1
|
Gibhard L, Njoroge M, Mulubwa M, Lawrence N, Smith D, Duffy J, Le Manach C, Brunschwig C, Taylor D, van der Westhuyzen R, Street LJ, Basarab GS, Chibale K. Dose-fractionation studies of a Plasmodium phosphatidylinositol 4-kinase inhibitor in a humanized mouse model of malaria. Antimicrob Agents Chemother 2024; 68:e0084224. [PMID: 39194209 PMCID: PMC11459969 DOI: 10.1128/aac.00842-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
UCT594 is a 2-aminopyrazine carboxylic acid Plasmodium phosphatidylinositol 4-kinase inhibitor with potent asexual blood-stage activity, the potential for interrupting transmission, as well as liver-stage activities. Herein, we investigated pharmacokinetic/pharmacodynamic (PK/PD) relationships relative to blood-stage activity toward predicting the human dose. Dose-fractionation studies were conducted in the Plasmodium falciparum NSG mouse model to determine the PK/PD indices of UCT594, using the in vivo minimum parasiticidal concentration as a threshold. UCT594 demonstrated concentration-dependent killing in the P. falciparum-infected NSG mouse model. Using this data and the preclinical pharmacokinetic data led to a low predicted human dose of <50 mg. This makes UCT594 an attractive potential antimalarial drug.
Collapse
Affiliation(s)
- Liezl Gibhard
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Mathew Njoroge
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Mwila Mulubwa
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Nina Lawrence
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | | | - James Duffy
- Medicines for Malaria Venture, ICC, Geneva, Switzerland
| | - Claire Le Manach
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Christel Brunschwig
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Renier van der Westhuyzen
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Leslie J. Street
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Gregory S. Basarab
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
2
|
Reyser T, Paloque L, Augereau JM, Di Stefano L, Benoit-Vical F. Epigenetic regulation as a therapeutic target in the malaria parasite Plasmodium falciparum. Malar J 2024; 23:44. [PMID: 38347549 PMCID: PMC10863139 DOI: 10.1186/s12936-024-04855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Over the past thirty years, epigenetic regulation of gene expression has gained increasing interest as it was shown to be implicated in illnesses ranging from cancers to parasitic diseases. In the malaria parasite, epigenetics was shown to be involved in several key steps of the complex life cycle of Plasmodium, among which asexual development and sexual commitment, but also in major biological processes like immune evasion, response to environmental changes or DNA repair. Because epigenetics plays such paramount roles in the Plasmodium parasite, enzymes involved in these regulating pathways represent a reservoir of potential therapeutic targets. This review focuses on epigenetic regulatory processes and their effectors in the malaria parasite, as well as the inhibitors of epigenetic pathways and their potential as new anti-malarial drugs. Such types of drugs could be formidable tools that may contribute to malaria eradication in a context of widespread resistance to conventional anti-malarials.
Collapse
Affiliation(s)
- Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Luisa Di Stefano
- MCD, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France.
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
3
|
Tavares MT, Krüger A, Yan SLR, Waitman KB, Gomes VM, de Oliveira DS, Paz F, Hilscher S, Schutkowski M, Sippl W, Ruiz C, Toledo MFZJ, Hassimotto NMA, Machado-Neto JA, Poso A, Cameron MD, Bannister TD, Palmisano G, Wrenger C, Kronenberger T, Parise-Filho R. 1,3-Diphenylureido hydroxamate as a promising scaffold for generation of potent antimalarial histone deacetylase inhibitors. Sci Rep 2023; 13:21006. [PMID: 38030668 PMCID: PMC10687260 DOI: 10.1038/s41598-023-47959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
We report a series of 1,3-diphenylureido hydroxamate HDAC inhibitors evaluated against sensitive and drug-resistant P. falciparum strains. Compounds 8a-d show potent antiplasmodial activity, indicating that a phenyl spacer allows improved potency relative to cinnamyl and di-hydrocinnamyl linkers. In vitro, mechanistic studies demonstrated target activity for PfHDAC1 on a recombinant level, which agreed with cell quantification of the acetylated histone levels. Compounds 6c, 7c, and 8c, identified as the most active in phenotypic assays and PfHDAC1 enzymatic inhibition. Compound 8c stands out as a remarkable inhibitor, displaying an impressive 85% inhibition of PfHDAC1, with an IC50 value of 0.74 µM in the phenotypic screening on Pf3D7 and 0.8 µM against multidrug-resistant PfDd2 parasites. Despite its potent inhibition of PfHDAC1, 8c remains the least active on human HDAC1, displaying remarkable selectivity. In silico studies suggest that the phenyl linker has an ideal length in the series for permitting effective interactions of the hydroxamate with PfHDAC1 and that this compound series could bind as well as in HsHDAC1. Taken together, these results highlight the potential of diphenylurea hydroxamates as a privileged scaffold for the generation of potent antimalarial HDAC inhibitors with improved selectivity over human HDACs.
Collapse
Affiliation(s)
- Maurício T Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Arne Krüger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Sun L Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Karoline B Waitman
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Vinícius M Gomes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Daffiny Sumam de Oliveira
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Franciarli Paz
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Sebastian Hilscher
- Faculty of Biosciences, Martin-Luther-University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Mike Schutkowski
- Faculty of Biosciences, Martin-Luther-University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Wolfgang Sippl
- Faculty of Biosciences, Martin-Luther-University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Claudia Ruiz
- Department of Molecular Medicine, The Herbert Wertheim Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Mônica F Z J Toledo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Neuza M A Hassimotto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João A Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antti Poso
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Michael D Cameron
- Department of Molecular Medicine, The Herbert Wertheim Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Thomas D Bannister
- Department of Molecular Medicine, The Herbert Wertheim Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil.
| | - Thales Kronenberger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany.
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil.
| |
Collapse
|
4
|
Barman M, Kamble S, Roy S, Bhandari V, Singothu S, Dandasena D, Suresh A, Sharma P. Antitheilerial Activity of the Anticancer Histone Deacetylase Inhibitors. Front Microbiol 2021; 12:759817. [PMID: 34867888 PMCID: PMC8640587 DOI: 10.3389/fmicb.2021.759817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
The apicomplexan parasite, Theileria annulata, is the most prevalent hemoprotozoan in livestock, causing significant economic losses worldwide. It is essential to develop new and improved therapeutics, as current control measures are compromised by the development of resistance against the only available antitheilerial drug, buparvaquone (BPQ). Histone deacetylase inhibitors (HDACi) were shown to treat cancer effectively and revealed in vitro antiparasitic activity against apicomplexan parasites such as Plasmodium and Toxoplasma. In this study, we investigated the antitheilerial activity of the four anti-cancer HDACi (vorinostat, romidepsin, belinostat, and panobinostat) against the schizont stage of T. annulata parasites. All four HDACi showed potent activity and increased hyperacetylation of the histone-4 protein. However, based on the low host cell cytotoxicity and IC50 values, vorinostat (0.103 μM) and belinostat (0.069 μM) were the most effective showing antiparasitic activity. The parasite-specific activities of the HDACi (vorinostat and belinostat) were evaluated by western blotting using parasite-specific antibodies and in silico analysis. Both vorinostat and belinostat reduced the Theileria infected cell viability by downregulating anti-apoptotic proteins and mitochondrial dysfunction, leading to caspase-dependent cell apoptosis. The HDACi caused irreversible and antiproliferative effects on the Theileria infected cell lines. Our results collectively showed that vorinostat and belinostat could be used as an alternative therapy for treating Theileria parasites.
Collapse
Affiliation(s)
| | - Sonam Kamble
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Sonti Roy
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | | | - Siva Singothu
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | | | - Akash Suresh
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Paresh Sharma
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| |
Collapse
|
5
|
Marfurt J, Wirjanata G, Prayoga P, Chalfein F, Leonardo L, Sebayang BF, Apriyanti D, Sihombing MAEM, Trianty L, Suwanarusk R, Brockman A, Piera KA, Luo I, Rumaseb A, MacHunter B, Auburn S, Anstey NM, Kenangalem E, Noviyanti R, Russell B, Poespoprodjo JR, Price RN. Longitudinal ex vivo and molecular trends of chloroquine and piperaquine activity against Plasmodium falciparum and P. vivax before and after introduction of artemisinin-based combination therapy in Papua, Indonesia. Int J Parasitol Drugs Drug Resist 2021; 17:46-56. [PMID: 34193398 PMCID: PMC8358472 DOI: 10.1016/j.ijpddr.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/13/2023]
Abstract
Drug resistant Plasmodium parasites are a major threat to malaria control and elimination. After reports of high levels of multidrug resistant P. falciparum and P. vivax in Indonesia, in 2005, the national first-line treatment policy for uncomplicated malaria was changed in March 2006, to dihydroartemisinin-piperaquine against all species. This study assessed the temporal trends in ex vivo drug susceptibility to chloroquine (CQ) and piperaquine (PIP) for both P. falciparum and P. vivax clinical isolates collected between 2004 and 2018, by using schizont maturation assays, and genotyped a subset of isolates for known and putative molecular markers of CQ and PIP resistance by using Sanger and next generation whole genome sequencing. The median CQ IC50 values varied significantly between years in both Plasmodium species, but there was no significant trend over time. In contrast, there was a significant trend for increasing PIP IC50s in both Plasmodium species from 2010 onwards. Whereas the South American CQ resistant 7G8 pfcrt SVMNT isoform has been fixed since 2005 in the study area, the pfmdr1 86Y allele frequencies decreased and became fixed at the wild-type allele in 2015. In P. vivax isolates, putative markers of CQ resistance (no pvcrt-o AAG (K10) insertion and pvmdr1 Y967F and F1076L) were fixed at the mutant alleles since 2005. None of the putative PIP resistance markers were detected in P. falciparum. The ex vivo drug susceptibility and molecular analysis of CQ and PIP efficacy for P. falciparum and P. vivax after 12 years of intense drug pressure with DHP suggests that whilst the degree of CQ resistance appears to have been sustained, there has been a slight decline in PIP susceptibility, although this does not appear to have reached clinically significant levels. The observed decreasing trend in ex vivo PIP susceptibility highlights the importance of ongoing surveillance.
Collapse
Affiliation(s)
- Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia.
