1
|
Agnivesh PK, Roy A, Sau S, Kumar S, Kalia NP. Advancements and challenges in tuberculosis drug discovery: A comprehensive overview. Microb Pathog 2025; 198:107074. [PMID: 39521155 DOI: 10.1016/j.micpath.2024.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tuberculosis continues to pose a health challenge causing the loss of millions of lives despite the existence of multiple drugs, for treatment. The emergence of drug-resistant strains has made the situation more complex making it increasingly difficult to fight against this disease. This review outlines the challenges associated with TB drug discovery, the nature of Mycobacterium tuberculosis shedding light on the mechanisms that lead to treatment failure and antibiotic resistance. We explore promising drug targets, encompassing inhibition of mycolyarabinogalactan peptidoglycan (MAGP) assembly, mycolic acid biosynthesis, DNA replication, transcription, translation, protein synthesis, and bioenergetics/metabolism pathways. A comprehensive overview of the global pipeline of anti-tuberculosis drugs at various stages of clinical trials, the diverse strategies being pursued to tackle this complex disease. By gaining an understanding of the mechanisms that contribute to resistance development and identifying suitable targets, we can pave the way for more effective treatments and contribute to global efforts to combat drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Puja Kumari Agnivesh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Arnab Roy
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Sunil Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
2
|
Zidar N, Onali A, Peršolja P, Benedetto Tiz D, Dernovšek J, Skok Ž, Durcik M, Cotman AE, Hrast Rambaher M, Cruz CD, Tammela P, Senerovic L, Jovanovic M, Szili PÉ, Czikkely MS, Pál C, Zega A, Peterlin Mašič L, Ilaš J, Tomašič T, Kikelj D. Improved N-phenylpyrrolamide inhibitors of DNA gyrase as antibacterial agents for high-priority bacterial strains. Eur J Med Chem 2024; 278:116823. [PMID: 39236496 DOI: 10.1016/j.ejmech.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
In this work, we describe an improved series of N-phenylpyrrolamide inhibitors that exhibit potent activity against DNA gyrase and are highly effective against high-priority gram-positive bacteria. The most potent compounds show low nanomolar IC50 values against Escherichia coli DNA gyrase, and in addition, compound 7c also inhibits E. coli topoisomerase IV in the nanomolar concentration range, making it a promising candidate for the development of potent dual inhibitors for these enzymes. All tested compounds show high selectivity towards the human isoform DNA topoisomerase IIα. Compounds 6a, 6d, 6e and 6f show MIC values between 0.031 and 0.0625 μg/mL against vancomycin-intermediate S. aureus (VISA) and Enterococcus faecalis strains. Compound 6g shows an inhibitory effect against the methicillin-resistant S. aureus strain (MRSA) with a MIC of 0.0625 μg/mL and against the E. faecalis strain with a MIC of 0.125 μg/mL. In a time-kill assay, compound 6d showed a dose-dependent bactericidal effect on the MRSA strain and achieved bactericidal activity at 8 × MIC after 8 h. The duration of the post-antibiotic effect (PAE) on the MRSA strain for compound 6d was 2 h, which corresponds to the PAE duration for ciprofloxacin. The compounds were not cytotoxic at effective concentrations, as determined in an MTS assay on the MCF-7 breast cancer cell line.
Collapse
Affiliation(s)
- Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| | - Alessia Onali
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Peter Peršolja
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Davide Benedetto Tiz
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Žiga Skok
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Andrej Emanuel Cotman
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Martina Hrast Rambaher
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Cristina D Cruz
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Viikinkaari 5E, Helsinki, 00014, Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Viikinkaari 5E, Helsinki, 00014, Finland
| | - Lidija Senerovic
- Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11 042, Belgrade, Serbia
| | - Milija Jovanovic
- Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11 042, Belgrade, Serbia
| | - Petra Éva Szili
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Márton Simon Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary; Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, HU-6722, Hungary; Department of Forensic Medicine, Albert-Szent-Györgyi Medical School, University of Szeged, Szeged, HU-6722, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| |
Collapse
|
3
|
Rodvold KA, Gotfried MH, Ussery XT, Wong SL, Hamed KA. Intrapulmonary pharmacokinetics of SPR719 following oral administration of SPR720 to healthy volunteers. Antimicrob Agents Chemother 2024; 68:e0110324. [PMID: 39352135 PMCID: PMC11539209 DOI: 10.1128/aac.01103-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 11/07/2024] Open
Abstract
SPR720 is a phosphate ester prodrug that is converted rapidly in vivo to SPR719, the active moiety, which exhibits potent in vitro activity against clinically relevant mycobacterial species including Mycobacterium avium complex (MAC) and Mycobacterium abscessus. SPR720 is in clinical development for the treatment of nontuberculous mycobacterial pulmonary disease (NTM-PD) due to MAC. This study evaluated the safety and the intrapulmonary pharmacokinetics of SPR719 in healthy volunteers. A total of 30 subjects received oral SPR720 1,000 mg once daily for 7 days followed by bronchoscopy and bronchoalveolar lavage, with blood samples collected for plasma pharmacokinetic assessments. Mean SPR719 area under the concentration-time curve from time 0 to 24 hours (AUC0-24) and maximum concentration (Cmax) for plasma, epithelial lining fluid (ELF), and alveolar macrophages (AM) were 52,418 ng·h/mL and 4,315 ng/mL, 59,880 ng·h/mL and 5,429 ng/mL, and 128,105 ng·h/mL and 13,033 ng/mL, respectively. The ratios of ELF to total plasma concentrations of SPR719 based on AUC0-24 and Cmax were 1.14 and 1.26, and the ratios of AM to total plasma concentrations of SPR719 based on AUC0-24 and Cmax were 2.44 and 3.02, respectively. When corrected for protein binding, the ratios of ELF to unbound plasma concentrations of SPR719 for AUC0-24 and Cmax were 19.87 and 21.88, and the ratios of AM to unbound plasma concentrations of SPR719 for AUC0-24 and Cmax were 42.50 and 52.53, respectively. No unexpected safety findings were observed. Results from this study of the intrapulmonary disposition of SPR719 support further investigation of SPR720 as a potential oral agent for the treatment of patients with NTM-PD.This study is registered with Clinicaltrials.gov as NCT05955586.
Collapse
|
4
|
Wei X, Yue L, Zhao B, Jiang N, Lei H, Zhai X. Recent advances and challenges of revolutionizing drug-resistant tuberculosis treatment. Eur J Med Chem 2024; 277:116785. [PMID: 39191032 DOI: 10.1016/j.ejmech.2024.116785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Tuberculosis (TB), an infectious disease induced by Mycobacterium tuberculosis, is one of the primary public health threats all over the world. Since the prevalence of first-line anti-TB agents, the morbidity and mortality issues of TB descended obviously. Nevertheless, the emergences of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains, the double prevalence of HIV-TB co-infection, and the insufficiency of plentiful health care have led to an increased incidence of TB. It is noted that current drugs for treating TB have proved unsustainable in the face of highly resistant strains. Fortunately, five categories of new drugs and candidates with new mechanisms of action have emerged in the field of anti-TB research after decades of stagnation in the progression of anti-TB drugs. In this paper, the research status of these promising anti-TB drugs and candidates are reviewed, emphasizing the challenges to be addressed for efficient development of future TB therapies.
