1
|
Wu Y, Niu LL, Ling YY, Zhou SR, Huang TM, Qi JY, Wu DN, Cai RD, Wu TQ, Xiao Y, Liu T. Drug-drug interaction of phenytoin sodium and methylprednisolone on voriconazole: a population pharmacokinetic model in children with thalassemia undergoing allogeneic hematopoietic stem cell transplantation. Eur J Clin Pharmacol 2024:10.1007/s00228-024-03795-2. [PMID: 39714727 DOI: 10.1007/s00228-024-03795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
PURPOSE Voriconazole (VRC) is recommended for the prevention and treatment of invasive fungal infections in children undergoing hematopoietic stem cell transplantation (HSCT). It demonstrates nonlinear pharmacokinetics (PK) and exhibits substantial inter- and intraindividual variability. Phenytoin sodium (PHT) and methylprednisolone (MP) are commonly used in the early stages of HSCT to prevent epilepsy and graft-versus-host disease. Drug-drug interactions between VRC and these medications represent a significant concern in HSCT recipients. This study aims to investigate the effects of coadministration with PHT, MP, and other covariates on VRC metabolism in children with thalassemia (TM) undergoing allogeneic HSCT (Allo-HSCT) using population pharmacokinetics (PPK) and to recommend the optimal dosage regimen for this unique group. METHODS A total of 237 samples from 57 children with TM undergoing Allo-HSCT were collected. Non-linear mixed effects modeling and Monte Carlo simulation (MCS) were applied for PPK analysis and for optimizing VRC dosing, respectively. RESULTS The VRC data were characterized by a two-compartment model with linear elimination and first-order absorption. All parameters were incorporated in allometric scaling form, with PHT and MP significantly influencing VRC clearance. The MCS revealed a negative correlation between the children's body weight (ranging from 10 to 40 kg) and the required dose. When PHT was co-administered, approximately three times the regular dose of VRC was required. In contrast, when MP was administered together, the dose needed to be increased by 12.5-50%. CONCLUSION The proposed regimen improved the probability of target attainment for VRC and may serve as a reference for the individualized administration of VRC in clinical practice.
Collapse
Affiliation(s)
- Yun Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lu-Lu Niu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ya-Yun Ling
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Si-Ru Zhou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tian-Min Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian-Ying Qi
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Dong-Ni Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rong-da Cai
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ting-Qing Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Xiao
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Taotao Liu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Al Siyabi B, Al-Maqbali JS, Unnikrishnan Meenakshi D, Wali Y, Al Yazidi L. Antifungal Prophylaxis Utilization and the Associated Clinical Outcomes Among Pediatric Patients with Hematological Malignancies or Undergoing Hematopoietic Stem Cell Transplantation. J Clin Med 2024; 13:7179. [PMID: 39685638 DOI: 10.3390/jcm13237179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Invasive fungal infections (IFIs) are a prevalent complication of intensive chemotherapy and hematopoietic stem cell transplantation (HSCT) in the pediatric population and are associated with high morbidity and mortality. We aimed to identify the utilization of antifungal prophylaxis prescriptions and the associated clinical outcomes. Methods: A retrospective study included children (≤18 years old) diagnosed with hematological malignancies or undergoing HSCT who are at high risk for developing IFI and received systemic antifungal therapy between January 2018 and April 2024 at Sultan Qaboos University Hospital (SQUH), Oman. Results: A powered sample of 222 patients was included, and 208 (93.69%) received antifungal prophylaxis. Among those who received prophylaxis, 148 (66.67%) received appropriate prophylaxis, 86.06% (n = 179) received appropriate dosage. The patients who did not receive antifungal prophylaxis had higher rates of inpatient IFI requiring treatment (85.71% versus 12.02%, p < 0.01), a longer median length of hospital stay (LOS) (67.5 days versus 10 days, p = 0.015), and more incidence of 90-day all-cause mortality (21.43% versus 2.88%, p < 0.01) than those who received antifungal prophylaxis. Survival analysis demonstrated that these patients had a 12% higher risk for earlier death. Also, being on antifungal prophylaxis reduces the odds of inpatient IFI requiring treatment, with an adjusted odds ratio (aOR) of 0.13 [95% CI: 0.019-0.801]. Conclusions: Antifungal prophylaxis utilization was high, and it markedly decreases the occurrence and enhances the prognosis of IFI. Nonetheless, inconsistencies in practice and a lack of pediatric-specific data underscore the necessity for uniform guidelines and additional research to strengthen preventative methods in this population, and proper TDM utilization could provide more robust insights.
Collapse
Affiliation(s)
- Bushra Al Siyabi
- Department of Pharmacy, Sultan Qaboos University Hospital, University Medical City, Muscat 123, Oman
| | - Juhaina Salim Al-Maqbali
- Department of Pharmacy, Sultan Qaboos University Hospital, University Medical City, Muscat 123, Oman
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Science, Sultan Qaboos University, Muscat 123, Oman
| | | | - Yasir Wali
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Department of Child Health, Sultan Qaboos University Hospital, University Medical City, Muscat 123, Oman
| | - Laila Al Yazidi
- Department of Child Health, Sultan Qaboos University Hospital, University Medical City, Muscat 123, Oman
| |
Collapse
|
3
|
Kourti M, Roilides E. Usage of Antifungal Agents in Pediatric Patients Versus Adults: Knowledge and Gaps. Mycopathologia 2024; 189:88. [PMID: 39325214 DOI: 10.1007/s11046-024-00896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Invasive fungal infections (IFIs) present significant challenges in managing hospitalized and immunocompromised pediatric patients, contributing to high morbidity and mortality. Despite advancements in diagnostics and treatment, outcomes remain suboptimal due to unique clinical epidemiology, lack of pediatric-specific trials, and varied pharmacokinetics. The emergence of new antifungal classes and agents has expanded our options for preventing and treating IFIs in children, enhancing the safety and effectiveness of antifungal therapy. The oral formulations of ibrexafungerp, fosmanogepix and olorofim along with the extended dosing intervals of rezafungin show promising features for effective antifungal treatment in pediatrics. Despite the promising potential of novel antifungal drugs, their performance in heavily immunosuppressed patients remains unstudied. Until then, dedicated antifungal stewardship programs for high-risk patients are essential to optimize therapeutic outcomes, improve patient care, and limit the emergence of resistance.