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Pak Prayoga
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Ferryanto Chalfein
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Leo Leonardo
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Boni F Sebayang
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Dwi Apriyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Maic A E M Sihombing
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Rossarin Suwanarusk
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Alan Brockman
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Irene Luo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Barbara MacHunter
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Enny Kenangalem
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia; District Health Authority, Timika, Papua, Indonesia
| | - Rintis Noviyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Bruce Russell
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Jeanne R Poespoprodjo
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia; Paediatric Research Office, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Collins JE, Lee JW, Bohmer MJ, Welden JD, Arshadi AK, Du L, Cichewicz RH, Chakrabarti D. Cyclic Tetrapeptide HDAC Inhibitors with Improved Plasmodium falciparum Selectivity and Killing Profile. ACS Infect Dis 2021; 7:2889-2903. [PMID: 34491031 DOI: 10.1021/acsinfecdis.1c00341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic tetrapeptide histone deacetylase inhibitors represent a promising class of antiplasmodial agents that epigenetically disrupt a wide range of cellular processes in Plasmodium falciparum. Unfortunately, certain limitations, including reversible killing effects and host cell toxicity, prevented these inhibitors from further development and clinical use as antimalarials. In this study, we present a series of cyclic tetrapeptide analogues derived primarily from the fungus Wardomyces dimerus that inhibit P. falciparum with low nanomolar potency and high selectivity. This cyclic tetrapeptide scaffold was diversified further via semisynthesis, leading to the identification of several key structural changes that positively impacted the selectivity, potency, and in vitro killing profiles of these compounds. We confirmed their effectiveness as HDAC inhibitors through the inhibition of PfHDAC1 catalytic activity, in silico modeling, and the hyperacetylation of histone H4. Additional analysis revealed the in vitro inhibition of the most active epoxide-containing analogue was plasmodistatic, exhibiting reversible inhibitory effects upon compound withdrawal after 24 or 48 h. In contrast, one of the new diacetyloxy semisynthetic analogues, CTP-NPDG 19, displayed a rapid and irreversible action against the parasite following compound exposure for 24 h.
Collapse
Affiliation(s)
- Jennifer E. Collins
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Jin Woo Lee
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Monica J. Bohmer
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Joshua D. Welden
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Arash K. Arshadi
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Lin Du
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Robert H. Cichewicz
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| |
Collapse
|
7
|
Murithi JM, Pascal C, Bath J, Boulenc X, Gnädig NF, Pasaje CFA, Rubiano K, Yeo T, Mok S, Klieber S, Desert P, Jiménez-Díaz MB, Marfurt J, Rouillier M, Cherkaoui-Rbati MH, Gobeau N, Wittlin S, Uhlemann AC, Price RN, Wirjanata G, Noviyanti R, Tumwebaze P, Cooper RA, Rosenthal PJ, Sanz LM, Gamo FJ, Joseph J, Singh S, Bashyam S, Augereau JM, Giraud E, Bozec T, Vermat T, Tuffal G, Guillon JM, Menegotto J, Sallé L, Louit G, Cabanis MJ, Nicolas MF, Doubovetzky M, Merino R, Bessila N, Angulo-Barturen I, Baud D, Bebrevska L, Escudié F, Niles JC, Blasco B, Campbell S, Courtemanche G, Fraisse L, Pellet A, Fidock DA, Leroy D. The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to Plasmodium falciparum parasite resistance. Sci Transl Med 2021; 13:13/603/eabg6013. [PMID: 34290058 PMCID: PMC8530196 DOI: 10.1126/scitranslmed.abg6013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023]
Abstract
The emergence and spread of Plasmodium falciparum resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials. In a P. falciparum NSG mouse model, MMV688533 displays a long-lasting pharmacokinetic profile and excellent safety. Selection studies reveal a low propensity for resistance, with modest loss of potency mediated by point mutations in PfACG1 and PfEHD. These proteins are implicated in intracellular trafficking, lipid utilization, and endocytosis, suggesting interference with these pathways as a potential mode of action. This preclinical candidate may offer the potential for a single low-dose cure for malaria.
Collapse
Affiliation(s)
- James M. Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Cécile Pascal
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Jade Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Nina F. Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Kelly Rubiano
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sylvie Klieber
- Sanofi R&D, Translational Medicine & Early Development, Montpellier, France
| | | | | | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | | | | | - Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Universität Basel, Basel, Switzerland
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | | | - Roland A. Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, USA
| | | | - Laura M. Sanz
- Global Health Pharma Research Unit, GSK, Tres Cantos, Madrid, Spain
| | | | | | | | | | | | - Elie Giraud
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Tanguy Bozec
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Thierry Vermat
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Gilles Tuffal
- Sanofi R&D, Translational Medicine & Early Development, Montpellier, France
| | | | - Jérôme Menegotto
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Laurent Sallé
- Sanofi R&D, Translational Medicine & Early Development, Montpellier, France
| | | | - Marie-José Cabanis
- Sanofi R&D, Translational Medicine & Early Development, Montpellier, France
| | | | | | - Rita Merino
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Nadir Bessila
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | | | | | | | | | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - Laurent Fraisse
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Alain Pellet
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Corresponding author. (D.A.F.); (D.L.)
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland.,Corresponding author. (D.A.F.); (D.L.)
| |
Collapse
|
8
|
Nardella F, Halby L, Dobrescu I, Viluma J, Bon C, Claes A, Cadet-Daniel V, Tafit A, Roesch C, Hammam E, Erdmann D, Mairet-Khedim M, Peronet R, Mecheri S, Witkowski B, Scherf A, Arimondo PB. Procainamide-SAHA Fused Inhibitors of hHDAC6 Tackle Multidrug-Resistant Malaria Parasites. J Med Chem 2021; 64:10403-10417. [PMID: 34185525 DOI: 10.1021/acs.jmedchem.1c00821] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetic post-translational modifications are essential for human malaria parasite survival and progression through its life cycle. Here, we present new functionalized suberoylanilide hydroxamic acid (SAHA) derivatives that chemically combine the pan-histone deacetylase inhibitor SAHA with the DNA methyltransferase inhibitor procainamide. A three- or four-step chemical synthesis was designed starting from cheap raw materials. Compared to the single drugs, the combined molecules showed a superior activity in Plasmodium and a potent inhibition against human HDAC6, exerting no cytotoxicity in human cell lines. These new compounds are fully active in multidrug-resistant Plasmodium falciparum Cambodian isolates. They target transmission of the parasite by inducing irreversible morphological changes in gametocytes and inhibiting exflagellation. The compounds are slow-acting and have an additive antimalarial effect in combination with fast-acting epidrugs and dihydroartemisinin. The lead compound decreases parasitemia in mice in a severe malaria model. Taken together, this novel fused molecule offers an affordable alternative to current failing antimalarial therapy.
Collapse
Affiliation(s)
- Flore Nardella
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Ludovic Halby
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Irina Dobrescu
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Johanna Viluma
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Corentin Bon
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France.,Ecole Doctorale MTCI ED563, Université de Paris, Sorbonne Paris Cité, Paris 75270, France
| | - Aurélie Claes
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Véronique Cadet-Daniel
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Ambre Tafit
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Elie Hammam
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Diane Erdmann
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France.,Ecole Doctorale MTCI ED563, Université de Paris, Sorbonne Paris Cité, Paris 75270, France
| | - Melissa Mairet-Khedim
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Roger Peronet
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Salah Mecheri
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Artur Scherf
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| |
Collapse
|
9
|
Buyon LE, Elsworth B, Duraisingh MT. The molecular basis of antimalarial drug resistance in Plasmodium vivax. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 16:23-37. [PMID: 33957488 PMCID: PMC8113647 DOI: 10.1016/j.ijpddr.2021.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Plasmodium vivax is the most geographically widespread cause of human malaria and is responsible for the majority of cases outside of the African continent. While great progress has been made towards eliminating human malaria, drug resistant parasite strains pose a threat towards continued progress. Resistance has arisen to multiple antimalarials in P. vivax, including to chloroquine, which is currently the first line therapy for P. vivax in most regions. Despite its importance, an understanding of the molecular mechanisms of drug resistance in this species remains elusive, in large part due to the complex biology of P. vivax and the lack of in vitro culture. In this review, we will cover the extent and challenges of measuring clinical and in vitro drug resistance in P. vivax. We will consider the roles of candidate drug resistance genes. We will highlight the development of molecular approaches for studying P. vivax biology that provide the opportunity to validate the role of putative drug resistance mutations as well as identify novel mechanisms of drug resistance in this understudied parasite. Validated molecular determinants and markers of drug resistance are essential for the rapid and cost-effective monitoring of drug resistance in P. vivax, and will be useful for optimizing drug regimens and for informing drug policy in control and elimination settings. Drug resistance is emerging in Plasmodium vivax, an important cause of malaria. The complex biology of P. vivax and the limited range of research tools make it difficult to identify drug resistance. The molecular mechanisms of drug resistance in P. vivax remain elusive. This review highlights the extent of drug resistance, the putative mechanisms of resistance and new technologies for the study of P. vivax drug resistance.
Collapse
Affiliation(s)
- Lucas E Buyon
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
10
|
Özel M, Baskol M, Akalın H, Baskol G. Suberoylanilide Hydroxamic Acid (SAHA) Reduces Fibrosis Markers and Deactivates Human Stellate Cells via the Epithelial-Mesenchymal Transition (EMT). Cell Biochem Biophys 2021; 79:349-357. [PMID: 33689126 DOI: 10.1007/s12013-021-00974-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Hepatic fibrosis is known as the accumulation of connective tissue secondary to chronic damage to the liver. Epithelial-mesenchymal transition (EMT) corresponding increase in liver fibrogenesis was shown with immunohistochemistry and PCR-based studies. Suberoylanilide hydroxamic acid (SAHA), a synthetic compound approved as a histone deacetylase inhibitor (HDAC) by the FDA to treat cutaneous T-cell lymphoma is under investigation for the treatment of lung and renal fibrosis. Experimental modeling for hepatic fibrosis can be constructed with an LX2 cell line isolated from human hepatic stellate cells (HSCs). In this study, we aimed to investigate the modulation of SAHA in the pathogenesis of liver fibrosis by detecting the levels of proteins; (E-cadherin (E-cad), N-cadherin (N-cad), Vimentin (Vim), and genes; E-cad, N-cad, Vim, transforming growth factor-beta (TGF-β), alpha-smooth muscle actin (α-SMA), type 1 collagen (COL1A1), type 3 collagen (COL3A1)) that play a significant role in EMT with the LX2 cell line. We also evaluated the action of SAHA with cell proliferation, clonogenic, and migration assay. Cell proliferation was performed by flow cytometry. All the protein levels were determined by Western blot analysis, and gene expression levels were measured by Real-Time PCR. Our study observed that SAHA treatment decreased cell viability, colony formation and migration in LX2 cells. We found that SAHA increased E-cad expression level, while it decreased N-cad, Vim, COL1A1, COL3A1, α-SMA TGF-β genes expression levels. SAHA decreased the level of E-cad, N-cad, and Vim protein levels. We thought that SAHA possesses potent antifibrotic and anti-EMT properties in LX2.