Collapse
Affiliation(s)
- Xiujian Wei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lingfeng Yue
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Bing Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Nan Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
5
|
Conyers LE, Saunders BM. Treatment for non-tuberculous mycobacteria: challenges and prospects. Front Microbiol 2024; 15:1394220. [PMID: 38887711 PMCID: PMC11180805 DOI: 10.3389/fmicb.2024.1394220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Non-Tuberculous mycobacteria (NTM) are opportunistic environmental bacteria. Globally, NTM incidence is increasing and modeling suggests that, without new interventions, numbers will continue to rise. Effective treatments for NTM infections remain suboptimal. Standard therapy for Mycobacterium avium complex, the most commonly isolated NTM, requires a 3-drug regime taken for approximately 18 months, with rates of culture conversion reported between 45 and 70%, and high rates of relapse or reinfection at up to 60%. New therapeutic options for NTM treatment are urgently required. A survey of ongoing clinical trials for new NTM therapy listed on ClinicalTrials.Gov using the terms 'Mycobacterium avium', 'Mycobacterium abscessus', 'Mycobacterium intracellulare', 'Non tuberculous Mycobacteria' and 'Nontuberculous Mycobacteria' and a selection criterion of interventional studies using antibiotics demonstrates that most trials involve dose and combination therapy of the guideline based therapy or including one or more of; Amikacin, Clofazimine, Azithromycin and the anti-TB drugs Bedaquiline and Linezolid. The propensity of NTMs to form biofilms, their unique cell wall and expression of both acquired and intrinsic resistance, are all hampering the development of new anti-NTM therapy. Increased investment in developing targeted treatments, specifically for NTM infections is urgently required.
Collapse
|
6
|
Maria C, de Matos AM, Rauter AP. Antibacterial Prodrugs to Overcome Bacterial Antimicrobial Resistance. Pharmaceuticals (Basel) 2024; 17:718. [PMID: 38931385 PMCID: PMC11206681 DOI: 10.3390/ph17060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial resistance (AMR) is an increasingly concerning phenomenon that requires urgent attention because it poses a threat to human and animal health. Bacteria undergo continuous evolution, acquiring novel resistance mechanisms in addition to their intrinsic ones. Multidrug-resistant and extensively drug-resistant bacterial strains are rapidly emerging, and it is expected that bacterial AMR will claim the lives of 10 million people annually by 2050. Consequently, the urgent need for the development of new therapeutic agents with new modes of action is evident. The antibacterial prodrug approach, a strategy that includes drug repurposing and derivatization, integration of nanotechnology, and exploration of natural products, is highlighted in this review. Thus, this publication aims at compiling the most pertinent research in the field, spanning from 2021 to 2023, offering the reader a comprehensive insight into the AMR phenomenon and new strategies to overcome it.
Collapse
Affiliation(s)
| | | | - Amélia P. Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (C.M.); (A.M.d.M.)
| |
Collapse
|
7
|
Dobričić V, Marodi M, Marković B, Tomašič T, Durcik M, Zidar N, Mašič LP, Ilaš J, Kikelj D, Čudina O. Estimation of passive gastrointestinal absorption of new dual DNA gyrase and topoisomerase IV inhibitors using PAMPA and biopartitioning micellar chromatography and quantitative structure-retention relationship analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1240:124158. [PMID: 38776787 DOI: 10.1016/j.jchromb.2024.124158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
DNA gyrase and topoisomerase IV play significant role in maintaining the correct structure of DNA during replication and they have been identified as validated targets in antibacterial drug discovery. Inadequate pharmacokinetic properties are responsible for many failures during drug discovery and their estimation in the early phase of this process maximizes the chance of getting useful drug candidates. Passive gastrointestinal absorption of a selected group of thirteen dual DNA gyrase and topoisomerase IV inhibitors was estimated using two in vitro tests - parallel artificial membrane permeability assay (PAMPA) and biopartitioning micellar chromatography (BMC). Due to good correlation between obtained results, passive gastrointestinal absorption of remaining ten compounds was estimated using only BMC. With this experimental setup, it was possible to identify compounds with high values of retention factors (k) and highest expected passive gastrointestinal absorption, and compounds with low values of k for which low passive gastrointestinal absorption is predicted. Quantitative structure-retention relationship (QSRR) modelling was performed by creating multiple linear regression (MLR), partial least squares (PLS) and support vector machines (SVM) models. Descriptors with the highest influence on retention factor were identified and their interpretation can be used for the design of new compounds with improved passive gastrointestinal absorption.
Collapse
Affiliation(s)
- Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Marko Marodi
- Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Bojan Marković
- Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Olivera Čudina
- Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Cotroneo N, Stokes SS, Pucci MJ, Rubio A, Hamed KA, Critchley IA. Efficacy of SPR720 in murine models of non-tuberculous mycobacterial pulmonary infection. J Antimicrob Chemother 2024; 79:875-882. [PMID: 38394463 PMCID: PMC10984946 DOI: 10.1093/jac/dkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is increasing worldwide, with Mycobacterium avium complex (MAC) and Mycobacterium abscessus as the predominant pathogens. Current treatments are poorly tolerated and modestly effective, highlighting the need for new treatments. SPR719, the active moiety of the benzimidazole prodrug SPR720, inhibits the ATPase subunits of DNA gyrase B, a target not exploited by current antibiotics, and therefore, no cross-resistance is expected with standard-of-care (SOC) agents. OBJECTIVES To evaluate the in vitro activity of SPR719 against MAC and M. abscessus clinical isolates, including those resistant to SOC agents, and in vivo efficacy of SPR720 in murine non-tuberculous mycobacteria (NTM) pulmonary infection models. METHODS NTM isolates were tested for susceptibility to SPR719. Chronic C3HeB/FeJ and severe combined immunodeficient murine models of pulmonary infection were used to assess efficacy of SPR720 against MAC and M. abscessus, respectively. RESULTS SPR719 was active against MAC (MIC90, 2 mg/L) and M. abscessus (MIC90, 4 mg/L) clinical isolates. Efficacy of SPR720 was demonstrated against MAC pulmonary infection, both as a monotherapy and in combination with SOC agents. SPR720 monotherapy exhibited dose-dependent reduction in bacterial burden, with the largest reduction observed when combined with clarithromycin and ethambutol. Efficacy of SPR720 was also demonstrated against M. abscessus pulmonary infection where monotherapy exhibited a dose-dependent reduction in bacterial burden with further reductions detected when combined with SOC agents. CONCLUSIONS In vitro activity of SPR720 against common NTM pathogens and efficacy in murine infections warrant the continued clinical evaluation of SPR720 as a new oral option for the treatment of NTM-PD.
