation(s)
- Shrenik C. Mehta
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kacie Rice
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Vitrat V, Hautefeuille S, Janssen C, Bougon D, Sirodot M, Pagani L. Optimizing antimicrobial therapy in critically ill patients. Infect Drug Resist 2014; 7:261-71. [PMID: 25349478 PMCID: PMC4208492 DOI: 10.2147/idr.s44357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Critically ill patients with infection in the intensive care unit (ICU) would certainly benefit from timely bacterial identification and effective antimicrobial treatment. Diagnostic techniques have clearly improved in the last years and allow earlier identification of bacterial strains in some cases, but these techniques are still quite expensive and not readily available in all institutions. Moreover, the ever increasing rates of resistance to antimicrobials, especially in Gram-negative pathogens, are threatening the outcome for such patients because of the lack of effective medical treatment; ICU physicians are therefore resorting to combination therapies to overcome resistance, with the direct consequence of promoting further resistance. A more appropriate use of available antimicrobials in the ICU should be pursued, and adjustments in doses and dosing through pharmacokinetics and pharmacodynamics have recently shown promising results in improving outcomes and reducing antimicrobial resistance. The aim of multidisciplinary antimicrobial stewardship programs is to improve antimicrobial prescription, and in this review we analyze the available experiences of such programs carried out in ICUs, with emphasis on results, challenges, and pitfalls. Any effective intervention aimed at improving antibiotic usage in ICUs must be brought about at the present time; otherwise, we will face the challenge of intractable infections in critically ill patients in the near future.
Collapse
Affiliation(s)
- Virginie Vitrat
- Antimicrobial Stewardship Program, Infectious Diseases Unit, Annecy, France
| | - Serge Hautefeuille
- Intensive Care Unit, Annecy-Genevois Hospital Center (CHANGE), Annecy, France
| | - Cécile Janssen
- Antimicrobial Stewardship Program, Infectious Diseases Unit, Annecy, France
| | - David Bougon
- Intensive Care Unit, Annecy-Genevois Hospital Center (CHANGE), Annecy, France
| | - Michel Sirodot
- Intensive Care Unit, Annecy-Genevois Hospital Center (CHANGE), Annecy, France
| | - Leonardo Pagani
- Antimicrobial Stewardship Program, Infectious Diseases Unit, Annecy, France ; Infectious Diseases Unit, Bolzano Central Hospital, Bolzano, Italy
| |
Collapse
|
20
|
Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 2014; 22:686-96. [PMID: 25304194 DOI: 10.1016/j.tim.2014.09.003] [Citation(s) in RCA: 376] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/11/2022]
Abstract
Klebsiella pneumoniae carbapenemases (KPCs) were first identified in 1996 in the USA. Since then, regional outbreaks of KPC-producing K. pneumoniae (KPC-Kp) have occurred in the USA, and have spread internationally. Dissemination of blaKPC involves both horizontal transfer of blaKPC genes and plasmids, and clonal spread. Of epidemiological significance, the international spread of KPC-producing K. pneumoniae is primarily associated with a single multilocus sequence type (ST), ST258, and its related variants. However, the molecular factors contributing to the success of ST258 largely remain unclear. In this review, we discuss the recent progresses in understanding KPC-producing K. pneumoniae that are contributing to our knowledge of plasmid and genome composition and structure among the KPC epidemic clone, and we identify possible factors that influence its epidemiological success.
Collapse
|
21
|
Nobari S, Shahcheraghi F, Rahmati Ghezelgeh F, Valizadeh B. Molecular Characterization of Carbapenem-Resistant Strains ofKlebsiella pneumoniaeIsolated from Iranian Patients: First Identification ofblaKPCGene in Iran. Microb Drug Resist 2014; 20:285-93. [DOI: 10.1089/mdr.2013.0074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Saman Nobari
- Department of Bacteriology, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fereshteh Shahcheraghi
- Department of Bacteriology, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
22
|
Epidemiology of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Mediterranean countries. BIOMED RESEARCH INTERNATIONAL 2014; 2014:305784. [PMID: 24955354 PMCID: PMC4052623 DOI: 10.1155/2014/305784] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 04/22/2014] [Indexed: 01/17/2023]
Abstract
The emergence and global spread of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii are of great concern to health services worldwide. These β-lactamases hydrolyse almost all β-lactams, are plasmid-encoded, and are easily transferable among bacterial species. They are mostly of the KPC, VIM, IMP, NDM, and OXA-48 types. Their current extensive spread worldwide in Enterobacteriaceae is an important source of concern. Infections caused by these bacteria have limited treatment options and have been associated with high mortality rates. Carbapenemase producers are mainly identified among Klebsiella pneumoniae, Escherichia coli, and A. baumannii and still mostly in hospital settings and rarely in the community. The Mediterranean region is of interest due to a great diversity and population mixing. The prevalence of carbapenemases is particularly high, with this area constituting one of the most important reservoirs. The types of carbapenemase vary among countries, partially depending on the population exchange relationship between the regions and the possible reservoirs of each carbapenemase. This review described the epidemiology of carbapenemases produced by enterobacteria and A. baumannii in this part of the world highlighting the worrisome situation and the need to screen and detect these enzymes to prevent and control their dissemination.
Collapse
|
23
|
Comparative genomic analysis of KPC-encoding pKpQIL-like plasmids and their distribution in New Jersey and New York Hospitals. Antimicrob Agents Chemother 2014; 58:2871-7. [PMID: 24614371 DOI: 10.1128/aac.00120-14] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The global spread of Klebsiella pneumoniae carbapenemase (KPC) is predominately associated with K. pneumoniae strains genotyped as sequence type 258 (ST258). The first ST258-associated plasmid, pKpQIL, was described in Israel in 2006, but its history in the northeastern United States remains unknown. Six pKpQIL-like plasmids from four K. pneumoniae isolates (three ST258 and one ST234), one Escherichia coli isolate, and one Enterobacter aerogenes isolate, collected from 2003 to 2010 in New York (NY) and New Jersey (NJ) hospitals, were completely sequenced. The sequences and overall sizes of the six plasmids are highly similar to those of pKpQIL; the major difference is that five of six NJ/NY strains harbor blaKPC-2, while pKpQIL contains blaKPC-3. Moreover, a 26.7-kb fragment was inverted in pKpQIL-234 (from ST234 K. pneumoniae), while a 14.5-kb region was deleted in pKpQIL-Ec (from ST131 E. coli). PCR screening of 284 other clinical K. pneumoniae isolates identified 101 (35.6%) harboring pKpQIL-like plasmids from 9 of 10 surveyed hospitals, demonstrating the wide dissemination of pKpQIL in this region of endemicity. Among the positive isolates, 87.1% were typed as ST258 and 88.1% carried blaKPC-2. The finding of pKpQIL-like plasmid in this study from strains that predate the initial report of KPC in Israel provides evidence that pKpQIL may have originated in the United States. Our findings demonstrate that pKpQIL plasmids are both spreading clonally in ST258 strains and spreading horizontally to different sequence types and species, further highlighting the clinical and public health concerns associated with carbapenem resistance.
Collapse
|