Collapse
Affiliation(s)
- Merve Özel
- Erciyes University School of Medicine, Department of Biochemistry, Kayseri, Turkey. .,Erciyes University, Betül-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey.
| | - Mevlut Baskol
- Erciyes University School of Medicine, Department of Gastroenterology, Kayseri, Turkey
| | - Hilal Akalın
- Erciyes University School of Medicine, Department of Genetics, Kayseri, Turkey
| | - Gulden Baskol
- Erciyes University School of Medicine, Department of Biochemistry, Kayseri, Turkey.,Erciyes University, Betül-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| |
Collapse
|
11
|
Barman M, Kamble S, Roy S, Bhandari V, Singothu S, Dandasena D, Suresh A, Sharma P. Antitheilerial Activity of the Anticancer Histone Deacetylase Inhibitors. Front Microbiol 2021. [PMID: 34867888 DOI: 10.3389/fmicb.2021.759817/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
The apicomplexan parasite, Theileria annulata, is the most prevalent hemoprotozoan in livestock, causing significant economic losses worldwide. It is essential to develop new and improved therapeutics, as current control measures are compromised by the development of resistance against the only available antitheilerial drug, buparvaquone (BPQ). Histone deacetylase inhibitors (HDACi) were shown to treat cancer effectively and revealed in vitro antiparasitic activity against apicomplexan parasites such as Plasmodium and Toxoplasma. In this study, we investigated the antitheilerial activity of the four anti-cancer HDACi (vorinostat, romidepsin, belinostat, and panobinostat) against the schizont stage of T. annulata parasites. All four HDACi showed potent activity and increased hyperacetylation of the histone-4 protein. However, based on the low host cell cytotoxicity and IC50 values, vorinostat (0.103 μM) and belinostat (0.069 μM) were the most effective showing antiparasitic activity. The parasite-specific activities of the HDACi (vorinostat and belinostat) were evaluated by western blotting using parasite-specific antibodies and in silico analysis. Both vorinostat and belinostat reduced the Theileria infected cell viability by downregulating anti-apoptotic proteins and mitochondrial dysfunction, leading to caspase-dependent cell apoptosis. The HDACi caused irreversible and antiproliferative effects on the Theileria infected cell lines. Our results collectively showed that vorinostat and belinostat could be used as an alternative therapy for treating Theileria parasites.
Collapse
Affiliation(s)
| | - Sonam Kamble
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Sonti Roy
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | | | - Siva Singothu
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | | | - Akash Suresh
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Paresh Sharma
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| |
Collapse
|
12
|
Potluri V, Shandil RK, Gavara R, Sambasivam G, Campo B, Wittlin S, Narayanan S. Discovery of FNDR-20123, a histone deacetylase inhibitor for the treatment of Plasmodium falciparum malaria. Malar J 2020; 19:365. [PMID: 33046062 PMCID: PMC7549214 DOI: 10.1186/s12936-020-03421-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background Emergence of anti-malarial drug resistance and perpetual increase in malaria incidence necessitates the development of novel anti-malarials. Histone deacetylases (HDAC) has been shown to be a promising target for malaria, despite this, there are no HDAC inhibitors in clinical trials for malaria treatment. This can be attributed to the poor pharmacokinetics, bioavailability and selectivity of the HDAC inhibitors. Methods A collection of HDAC inhibitors were screened for anti-malarial activity, and the best candidate was profiled in parasite-killing kinetics, growth inhibition of sensitive and multi-drug resistant (MDR) strains and against gametocytes. Absorption, distribution, metabolism and excretion pharmacokinetics (ADME-PK) parameters of FNDR-20123 were determined, and in vivo efficacy was studied in a mouse model for Plasmodium falciparum infection. Results A compound library of HDAC inhibitors (180 in number) was screened for anti-malarial activity, of which FNDR-20123 was the most potent candidate. The compound had been shown to inhibit Plasmodium HDAC with IC50 of 31 nM and human HDAC with IC50 of 3 nM. The IC50 obtained for P. falciparum in asexual blood-stage assay was 42 nM. When compared to atovaquone and pyrimethamine, the killing profiles of FNDR-20123 were better than atovaquone and comparable to pyrimethamine. The IC50 values for the growth inhibition of sensitive and MDR strains were similar, indicating that there is no cross-resistance and a low risk of resistance development. The selected compound was also active against gametocytes, indicating a potential for transmission control: IC50 values being 190 nM for male and > 5 µM for female gametocytes. FNDR-20123 is a stable candidate in human/mouse/rat liver microsomes (> 75% remaining post 2-h incubation), exhibits low plasma protein binding (57% in humans) with no human Ether-à-go–go-Related Gene (hERG) liability (> 100 µM), and does not inhibit any of the cytochrome P450 (CYP) isoforms tested (IC50 > 25 µM). It also shows negligible cytotoxicity to HepG-2 and THP-1 cell lines. The oral pharmacokinetics in rats at 100 mg/kg body weight shows good exposures (Cmax = 1.1 µM) and half-life (T1/2 = 5.5 h). Furthermore, a 14-day toxicokinetic study at 100 mg/kg daily dose did not show any abnormality in body weight or gross organ pathology. FNDR-20123 is also able to reduce parasitaemia significantly in a mouse model for P. falciparum infection when dosed orally and subcutaneously. Conclusion FNDR-20123 may be a suitable candidate for the treatment of malaria, which can be further developed.
Collapse
Affiliation(s)
- Vijay Potluri
- Foundation for Neglected Disease Research, Bengaluru, India
| | | | - R Gavara
- Anthem Biosciences Private Limited, Bengaluru, India
| | | | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | |
Collapse
|
13
|
Matthews KA, Senagbe KM, Nötzel C, Gonzales CA, Tong X, Rijo-Ferreira F, Bhanu NV, Miguel-Blanco C, Lafuente-Monasterio MJ, Garcia BA, Kafsack BFC, Martinez ED. Disruption of the Plasmodium falciparum Life Cycle through Transcriptional Reprogramming by Inhibitors of Jumonji Demethylases. ACS Infect Dis 2020; 6:1058-1075. [PMID: 32272012 PMCID: PMC7748244 DOI: 10.1021/acsinfecdis.9b00455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Little
is known about the role of the three Jumonji C (JmjC) enzymes
in Plasmodium falciparum (Pf). Here,
we show that JIB-04 and other established inhibitors of mammalian
JmjC histone demethylases kill asexual blood stage parasites and are
even more potent at blocking gametocyte development and gamete formation.
In late stage parasites, JIB-04 increased levels of trimethylated
lysine residues on histones, suggesting the inhibition of P. falciparum Jumonji demethylase activity. These epigenetic
defects coincide with deregulation of invasion, cell motor, and sexual
development gene programs, including gene targets coregulated by the
PfAP2-I transcription factor and chromatin-binding factor, PfBDP1.
Mechanistically, we demonstrate that PfJmj3 converts 2-oxoglutarate
to succinate in an iron-dependent manner consistent with mammalian
Jumonji enzymes, and this catalytic activity is inhibited by JIB-04
and other Jumonji inhibitors. Our pharmacological studies of Jumonji
activity in the malaria parasite provide evidence that inhibition
of these enzymatic activities is detrimental to the parasite.
Collapse
Affiliation(s)
- Krista A. Matthews
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Kossi M. Senagbe
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Christopher Nötzel
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
- Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
| | - Christopher A. Gonzales
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Xinran Tong
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Natarajan V. Bhanu
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, Pennsylvania 19104, United States
| | - Celia Miguel-Blanco
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, P.T.M. Severo Ochoa, Tres Cantos, Madrid 28760, Spain
| | | | - Benjamin A. Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, Pennsylvania 19104, United States
| | - Björn F. C. Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
- Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
| | - Elisabeth D. Martinez
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
14
|
Coetzee N, von Grüning H, Opperman D, van der Watt M, Reader J, Birkholtz LM. Epigenetic inhibitors target multiple stages of Plasmodium falciparum parasites. Sci Rep 2020; 10:2355. [PMID: 32047203 PMCID: PMC7012883 DOI: 10.1038/s41598-020-59298-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
The epigenome of the malaria parasite, Plasmodium falciparum, is associated with regulation of various essential processes in the parasite including control of proliferation during asexual development as well as control of sexual differentiation. The unusual nature of the epigenome has prompted investigations into the potential to target epigenetic modulators with novel chemotypes. Here, we explored the diversity within a library of 95 compounds, active against various epigenetic modifiers in cancerous cells, for activity against multiple stages of P. falciparum development. We show that P. falciparum is differentially susceptible to epigenetic perturbation during both asexual and sexual development, with early stage gametocytes particularly sensitive to epi-drugs targeting both histone and non-histone epigenetic modifiers. Moreover, 5 compounds targeting histone acetylation and methylation show potent multistage activity against asexual parasites, early and late stage gametocytes, with transmission-blocking potential. Overall, these results warrant further examination of the potential antimalarial properties of these hit compounds.