Collapse
Affiliation(s)
- Nicole Cotroneo
- Spero Therapeutics, Inc., 675 Massachusetts Avenue, 14th Floor, Cambridge, MA, USA
| | - Suzanne S Stokes
- Spero Therapeutics, Inc., 675 Massachusetts Avenue, 14th Floor, Cambridge, MA, USA
| | - Michael J Pucci
- Spero Therapeutics, Inc., 675 Massachusetts Avenue, 14th Floor, Cambridge, MA, USA
| | - Aileen Rubio
- Spero Therapeutics, Inc., 675 Massachusetts Avenue, 14th Floor, Cambridge, MA, USA
| | - Kamal A Hamed
- Spero Therapeutics, Inc., 675 Massachusetts Avenue, 14th Floor, Cambridge, MA, USA
| | - Ian A Critchley
- Spero Therapeutics, Inc., 675 Massachusetts Avenue, 14th Floor, Cambridge, MA, USA
| |
Collapse
|
9
|
Qiu X, Zhang Q, Li Z, Zhang J, Liu H. Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis. Int J Mol Sci 2024; 25:3764. [PMID: 38612573 PMCID: PMC11011931 DOI: 10.3390/ijms25073764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
With the rapid emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors' binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors' attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors.
Collapse
Affiliation(s)
- Xiaofei Qiu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (X.Q.); (Z.L.); (J.Z.)
| | - Qianqian Zhang
- Faculty of Applied Science, Macao Polytechnic University, Macao SAR, China;
| | - Zhaoguo Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (X.Q.); (Z.L.); (J.Z.)
| | - Juan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (X.Q.); (Z.L.); (J.Z.)
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao SAR, China;
| |
Collapse
|
10
|
Singh P, Kumar A, Sharma P, Chugh S, Kumar A, Sharma N, Gupta S, Singh M, Kidwai S, Sankar J, Taneja N, Kumar Y, Dhiman R, Mahajan D, Singh R. Identification and optimization of pyridine carboxamide-based scaffold as a drug lead for Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0076623. [PMID: 38193667 PMCID: PMC10848774 DOI: 10.1128/aac.00766-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
New drugs with novel mechanisms of action are urgently needed to tackle the issue of drug-resistant tuberculosis. Here, we have performed phenotypic screening using the Pathogen Box library obtained from the Medicines for Malaria Venture against Mycobacterium tuberculosis in vitro. We have identified a pyridine carboxamide derivative, MMV687254, as a promising hit. This molecule is specifically active against M. tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin (M. bovis BCG) but inactive against Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Escherichia coli pathogens. We demonstrate that MMV687254 inhibits M. tuberculosis growth in liquid cultures in a bacteriostatic manner. Surprisingly, MMV687254 was as active as isoniazid in macrophages and inhibited M. tuberculosis growth in a bactericidal manner. Mechanistic studies revealed that MMV687254 is a prodrug and that its anti-mycobacterial activity requires AmiC-dependent hydrolysis. We further demonstrate that MMV687254 inhibits M. tuberculosis growth in macrophages by inducing autophagy. In the present study, we have also carried out a detailed structure-activity relationship study and identified a promising novel lead candidate. The identified novel series of compounds also showed activity against drug-resistant M. bovis BCG and M. tuberculosis clinical strains. Finally, we demonstrate that in contrast to MMV687254, the lead molecule was able to inhibit M. tuberculosis growth in a chronic mouse model of infection. Taken together, we have identified a novel lead molecule with a dual mechanism of action that can be further optimized to design more potent anti-tubercular agents.
Collapse
Affiliation(s)
- Padam Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Arun Kumar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Pankaj Sharma
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Saurabh Chugh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ashish Kumar
- Department of Life Science, Laboratory of Mycobacterial Immunology, National Institute of Technology, Rourkela, India
| | - Nidhi Sharma
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sonu Gupta
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manisha Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Saqib Kidwai
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Jishnu Sankar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Neha Taneja
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Yashwant Kumar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Rohan Dhiman
- Department of Life Science, Laboratory of Mycobacterial Immunology, National Institute of Technology, Rourkela, India
| | - Dinesh Mahajan
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ramandeep Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
11
|
Poston TB. Advances in vaccine development for Chlamydia trachomatis. Pathog Dis 2024; 82:ftae017. [PMID: 39043447 PMCID: PMC11338180 DOI: 10.1093/femspd/ftae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 07/25/2024] Open
Abstract
Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
12
|
Durcik M, Cruz CD, Scorciapino MA, Ilaš J, Tammela P, Ceccarelli M, Mašič LP, Tomašič T. Benzothiazole DNA gyrase inhibitors and their conjugates with siderophore mimics: design, synthesis and evaluation. RSC Adv 2024; 14:2905-2917. [PMID: 38239435 PMCID: PMC10794952 DOI: 10.1039/d3ra08337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Benzothiazole-based bacterial DNA gyrase and topoisomerase IV inhibitors are promising new antibacterial agents with potent activity against Gram-positive and Gram-negative bacterial strains. The aim of this study was to improve the uptake of these inhibitors into the cytoplasm of Gram-negative bacteria by conjugating them to the small siderophore mimics. The best conjugate 18b displayed potent Escherichia coli DNA gyrase and topoisomerase IV inhibition. The interaction analysis of molecular dynamics simulation trajectory showed the important contribution of the siderophore mimic moiety to binding affinity. By NMR spectroscopy, we demonstrated that the hydroxypyridinone moiety alone was responsible for the chelation of iron(iii). Moreover, 18b showed an enhancement of antibacterial activity against E. coli JW5503 in an iron-depleted medium, clearly indicating an increased uptake of 18b in this bacterial strain.
Collapse
Affiliation(s)
- Martina Durcik
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Cristina D Cruz
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki P. O. Box 56 (Viikinkaari 5 E) FI-00014 Helsinki Finland
| | - Mariano Andrea Scorciapino
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato - S. P. 8 km 0.700 09042 - Monserrato (CA) Italy
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki P. O. Box 56 (Viikinkaari 5 E) FI-00014 Helsinki Finland
| | - Matteo Ceccarelli
- Department of Physics and IOM/CNR, Sezione di Cagliari, University of Cagliari, Cittadella Universitaria di Monserrato - S. P. 8 km 0700 09042 - Monserrato (CA) Italy
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy Aškerčeva cesta 7 1000 Ljubljana Slovenia
| |
Collapse
|
13
|
Kim DH, Zo S, Kim SY, Jhun BW. In Vitro Activity of Benzimidazole (SPR719) Against Clinical Isolates of Nontuberculous Mycobacteria With and Without Clarithromycin or Amikacin Resistance. Ann Lab Med 2024; 44:92-96. [PMID: 37665290 PMCID: PMC10485866 DOI: 10.3343/alm.2024.44.1.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Limited data are available regarding the in vitro activity of SPR719, a derivative of benzimidazole, against diverse nontuberculous mycobacteria (NTM) species. We investigated the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of SPR719 against clinical NTM isolates, including clarithromycin- and amikacin-resistant strains. NTM isolates were obtained from patients with NTM-pulmonary disease caused by various NTM species, including Mycobacterium avium complex, M. abscessus (subspecies abscessus and massiliense), M. kansasii, and M. fortuitum. Regardless of clarithromycin or amikacin resistance, the MIC and MBC values of SPR719 were comparable among these major pathogenic NTM species. In over 70% of the isolates, the MIC values were ≤2 μg/mL with MBC values of ≤4 μg/mL. The MIC and MBC values of M. kansasii were relatively lower than those of the other species with little difference between them, demonstrating the bactericidal properties of SPR719. The in vitro activity of SPR719 against major clinical NTM species suggests that SPR719 can serve as a novel treatment option for NTM-pulmonary disease.