Collapse
Affiliation(s)
- Maria Kourti
- Infectious Diseases Unit, 3rd Department of Pediatrics, Aristotle University School of Medicine, and Hippokration Hospital, Thessaloniki, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Aristotle University School of Medicine, and Hippokration Hospital, Thessaloniki, Greece.
| |
Collapse
|
4
|
Schweiger JA, Heiden AM, MacBrayne CE. Evaluation of Empiric Voriconazole Dosing and Therapeutic Drug Monitoring in Hospitalized Pediatric Patients. J Pediatr Hematol Oncol 2024; 46:e419-e425. [PMID: 38934583 DOI: 10.1097/mph.0000000000002898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/09/2024] [Indexed: 06/28/2024]
Abstract
SUMMARY Invasive fungal infections are a significant cause of morbidity and mortality in children with immunodeficiencies. Current dosing recommendations for voriconazole often result in subtherapeutic exposure in pediatric patients. In this single-center retrospective study, we reviewed hospitalized pediatric patients receiving voriconazole with at least one inpatient serum trough concentration measured. Patient characteristics and voriconazole dosing courses with associated trough concentrations were summarized for all patients as well as grouped by age (0 to 1 y, 2 to 11 y, and 12 to 18 y). Of 106 included patients, the median age was 9 years (range, 29 d to 18 y). Five hundred ninety courses of voriconazole were administered with 365 associated troughs. Most troughs were subtherapeutic (49%) and 30% of patients never attained a therapeutic trough. The median oral daily dose associated with a therapeutic trough was higher in younger age groups: 21.6 mg/kg 0 to 1 year, 17.9 mg/kg 2 to 11, and 9.5 mg/kg 12 to 18 years ( P <0.001). Patients younger than 2 years had the largest proportion of subtherapeutic troughs and variability in dosing. Attainment of therapeutic voriconazole concentrations was challenging across all pediatric age groups. Higher starting doses for patients younger than 2 years are likely needed.
Collapse
|
5
|
Hu L, Huang J, Li Y, He G. Clinical application of voriconazole in pediatric patients: a systematic review. Ital J Pediatr 2024; 50:113. [PMID: 38853280 PMCID: PMC11163776 DOI: 10.1186/s13052-024-01684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024] Open
Abstract
The purpose of this study was to review the literature on the clinical use of voriconazole (VRC) in pediatric patients. MEDLINE, Embase, PubMed, Web of Science, and Cochrane Library were searched from January 1, 2000, to August 15, 2023 for relevant clinical studies on VRC use in pediatric patients. Data were collected based on inclusion and exclusion criteria, and a systematic review was performed on recent research related to the use of VRC in pediatric patients. This systematic review included a total of 35 observational studies among which there were 16 studies investigating factors influencing VRC plasma trough concentrations (Ctrough) in pediatric patients, 14 studies exploring VRC maintenance doses required to achieve target range of Ctrough, and 11 studies focusing on population pharmacokinetic (PPK) research of VRC in pediatric patients. Our study found that the Ctrough of VRC were influenced by both genetic and non-genetic factors. The optimal dosing of VRC was correlated with age in pediatric patients, and younger children usually required higher VRC doses to achieve target Ctrough compared to older children. Establishing a PPK model for VRC can assist in achieving more precise individualized dosing in children.
Collapse
Affiliation(s)
- Lin Hu
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China.
| | - Juanjuan Huang
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Yanfei Li
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Gefei He
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China.
| |
Collapse
|
6
|
Groll AH, Körholz K, Holterhus M, Lehrnbecher T. New and emerging options for management of invasive fungal diseases in paediatric patients. Mycoses 2024; 67:e13654. [PMID: 37789721 DOI: 10.1111/myc.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 10/05/2023]
Abstract
Invasive fungal diseases (IFDs) play an important role in the supportive care of paediatric patients with acute leukaemia and those undergoing allogeneic haematopoietic cell transplantation, and they are associated with significantly decreased overall survival rates in affected individuals. Relative to adults, children and adolescents are distinct in terms of host biology, predisposing conditions, presentation and epidemiology of fungal diseases, and in the pharmacology of antifungal agents. The paediatric development of antifungal agents has moved forward in a coordinated manner, and major advances have been made regarding concepts and recommendations for the prevention and treatment of IFDs. However, antifungal therapy is increasingly complex, and a solid knowledge of the available options is needed more than ever for successful management. This narrative review provides a summary of the paediatric development of agents that have been recently approved (anidulafungin, posaconazole) or are in advanced stages of development (isavuconazole). It also reviews the emerging evidence for the efficacy of echinocandins for prophylaxis of invasive aspergillosis, presents new data on alternative dosing regimens of echinocandins and voriconazole, and provides a brief overview of new antifungal agents in clinical development that are expected to be developed for paediatric patients.
Collapse
Affiliation(s)
- Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| | - Katharina Körholz
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| | - Malcolm Holterhus
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| | - Thomas Lehrnbecher
- Department of Pediatrics, Division of Hematology, Oncology and Hemostaseology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Hanai Y, Ueda T, Hamada Y, Oda K, Takahashi Y, Nakajima K, Miyazaki Y, Kiriyama M, Uekusa S, Matsuo K, Matsumoto K, Kimura T, Takesue Y. Optimal timing for therapeutic drug monitoring of voriconazole to prevent adverse effects in Japanese patients. Mycoses 2023; 66:1035-1044. [PMID: 37584173 DOI: 10.1111/myc.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND The optimal timing for therapeutic drug monitoring (TDM) of voriconazole in Asians, who have higher rates of poor metabolisers than non-Asians, is unclear. This can cause unexpectedly high concentrations and delays in reaching steady-state levels. OBJECTIVES To determine the appropriate timing of TDM in Japanese patients receiving voriconazole. PATIENTS/METHODS Trough levels (Cmin ) were measured on days 3-5 (recommended timing, RT) and days 6-14 (delayed timing, DT) after starting voriconazole in patients receiving an appropriate dosage. Considering bioavailability, Cmin was only compared in patients receiving oral voriconazole. RESULTS A total of 289 and 186 patients were included in the safety and pharmacokinetic analyses, respectively. There was a significant difference in Cmin measured no later than and after day 5 (3.59 ± 2.12 [RT] vs. 4.77 ± 3.88 μg/mL [DT], p = .023), whereas no significant difference was observed on cutoff day 6 (3.91 ± 2.60 vs. 4.40 ± 3.94 μg/mL, p = .465), suggesting that Cmin close to the steady-state was achieved after day 5. DT causes a delay in achieving the therapeutic range. The hepatotoxicity rates were 21.5% and 36.8% in the RT and DT groups, respectively (p = .004); DT was an independent risk factor for hepatotoxicity. CONCLUSION Although steady-state concentrations may not be achieved by day 5, early dose optimisation using RT can prevent hepatotoxicity in Japanese patients. TDM should be performed on days 3-5 to ensure safety. However, subsequent TDM may be necessary due to a possible further increase in Cmin .