Collapse
Affiliation(s)
- Nanika Coetzee
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Daniel Opperman
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Mariette van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
15
|
Nawaz M, Malik I, Hameed M, Hussain Kuthu Z, Zhou J. Modifications of histones in parasites as drug targets. Vet Parasitol 2020; 278:109029. [PMID: 31978703 DOI: 10.1016/j.vetpar.2020.109029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Post-translational modifications of histones and histone modifying enzymes play important roles in gene regulations and other physiological processes in parasites. Inhibitors of such modifying enzymes could be useful as novel therapeutics against parasitic diseases or as chemical probes for investigation of epigenetics. Development of parasitic histone modulators has got rapid expansion in the last few years. A number of highly potent and selective compounds have been reported, together with extensive preclinical studies of their biological activity. Some of these compounds have been widely used in humans targeting cancer and are found non-toxic. This review summarizes the antiparasitic activities of histone and histone modifying enzymes inhibitors evaluated in last few years. As the current chemotherapy against parasites is still not satisfactory, therefore, such compounds represents good starting points for the discovery of effective antiparasitic drugs.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Irfan Malik
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Mudassar Hameed
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zulfiqar Hussain Kuthu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
16
|
Li Y, Liu M, Rizk MA, Moumouni PFA, Lee SH, Galon EM, Guo H, Gao Y, Li J, Beshbishy AM, Nugraha AB, Ji S, Tumwebaze MA, Benedicto B, Yokoyama N, Igarashi I, Xuan X. Drug screening of food and drug administration-approved compounds against Babesia bovis in vitro. Exp Parasitol 2020; 210:107831. [PMID: 31926147 DOI: 10.1016/j.exppara.2020.107831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/03/2019] [Accepted: 01/04/2020] [Indexed: 10/25/2022]
Abstract
Babesia (B.) bovis is one of the main etiological agents of bovine babesiosis, causes serious economic losses to the cattle industry. Control of bovine babesiosis has been hindered by the limited treatment selection for B. bovis, thus, new options are urgently needed. We explored the drug library and unbiasedly screened 640 food and drug administration (FDA) approved drug compounds for their inhibitory activities against B. bovis in vitro. The initial screening identified 13 potentially effective compounds. Four potent compounds, namely mycophenolic acid (MPA), pentamidine (PTD), doxorubicin hydrochloride (DBH) and vorinostat (SAHA) exhibited the lowest IC50 and then selected for further evaluation of their in vitro efficacies using viability, combination inhibitory and cytotoxicity assays. The half-maximal inhibitory concentration (IC50) values of MPA, PTD, DBH, SAHA were 11.38 ± 1.66, 13.12 ± 4.29, 1.79 ± 0.15 and 45.18 ± 7.37 μM, respectively. Of note, DBH exhibited IC50 lower than that calculated for the commonly used antibabesial drug, diminazene aceturate (DA). The viability result revealed the ability of MPA, PTD, DBH, SAHA to prevent the regrowth of treated parasite at 4 × and 2 × of IC50. Antagonistic interactions against B. bovis were observed after treatment with either MPA, PTD, DBH or SAHA in combination with DA. Our findings indicate the richness of FDA approved compounds by novel potent antibabesial candidates and the identified potent compounds especially DBH might be used for the treatment of animal babesiosis caused by B. bovis.
Collapse
Affiliation(s)
- Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan; Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, 35516, Egypt
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan; College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, South Korea
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Huanping Guo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Yang Gao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Amani Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Arifin Budiman Nugraha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan; Faculty of Veterinary Medicine, Bogor Agricultural University, Jl. Agatis Kampus IPB Dramaga, Bogor, 16680, Indonesia
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Maria Agnes Tumwebaze
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Byamukama Benedicto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Hokkaido, Japan.
| |
Collapse
|
17
|
Histone deacetylase inhibitors with high in vitro activities against Plasmodium falciparum isolates collected from Gabonese children and adults. Sci Rep 2019; 9:17336. [PMID: 31758015 PMCID: PMC6874535 DOI: 10.1038/s41598-019-53912-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/04/2019] [Indexed: 01/25/2023] Open
Abstract
Histone deacetylase (HDAC) enzymes are targets for the development of antimalarial drugs with a different mode of action to established antimalarials. Broad-spectrum HDAC-inhibitors show high potency against Plasmodium falciparum, but displayed some toxicity towards human cells. Inhibitors of human HDAC6 are new drug candidates with supposed reduced toxicity to human cells and favorable activities against laboratory P. falciparum strains. We investigated the potency of 12 peptoid-based HDAC-inhibitors against asexual stages of P. falciparum clinical isolates. Parasites representing different genetic backgrounds were isolated from adults and children with uncomplicated malaria in Gabon. Clinical studies on (non-HDAC-inhibitors) antimalarials, moreover, found lower drug efficacy in children, mainly attributed to acquired immunity with age in endemic areas. Therefore, we compared the in vitro sensitivity profiles of adult- and child-derived isolates to antimalarials (HDAC and standard drugs). All HDAC-inhibitors showed 50% inhibitory concentrations at nanomolar ranges with higher activities than the FDA approved reference HDAC-inhibitor SAHA. We propose peptoid-based HDAC6-inhibitors to be lead structures for further development as antimalarial chemotherapeutics. Our results further suggest no differences in activity of the tested antimalarials between P. falciparum parasites isolated from children and adults.
Collapse
|
18
|
Feng LS, Xu Z, Chang L, Li C, Yan XF, Gao C, Ding C, Zhao F, Shi F, Wu X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med Res Rev 2019; 40:931-971. [PMID: 31692025 DOI: 10.1002/med.21643] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Malaria is a tropical disease, leading to around half a million deaths annually. Antimalarials such as quinolines are crucial to fight against malaria, but malaria control is extremely challenged by the limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum which are resistant toward almost all currently accessible antimalarials. To tackle the growing resistance, new antimalarial drugs are needed urgently. Hybrid molecules which contain two or more pharmacophores have the potential to overcome the drug resistance, and hybridization of quinoline privileged antimalarial building block with other antimalarial pharmacophores may provide novel molecules with enhanced in vitro and in vivo activity against drug-resistant (including multidrug-resistant) P falciparum. In recent years, numerous of quinoline hybrids were developed, and their activities against a panel of drug-resistant P falciparum strains were screened. Some of quinoline hybrids were found to possess promising in vitro and in vivo potency. This review emphasized quinoline hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant P falciparum, covering articles published between 2010 and 2019.
Collapse
Affiliation(s)
| | - Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Le Chang
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Chuan Li
- WuXi AppTec Co, Ltd, Wuhan, China
| | | | | | | | | | - Feng Shi
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Xiang Wu
- WuXi AppTec Co, Ltd, Wuhan, China
| |
Collapse
|
19
|
Diedrich D, Stenzel K, Hesping E, Antonova-Koch Y, Gebru T, Duffy S, Fisher G, Schöler A, Meister S, Kurz T, Avery VM, Winzeler EA, Held J, Andrews KT, Hansen FK. One-pot, multi-component synthesis and structure-activity relationships of peptoid-based histone deacetylase (HDAC) inhibitors targeting malaria parasites. Eur J Med Chem 2018; 158:801-813. [PMID: 30245402 PMCID: PMC6195125 DOI: 10.1016/j.ejmech.2018.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022]
Abstract
Malaria drug discovery has shifted from a focus on targeting asexual blood stage parasites, to the development of drugs that can also target exo-erythrocytic forms and/or gametocytes in order to prevent malaria and/or parasite transmission. In this work, we aimed to develop parasite-selective histone deacetylase inhibitors (HDACi) with activity against the disease-causing asexual blood stages of Plasmodium malaria parasites as well as with causal prophylactic and/or transmission blocking properties. An optimized one-pot, multi-component protocol via a sequential Ugi four-component reaction and hydroxylaminolysis was used for the preparation of a panel of peptoid-based HDACi. Several compounds displayed potent activity against drug-sensitive and drug-resistant P. falciparum asexual blood stages, high parasite-selectivity and submicromolar activity against exo-erythrocytic forms of P. berghei. Our optimization study resulted in the discovery of the hit compound 1u which combines high activity against asexual blood stage parasites (Pf 3D7 IC50: 4 nM; Pf Dd2 IC50: 1 nM) and P. berghei exo-erythrocytic forms (Pb EEF IC50: 25 nM) with promising parasite-specific activity (SIPf3D7/HepG2: 2496, SIPfDd2/HepG2: 9990, and SIPbEEF/HepG2: 400).
Collapse
Affiliation(s)
- Daniela Diedrich
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Katharina Stenzel
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany; Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Eva Hesping
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Yevgeniya Antonova-Koch
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Tamirat Gebru
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Sandra Duffy
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Gillian Fisher
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Andrea Schöler
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Stephan Meister
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Vicky M Avery
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia.
| | - Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany; Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany.
| |
Collapse
|
20
|
Kanyal A, Rawat M, Gurung P, Choubey D, Anamika K, Karmodiya K. Genome‐wide survey and phylogenetic analysis of histone acetyltransferases and histone deacetylases of
Plasmodium falciparum. FEBS J 2018; 285:1767-1782. [DOI: 10.1111/febs.14376] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Abhishek Kanyal
- Department of Biology Indian Institute of Science Education and Research Pashan, Pune India
| | - Mukul Rawat
- Department of Biology Indian Institute of Science Education and Research Pashan, Pune India
| | - Pratima Gurung
- Department of Biology Indian Institute of Science Education and Research Pashan, Pune India
| | | | | | - Krishanpal Karmodiya
- Department of Biology Indian Institute of Science Education and Research Pashan, Pune India
| |
Collapse
|
21
|
A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance. Nat Commun 2017; 8:15159. [PMID: 28537265 PMCID: PMC5458052 DOI: 10.1038/ncomms15159] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/02/2017] [Indexed: 01/12/2023] Open
Abstract
K13 gene mutations are a primary marker of artemisinin resistance in Plasmodium falciparum malaria that threatens the long-term clinical utility of artemisinin-based combination therapies, the cornerstone of modern day malaria treatment. Here we describe a multinational drug discovery programme that has delivered a synthetic tetraoxane-based molecule, E209, which meets key requirements of the Medicines for Malaria Venture drug candidate profiles. E209 has potent nanomolar inhibitory activity against multiple strains of P. falciparum and P. vivax in vitro, is efficacious against P. falciparum in in vivo rodent models, produces parasite reduction ratios equivalent to dihydroartemisinin and has pharmacokinetic and pharmacodynamic characteristics compatible with a single-dose cure. In vitro studies with transgenic parasites expressing variant forms of K13 show no cross-resistance with the C580Y mutation, the primary variant observed in Southeast Asia. E209 is a superior next generation endoperoxide with combined pharmacokinetic and pharmacodynamic features that overcome the liabilities of artemisinin derivatives.
Collapse
|
22
|
Sundriyal S, Chen PB, Lubin AS, Lueg GA, Li F, White AJP, Malmquist NA, Vedadi M, Scherf A, Fuchter MJ. Histone lysine methyltransferase structure activity relationships that allow for segregation of G9a inhibition and anti- Plasmodium activity. MEDCHEMCOMM 2017; 8:1069-1092. [PMID: 29308121 PMCID: PMC5708365 DOI: 10.1039/c7md00052a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
Abstract
Plasmodium falciparum HKMTs (PfHKMTs) play a key role in controlling Plasmodium gene expression and represent exciting new anti-malarial epigenetic targets. Using an inhibitor series derived from the diaminoquinazoline HKMT inhibitory chemotype, we have previously identified compounds with highly promising antimalarial activity, including irreversible asexual cycle blood stage-independent cytotoxic activity at nM concentrations, oral efficacy in in vivo models of disease, and the unprecedented ability to reactivate dormant liver stage parasites (hypnozoites). However, future development of this series will need to address host versus parasite selectivity, where inhibitory activity against human G9a is removed from the lead compounds, while maintaining potent anti-Plasmodium activity. Herein, we report an extensive study of the SAR of this series against both G9a and P. falciparum. We have identified key SAR features which demonstrate that high parasite vs. G9a selectivity can be achieved by selecting appropriate substituents at position 2, 4 and 7 of the quinazoline ring. We have also, in turn, discovered that potent G9a inhibitors can be identified by employing a 6-carbon 'Nle mimic' at position 7. Together, this data suggests that while broadly similar, the G9a and potential PfHKMT target(s) binding pockets and/or binding modes of the diaminoquinazoline analogues exhibit clear and exploitable differences. Based on this, we believe this scaffold to have clear potential for development into a novel anti-malarial therapeutic.