Collapse
Affiliation(s)
- Dae Hun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sungmin Zo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Adhikrao PA, Motiram GM, Kumar G. Tackling Nontuberculous Mycobacteria by Repurposable Drugs and Potential Leads from Natural Products. Curr Top Med Chem 2024; 24:1291-1326. [PMID: 38288807 DOI: 10.2174/0115680266276938240108060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 07/25/2024]
Abstract
Nontuberculous Mycobacteria (NTM) refer to bacteria other than all Mycobacterium species that do not cause tuberculosis or leprosy, excluding the species of the Mycobacterium tuberculosis complex, M. leprae and M. lepromatosis. NTM are ubiquitous and present in soils and natural waters. NTM can survive in a wide range of environmental conditions. The direct inoculum of the NTM from water or other materials is most likely a source of infections. NTMs are responsible for several illnesses, including pulmonary alveolar proteinosis, cystic fibrosis, bronchiectasis, chronic obstructive pneumoconiosis, and pulmonary disease. Recent reports suggest that NTM species have become insensitive to sterilizing agents, antiseptics, and disinfectants. The efficacy of existing anti-NTM regimens is diminishing and has been compromised due to drug resistance. New and recurring cases of multidrug-resistant NTM strains are increasing. Thus, there is an urgent need for ant-NTM regimens with novel modes of action. This review sheds light on the mode of antimicrobial resistance in the NTM species. Then, we discussed the repurposable drugs (antibiotics) that have shown new indications (activity against NTM strains) that could be developed for treating NTM infections. Also, we have summarised recently identified natural leads acting against NTM, which have the potential for treating NTM-associated infections.
Collapse
Affiliation(s)
- Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gudle Mayuri Motiram
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
15
|
Tantra T, Singh Y, Patekar R, Kulkarni S, Kumar P, Thareja S. Phosphate Prodrugs: An Approach to Improve the Bioavailability of Clinically Approved Drugs. Curr Med Chem 2024; 31:336-357. [PMID: 36757029 DOI: 10.2174/0929867330666230209094738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 02/10/2023]
Abstract
The phosphate prodrug approach has emerged as a viable option for increasing the bioavailability of a drug candidate with low hydrophilicity and poor cell membrane permeability. When a phosphoric acid moiety is attached to the parent drug, it results in a several-fold elevation in aqueous solubility which helps to achieve desired bioavailability of the pharmaceutically active parental molecule. The neutral phosphate prodrugs have rapid diffusion ability through the plasma membrane as compared to their charged counterpart. The presence of phosphate mono ester breaking alkaline phosphatase (ALP) enzyme throughout the whole human body, is the main consideration behind the development of phosphate prodrug strategy. The popularity of this phosphate prodrug strategy is increasing nowadays due to the fulfillment of different desired pharmacokinetic characteristics required to get pharmaceutical and therapeutic responses without showing any serious adverse drug reactions (ADR). This review article mainly focuses on various phosphate prodrugs synthesized within the last decade to get an improved pharmacological response of the parent moiety along with various preclinical and clinical challenges associated with this approach. Emphasis is also given to the chemical mechanism to release the parent moiety from the prodrug.
Collapse
Affiliation(s)
- Tanmoy Tantra
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Rohan Patekar
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| |
Collapse
|
16
|
Zhao X, Feng J, Zhang J, Han Z, Hu Y, Shao HH, Li T, Xia J, Lei K, Wang W, Lai F, Lin Y, Liu B, Zhang K, Zhang C, Yang Q, Luo X, Zhang H, Li C, Zhang W, Wu S. Discovery and druggability evaluation of pyrrolamide-type GyrB/ParE inhibitor against drug-resistant bacterial infection. Acta Pharm Sin B 2023; 13:4945-4962. [PMID: 38045053 PMCID: PMC10692473 DOI: 10.1016/j.apsb.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 12/05/2023] Open
Abstract
The bacterial ATP-competitive GyrB/ParE subunits of type II topoisomerase are important anti-bacterial targets to treat super drug-resistant bacterial infections. Herein we discovered novel pyrrolamide-type GyrB/ParE inhibitors based on the structural modifications of the candidate AZD5099 that was withdrawn from the clinical trials due to safety liabilities such as mitochondrial toxicity. The hydroxyisopropyl pyridazine compound 28 had a significant inhibitory effect on Gyrase (GyrB, IC50 = 49 nmol/L) and a modest inhibitory effect on Topo IV (ParE, IC50 = 1.513 μmol/L) of Staphylococcus aureus. It also had significant antibacterial activities on susceptible and resistant Gram-positive bacteria with a minimum inhibitory concentration (MIC) of less than 0.03 μg/mL, which showed a time-dependent bactericidal effect and low frequencies of spontaneous resistance against S. aureus. Compound 28 had better protective effects than the positive control drugs such as DS-2969 (5) and AZD5099 (6) in mouse models of sepsis induced by methicillin-resistant Staphylococcus aureus (MRSA) infection. It also showed better bactericidal activities than clinically used vancomycin in the mouse thigh MRSA infection models. Moreover, compound 28 has much lower mitochondrial toxicity than AZD5099 (6) as well as excellent therapeutic indexes and pharmacokinetic properties. At present, compound 28 has been evaluated as a pre-clinical drug candidate for the treatment of drug-resistant Gram-positive bacterial infection. On the other hand, compound 28 also has good inhibitory activities against stubborn Gram-negative bacteria such as Escherichia coli (MIC = 1 μg/mL), which is comparable with the most potent pyrrolamide-type GyrB/ParE inhibitors reported recently. In addition, the structure-activity relationships of the compounds were also studied.