Collapse
Affiliation(s)
- Yuki Hanai
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Takashi Ueda
- Department of Infection Control and Prevention, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yukihiro Hamada
- Department of Pharmacy, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Kazutaka Oda
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshiko Takahashi
- Department of Pharmacy, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhiko Nakajima
- Department of Infection Control and Prevention, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mone Kiriyama
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Shusuke Uekusa
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Kazuhiro Matsuo
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Toshimi Kimura
- Department of Pharmacy, Juntendo University Hospital, Tokyo, Japan
| | - Yoshio Takesue
- Department of Infection Control and Prevention, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Clinical Infectious Diseases, Tokoname City Hospital, Tokoname, Japan
| |
Collapse
|
8
|
Gastine SE, Rauwolf KK, Pieper S, Hempel G, Lehrnbecher T, Tragiannidis A, Groll AH. Voriconazole plasma concentrations and dosing in paediatric patients below 24 months of age. Mycoses 2023; 66:969-976. [PMID: 37553971 DOI: 10.1111/myc.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Voriconazole (VCZ) is an important first-line option for management of invasive fungal diseases and approved in paediatric patients ≥24 months at distinct dosing schedules that consider different developmental stages. Information on dosing and exposures in children <24 months of age is scarce. Here we report our experience in children <24 months who received VCZ due to the lack of alternative treatment options. This retrospective analysis includes 50 distinct treatment episodes in 17 immunocompromised children aged between 3 and <24 months, who received VCZ between 2004 and 2022 as prophylaxis (14 patients; 47 episodes) or as empirical treatment (3 patients; 3 episodes) by mouth (46 episodes) or intravenously (4 episodes) based on contraindications, intolerance or lack of alternative options. Trough concentrations were measured as clinically indicated, and tolerability was assessed based on hepatic function parameters and discontinuations due to adverse events (AEs). VCZ was administered for a median duration of 10 days (range: 1-138). Intravenous doses ranged from 4.9 to 7.0 mg/kg (median: 6.5) twice daily, and oral doses from 3.8 to 29 mg/kg (median: 9.5) twice daily, respectively. The median trough concentration was 0.63 mg/L (range: 0.01-16.2; 38 samples). Only 34.2% of samples were in the recommended target range of 1-6 mg/L; 57.9% had lower and 7.9% higher trough concentrations. Hepatic function parameters analysed at baseline, during treatment and at end of treatment did not show significant changes during VCZ treatment. There was no correlation between dose and exposure or hepatic function parameters. In three episodes, VCZ was discontinued due to an AE (6%; three patients). In conclusion, this retrospective analysis reveals no signal for increased toxicity in paediatric patients <24 months of age. Empirical dosing resulted in mostly subtherapeutic exposures which emphasises the need for more systematic study of the pharmacokinetics of VCZ in this age group.
Collapse
Affiliation(s)
- Silke E Gastine
- Institute of Pharmaceutical and Medical Chemistry - Department of Clinical Pharmacy, Westphalian Wilhelms University Münster, Münster, Germany
| | - Kerstin K Rauwolf
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| | - Stephanie Pieper
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| | - Georg Hempel
- Institute of Pharmaceutical and Medical Chemistry - Department of Clinical Pharmacy, Westphalian Wilhelms University Münster, Münster, Germany
| | - Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Athanasios Tragiannidis
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
- 2nd Department of Pediatrics, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| |
Collapse
|
9
|
Voriconazole exposure is influenced by inflammation: A population pharmacokinetic model. Int J Antimicrob Agents 2023; 61:106750. [PMID: 36758777 DOI: 10.1016/j.ijantimicag.2023.106750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Voriconazole is an antifungal drug used for the treatment of invasive fungal infections. Due to highly variable drug exposure, therapeutic drug monitoring (TDM) has been recommended. TDM may be helpful to predict exposure accurately, but covariates, such as severe inflammation, that influence the metabolism of voriconazole have not been included in the population pharmacokinetic (popPK) models suitable for routine TDM. OBJECTIVES To investigate whether the effect of inflammation, reflected by C-reactive protein (CRP), could improve a popPK model that can be applied in clinical care. PATIENTS AND METHODS Data from two previous studies were included in the popPK modelling. PopPK modelling was performed using Edsim++. Different popPK models were compared using Akaike Information Criterion and goodness-of-fit plots. RESULTS In total, 1060 voriconazole serum concentrations from 54 patients were included in this study. The final model was a one-compartment model with non-linear elimination. Only CRP was a significant covariate, and was included in the final model and found to affect the maximum rate of enzyme activity (Vmax). For the final popPK model, the mean volume of distribution was 145 L [coefficient of variation percentage (CV%)=61%], mean Michaelis-Menten constant was 5.7 mg/L (CV%=119%), mean Vmax was 86.4 mg/h (CV%=99%) and mean bioavailability was 0.83 (CV%=143%). Internal validation using bootstrapping resulted in median values close to the population parameter estimates. CONCLUSIONS This one-compartment model with non-linear elimination and CRP as a covariate described the pharmacokinetics of voriconazole adequately.
Collapse
|
10
|
Kallee S, Scharf C, Schatz LM, Paal M, Vogeser M, Irlbeck M, Zander J, Zoller M, Liebchen U. Systematic Evaluation of Voriconazole Pharmacokinetic Models without Pharmacogenetic Information for Bayesian Forecasting in Critically Ill Patients. Pharmaceutics 2022; 14:pharmaceutics14091920. [PMID: 36145667 PMCID: PMC9505877 DOI: 10.3390/pharmaceutics14091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Voriconazole (VRC) is used as first line antifungal agent against invasive aspergillosis. Model-based approaches might optimize VRC therapy. This study aimed to investigate the predictive performance of pharmacokinetic models of VRC without pharmacogenetic information for their suitability for model-informed precision dosing. Seven PopPK models were selected from a systematic literature review. A total of 66 measured VRC plasma concentrations from 33 critically ill patients was employed for analysis. The second measurement per patient was used to calculate relative Bias (rBias), mean error (ME), relative root mean squared error (rRMSE) and mean absolute error (MAE) (i) only based on patient characteristics and dosing history (a priori) and (ii) integrating the first measured concentration to predict the second concentration (Bayesian forecasting). The a priori rBias/ME and rRMSE/MAE varied substantially between the models, ranging from −15.4 to 124.6%/−0.70 to 8.01 mg/L and from 89.3 to 139.1%/1.45 to 8.11 mg/L, respectively. The integration of the first TDM sample improved the predictive performance of all models, with the model by Chen (85.0%) showing the best predictive performance (rRMSE: 85.0%; rBias: 4.0%). Our study revealed a certain degree of imprecision for all investigated models, so their sole use is not recommendable. Models with a higher performance would be necessary for clinical use.