Collapse
Affiliation(s)
- Sandeep Sundriyal
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ; ; Tel: +44 (0)2075945815
| | - Patty B Chen
- Unité Biologie des Interactions Hôte-Parasite , Département de Parasites et Insectes Vecteurs , Institut Pasteur , Paris 75015 , France
- CNRS ERL 9195 , Paris 75015 , France
- INSERM Unit U1201 , Paris 75015 , France
| | - Alexandra S Lubin
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ; ; Tel: +44 (0)2075945815
| | - Gregor A Lueg
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ; ; Tel: +44 (0)2075945815
| | - Fengling Li
- Structural Genomics Consortium , University of Toronto , Toronto , ON M5G 1L7 , Canada
| | - Andrew J P White
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ; ; Tel: +44 (0)2075945815
| | - Nicholas A Malmquist
- Unité Biologie des Interactions Hôte-Parasite , Département de Parasites et Insectes Vecteurs , Institut Pasteur , Paris 75015 , France
- CNRS ERL 9195 , Paris 75015 , France
- INSERM Unit U1201 , Paris 75015 , France
| | - Masoud Vedadi
- Structural Genomics Consortium , University of Toronto , Toronto , ON M5G 1L7 , Canada
- Department of Pharmacology and Toxicology , University of Toronto , Toronto , ON M5S 1A8 , Canada
| | - Artur Scherf
- Unité Biologie des Interactions Hôte-Parasite , Département de Parasites et Insectes Vecteurs , Institut Pasteur , Paris 75015 , France
- CNRS ERL 9195 , Paris 75015 , France
- INSERM Unit U1201 , Paris 75015 , France
| | - Matthew J Fuchter
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ; ; Tel: +44 (0)2075945815
| |
Collapse
|
23
|
Hailu GS, Robaa D, Forgione M, Sippl W, Rotili D, Mai A. Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives. J Med Chem 2017; 60:4780-4804. [DOI: 10.1021/acs.jmedchem.6b01595] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gebremedhin S. Hailu
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Dina Robaa
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Mariantonietta Forgione
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Center
for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Dante Rotili
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Antonello Mai
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Istituto
Pasteur, Fondazione Cenci-Bolognetti, “Sapienza” Università di Roma, 00185 Rome, Italy
| |
Collapse
|
24
|
Baird JK, Valecha N, Duparc S, White NJ, Price RN. Diagnosis and Treatment of Plasmodium vivax Malaria. Am J Trop Med Hyg 2016; 95:35-51. [PMID: 27708191 PMCID: PMC5198890 DOI: 10.4269/ajtmh.16-0171] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/19/2016] [Indexed: 11/07/2022] Open
Abstract
The diagnosis and treatment of Plasmodium vivax malaria differs from that of Plasmodium falciparum malaria in fundamentally important ways. This article reviews the guiding principles, practices, and evidence underpinning the diagnosis and treatment of P. vivax malaria.
Collapse
Affiliation(s)
- J Kevin Baird
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Neena Valecha
- National Institute for Malaria Research, New Delhi, India
| | | | - Nicholas J White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ric N Price
- Division of Global and Tropical Health, Menzies School of Health Research-Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Chua MJ, Arnold MSJ, Xu W, Lancelot J, Lamotte S, Späth GF, Prina E, Pierce RJ, Fairlie DP, Skinner-Adams TS, Andrews KT. Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 7:42-50. [PMID: 28107750 PMCID: PMC5241585 DOI: 10.1016/j.ijpddr.2016.12.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
Abstract
Malaria, schistosomiasis and leishmaniases are among the most prevalent tropical parasitic diseases and each requires new innovative treatments. Targeting essential parasite pathways, such as those that regulate gene expression and cell cycle progression, is a key strategy for discovering new drug leads. In this study, four clinically approved anti-cancer drugs (Vorinostat, Belinostat, Panobinostat and Romidepsin) that target histone/lysine deacetylase enzymes were examined for in vitro activity against Plasmodium knowlesi, Schistosoma mansoni, Leishmania amazonensis and L. donovani parasites and two for in vivo activity in a mouse malaria model. All four compounds were potent inhibitors of P. knowlesi malaria parasites (IC50 9-370 nM), with belinostat, panobinostat and vorinostat having 8-45 fold selectivity for the parasite over human neonatal foreskin fibroblast (NFF) or human embryonic kidney (HEK 293) cells, while romidepsin was not selective. Each of the HDAC inhibitor drugs caused hyperacetylation of P. knowlesi histone H4. None of the drugs was active against Leishmania amastigote or promastigote parasites (IC50 > 20 μM) or S. mansoni schistosomula (IC50 > 10 μM), however romidepsin inhibited S. mansoni adult worm parings and egg production (IC50 ∼10 μM). Modest in vivo activity was observed in P. berghei infected mice dosed orally with vorinostat or panobinostat (25 mg/kg twice daily for four days), with a significant reduction in parasitemia observed on days 4-7 and 4-10 after infection (P < 0.05), respectively.
Collapse
Affiliation(s)
- Ming Jang Chua
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Megan S J Arnold
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Weijun Xu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Julien Lancelot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204- CIIL -Centre D'Infection et D'Immunité de Lille, F-59000 Lille, France
| | - Suzanne Lamotte
- Institut Pasteur and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Gerald F Späth
- Institut Pasteur and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Raymond J Pierce
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204- CIIL -Centre D'Infection et D'Immunité de Lille, F-59000 Lille, France
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia.
| |
Collapse
|
26
|
Ontoria JM, Paonessa G, Ponzi S, Ferrigno F, Nizi E, Biancofiore I, Malancona S, Graziani R, Roberts D, Willis P, Bresciani A, Gennari N, Cecchetti O, Monteagudo E, Orsale MV, Veneziano M, Di Marco A, Cellucci A, Laufer R, Altamura S, Summa V, Harper S. Discovery of a Selective Series of Inhibitors of Plasmodium falciparum HDACs. ACS Med Chem Lett 2016; 7:454-9. [PMID: 27190592 DOI: 10.1021/acsmedchemlett.5b00468] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/05/2016] [Indexed: 11/28/2022] Open
Abstract
The identification of a new series of P. falciparum growth inhibitors is described. Starting from a series of known human class I HDAC inhibitors a SAR exploration based on growth inhibitory activity in parasite and human cells-based assays led to the identification of compounds with submicromolar inhibition of P. falciparum growth (EC50 < 500 nM) and good selectivity over the activity of human HDAC in cells (up to >50-fold). Inhibition of parasital HDACs as the mechanism of action of this new class of selective growth inhibitors is supported by hyperacetylation studies.
Collapse
Affiliation(s)
- Jesus M. Ontoria
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Giacomo Paonessa
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Simona Ponzi
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Federica Ferrigno
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Emanuela Nizi
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Ilaria Biancofiore
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Savina Malancona
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Rita Graziani
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - David Roberts
- Medicines
for Malaria Venture, ICC, Route de Pré-Bois 20, P.O.
Box 1826, 1215 Geneva, Switzerland
| | - Paul Willis
- Medicines
for Malaria Venture, ICC, Route de Pré-Bois 20, P.O.
Box 1826, 1215 Geneva, Switzerland
| | - Alberto Bresciani
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Nadia Gennari
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Ottavia Cecchetti
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Edith Monteagudo
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Maria V. Orsale
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Maria Veneziano
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Annalise Di Marco
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Antonella Cellucci
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Ralph Laufer
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Sergio Altamura
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Vincenzo Summa
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Steven Harper
- Departments
of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| |
Collapse
|
27
|
Cobbold SA, Santos JM, Ochoa A, Perlman DH, Llinás M. Proteome-wide analysis reveals widespread lysine acetylation of major protein complexes in the malaria parasite. Sci Rep 2016; 6:19722. [PMID: 26813983 PMCID: PMC4728587 DOI: 10.1038/srep19722] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 01/18/2023] Open
Abstract
Lysine acetylation is a ubiquitous post-translational modification in many organisms including the malaria parasite Plasmodium falciparum, yet the full extent of acetylation across the parasite proteome remains unresolved. Moreover, the functional significance of acetylation or how specific acetyl-lysine sites are regulated is largely unknown. Here we report a seven-fold expansion of the known parasite ‘acetylome’, characterizing 2,876 acetylation sites on 1,146 proteins. We observe that lysine acetylation targets a diverse range of protein complexes and is particularly enriched within the Apicomplexan AP2 (ApiAP2) DNA-binding protein family. Using quantitative proteomics we determined that artificial perturbation of the acetate/acetyl-CoA balance alters the acetyl-lysine occupancy of several ApiAP2 DNA-binding proteins and related transcriptional proteins. This metabolic signaling could mediate significant downstream transcriptional responses, as we show that acetylation of an ApiAP2 DNA-binding domain ablates its DNA-binding propensity. Lastly, we investigated the acetyl-lysine targets of each class of lysine deacetylase in order to begin to explore how each class of enzyme contributes to regulating the P. falciparum acetylome.