Collapse
Affiliation(s)
| | | | | | - Zunsheng Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuhua Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui-Hui Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianlei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kangfan Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weiping Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kun Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingyun Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xinyu Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hanyilan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chuang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
17
|
Nguyen MVH, Daley CL. Treatment of Mycobacterium avium Complex Pulmonary Disease: When Should I Treat and What Therapy Should I Start? Clin Chest Med 2023; 44:771-783. [PMID: 37890915 DOI: 10.1016/j.ccm.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Treatment of M avium pulmonary disease requires a three-drug, macrolide-based regimen that is administered for 12 months beyond culture conversion. The regimen can be administered 3 days a week in non-cavitary, nodular bronchiectatic disease but should be given daily when cavitary disease is present. For treatment refractory disease, amikacin liposome inhalation suspension is added to the regimen. Parenteral amikacin or streptomycin should be administered in the setting of extensive radiographic involvement or macrolide resistance. Recurrence of disease is common and often due to reinfection. Novel and repurposed agents are being evaluated in clinical trials.
Collapse
Affiliation(s)
- Minh-Vu H Nguyen
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, CO 80206, USA
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
18
|
Gu Y, Nie W, Huang H, Yu X. Non-tuberculous mycobacterial disease: progress and advances in the development of novel candidate and repurposed drugs. Front Cell Infect Microbiol 2023; 13:1243457. [PMID: 37850054 PMCID: PMC10577331 DOI: 10.3389/fcimb.2023.1243457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens that can infect all body tissues and organs. In particular, the lungs are the most commonly involved organ, with NTM pulmonary diseases causing serious health issues in patients with underlying lung disease. Moreover, NTM infections have been steadily increasing worldwide in recent years. NTM are also naturally resistant to many antibiotics, specifically anti-tuberculosis (anti-TB) drugs. The lack of drugs targeting NTM infections and the increasing drug resistance of NTM have further made treating these mycobacterial diseases extremely difficult. The currently recommended NTM treatments rely on the extended indications of existing drugs, which underlines the difficulties of new antibiotic discovery against NTM. Another challenge is determining which drug combinations are most effective against NTM infection. To a certain extent, anti-NTM drug development depends on using already available antibiotics and compounds. Here, we aimed to review new antibiotics or compounds with good antibacterial activity against NTM, focusing on their mechanisms of action, in vitro and in vivo antibacterial activities.
Collapse
Affiliation(s)
- Yuzhen Gu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Wenjuan Nie
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Butler MS, Henderson IR, Capon RJ, Blaskovich MAT. Antibiotics in the clinical pipeline as of December 2022. J Antibiot (Tokyo) 2023; 76:431-473. [PMID: 37291465 PMCID: PMC10248350 DOI: 10.1038/s41429-023-00629-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The need for new antibacterial drugs to treat the increasing global prevalence of drug-resistant bacterial infections has clearly attracted global attention, with a range of existing and upcoming funding, policy, and legislative initiatives designed to revive antibacterial R&D. It is essential to assess whether these programs are having any real-world impact and this review continues our systematic analyses that began in 2011. Direct-acting antibacterials (47), non-traditional small molecule antibacterials (5), and β-lactam/β-lactamase inhibitor combinations (10) under clinical development as of December 2022 are described, as are the three antibacterial drugs launched since 2020. Encouragingly, the increased number of early-stage clinical candidates observed in the 2019 review increased in 2022, although the number of first-time drug approvals from 2020 to 2022 was disappointingly low. It will be critical to monitor how many Phase-I and -II candidates move into Phase-III and beyond in the next few years. There was also an enhanced presence of novel antibacterial pharmacophores in early-stage trials, and at least 18 of the 26 phase-I candidates were targeted to treat Gram-negative bacteria infections. Despite the promising early-stage antibacterial pipeline, it is essential to maintain funding for antibacterial R&D and to ensure that plans to address late-stage pipeline issues succeed.
Collapse
Affiliation(s)
- Mark S Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| | - Ian R Henderson
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Robert J Capon
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| |
Collapse
|
20
|
Sterle M, Durcik M, Stevenson CEM, Henderson SR, Szili PE, Czikkely M, Lawson DM, Maxwell A, Cahard D, Kikelj D, Zidar N, Pal C, Mašič LP, Ilaš J, Tomašič T, Cotman AE, Zega A. Exploring the 5-Substituted 2-Aminobenzothiazole-Based DNA Gyrase B Inhibitors Active against ESKAPE Pathogens. ACS OMEGA 2023; 8:24387-24395. [PMID: 37457471 PMCID: PMC10339456 DOI: 10.1021/acsomega.3c01930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
We present a new series of 2-aminobenzothiazole-based DNA gyrase B inhibitors with promising activity against ESKAPE bacterial pathogens. Based on the binding information extracted from the cocrystal structure of DNA gyrase B inhibitor A, in complex with Escherichia coli GyrB24, we expanded the chemical space of the benzothiazole-based series to the C5 position of the benzothiazole ring. In particular, compound E showed low nanomolar inhibition of DNA gyrase (IC50 < 10 nM) and broad-spectrum antibacterial activity against pathogens belonging to the ESKAPE group, with the minimum inhibitory concentration < 0.03 μg/mL for most Gram-positive strains and 4-16 μg/mL against Gram-negative E. coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. To understand the binding mode of the synthesized inhibitors, a combination of docking calculations, molecular dynamics (MD) simulations, and MD-derived structure-based pharmacophore modeling was performed. The computational analysis has revealed that the substitution at position C5 can be used to modify the physicochemical properties and antibacterial spectrum and enhance the inhibitory potency of the compounds. Additionally, a discussion of challenges associated with the synthesis of 5-substituted 2-aminobenzothiazoles is presented.
Collapse
Affiliation(s)
- Maša Sterle
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana 1000, Slovenia
| | - Martina Durcik
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana 1000, Slovenia
| | - Clare E. M. Stevenson
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Sara R. Henderson
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Petra Eva Szili
- Synthetic
and Systems Biology Unit, Biological Research Centre, Institute of Biochemistry, Szeged H-6726, Hungary
| | - Marton Czikkely
- Synthetic
and Systems Biology Unit, Biological Research Centre, Institute of Biochemistry, Szeged H-6726, Hungary
| | - David M. Lawson
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Anthony Maxwell
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Dominique Cahard
- CNRS
UMR 6014 COBRA, Normandie Université, Mont Saint Aignan 76821, France
| | - Danijel Kikelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana 1000, Slovenia
| | - Nace Zidar
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana 1000, Slovenia
| | - Csaba Pal
- Synthetic
and Systems Biology Unit, Biological Research Centre, Institute of Biochemistry, Szeged H-6726, Hungary
| | - Lucija Peterlin Mašič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana 1000, Slovenia
| | - Janez Ilaš
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana 1000, Slovenia
| | - Tihomir Tomašič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana 1000, Slovenia
| | - Andrej Emanuel Cotman
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana 1000, Slovenia
| | - Anamarija Zega
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana 1000, Slovenia
| |
Collapse
|
21
|
Barman TK, Kumar M, Chaira T, Singhal S, Mathur T, Kalia V, Gangadharan R, Rao M, Pandya M, Bhateja P, Sood R, Upadhyay DJ, Varughese S, Yadav A, Sharma L, Ramadass V, Kumar N, Sattigeri J, Bhatnagar PK, Raj VS. Novel fluorobenzothiazole as a dual inhibitor of gyrase B and topoisomerase IV against Gram-positive pathogens. Future Microbiol 2023; 18:625-638. [PMID: 37347211 DOI: 10.2217/fmb-2022-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Aim: The development of a novel inhibitor targeting gyrase B and topoisomerase IV offers an opportunity to combat multidrug resistance. Methods: We investigated the activity of RBx 10080758 against Gram-positive bacteria in vitro and in vivo. Results: RBx 10080758 showed a potent 50% inhibitory concentration of 0.13 μM and 0.25 μM against gyrase B and topoisomerase IV, respectively, and exhibited strong whole-cell in vitro activity with MIC ranges of 0.015-0.06 and 0.015-0.03 μg/ml against Staphylococcus aureus and Streptococcus pneumoniae, respectively. In a rat thigh infection model with methicillin-resistant S. aureus, RBx 10080758 at 45 mg/kg exhibited a >3 log10 CFU reduction in thigh muscles. Conclusion: RBx 10080758 displayed potent activity against multiple multidrug-resistant Gram-positive bacteria with a dual-targeting mechanism of action.