Collapse
Affiliation(s)
- Simon Kallee
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Christina Scharf
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lea Marie Schatz
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, 48149 Muenster, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Michael Irlbeck
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Johannes Zander
- Laboratory Dr. Brunner, Luisenstr. 7e, 78464 Konstanz, Germany
| | - Michael Zoller
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Uwe Liebchen
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
- Correspondence: ; Tel.: +49-89-4400-1681160
| |
Collapse
|
11
|
Huang W, Zheng Y, Huang H, Cheng Y, Liu M, Chaphekar N, Wu X. External evaluation of population pharmacokinetic models for voriconazole in Chinese adult patients with hematological malignancy. Eur J Clin Pharmacol 2022; 78:1447-1457. [PMID: 35764817 DOI: 10.1007/s00228-022-03359-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/19/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Patients with hematological malignancies are prone to invasive fungal disease due to long-term chemotherapy or radiotherapy. Voriconazole is a second-generation triazole broad-spectrum antibiotic used to prevent or treat invasive fungal infections. Many population pharmacokinetic (pop PK) models have been published for voriconazole, and various diagnostic methods are available to validate the performance of these pop PK models. However, most of the published models have not been strictly evaluated externally. The purpose of this study is to evaluate these models externally and assess their predictive capabilities. METHODS The external dataset consists of adults receiving voriconazole treatment at Fujian Medical University Union Hospital. We re-established the published models based on their final estimated values in the literature and used our external dataset for initial screening. Each model was evaluated based on the following outcomes: prediction-based diagnostics, prediction- and variability-corrected visual predictive check (pvcVPC), normalized prediction distribution errors (NPDE), and Bayesian simulation results with one to two prior observations. RESULTS A total of 237 samples from 166 patients were collected as an external dataset. After screening, six candidate models suitable for the external dataset were finally obtained for comparison. Among the models, none demonstrated excellent predictive performance. Bayesian simulation shows that all models' prediction precision and accuracy were significantly improved when one or two prior concentrations were given. CONCLUSIONS The published pop PK models of voriconazole have significant differences in prediction performance, and none of the models could perfectly predict the concentrations of voriconazole for our data. Therefore, extensive evaluation should precede the adoption of any model in clinical practice.
Collapse
Affiliation(s)
- Weikun Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Rd., Fuzhou, 350001, Fujian, China.,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - You Zheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Rd., Fuzhou, 350001, Fujian, China.,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Huiping Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Rd., Fuzhou, 350001, Fujian, China.,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Yu Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Rd., Fuzhou, 350001, Fujian, China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Rd., Fuzhou, 350001, Fujian, China
| | - Nupur Chaphekar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xuemei Wu
- Department of Pharmacy, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Rd., Fuzhou, 350001, Fujian, China. .,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
12
|
Kably B, Launay M, Derobertmasure A, Lefeuvre S, Dannaoui E, Billaud EM. Antifungal Drugs TDM: Trends and Update. Ther Drug Monit 2022; 44:166-197. [PMID: 34923544 DOI: 10.1097/ftd.0000000000000952] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The increasing burden of invasive fungal infections results in growing challenges to antifungal (AF) therapeutic drug monitoring (TDM). This review aims to provide an overview of recent advances in AF TDM. METHODS We conducted a PubMed search for articles during 2016-2020 using "TDM" or "pharmacokinetics" or "drug-drug-interaction" with "antifungal," consolidated for each AF. Selection was limited to English language articles with human data on drug exposure. RESULTS More than 1000 articles matched the search terms. We selected 566 publications. The latest findings tend to confirm previous observations in real-life clinical settings. The pharmacokinetic variability related to special populations is not specific but must be considered. AF benefit-to-risk ratio, drug-drug interaction (DDI) profiles, and minimal inhibitory concentrations for pathogens must be known to manage at-risk situations and patients. Itraconazole has replaced ketoconazole in healthy volunteers DDI studies. Physiologically based pharmacokinetic modeling is widely used to assess metabolic azole DDI. AF prophylactic use was studied more for Aspergillus spp. and Mucorales in oncohematology and solid organ transplantation than for Candida (already studied). Emergence of central nervous system infection and severe infections in immunocompetent individuals both merit special attention. TDM is more challenging for azoles than amphotericin B and echinocandins. Fewer TDM requirements exist for fluconazole and isavuconazole (ISZ); however, ISZ is frequently used in clinical situations in which TDM is recommended. Voriconazole remains the most challenging of the AF, with toxicity limiting high-dose treatments. Moreover, alternative treatments (posaconazole tablets, ISZ) are now available. CONCLUSIONS TDM seems to be crucial for curative and/or long-term maintenance treatment in highly variable patients. TDM poses fewer cost issues than the drugs themselves or subsequent treatment issues. The integration of clinical pharmacology into multidisciplinary management is now increasingly seen as a part of patient care.
Collapse
Affiliation(s)
- Benjamin Kably
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| | - Manon Launay
- Laboratoire de Pharmacologie-Toxicologie-Gaz du sang, Hôpital Nord-CHU Saint Etienne, Saint-Etienne
| | - Audrey Derobertmasure
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
| | - Sandrine Lefeuvre
- Laboratoire de Toxicologie et Pharmacocinétique, CHU de Poitiers, Poitiers; and
| | - Eric Dannaoui
- Faculté de Médecine, Université de Paris, Paris, France
- Unité de Parasitologie-Mycologie, Laboratoire de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Eliane M Billaud
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
13
|
Takahashi T, Jaber MM, Smith AR, Jacobson PA, Fisher J, Kirstein MN. Predictive Value of C-Reactive Protein and Albumin for Temporal Within-Individual Pharmacokinetic Variability of Voriconazole in Pediatric Hematopoietic Cell Transplant Patients. J Clin Pharmacol 2021; 62:855-862. [PMID: 34970774 DOI: 10.1002/jcph.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022]
Abstract
Voriconazole is a widely used antifungal agent in immunocompromised patients, but its utility is limited by its variable exposure and narrow therapeutic index. Population pharmacokinetic (PK) models have been used to characterize voriconazole PK and derive individualized dosing regimens. However, determinants of temporal within-patient variability of voriconazole PK were not well-established. We aimed to characterize temporal variability of voriconazole PK within individuals and identify predictive clinical factors. This study was conducted as a part of a single-institution, phase I study of intravenous voriconazole in children undergoing HCT (NCT02227797). We analyzed voriconazole PK study data collected at week 1 and again at week 2 after the start of voriconazole therapy in 59 pediatric HCT patients (age <21 years). Population PK analysis using nonlinear mixed effect modeling was performed to analyze temporal within-individual variability of voriconazole PK by incorporating a between-occasion variability term in the model. A two-compartment linear elimination model incorporating body weight and CYP2C19 phenotype described the data. Ratio of individual voriconazole clearance between weeks 1 to 2 ranged from 0.11 to 3.3 (-9.1 to +3.3-fold change). Incorporation of covariate effects by serum C-reactive protein (CRP) and albumin levels decreased between-occasion variability of clearance (coefficient of variation: from 59.5% to 41.2%) and improved the model fit (p<0.05). As significant covariates on voriconazole PK, CRP and albumin concentrations may potentially serve as useful biomarkers as part of therapeutic drug monitoring. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Takuto Takahashi
- Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Mutaz M Jaber
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Angela R Smith
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - James Fisher
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Mark N Kirstein
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Chau MM, Daveson K, Alffenaar JWC, Gwee A, Ho SA, Marriott DJE, Trubiano JA, Zhao J, Roberts JA. Consensus guidelines for optimising antifungal drug delivery and monitoring to avoid toxicity and improve outcomes in patients with haematological malignancy and haemopoietic stem cell transplant recipients, 2021. Intern Med J 2021; 51 Suppl 7:37-66. [PMID: 34937141 DOI: 10.1111/imj.15587] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Antifungal agents can have complex dosing and the potential for drug interaction, both of which can lead to subtherapeutic antifungal drug concentrations and poorer clinical outcomes for patients with haematological malignancy and haemopoietic stem cell transplant recipients. Antifungal agents can also be associated with significant toxicities when drug concentrations are too high. Suboptimal dosing can be minimised by clinical assessment, laboratory monitoring, avoidance of interacting drugs, and dose modification. Therapeutic drug monitoring (TDM) plays an increasingly important role in antifungal therapy, particularly for antifungal agents that have an established exposure-response relationship with either a narrow therapeutic window, large dose-exposure variability, cytochrome P450 gene polymorphism affecting drug metabolism, the presence of antifungal drug interactions or unexpected toxicity, and/or concerns for non-compliance or inadequate absorption of oral antifungals. These guidelines provide recommendations on antifungal drug monitoring and TDM-guided dosing adjustment for selected antifungal agents, and include suggested resources for identifying and analysing antifungal drug interactions. Recommended competencies for optimal interpretation of antifungal TDM and dose recommendations are also provided.