Collapse
Affiliation(s)
- Simon A Cobbold
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Joana M Santos
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Biochemistry and Molecular Biology, Department of Chemistry, Center for Malaria Research and Center for Infectious Disease Dynamics, W126 Millennium Science Complex, Pennsylvania State University, State College, PA 16802, USA
| | - Alejandro Ochoa
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Center for Statistics and Machine Learning, Princeton University, Princeton, NJ 08544
| | - David H Perlman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544.,Department of Chemistry Princeton University, Princeton, NJ 08544.,Collaborative Proteomics and Mass Spectrometry Center, Princeton University, Princeton, NJ 08544
| | - Manuel Llinás
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544.,Department of Biochemistry and Molecular Biology, Department of Chemistry, Center for Malaria Research and Center for Infectious Disease Dynamics, W126 Millennium Science Complex, Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
28
|
Potent Ex Vivo Activity of Naphthoquine and Methylene Blue against Drug-Resistant Clinical Isolates of Plasmodium falciparum and Plasmodium vivax. Antimicrob Agents Chemother 2015. [PMID: 26195523 DOI: 10.1128/aac.00874-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 4-aminoquinoline naphthoquine (NQ) and the thiazine dye methylene blue (MB) have potent in vitro efficacies against Plasmodium falciparum, but susceptibility data for P. vivax are limited. The species- and stage-specific ex vivo activities of NQ and MB were assessed using a modified schizont maturation assay on clinical field isolates from Papua, Indonesia, where multidrug-resistant P. falciparum and P. vivax are prevalent. Both compounds were highly active against P. falciparum (median [range] 50% inhibitory concentration [IC50]: NQ, 8.0 nM [2.6 to 71.8 nM]; and MB, 1.6 nM [0.2 to 7.0 nM]) and P. vivax (NQ, 7.8 nM [1.5 to 34.2 nM]; and MB, 1.2 nM [0.4 to 4.3 nM]). Stage-specific drug susceptibility assays revealed significantly greater IC50s in parasites exposed at the trophozoite stage than at the ring stage for NQ in P. falciparum (26.5 versus 5.1 nM, P = 0.021) and P. vivax (341.6 versus 6.5 nM, P = 0.021) and for MB in P. vivax (10.1 versus 1.6 nM, P = 0.010). The excellent ex vivo activities of NQ and MB against both P. falciparum and P. vivax highlight their potential utility for the treatment of multidrug-resistant malaria in areas where both species are endemic.
Collapse
|
29
|
Teixeira C, Vale N, Pérez B, Gomes A, Gomes JRB, Gomes P. "Recycling" classical drugs for malaria. Chem Rev 2014; 114:11164-220. [PMID: 25329927 DOI: 10.1021/cr500123g] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cátia Teixeira
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal.,CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Nuno Vale
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Bianca Pérez
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Ana Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - José R B Gomes
- CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Paula Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| |
Collapse
|
30
|
Aguiar ACC, Pereira DB, Amaral NS, De Marco L, Krettli AU. Plasmodium vivax and Plasmodium falciparum ex vivo susceptibility to anti-malarials and gene characterization in Rondônia, West Amazon, Brazil. Malar J 2014; 13:73. [PMID: 24581308 PMCID: PMC3945814 DOI: 10.1186/1475-2875-13-73] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/09/2014] [Indexed: 11/22/2022] Open
Abstract
Background Chloroquine (CQ), a cost effective antimalarial drug with a relatively good safety profile and therapeutic index, is no longer used by itself to treat patients with Plasmodium falciparum due to CQ-resistant strains. P. vivax, representing over 90% of malaria cases in Brazil, despite reported resistance, is treated with CQ as well as with primaquine to block malaria transmission and avoid late P. vivax malaria relapses. Resistance to CQ and other antimalarial drugs influences malaria control, thus monitoring resistance phenotype by parasite genotyping is helpful in endemic areas. Methods A total of 47 P. vivax and nine P. falciparum fresh isolates were genetically characterized and tested for CQ, mefloquine (MQ) and artesunate (ART) susceptibility in vitro. The genes mdr1 and pfcrt, likely related to CQ resistance, were analyzed in all isolates. Drug susceptibility was determined using short-term parasite cultures of ring stages for 48 to 72 hour and thick blood smears counts. Each parasite isolate was tested with the antimalarials to measure the geometric mean of 50% inhibitory concentration. Results The low numbers of P. falciparum isolates reflect the species prevalence in Brazil; most displayed low sensitivity to CQ (IC50 70 nM). However, CQ resistance was rare among P. vivax isolates (IC50 of 32 nM). The majority of P. vivax and P. falciparum isolates were sensitive to ART and MQ. One hundred percent of P. falciparum isolates carried non-synonymous mutations in the pfmdr1 gene in codons 184, 1042 and 1246, 84% in codons 1034 and none in codon 86, a well-known resistance mutation. For the pfcrt gene, mutations were observed in codons 72 and 76 in all P. falciparum isolates. One P. falciparum isolate from Angola, Africa, showing sensitivity to the antimalarials, presented no mutations. In P. vivax, mutations of pvmdr1 and the multidrug resistance gene 1 marker at codon F976 were absent. Conclusion All P. falciparum Brazilian isolates showed CQ resistance and presented non-synonymous mutations in pfmdr1 and pfcrt. CQ resistant genotypes were not present among P. vivax isolates and the IC50 values were low in all samples of the Brazilian West Amazon.
Collapse
Affiliation(s)
| | | | | | | | - Antoniana U Krettli
- Laboratório de Malária, Centro de Pesquisas René Rachou, FIOCRUZ, Av, Augusto de Lima 1715, 30190-002 Belo Horizonte, MG, Brazil.
| |
Collapse
|
31
|
Duffy MF, Selvarajah SA, Josling GA, Petter M. Epigenetic regulation of the Plasmodium falciparum genome. Brief Funct Genomics 2013; 13:203-16. [PMID: 24326119 DOI: 10.1093/bfgp/elt047] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent research has highlighted some unique aspects of chromatin biology in the malaria parasite Plasmodium falciparum. During its erythrocytic lifecycle P. falciparum maintains its genome primarily as unstructured euchromatin. Indeed there is no clear role for chromatin-mediated silencing of the majority of the developmentally expressed genes in P. falciparum. However discontinuous stretches of heterochromatin are critical for variegated expression of contingency genes that mediate key pathogenic processes in malaria. These range from invasion of erythrocytes and antigenic variation to solute transport and growth adaptation in response to environmental changes. Despite lack of structure within euchromatin the nucleus maintains functional compartments that regulate expression of many genes at the nuclear periphery, particularly genes with clonally variant expression. The typical components of the chromatin regulatory machinery are present in P. falciparum; however, some of these appear to have evolved novel species-specific functions, e.g. the dynamic regulation of histone variants at virulence gene promoters. The parasite also appears to have repeatedly acquired chromatin regulatory proteins through lateral transfer from endosymbionts and from the host. P. falciparum chromatin regulators have been successfully targeted with multiple drugs in laboratory studies; hopefully their functional divergence from human counterparts will allow the development of parasite-specific inhibitors.
Collapse
|
32
|
Pohlit AM, Lima RBS, Frausin G, Silva LFRE, Lopes SCP, Moraes CB, Cravo P, Lacerda MVG, Siqueira AM, Freitas-Junior LH, Costa FTM. Amazonian plant natural products: perspectives for discovery of new antimalarial drug leads. Molecules 2013; 18:9219-40. [PMID: 23917112 PMCID: PMC6270278 DOI: 10.3390/molecules18089219] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/14/2013] [Accepted: 07/18/2013] [Indexed: 02/07/2023] Open
Abstract
Plasmodium falciparum and P. vivax malaria parasites are now resistant, or showing signs of resistance, to most drugs used in therapy. Novel chemical entities that exhibit new mechanisms of antiplasmodial action are needed. New antimalarials that block transmission of Plasmodium spp. from humans to Anopheles mosquito vectors are key to malaria eradication efforts. Although P. vivax causes a considerable number of malaria cases, its importance has for long been neglected. Vivax malaria can cause severe manifestations and death; hence there is a need for P. vivax-directed research. Plants used in traditional medicine, namely Artemisia annua and Cinchona spp. are the sources of the antimalarial natural products artemisinin and quinine, respectively. Based on these compounds, semi-synthetic artemisinin-derivatives and synthetic quinoline antimalarials have been developed and are the most important drugs in the current therapeutic arsenal for combating malaria. In the Amazon region, where P. vivax predominates, there is a local tradition of using plant-derived preparations to treat malaria. Here, we review the current P. falciparum and P. vivax drug-sensitivity assays, focusing on challenges and perspectives of drug discovery for P. vivax, including tests against hypnozoites. We also present the latest findings of our group and others on the antiplasmodial and antimalarial chemical components from Amazonian plants that may be potential drug leads against malaria.
Collapse
Affiliation(s)
- Adrian Martin Pohlit
- Instituto Nacional de Pesquisa da Amazônia (INPA), Av. André Araújo, 2936, 69067-375 Manaus, AM, Brazil; E-Mails: (R.B.S.L.); (G.F.); (L.F.R.S.)
| | - Renata Braga Souza Lima
- Instituto Nacional de Pesquisa da Amazônia (INPA), Av. André Araújo, 2936, 69067-375 Manaus, AM, Brazil; E-Mails: (R.B.S.L.); (G.F.); (L.F.R.S.)
| | - Gina Frausin
- Instituto Nacional de Pesquisa da Amazônia (INPA), Av. André Araújo, 2936, 69067-375 Manaus, AM, Brazil; E-Mails: (R.B.S.L.); (G.F.); (L.F.R.S.)
| | - Luiz Francisco Rocha e Silva
- Instituto Nacional de Pesquisa da Amazônia (INPA), Av. André Araújo, 2936, 69067-375 Manaus, AM, Brazil; E-Mails: (R.B.S.L.); (G.F.); (L.F.R.S.)
| | - Stefanie Costa Pinto Lopes
- Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de Campinas-UNICAMP, P.O. Box 6109, 13083-862 Campinas, SP, Brazil; E-Mail:
| | - Carolina Borsoi Moraes
- Laboratório Nacional de Biociências (LNBio) – Centro Nacional de Pesquisa em Energia e Materiais (CNEPM) - P.O. Box 6192, 13083-970 Campinas, SP, Brazil; E-Mails: (C.B.M.); (L.H.F.-J.)
| | - Pedro Cravo
- Programa de Mestrado em Sociedade, Tecnologia e Meio Ambiente. UniEVANGÉLICA-Centro Universitário de Anápolis, 75083-515 Anapólis, GO, Brazil; E-Mail:
- Centro de Malária e Doenças Tropicais, LA/IHMT-Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, 69040-000 Manaus, AM, Brazil; E-Mails: (M.V.G.L.); (A.M.S.)
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, 69040-000 Manaus, AM, Brazil
| | - André Machado Siqueira
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, 69040-000 Manaus, AM, Brazil; E-Mails: (M.V.G.L.); (A.M.S.)