Collapse
Affiliation(s)
- Tarani K Barman
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Manoj Kumar
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | - Tridib Chaira
- Department of Metabolism & Pharmacokinetics, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Drug Metabolism & Pharmacokinetics, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
- Department of Pharmacology, SGT University, Gurugram, 122505, Haryana, India
| | - Smita Singhal
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Tarun Mathur
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Vandana Kalia
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Ramkumar Gangadharan
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
- Department of Pharmacology, SGT University, Gurugram, 122505, Haryana, India
| | - Madhvi Rao
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Manisha Pandya
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Pragya Bhateja
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Ruchi Sood
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Dilip J Upadhyay
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Shibu Varughese
- Department of Chemistry, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Chemistry, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Ajay Yadav
- Department of Chemistry, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Chemistry, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Lalima Sharma
- Department of Chemistry, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Chemistry, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Venkataramanan Ramadass
- Department of Chemistry, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Chemistry, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Naresh Kumar
- Department of Chemistry, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Chemistry, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Jitendra Sattigeri
- Department of Chemistry, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Chemistry, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - Pradip K Bhatnagar
- Department of Chemistry, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Chemistry, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
| | - V Samuel Raj
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Sector-18, Gurgaon, 122 015, India
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Village Sarhaul, Sector-18, Gurgaon, 122 015, India
- Centre for Drug Design Discovery & Development (C4D), SRM University, Delhi-NCR, Sonepat, 131 029, Haryana, India
| |
Collapse
|
22
|
Winthrop KL, Flume P, Hamed KA. Nontuberculous mycobacterial pulmonary disease and the potential role of SPR720. Expert Rev Anti Infect Ther 2023; 21:1177-1187. [PMID: 37862563 DOI: 10.1080/14787210.2023.2270158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
INTRODUCTION Nontuberculous mycobacteria infect patients who have structural lung disease or those who are immunocompromised. Nontuberculous mycobacterial pulmonary disease (NTM-PD) is increasing in prevalence. Treatment guidelines for Mycobacterium avium complex (MAC) pulmonary disease involve a three-drug regimen with azithromycin, ethambutol, and rifampin, and those of Mycobacterium abscessus complex (MAB) pulmonary disease involve a combination of three or more antimicrobials including macrolides, amikacin, and a β-lactam or imipenem. However, these regimens are poorly tolerated and generally ineffective. AREAS COVERED SPR720 is a novel therapeutic agent that has demonstrated activity against a range of NTM species, including MAC and MAB. Encouraging in vitro and pre-clinical data demonstrate that SPR720 is active both alone and in combination with standard-of-care agents, with no evidence of cross-resistance to such agents. It is generally well tolerated with mainly gastrointestinal and headache adverse events of mild or moderate severity. EXPERT OPINION Management of NTM-PD is challenging for many reasons including length of therapy, poor efficacy, drug intolerance, recurrence, and resistance development. The current antimicrobial management options for NTM-PD are limited in number and there exists a large unmet need for new treatments. SPR720 has encouraging data that warrant further study in the context of a multidrug regimen.
Collapse
Affiliation(s)
| | - Patrick Flume
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kamal A Hamed
- Spero Therapeutics, Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Kamsri B, Pakamwong B, Thongdee P, Phusi N, Kamsri P, Punkvang A, Ketrat S, Saparpakorn P, Hannongbua S, Sangswan J, Suttisintong K, Sureram S, Kittakoop P, Hongmanee P, Santanirand P, Leanpolchareanchai J, Goudar KE, Spencer J, Mulholland AJ, Pungpo P. Bioisosteric Design Identifies Inhibitors of Mycobacterium tuberculosis DNA Gyrase ATPase Activity. J Chem Inf Model 2023; 63:2707-2718. [PMID: 37074047 DOI: 10.1021/acs.jcim.2c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Mutations in DNA gyrase confer resistance to fluoroquinolones, second-line antibiotics for Mycobacterium tuberculosis infections. Identification of new agents that inhibit M. tuberculosis DNA gyrase ATPase activity is one strategy to overcome this. Here, bioisosteric designs using known inhibitors as templates were employed to define novel inhibitors of M. tuberculosis DNA gyrase ATPase activity. This yielded the modified compound R3-13 with improved drug-likeness compared to the template inhibitor that acted as a promising ATPase inhibitor against M. tuberculosis DNA gyrase. Utilization of compound R3-13 as a virtual screening template, supported by subsequent biological assays, identified seven further M. tuberculosis DNA gyrase ATPase inhibitors with IC50 values in the range of 0.42-3.59 μM. The most active compound 1 showed an IC50 value of 0.42 μM, 3-fold better than the comparator ATPase inhibitor novobiocin (1.27 μM). Compound 1 showed noncytotoxicity to Caco-2 cells at concentrations up to 76-fold higher than its IC50 value. Molecular dynamics simulations followed by decomposition energy calculations identified that compound 1 occupies the binding pocket utilized by the adenosine group of the ATP analogue AMPPNP in the M. tuberculosis DNA gyrase GyrB subunit. The most prominent contribution to the binding of compound 1 to M. tuberculosis GyrB subunit is made by residue Asp79, which forms two hydrogen bonds with the OH group of this compound and also participates in the binding of AMPPNP. Compound 1 represents a potential new scaffold for further exploration and optimization as a M. tuberculosis DNA gyrase ATPase inhibitor and candidate anti-tuberculosis agent.