Collapse
Affiliation(s)
- Maggie M Chau
- Pharmacy Department, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Kathryn Daveson
- Department of Infectious Diseases and Microbiology, The Canberra Hospital, Garran, Australian Capital Territory, Australia
| | - Jan-Willem C Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Camperdown, New South Wales, Australia.,Pharmacy Department, Westmead Hospital, Westmead, New South Wales, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Camperdown, New South Wales, Australia
| | - Amanda Gwee
- Infectious Diseases Unit, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Su Ann Ho
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Deborah J E Marriott
- Department of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,Faculty of Science, University of Technology, Ultimo, New South Wales, Australia.,Faculty of Medicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessie Zhao
- Department of Haematology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Jason A Roberts
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Department of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | | |
Collapse
|
15
|
Model-Oriented Dose Optimization of Voriconazole in Critically Ill Children. Antimicrob Agents Chemother 2021; 65:e0049321. [PMID: 34152812 DOI: 10.1128/aac.00493-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed to employ a population pharmacokinetic (PK) model to optimize the dosing regimen of voriconazole (VRC) in children with a critical illness. A total of 99 children aged from 0.44 to 13.58 years were included in this study. The stability and predictive performance of the final model were evaluated by statistical and graphical methods. The optimal dosing regimen was proposed for children with different body weights, CYP2C19 phenotypes, and coadministrations with omeprazole. The PK of VRC was described by a two-compartment model with nonlinear Michaelis-Menten elimination. Body weight, CYP2C19 phenotype, and omeprazole were significant covariates on the maximum velocity of elimination (Vmax), which had an estimated typical value of 18.13 mg · h-1. Bayesian estimation suggested that the dose-normalized concentration and total exposure (peak concentration [Cmax]/D, trough concentration [Cmin]/D, and area under the concentration-time curve over 24 h [AUC24]/D) were significantly different between extensive metabolizer (EM) patients and poor metabolizer (PM) patients. To achieve the target concentration early, two loading doses of 9 mg · kg-1 of body weight every 12 h (q12h) were reliable for most children, whereas three loading doses of 6 to 7.5 mg · kg-1 q8h were warranted for young children weighing ≤18 kg (except for PM patients). The maintenance doses decreased about 30 to 40% in PM patients compared to that in EM patients. For children aged <2 years, in EM patients, the maintenance dose could be as high as 9 mg · kg-1. The maintenance dose of VRC was supposed to decrease slightly when coadministered with omeprazole. A population PK model of intravenous VRC for critically ill children has been successfully developed. It is necessary to adjust dosing regimens according to the CYP2C19 genotype. Optimal dosing regimens have been recommended based on the final model.
Collapse
|
16
|
CYP2C19 Phenotype and Body Weight-Guided Voriconazole Initial Dose in Infants and Children after Hematopoietic Cell Transplantation. Antimicrob Agents Chemother 2021; 65:e0062321. [PMID: 34097481 DOI: 10.1128/aac.00623-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prophylactic voriconazole use is recommended for children undergoing hematopoietic cell transplantation (HCT). Dosing considerations are essential, due to the narrow therapeutic window of voriconazole. Known covariates do not sufficiently explain the large interindividual pharmacokinetic (PK) variability of voriconazole. Moreover, knowledge of voriconazole PK for age <2 years is limited. We investigated genetic and clinical covariate associations with voriconazole interindividual PK variability and subsequently simulated dosing regimens in children. This study was conducted as part of a single-institution, phase I study of intravenous voriconazole therapy for children undergoing HCT. We conducted a population PK analysis and tested covariate effects on voriconazole PK, including 67 genetic variants and clinical variables. We analyzed plasma voriconazole and N-oxide metabolite concentrations from 58 children <21 years of age (including 12 children <2 years of age). A two-compartment parent mixed linear/nonlinear model best described our data. The CYP2C19 phenotype and body weight were significant covariates (P < 0.05 for both). Our model performance for age <2 years was comparable to that for other age groups. Simulation of the final model suggested the following doses to attain target steady-state trough concentrations of 1.5 to 5.0 mg/liter for the CYP2C19 normal phenotype: 16 mg/kg (weight of <15 kg), 12 mg/kg (weight of 15 to 30 kg), or 10 mg/kg (weight of >30 kg); doses were 33 to 50% lower for CYP2C19 poor/intermediate phenotypes and 25 to 50% higher for CYP2C19 rapid/ultrarapid phenotypes. We propose a new starting-dose regimen, combined with therapeutic drug monitoring, for intravenous voriconazole therapy in children of all ages. Future studies should validate this dosing regimen.