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, 69040-000 Manaus, AM, Brazil
| | - Lucio H. Freitas-Junior
- Laboratório Nacional de Biociências (LNBio) – Centro Nacional de Pesquisa em Energia e Materiais (CNEPM) - P.O. Box 6192, 13083-970 Campinas, SP, Brazil; E-Mails: (C.B.M.); (L.H.F.-J.)
| | - Fabio Trindade Maranhão Costa
- Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de Campinas-UNICAMP, P.O. Box 6109, 13083-862 Campinas, SP, Brazil; E-Mail:
| |
Collapse
|
33
|
Alonso-Villaverde C, Menéndez JA, Joven J. Metabolic stress in infected cells may represent a therapeutic target for human immunodeficiency virus infection. Med Hypotheses 2013; 81:125-30. [PMID: 23639282 DOI: 10.1016/j.mehy.2013.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/16/2013] [Accepted: 04/08/2013] [Indexed: 01/14/2023]
Abstract
Worldwide, there are thousands of new cases of human immunodeficiency virus-1 (HIV-1) infection per day. The effectiveness of current combination antiretroviral therapy (ART) is relative; to prioritize finding vaccines and/or cure-oriented initiatives should be reinforced because there is little room, if any, for procrastination. Basic and clinical findings on HIV-1 reservoirs suggest that disruption of virus latency is feasible. Because the goal is curing HIV-1 infection, we should be aware that the challenge is to eradicate the viruses of every single infected cell and consequently acting upon virus latency is necessary but not sufficient. The large majority of the virus reservoir, CD4(+) T lymphocytes, is readily accessible but other minor reservoirs, where ART does not diffuse, require innovative strategies. The situation closely resembles that currently faced in the treatment of cancer. Exploiting the fact that histone deacetylase inhibitors, mainly vorinostat, may disrupt the latency of HIV-1, we propose to supplement this effect with a programmed interference in the metabolic stress of infected cells. Metformin and chloroquine are cheap and accessible modulators of pro-survival mechanisms to which viruses are constantly confronted to generate alternative energy sources and maximize virus production. Metformin restrains the use of the usurped cellular biosynthetic machinery by viral genes and chloroquine contributes to death of infected cells. We suggest that the combination of vorinostat, chloroquine and metformin should be combined with ART to pursue viral eradication in infected cells.
Collapse
|
34
|
Traoré M, Mietton F, Maubon D, Peuchmaur M, Francisco Hilário F, Pereira de Freitas R, Bougdour A, Curt A, Maynadier M, Vial H, Pelloux H, Hakimi MA, Wong YS. Flexible Synthesis and Evaluation of Diverse Anti-Apicomplexa Cyclic Peptides. J Org Chem 2013; 78:3655-75. [DOI: 10.1021/jo4001492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mariam Traoré
- Département de Pharmacochimie Moléculaire, Université Joseph Fourier-Grenoble 1, CNRS UMR 5063, CNRS ICMG FR 2607, bâtiment André
Rassat, 470 rue de la Chimie, F-38041 Grenoble Cedex 9, France
| | - Flore Mietton
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
| | - Danièle Maubon
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
- Laboratoire de Parasitologie-Mycologie, Département des Agents Infectieux, Centre Hospitalier Universitaire, BP
217, 38043 Grenoble cedex 9, France
| | - Marine Peuchmaur
- Département de Pharmacochimie Moléculaire, Université Joseph Fourier-Grenoble 1, CNRS UMR 5063, CNRS ICMG FR 2607, bâtiment André
Rassat, 470 rue de la Chimie, F-38041 Grenoble Cedex 9, France
| | - Flaviane Francisco Hilário
- Département de Pharmacochimie Moléculaire, Université Joseph Fourier-Grenoble 1, CNRS UMR 5063, CNRS ICMG FR 2607, bâtiment André
Rassat, 470 rue de la Chimie, F-38041 Grenoble Cedex 9, France
- Departamento de Quı́mica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais,
Brasil
- CAPES Foundation, Ministry of Education of Brazil, Brasilia DF 70040-020, Brazil
| | | | - Alexandre Bougdour
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
| | - Aurélie Curt
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
- Laboratoire de Parasitologie-Mycologie, Département des Agents Infectieux, Centre Hospitalier Universitaire, BP
217, 38043 Grenoble cedex 9, France
| | - Marjorie Maynadier
- Dynamique
des Interactions Membranaires Normales et Pathologiques, Université de Montpellier 2,
CNRS UMR 5235, CP 107, Place E. Bataillon, F-34095 Montpellier Cedex
5, France
| | - Henri Vial
- Dynamique
des Interactions Membranaires Normales et Pathologiques, Université de Montpellier 2,
CNRS UMR 5235, CP 107, Place E. Bataillon, F-34095 Montpellier Cedex
5, France
| | - Hervé Pelloux
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
- Laboratoire de Parasitologie-Mycologie, Département des Agents Infectieux, Centre Hospitalier Universitaire, BP
217, 38043 Grenoble cedex 9, France
| | - Mohamed-Ali Hakimi
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
| | - Yung-Sing Wong
- Département de Pharmacochimie Moléculaire, Université Joseph Fourier-Grenoble 1, CNRS UMR 5063, CNRS ICMG FR 2607, bâtiment André
Rassat, 470 rue de la Chimie, F-38041 Grenoble Cedex 9, France
| |
Collapse
|
35
|
Nilsen A, LaCrue AN, White KL, Forquer IP, Cross RM, Marfurt J, Mather MW, Delves MJ, Shackleford DM, Saenz FE, Morrisey JM, Steuten J, Mutka T, Li Y, Wirjanata G, Ryan E, Duffy S, Kelly JX, Sebayang BF, Zeeman AM, Noviyanti R, Sinden RE, Kocken CHM, Price RN, Avery VM, Angulo-Barturen I, Jiménez-Díaz MB, Ferrer S, Herreros E, Sanz LM, Gamo FJ, Bathurst I, Burrows JN, Siegl P, Guy RK, Winter RW, Vaidya AB, Charman SA, Kyle DE, Manetsch R, Riscoe MK. Quinolone-3-diarylethers: a new class of antimalarial drug. Sci Transl Med 2013; 5:177ra37. [PMID: 23515079 PMCID: PMC4227885 DOI: 10.1126/scitranslmed.3005029] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The goal for developing new antimalarial drugs is to find a molecule that can target multiple stages of the parasite's life cycle, thus impacting prevention, treatment, and transmission of the disease. The 4(1H)-quinolone-3-diarylethers are selective potent inhibitors of the parasite's mitochondrial cytochrome bc1 complex. These compounds are highly active against the human malaria parasites Plasmodium falciparum and Plasmodium vivax. They target both the liver and blood stages of the parasite as well as the forms that are crucial for disease transmission, that is, the gametocytes, the zygote, the ookinete, and the oocyst. Selected as a preclinical candidate, ELQ-300 has good oral bioavailability at efficacious doses in mice, is metabolically stable, and is highly active in blocking transmission in rodent models of malaria. Given its predicted low dose in patients and its predicted long half-life, ELQ-300 has potential as a new drug for the treatment, prevention, and, ultimately, eradication of human malaria.
Collapse
Affiliation(s)
- Aaron Nilsen
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Alexis N. LaCrue
- Department of Global Health, College of Public Health, 3720 Spectrum Blvd. (Ste 304), Tampa, FL 33612, USA
| | - Karen L. White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Isaac P. Forquer
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Richard M. Cross
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620-5250, USA
| | - Jutta Marfurt
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Michael W. Mather
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Michael J. Delves
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Fabian E. Saenz
- Department of Global Health, College of Public Health, 3720 Spectrum Blvd. (Ste 304), Tampa, FL 33612, USA
| | - Joanne M. Morrisey
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Jessica Steuten
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Tina Mutka
- Department of Global Health, College of Public Health, 3720 Spectrum Blvd. (Ste 304), Tampa, FL 33612, USA
| | - Yuexin Li
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Grennady Wirjanata
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Eileen Ryan
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Sandra Duffy
- Eskitis Institute for Cell & Molecular Therapies, Brisbane Innovation Park, Nathan campus, Griffith University, QLD 4111, Australia
| | - Jane Xu Kelly
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Boni F. Sebayang
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Rintis Noviyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia
| | - Robert E. Sinden
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Clemens H. M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Ric N. Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Vicky M. Avery
- Eskitis Institute for Cell & Molecular Therapies, Brisbane Innovation Park, Nathan campus, Griffith University, QLD 4111, Australia
| | - Iñigo Angulo-Barturen
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - María Belén Jiménez-Díaz
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Santiago Ferrer
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Esperanza Herreros
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Laura M. Sanz
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Francisco-Javier Gamo
- GlaxoSmithKline, Medicines Development Campus, Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Ian Bathurst
- Medicines for Malaria Venture, 20, route de Pré-Bois, PO Box 1826, 1215 Geneva 15, Switzerland
| | - Jeremy N. Burrows
- Medicines for Malaria Venture, 20, route de Pré-Bois, PO Box 1826, 1215 Geneva 15, Switzerland
| | - Peter Siegl
- Siegl Pharma Consulting LLC, Blue Bell, PA, USA
| | - R. Kiplin Guy
- Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| | - Rolf W. Winter
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Akhil B. Vaidya
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Dennis E. Kyle
- Department of Global Health, College of Public Health, 3720 Spectrum Blvd. (Ste 304), Tampa, FL 33612, USA
| | - Roman Manetsch
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620-5250, USA
| | - Michael K. Riscoe
- VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
- Department of Molecular Microbiology and Immunology, 3181 Sam Jackson Blvd., Portland, Oregon 97239, USA
| |
Collapse
|
36
|
Abstract
Infection by Plasmodium vivax poses unique challenges for diagnosis and treatment. Relatively low numbers of parasites in peripheral circulation may be difficult to confirm, and patients infected by dormant liver stages cannot be diagnosed before activation and the ensuing relapse. Radical cure thus requires therapy aimed at both the blood stages of the parasite (blood schizontocidal) and prevention of subsequent relapses (hypnozoitocidal). Chloroquine and primaquine have been the companion therapies of choice for the treatment of vivax malaria since the 1950s. Confirmed resistance to chloroquine occurs in much of the vivax endemic world and demands the investigation of alternative blood schizontocidal companions in radical cure. Such a shift in practice necessitates investigation of the safety and efficacy of primaquine when administered with those therapies, and the toxicity profile of such combination treatments, particularly in patients with glucose-6-phosphate dehydrogenase deficiency. These clinical studies are confounded by the frequency and timing of relapse among strains of P. vivax, and potentially by differing susceptibilities to primaquine. The inability to maintain this parasite in continuous in vitro culture greatly hinders new drug discovery. Development of safe and effective chemotherapies for vivax malaria for the coming decades requires overcoming these challenges.