Collapse
Affiliation(s)
- Bundit Kamsri
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Bongkochawan Pakamwong
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Paptawan Thongdee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Naruedon Phusi
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Sombat Ketrat
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | | | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jidapa Sangswan
- Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Khomson Suttisintong
- National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani 12120, Thailand
| | - Sanya Sureram
- Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Bangkok 10210, Thailand
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10210, Thailand
| | - Poonpilas Hongmanee
- Division of Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Pitak Santanirand
- Division of Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Jiraporn Leanpolchareanchai
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road,Rajathevi, Bangkok 10400, Thailand
| | - Kirsty E Goudar
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
24
|
Durcik M, Cotman AE, Toplak Ž, Možina Š, Skok Ž, Szili PE, Czikkely M, Maharramov E, Vu TH, Piras MV, Zidar N, Ilaš J, Zega A, Trontelj J, Pardo LA, Hughes D, Huseby D, Berruga-Fernández T, Cao S, Simoff I, Svensson R, Korol SV, Jin Z, Vicente F, Ramos MC, Mundy JEA, Maxwell A, Stevenson CEM, Lawson DM, Glinghammar B, Sjöström E, Bohlin M, Oreskär J, Alvér S, Janssen GV, Sterk GJ, Kikelj D, Pal C, Tomašič T, Peterlin Mašič L. New Dual Inhibitors of Bacterial Topoisomerases with Broad-Spectrum Antibacterial Activity and In Vivo Efficacy against Vancomycin-Intermediate Staphylococcus aureus. J Med Chem 2023; 66:3968-3994. [PMID: 36877255 PMCID: PMC10041525 DOI: 10.1021/acs.jmedchem.2c01905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 03/07/2023]
Abstract
A new series of dual low nanomolar benzothiazole inhibitors of bacterial DNA gyrase and topoisomerase IV were developed. The resulting compounds show excellent broad-spectrum antibacterial activities against Gram-positive Enterococcus faecalis, Enterococcus faecium and multidrug resistant (MDR) Staphylococcus aureus strains [best compound minimal inhibitory concentrations (MICs): range, <0.03125-0.25 μg/mL] and against the Gram-negatives Acinetobacter baumannii and Klebsiella pneumoniae (best compound MICs: range, 1-4 μg/mL). Lead compound 7a was identified with favorable solubility and plasma protein binding, good metabolic stability, selectivity for bacterial topoisomerases, and no toxicity issues. The crystal structure of 7a in complex with Pseudomonas aeruginosa GyrB24 revealed its binding mode at the ATP-binding site. Expanded profiling of 7a and 7h showed potent antibacterial activity against over 100 MDR and non-MDR strains of A. baumannii and several other Gram-positive and Gram-negative strains. Ultimately, in vivo efficacy of 7a in a mouse model of vancomycin-intermediate S. aureus thigh infection was also demonstrated.
Collapse
Affiliation(s)
- Martina Durcik
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Andrej Emanuel Cotman
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Žan Toplak
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Štefan Možina
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Žiga Skok
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Petra Eva Szili
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Márton Czikkely
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Elvin Maharramov
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Thu Hien Vu
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Maria Vittoria Piras
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Nace Zidar
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Janez Ilaš
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Anamarija Zega
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Jurij Trontelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Luis A. Pardo
- Max
Planck Institute for Multidisciplinary Sciences, Oncophysiology, Hermann-Rein-Str. 3, Göttingen 37075, Germany
| | - Diarmaid Hughes
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Douglas Huseby
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Tália Berruga-Fernández
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Sha Cao
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Ivailo Simoff
- Drug
Optimization and Pharmaceutical Profiling Platform (UDOPP) Department
of Pharmacy, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Richard Svensson
- Drug
Optimization and Pharmaceutical Profiling Platform (UDOPP) Department
of Pharmacy, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Sergiy V. Korol
- Department
of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Zhe Jin
- Department
of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Francisca Vicente
- Fundación
Medina, Avenida del Conocimiento
34, Parque Tecnológico Ciencias de la Salud, Granada 18016, Spain
| | - Maria C. Ramos
- Fundación
Medina, Avenida del Conocimiento
34, Parque Tecnológico Ciencias de la Salud, Granada 18016, Spain
| | - Julia E. A. Mundy
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Anthony Maxwell
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Clare E. M. Stevenson
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - David M. Lawson
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Björn Glinghammar
- Department
of Chemical and Pharmaceutical Toxicology, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Eva Sjöström
- Department
of Chemical Processes and Pharmaceutical Development, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Martin Bohlin
- Department
of Chemical Processes and Pharmaceutical Development, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Joanna Oreskär
- Department
of Chemical Processes and Pharmaceutical Development, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Sofie Alvér
- Department
of Chemical Processes and Pharmaceutical Development, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Guido V. Janssen
- Medicinal Chemistry Division, Vrije Universiteit
Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Geert Jan Sterk
- Medicinal Chemistry Division, Vrije Universiteit
Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Danijel Kikelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Csaba Pal
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Tihomir Tomašič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Lucija Peterlin Mašič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| |
Collapse
|
25
|
Grossman S, Fishwick CWG, McPhillie MJ. Developments in Non-Intercalating Bacterial Topoisomerase Inhibitors: Allosteric and ATPase Inhibitors of DNA Gyrase and Topoisomerase IV. Pharmaceuticals (Basel) 2023; 16:261. [PMID: 37259406 PMCID: PMC9964621 DOI: 10.3390/ph16020261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 10/15/2023] Open
Abstract
Increases in antibiotic usage and antimicrobial resistance occurrence have caused a dramatic reduction in the effectiveness of many frontline antimicrobial treatments. Topoisomerase inhibitors including fluoroquinolones are broad-spectrum antibiotics used to treat a range of infections, which stabilise a topoisomerase-DNA cleavage complex via intercalation of the bound DNA. However, these are subject to bacterial resistance, predominantly in the form of single-nucleotide polymorphisms in the active site. Significant research has been undertaken searching for novel bioactive molecules capable of inhibiting bacterial topoisomerases at sites distal to the fluoroquinolone binding site. Notably, researchers have undertaken searches for anti-infective agents that can inhibit topoisomerases through alternate mechanisms. This review summarises work looking at the inhibition of topoisomerases predominantly through non-intercalating agents, including those acting at a novel allosteric site, ATPase domain inhibitors, and those offering unique binding modes and mechanisms of action.
Collapse
Affiliation(s)
- Scott Grossman
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
26
|
Finger V, Kufa M, Soukup O, Castagnolo D, Roh J, Korabecny J. Pyrimidine derivatives with antitubercular activity. Eur J Med Chem 2023; 246:114946. [PMID: 36459759 DOI: 10.1016/j.ejmech.2022.114946] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Small molecules with antitubercular activity containing the pyrimidine motif in their structure have gained more attention after three drugs, namely GSK 2556286 (GSK-286), TBA-7371 and SPR720, have entered clinical trials. This review provides an overview of recent advances in the hit-to-lead drug discovery studies of antitubercular pyrimidine-containing compounds with the aim to highlight their structural diversity. In the first part, the review discusses the pyrimidine compounds according to their targets, pinpointing the structure-activity relationships of each pyrimidine family. The second part of this review is concentrated on antitubercular pyrimidine derivatives with a yet unexplored or speculative target, dividing the compounds according to their structural types.