Collapse
|
17
|
Voriconazole Use in Children: Therapeutic Drug Monitoring and Control of Inflammation as Key Points for Optimal Treatment. J Fungi (Basel) 2021; 7:jof7060456. [PMID: 34200506 PMCID: PMC8227726 DOI: 10.3390/jof7060456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Voriconazole plasma concentrations (PC) are highly variable, particularly in children. Dose recommendations in 2-12-year-old patients changed in 2012. Little data on therapeutic drug monitoring (TDM) after these new recommendations are available. We aimed to evaluate voriconazole monitoring in children with invasive fungal infection (IFI) after implementation of new dosages and its relationship with safety and effectiveness. A prospective, observational study, including children aged 2-12 years, was conducted. TDM was performed weekly and doses were changed according to an in-house protocol. Effectiveness, adverse events, and factors influencing PC were analysed. A total of 229 PC from 28 IFI episodes were obtained. New dosing led to a higher rate of adequate PC compared to previous studies; still, 35.8% were outside the therapeutic range. In patients aged < 8 years, doses to achieve therapeutic levels were higher than recommended. Severe hypoalbuminemia and markedly elevated C-reactive protein were related to inadequate PC. Therapeutic PC were associated with drug effectiveness and safety. Higher doses in younger patients and a dose adjustment protocol based on TDM should be considered. Voriconazole PC variability has decreased with current updated recommendations, but it remains high and is influenced by inflammatory status. Additional efforts to control inflammation in children with IFI should be encouraged.
Collapse
|
18
|
Bury D, Tissing WJE, Muilwijk EW, Wolfs TFW, Brüggemann RJ. Clinical Pharmacokinetics of Triazoles in Pediatric Patients. Clin Pharmacokinet 2021; 60:1103-1147. [PMID: 34002355 PMCID: PMC8416858 DOI: 10.1007/s40262-021-00994-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
Triazoles represent an important class of antifungal drugs in the prophylaxis and treatment of invasive fungal disease in pediatric patients. Understanding the pharmacokinetics of triazoles in children is crucial to providing optimal care for this vulnerable population. While the pharmacokinetics is extensively studied in adult populations, knowledge on pharmacokinetics of triazoles in children is limited. New data are still emerging despite drugs already going off patent. This review aims to provide readers with the most current knowledge on the pharmacokinetics of the triazoles: fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole. In addition, factors that have to be taken into account to select the optimal dose are summarized and knowledge gaps are identified that require further research. We hope it will provide clinicians guidance to optimally deploy these drugs in the setting of a life-threatening disease in pediatric patients.
Collapse
Affiliation(s)
- Didi Bury
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim J E Tissing
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eline W Muilwijk
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacy, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Tom F W Wolfs
- Department of Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Infectious Diseases, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Roger J Brüggemann
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Leroux S, Mechinaud-Heloury F, Jacqz-Aigrain E. Contribution of Population Pharmacokinetics of Glycopeptides and Antifungals to Dosage Adaptation in Paediatric Onco-hematological Malignancies: A Review. Front Pharmacol 2021; 12:635345. [PMID: 33867986 PMCID: PMC8048069 DOI: 10.3389/fphar.2021.635345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 11/29/2022] Open
Abstract
The response to medications in children differs not only in comparison to adults but also between children of the different age groups and according to the disease. This is true for anti-infectives that are widely prescribed in children with malignancy. In the absence of pharmacokinetic/pharmacodynamic paediatric studies, dosage is frequently based on protocols adapted to adults. After a short presentation of the drugs, we reviewed the population pharmacokinetic studies available for glycopeptides (vancomycin and teicoplanin, n = 5) and antifungals (voriconazole, posaconazole, and amphotericin B, n = 9) currently administered in children with onco-hematological malignancies. For each of them, we reported the main study characteristics including identified covariates affecting pharmacokinetics and proposed paediatric dosage recommendations. This review highlighted the very limited amount of data available, the lack of consensus regarding PK/PD targets used for dosing optimization and regarding dosage recommendations when available. Additional PK studies are urgently needed in this specific patient population. In addition to pharmacokinetics, efficacy may be altered in immunocompromised patients and prospective clinical evaluation of new dosage regimen should be provided as they are missing in most cases.
Collapse
Affiliation(s)
- Stéphanie Leroux
- Department of Paediatrics, CHU Rennes, University of Rennes 1, Rennes, France.,Department of Paediatric Pharmacology and Pharmacogenetics, University Hospital Robert Debré (APHP), Rennes, France
| | | | - Evelyne Jacqz-Aigrain
- Department of Paediatric Pharmacology and Pharmacogenetics, University Hospital Robert Debré (APHP), Rennes, France.,Paris University, Paris, France
| |
Collapse
|
20
|
Zhang Y, Zhao S, Wang C, Zhou P, Zhai S. Application of a Physiologically Based Pharmacokinetic Model to Characterize Time-dependent Metabolism of Voriconazole in Children and Support Dose Optimization. Front Pharmacol 2021; 12:636097. [PMID: 33815119 PMCID: PMC8010309 DOI: 10.3389/fphar.2021.636097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Voriconazole is a potent antifungal drug with complex pharmacokinetics caused by time-dependent inhibition and polymorphisms of metabolizing enzymes. It also exhibits different pharmacokinetic characteristics between adults and children. An understanding of these alterations in pharmacokinetics is essential for pediatric dose optimization. Objective: To determine voriconazole plasma exposure in the pediatric population and further investigate optimal dosage regimens. Methods: An adult and pediatric physiologically based pharmacokinetic (PBPK) model of voriconazole, integrating auto-inhibition of cytochrome P450 3A4 (CYP3A4) and CYP2C19 gene polymorphisms, was developed. The model was evaluated with visual predictive checks and quantitative measures of the predicted/observed ratio of the area under the plasma concentration-time curve (AUC) and maximum concentration (Cmax). The validated pediatric PBPK model was used in simulations to optimize pediatric dosage regimens. The probability of reaching a ratio of free drug (unbound drug concentration) AUC during a 24-h period to minimum inhibitory concentration greater than or equal to 25 (fAUC24h/MIC ≥ 25) was assessed as the pharmacokinetic/pharmacodynamic index. Results: The developed PBPK model well represented voriconazole's pharmacokinetic characteristics in adults; 78% of predicted/observed AUC ratios and 85% of Cmax ratios were within the 1.25-fold range. The model maintained satisfactory prediction performance for intravenous administration in pediatric populations after incorporating developmental changes in anatomy/physiology and metabolic enzymes, with all predicted AUC values within 2-fold and 73% of the predicted Cmax within 1.25-fold of the observed values. The simulation results of the PBPK model suggested that different dosage regimens should be administered to children according to their age, CYP2C19 genotype, and infectious fungal genera. Conclusion: The PBPK model integrating CYP3A4 auto-inhibition and CYP2C19 gene polymorphisms successfully predicted voriconazole pharmacokinetics during intravenous administration in children and could further be used to optimize dose strategies. The infectious fungal genera should be considered in clinical settings, and further research with large sample sizes is required to confirm the current findings.
Collapse
Affiliation(s)
- Yahui Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Sixuan Zhao
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Chuhui Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengxiang Zhou
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Suodi Zhai
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
21
|
Zubiaur P, Kneller LA, Ochoa D, Mejía G, Saiz-Rodríguez M, Borobia AM, Koller D, García IG, Navares-Gómez M, Hempel G, Abad-Santos F. Evaluation of Voriconazole CYP2C19 Phenotype-Guided Dose Adjustments by Physiologically Based Pharmacokinetic Modeling. Clin Pharmacokinet 2020; 60:261-270. [PMID: 32939689 DOI: 10.1007/s40262-020-00941-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Controversy exists regarding dose adjustment in patients treated with voriconazole due to the severity of the infections for which it is prescribed. The Dutch Pharmacogenetics Working Group (DPWG) recommends a 50% dose increase or decrease for cytochrome P450 (CYP) 2C19 ultrarapid (UM) or poor (PM) metabolizers, respectively. In contrast, for the previous phenotypes, the Clinical Pharmacogenetics Implementation Consortium (CPIC) voriconazole guideline only recommends a change of treatment. Based on observed data from single-dose bioequivalence studies and steady-state observed concentrations, we aimed to investigate voriconazole dose adjustments by means of physiologically based pharmacokinetic (PBPK) modeling. METHODS PBPK modeling was used to optimize voriconazole single-dose models for each CYP2C19 phenotype, which were extrapolated to steady state and evaluated for concordance with the therapeutic range of voriconazole. Based on optimized models, dose adjustments were evaluated for better adjustment to the therapeutic range. RESULTS Our models suggest that the standard dose may only be appropriate for normal metabolizers (NM), although they would benefit from a 50-100% loading dose increase. Intermediate metabolizers (IMs) and PMs required a daily dose reduction of 50 and 75%, respectively. Rapid metabolizers (RMs) and UMs required a daily dose increase of 100% and 300%, respectively. CONCLUSION The prescription of voriconazole in clinical practice should be personalized according to the CYP2C19 phenotype, followed by therapeutic drug monitoring of plasma concentrations to guide dose adjustment.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain
- UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Lisa A Kneller
- Institute of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Münster, Münster, Germany
| | - Dolores Ochoa
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain
- UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Gina Mejía
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain
- UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain
- Research Unit, Fundación Burgos Por La Investigación de La Salud, Hospital Universitario de Burgos, Burgos, Spain
| | - Alberto M Borobia
- School of Medicine, Clinical Pharmacology Department, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Dora Koller
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain
| | - Irene García García
- School of Medicine, Clinical Pharmacology Department, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain
| | - Georg Hempel
- Institute of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Münster, Münster, Germany
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain.
- UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.
- School of Medicine, Clinical Pharmacology Department, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
22
|
Gómez-López A. Antifungal therapeutic drug monitoring: focus on drugs without a clear recommendation. Clin Microbiol Infect 2020; 26:1481-1487. [PMID: 32535150 DOI: 10.1016/j.cmi.2020.05.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The goal of therapeutic drug monitoring (TDM) is to determine the appropriate exposure of difficult-to-manage medications to optimize the clinical outcomes in patients in various clinical situations. Concerning antifungal treatment, and knowing that this procedure is expensive and time-consuming, TDM is particularly recommended for certain systemic antifungals: i.e., agents with a well-defined exposure-response relationship and unpredictable pharmacokinetic profile or narrow therapeutic index. Little evidence supports the routine use of TDM for polyenes (amphotericin B), echinocandins, fluconazole or new azoles such as isavuconazole, despite the fact that a better understanding of antifungal exposure may lead to a better response. AIMS The aim of this work is to review published pharmacokinetic/pharmacodynamic data on systemically administered antifungals, focusing on those for which monitoring is not routinely recommended by experts. SOURCES A MEDLINE search of the literature in English was performed introducing the following search terms: amphotericin B, fluconazole, itraconazole, voriconazole, posaconazole, triazoles, caspofungin, micafungin, anidulafungin, echinocandins, pharmacokinetics, pharmacodynamics, and therapeutic drug monitoring. Review articles and guidelines were also screened. CONTENT This review collects different pharmacokinetic/pharmacodynamic aspects of systemic antifungals and summarizes recent threshold values for clinical outcomes and adverse events. Although for polyenes, echinocandins, fluconazole and isavuconazole extensive clinical validation is still required for a clear threshold and a routine monitoring recommendation, particular points such as liposome structure or complex pathophysiological conditions affecting final exposure are discussed. For the rest, their better-defined exposure-response/toxicity relationships allow access to useful threshold values and to justify routine monitoring. Additionally, clinical data are needed to better define thresholds that can minimize the development of antifungal resistance. IMPLICATIONS General TDM for all systemic antifungals is not recommended; however, this approach may help to establish an adequate antifungal exposure for a favourable response, prevention of toxicity or development of resistance in special clinical circumstances.
Collapse
Affiliation(s)
- A Gómez-López
- Mycology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III (CNM-ISCIII), Majadahonda, 28220, Madrid, Spain.
| |
Collapse
|
23
|
Sassen SDT, Zwaan CM, van der Sluis IM, Mathôt RAA. Pharmacokinetics and population pharmacokinetics in pediatric oncology. Pediatr Blood Cancer 2020; 67:e28132. [PMID: 31876123 DOI: 10.1002/pbc.28132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/28/2022]
Abstract
Pharmacokinetic research has become increasingly important in pediatric oncology as it can have direct clinical implications and is a crucial component in individualized medicine. Population pharmacokinetics has become a popular method especially in children, due to the potential for sparse sampling, flexible sampling times, computing of heterogeneous data, and identification of variability sources. However, population pharmacokinetic reports can be complex and difficult to interpret. The aim of this article is to provide a basic explanation of population pharmacokinetics, using clinical examples from the field of pediatric oncology, to facilitate the translation of pharmacokinetic research into the daily clinic.
Collapse
Affiliation(s)
- Sebastiaan D T Sassen
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Ron A A Mathôt
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Abstract
Neonates and immunosuppressed/immunocompromised pediatric patients are at high risk of invasive fungal diseases. Appropriate antifungal selection and optimized dosing are imperative to the successful prevention and treatment of these life-threatening infections. Conventional amphotericin B was the mainstay of antifungal therapy for many decades, but dose-limiting nephrotoxicity and infusion-related adverse events impeded its use. Despite the development of several new antifungal classes and agents in the past 20 years, and their now routine use in at-risk pediatric populations, data to guide the optimal dosing of antifungals in children are limited. This paper reviews the spectra of activity for approved antifungal agents and summarizes the current literature specific to pediatric patients regarding pharmacokinetic/pharmacodynamic data, dosing, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Kevin J Downes
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 2716 South Street, Suite 10360, Philadelphia, PA, 19146, USA.
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Brian T Fisher
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 2716 South Street, Suite 10360, Philadelphia, PA, 19146, USA
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole R Zane
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
25
|
Abstract
Abstract
Purpose
The changes in physiological functions as children grow and organ systems mature result in pharmacokinetic alterations throughout childhood. These alterations in children result in absorption, distribution, metabolism, and excretion of drugs that are different from those seen in the typical adult diseased population.