Collapse
Affiliation(s)
- Vladimir Finger
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Martin Kufa
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic.
| |
Collapse
|
27
|
Edwards BD, Field SK. The Struggle to End a Millennia-Long Pandemic: Novel Candidate and Repurposed Drugs for the Treatment of Tuberculosis. Drugs 2022; 82:1695-1715. [PMID: 36479687 PMCID: PMC9734533 DOI: 10.1007/s40265-022-01817-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
This article provides an encompassing review of the current pipeline of putative and developed treatments for tuberculosis, including multidrug-resistant strains. The review has organized each compound according to its site of activity. To provide context, mention of drugs within current recommended treatment regimens is made, thereafter followed by discussion on recently developed and upcoming molecules at established and novel targets. The review is designed to provide a clinically applicable understanding of the compounds that are deemed most currently relevant, including those already under clinical study and those that have shown promising pre-clinical results. An extensive review of the efficacy and safety data for key contemporary drugs already incorporated into treatment regimens, such as bedaquiline, pretomanid, and linezolid, is provided. The three levels of the bacterial cell wall (mycolic acid, arabinogalactan, and peptidoglycan layers) are highlighted and important compounds designed to target each layer are delineated. Amongst others, the highly optimistic and potent anti-mycobacterial activity of agents such as BTZ-043, PBTZ 169, and OPC-167832 are emphasized. The evolving spectrum of oxazolidinones, such as sutezolid, delpazolid, and TBI-223, all aiming to exceed the efficacy achieved with linezolid yet offer a safer alternative to the potential toxicity, are reviewed. New and exciting prospective agents with novel mechanisms of impact against TB, including 3-aminomethyl benzoxaboroles and telacebec, are underscored. We describe new diaryloquinolines in development, striving to build on the immense success of bedaquiline. Finally, we discuss some of these compounds that have shown encouraging additive or synergistic benefit when used in combination, providing some promise for the future in treating this ancient scourge.
Collapse
Affiliation(s)
- Brett D Edwards
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada.
| | - Stephen K Field
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada
| |
Collapse
|
28
|
Why Matter Matters: Fast-Tracking Mycobacterium abscessus Drug Discovery. Molecules 2022; 27:molecules27206948. [PMID: 36296540 PMCID: PMC9608607 DOI: 10.3390/molecules27206948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Unlike Tuberculosis (TB), Mycobacterium abscessus lung disease is a highly drug-resistant bacterial infection with no reliable treatment options. De novo M. abscessus drug discovery is urgently needed but is hampered by the bacterium's extreme drug resistance profile, leaving the current drug pipeline underpopulated. One proposed strategy to accelerate de novo M. abscessus drug discovery is to prioritize screening of advanced TB-active compounds for anti-M. abscessus activity. This approach would take advantage of the greater chance of homologous drug targets between mycobacterial species, increasing hit rates. Furthermore, the screening of compound series with established structure-activity-relationship, pharmacokinetic, and tolerability properties should fast-track the development of in vitro anti-M. abscessus hits into lead compounds with in vivo efficacy. In this review, we evaluated the effectiveness of this strategy by examining the literature. We found several examples where the screening of advanced TB chemical matter resulted in the identification of anti-M. abscessus compounds with in vivo proof-of-concept, effectively populating the M. abscessus drug pipeline with promising new candidates. These reports validate the screening of advanced TB chemical matter as an effective means of fast-tracking M. abscessus drug discovery.
Collapse
|
29
|
Janin YL. On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein J Org Chem 2022; 18:1355-1378. [PMID: 36247982 PMCID: PMC9531561 DOI: 10.3762/bjoc.18.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
This perspective is an attempt to document the problems that medicinal chemists are facing in drug discovery. It is also trying to identify relevant/possible, research areas in which academics can have an impact and should thus be the subject of grant calls. Accordingly, it describes how hit discovery happens, how compounds to be screened are selected from available chemicals and the possible reasons for the recurrent paucity of useful/exploitable results reported. This is followed by the successful hit to lead stories leading to recent and original antibacterials which are, or about to be, used in human medicine. Then, illustrated considerations and suggestions are made on the possible inputs of academic medicinal chemists. This starts with the observation that discovering a "good" hit in the course of a screening campaign still rely on a lot of luck - which is within the reach of academics -, that the hit to lead process requires a lot of chemistry and that if public-private partnerships can be important throughout these stages, they are absolute requirements for clinical trials. Concerning suggestions to improve the current hit success rate, one academic input in organic chemistry would be to identify new and pertinent chemical space, design synthetic accesses to reach these and prepare the corresponding chemical libraries. Concerning hit to lead programs on a given target, if no new hits are available, previously reported leads along with new structural data can be pertinent starting points to design, prepare and assay original analogues. In conclusion, this text is an actual plea illustrating that, in many countries, academic research in medicinal chemistry should be more funded, especially in the therapeutic area neglected by the industry. At the least, such funds would provide the intensive to secure series of hopefully relevant chemical entities which appears to often lack when considering the results of academic as well as industrial screening campaigns.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| |
Collapse
|
30
|
Activity of Tricyclic Pyrrolopyrimidine Gyrase B Inhibitor against Mycobacterium abscessus. Antimicrob Agents Chemother 2022; 66:e0066922. [PMID: 36005813 PMCID: PMC9487482 DOI: 10.1128/aac.00669-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tricyclic pyrrolopyrimidines (TPPs) are a new class of antibacterials inhibiting the ATPase of DNA gyrase. TPP8, a representative of this class, is active against Mycobacterium abscessus in vitro. Spontaneous TPP8 resistance mutations mapped to the ATPase domain of M. abscessus DNA gyrase, and the compound inhibited DNA supercoiling activity of recombinant M. abscessus enzyme. Further profiling of TPP8 in macrophage and mouse infection studies demonstrated proof-of-concept activity against M. abscessus ex vivo and in vivo.
Collapse
|
31
|
Mi J, Gong W, Wu X. Advances in Key Drug Target Identification and New Drug Development for Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5099312. [PMID: 35252448 PMCID: PMC8896939 DOI: 10.1155/2022/5099312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) is a severe infectious disease worldwide. The increasing emergence of drug-resistant Mycobacterium tuberculosis (Mtb) has markedly hampered TB control. Therefore, there is an urgent need to develop new anti-TB drugs to treat drug-resistant TB and shorten the standard therapy. The discovery of targets of drug action will lay a theoretical foundation for new drug development. With the development of molecular biology and the success of Mtb genome sequencing, great progress has been made in the discovery of new targets and their relevant inhibitors. In this review, we summarized 45 important drug targets and 15 new drugs that are currently being tested in clinical stages and several prospective molecules that are still at the level of preclinical studies. A comprehensive understanding of the drug targets of Mtb can provide extensive insights into the development of safer and more efficient drugs and may contribute new ideas for TB control and treatment.
Collapse
Affiliation(s)
- Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|