Summary
Changes in gastrointestinal motility and gastric pH in neonates and infants affect the absorption rate and bioavailability of drugs. Skin absorption rate and extent can be altered by different skin structures and perfusion in young children. Intramuscular and rectal absorption become less predictable in children due to erratic absorption site perfusion and other factors. Children’s body compositions also differ greatly from that in adults. Water-soluble drugs distribute more extensively in newborns due to larger water content than in older children and adults. Drug elimination and excretion are also affected in pediatric population due to differences in liver and renal function. Immature enzyme development and renal function result in reduced clearance of drugs in young children. There are limited pharmacokinetic data available for many drugs used in children.
Conclusion
Considering the changes in pharmacokinetics in children can help pharmacists optimize the dosing and monitoring of drugs and do the best they can to help this vulnerable population.
Collapse
|
26
|
Carlesse FADMC, de Araujo OR, Marques LMA, Silva DCBD, Senerchia AA, Petrilli AS. A pharmacokinetic model for voriconazole in a highly diversified population of children and adolescents with cancer. Mycoses 2019; 62:399-404. [PMID: 30687957 DOI: 10.1111/myc.12899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/22/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND The wide pharmacokinetic variability of voriconazole leads to uncertainty regarding adequate exposure. OBJECTIVES To create a pharmacokinetic model that could help to explain the variability. METHODS Retrospective review of paediatric patients with cancer. Models were built using Pmetrics. RESULTS We analysed 158 trough measurements in 55 patients; in 41.8%, the serum levels were between 1 and 6 mg/L on initial measurement. After the measurements, dosage adjustments were made in 42 (76.3%) patients, and the percentage of adequate levels rose to 54.5%. Fourteen deaths (25.4%) were attributed to invasive fungal diseases. The mean serum levels were higher in deceased patients (mean ± SD: 3.1 ± 3.2 mg/L vs 2.5 ± 3.6 mg/L in survivors; P = 0.018), but the median doses per kg were higher in survivors. Drug exposure was also higher in deceased patients (mean ± SD of AUC: 19.2 ± 8.1 vs 9.5 ± 19.1 in survivors; P = 0.005). No correlation was found between serum concentrations <1 mg/L and death attributable to fungal disease. Bioavailability was estimated in 50%. The maximum velocity of clearance was reduced in deceased patients. CONCLUSIONS Extremely ill patients can be poor metabolizers of voriconazole. Therapeutic monitoring promotes only a limited improvement in drug management.
Collapse
Affiliation(s)
- Fabianne Altruda de Moraes Costa Carlesse
- Infection Control Committee GRAACC/IOP/UNIFESP, and Pediatric Department, UNIFESP, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Instituto de Oncologia Pediátrica (IOP), Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Orlei Ribeiro de Araujo
- Intensive Care Unit, GRAACC/IOP/UNIFESP, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Instituto de Oncologia Pediátrica (IOP), Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Leticia Maria Acioli Marques
- Infection Control Committee GRAACC/IOP/UNIFESP, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Instituto de Oncologia Pediátrica (IOP), Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Dafne Cardoso Bourguignon da Silva
- Intensive Care Unit, GRAACC/IOP/UNIFESP, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Instituto de Oncologia Pediátrica (IOP), Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Andreza Almeida Senerchia
- Clinical Research Department, GRAACC/IOP/UNIFESP, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Instituto de Oncologia Pediátrica (IOP), Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Antonio Sergio Petrilli
- Pediatric Oncology Department, GRAACC/IOP/UNIFESP, and Pediatric Department, UNIFESP, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Instituto de Oncologia Pediátrica (IOP), Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| |
Collapse
|
27
|
Invasive Aspergillosis in Pediatric Leukemia Patients: Prevention and Treatment. J Fungi (Basel) 2019; 5:jof5010014. [PMID: 30754630 PMCID: PMC6463058 DOI: 10.3390/jof5010014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/16/2022] Open
Abstract
The purpose of this article is to review and update the strategies for prevention and treatment of invasive aspergillosis (IA) in pediatric patients with leukemia and in patients with hematopoietic stem cell transplantation. The major risk factors associated with IA will be described since their recognition constitutes the first step of prevention. The latter is further analyzed into chemoprophylaxis and non-pharmacologic approaches. Triazoles are the mainstay of anti-fungal prophylaxis while the other measures revolve around reducing exposure to mold spores. Three levels of treatment have been identified: (a) empiric, (b) pre-emptive, and (c) targeted treatment. Empiric is initiated in febrile neutropenic patients and uses mainly caspofungin and liposomal amphotericin B (LAMB). Pre-emptive is a diagnostic driven approach attempting to reduce unnecessary use of anti-fungals. Treatment targeted at proven or probable IA is age-dependent, with voriconazole and LAMB being the cornerstones in >2yrs and <2yrs age groups, respectively.
Collapse
|
28
|
|
29
|
Iosifidis E, Papachristou S, Roilides E. Advances in the Treatment of Mycoses in Pediatric Patients. J Fungi (Basel) 2018; 4:E115. [PMID: 30314389 PMCID: PMC6308938 DOI: 10.3390/jof4040115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 12/16/2022] Open
Abstract
The main indications for antifungal drug administration in pediatrics are reviewed as well as an update of the data of antifungal agents and antifungal policies performed. Specifically, antifungal therapy in three main areas is updated as follows: a) Prophylaxis of premature neonates against invasive candidiasis; b) management of candidemia and meningoencephalitis in neonates; and c) prophylaxis, empiric therapy, and targeted antifungal therapy in children with primary or secondary immunodeficiencies. Fluconazole remains the most frequent antifungal prophylactic agent given to high-risk neonates and children. However, the emergence of fluconazole resistance, particularly in non-albicans Candida species, should be considered during preventive or empiric therapy. In very-low birth-weight neonates, although fluconazole is used as antifungal prophylaxis in neonatal intensive care units (NICU's) with relatively high incidence of invasive candidiasis (IC), its role is under continuous debate. Amphotericin B, primarily in its liposomal formulation, remains the mainstay of therapy for treating neonatal and pediatric yeast and mold infections. Voriconazole is indicated for mold infections except for mucormycosis in children >2 years. Newer triazoles-such as posaconazole and isavuconazole-as well as echinocandins, are either licensed or under study for first-line or salvage therapy, whereas combination therapy is kept for refractory cases.
Collapse
Affiliation(s)
- Elias Iosifidis
- Infectious Diseases Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Konstantinoupoleos 49, 54642, Thessaloniki, Greece.
| | - Savvas Papachristou
- Infectious Diseases Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Konstantinoupoleos 49, 54642, Thessaloniki, Greece.
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Konstantinoupoleos 49, 54642, Thessaloniki, Greece.
| |
Collapse
|