Collapse
|
37
|
Deshmukh AS, Srivastava S, Dhar SK. Plasmodium falciparum: epigenetic control of var gene regulation and disease. Subcell Biochem 2013; 61:659-682. [PMID: 23150271 DOI: 10.1007/978-94-007-4525-4_28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plasmodium falciparum, one of the deadliest parasites on earth causes human malaria resulting one million deaths annually. Central to the parasite pathogenicity and morbidity is the switching of parasite virulence (var) gene expression causing host immune evasion. The regulation of Plasmodium var gene expression is poorly understood. The complex life cycle of Plasmodium and mutually exclusive expression pattern of var genes make this disease difficult to control. Recent studies have demonstrated the pivotal role of epigenetic mechanism for control of coordinated expression of var genes, important for various clinical manifestations of malaria. In this review, we discuss about different Plasmodium histones and their various modifications important for gene expression and gene repression.Contribution of epigenetic mechanism to understand the var gene expression is also highlighted. We also describe in details P. falciparum nuclear architecture including heterochromatin, euchromatin and telomeric regions and their importance in subtelomeric and centrally located var gene expression. Finally, we explore the possibility of using Histone Acetyl Transferase (HAT) and Histone Deacetylase (HDAC)inhibitors against multi-drug resistance malaria parasites to provide another line of treatment for malaria.
Collapse
Affiliation(s)
- Abhijit S Deshmukh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | |
Collapse
|
38
|
Price RN, Auburn S, Marfurt J, Cheng Q. Phenotypic and genotypic characterisation of drug-resistant Plasmodium vivax. Trends Parasitol 2012; 28:522-9. [PMID: 23044287 PMCID: PMC4627502 DOI: 10.1016/j.pt.2012.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/15/2012] [Accepted: 08/15/2012] [Indexed: 01/23/2023]
Abstract
In this review we present recent developments in the analysis of Plasmodium vivax clinical trials and ex vivo drug-susceptibility assays, as well approaches currently being used to identify molecular markers of drug resistance. Clinical trials incorporating the measurement of in vivo drug concentrations and parasite clearance times are needed to detect early signs of resistance. Analysis of P. vivax growth dynamics ex vivo have defined the criteria for acceptable assay thresholds for drug susceptibility testing, and their subsequent interpretation. Genotyping and next-generation sequencing studies in P. vivax field isolates are set to transform our understanding of the molecular mechanisms of drug resistance.
Collapse
Affiliation(s)
- Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.
| | | | | | | |
Collapse
|
39
|
Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum. Proc Natl Acad Sci U S A 2012; 109:16708-13. [PMID: 23011794 DOI: 10.1073/pnas.1205414109] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epigenetic factors such as histone methylation control the developmental progression of malaria parasites during the complex life cycle in the human host. We investigated Plasmodium falciparum histone lysine methyltransferases as a potential target class for the development of novel antimalarials. We synthesized a compound library based upon a known specific inhibitor (BIX-01294) of the human G9a histone methyltransferase. Two compounds, BIX-01294 and its derivative TM2-115, inhibited P. falciparum 3D7 parasites in culture with IC(50) values of ~100 nM, values at least 22-fold more potent than their apparent IC(50) toward two human cell lines and one mouse cell line. These compounds irreversibly arrested parasite growth at all stages of the intraerythrocytic life cycle. Decrease in parasite viability (>40%) was seen after a 3-h incubation with 1 µM BIX-01294 and resulted in complete parasite killing after a 12-h incubation. Additionally, mice with patent Plasmodium berghei ANKA strain infection treated with a single dose (40 mg/kg) of TM2-115 had 18-fold reduced parasitemia the following day. Importantly, treatment of P. falciparum parasites in culture with BIX-01294 or TM2-115 resulted in significant reductions in histone H3K4me3 levels in a concentration-dependent and exposure time-dependent manner. Together, these results suggest that BIX-01294 and TM2-115 inhibit malaria parasite histone methyltransferases, resulting in rapid and irreversible parasite death. Our data position histone lysine methyltransferases as a previously unrecognized target class, and BIX-01294 as a promising lead compound, in a presently unexploited avenue for antimalarial drug discovery targeting multiple life-cycle stages.
Collapse
|
40
|
An analytical method for assessing stage-specific drug activity in Plasmodium vivax malaria: implications for ex vivo drug susceptibility testing. PLoS Negl Trop Dis 2012; 6:e1772. [PMID: 22880143 PMCID: PMC3413709 DOI: 10.1371/journal.pntd.0001772] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/26/2012] [Indexed: 11/19/2022] Open
Abstract
The emergence of highly chloroquine (CQ) resistant P. vivax in Southeast Asia has created an urgent need for an improved understanding of the mechanisms of drug resistance in these parasites, the development of robust tools for defining the spread of resistance, and the discovery of new antimalarial agents. The ex vivo Schizont Maturation Test (SMT), originally developed for the study of P. falciparum, has been modified for P. vivax. We retrospectively analysed the results from 760 parasite isolates assessed by the modified SMT to investigate the relationship between parasite growth dynamics and parasite susceptibility to antimalarial drugs. Previous observations of the stage-specific activity of CQ against P. vivax were confirmed, and shown to have profound consequences for interpretation of the assay. Using a nonlinear model we show increased duration of the assay and a higher proportion of ring stages in the initial blood sample were associated with decreased effective concentration (EC(50)) values of CQ, and identify a threshold where these associations no longer hold. Thus, starting composition of parasites in the SMT and duration of the assay can have a profound effect on the calculated EC(50) for CQ. Our findings indicate that EC(50) values from assays with a duration less than 34 hours do not truly reflect the sensitivity of the parasite to CQ, nor an assay where the proportion of ring stage parasites at the start of the assay does not exceed 66%. Application of this threshold modelling approach suggests that similar issues may occur for susceptibility testing of amodiaquine and mefloquine. The statistical methodology which has been developed also provides a novel means of detecting stage-specific drug activity for new antimalarials.
Collapse
|
41
|
Comparative ex vivo activity of novel endoperoxides in multidrug-resistant plasmodium falciparum and P. vivax. Antimicrob Agents Chemother 2012; 56:5258-63. [PMID: 22850522 DOI: 10.1128/aac.00283-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The declining efficacy of artemisinin derivatives against Plasmodium falciparum highlights the urgent need to identify alternative highly potent compounds for the treatment of malaria. In Papua Indonesia, where multidrug resistance has been documented against both P. falciparum and P. vivax malaria, comparative ex vivo antimalarial activity against Plasmodium isolates was assessed for the artemisinin derivatives artesunate (AS) and dihydroartemisinin (DHA), the synthetic peroxides OZ277 and OZ439, the semisynthetic 10-alkylaminoartemisinin derivatives artemisone and artemiside, and the conventional antimalarial drugs chloroquine (CQ), amodiaquine (AQ), and piperaquine (PIP). Ex vivo drug susceptibility was assessed in 46 field isolates (25 P. falciparum and 21 P. vivax). The novel endoperoxide compounds exhibited potent ex vivo activity against both species, but significant differences in intrinsic activity were observed. Compared to AS and its active metabolite DHA, all the novel compounds showed lower or equal 50% inhibitory concentrations (IC(50)s) in both species (median IC(50)s between 1.9 and 3.6 nM in P. falciparum and 0.7 and 4.6 nM in P. vivax). The antiplasmodial activity of novel endoperoxides showed different cross-susceptibility patterns in the two Plasmodium species: whereas their ex vivo activity correlated positively with CQ, PIP, AS, and DHA in P. falciparum, the same was not apparent in P. vivax. The current study demonstrates for the first time potent activity of novel endoperoxides against drug-resistant P. vivax. The high activity against drug-resistant strains of both Plasmodium species confirms these compounds to be promising candidates for future artemisinin-based combination therapy (ACT) regimens in regions of coendemicity.
Collapse
|
42
|
Antimalarial activity of the anticancer histone deacetylase inhibitor SB939. Antimicrob Agents Chemother 2012; 56:3849-56. [PMID: 22508312 DOI: 10.1128/aac.00030-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone deacetylase (HDAC) enzymes posttranslationally modify lysines on histone and nonhistone proteins and play crucial roles in epigenetic regulation and other important cellular processes. HDAC inhibitors (e.g., suberoylanilide hydroxamic acid [SAHA; also known as vorinostat]) are used clinically to treat some cancers and are under investigation for use against many other diseases. Development of new HDAC inhibitors for noncancer indications has the potential to be accelerated by piggybacking onto cancer studies, as several HDAC inhibitors have undergone or are undergoing clinical trials. One such compound, SB939, is a new orally active hydroxamate-based HDAC inhibitor with an improved pharmacokinetic profile compared to that of SAHA. In this study, the in vitro and in vivo antiplasmodial activities of SB939 were investigated. SB939 was found to be a potent inhibitor of the growth of Plasmodium falciparum asexual-stage parasites in vitro (50% inhibitory concentration [IC(50)], 100 to 200 nM), causing hyperacetylation of parasite histone and nonhistone proteins. In combination with the aspartic protease inhibitor lopinavir, SB939 displayed additive activity. SB939 also potently inhibited the in vitro growth of exoerythrocytic-stage Plasmodium parasites in liver cells (IC(50), ~150 nM), suggesting that inhibitor targeting to multiple malaria parasite life cycle stages may be possible. In an experimental in vivo murine model of cerebral malaria, orally administered SB939 significantly inhibited P. berghei ANKA parasite growth, preventing development of cerebral malaria-like symptoms. These results identify SB939 as a potent new antimalarial HDAC inhibitor and underscore the potential of investigating next-generation anticancer HDAC inhibitors as prospective new drug leads for treatment of malaria.
Collapse
|
43
|
Abstract
Parasitic diseases cause significant global morbidity and mortality, particularly in underdeveloped regions of the world. Malaria alone causes ~800000 deaths each year, with children and pregnant women being at highest risk. There is no licensed vaccine available for any human parasitic disease and drug resistance is compromising the efficacy of many available anti-parasitic drugs. This is driving drug discovery research on new agents with novel modes of action. Histone deacetylase (HDAC) inhibitors are being investigated as drugs for a range of diseases, including cancers and infectious diseases such as HIV/AIDS, and several parasitic diseases. This review focuses on the current state of knowledge of HDAC inhibitors targeted to the major human parasitic diseases malaria, schistosomiasis, trypanosomiasis, toxoplasmosis and leishmaniasis. Insights are provided into the unique challenges that will need to be considered if HDAC inhibitors are to be progressed towards clinical development as potential new anti-parasitic drugs.
Collapse
Affiliation(s)
- Katherine T Andrews
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland, Australia.
| | | | | |
Collapse
|
44
|
Grimberg BT, Mehlotra RK. Expanding the Antimalarial Drug Arsenal-Now, But How? Pharmaceuticals (Basel) 2011; 4:681-712. [PMID: 21625331 PMCID: PMC3102560 DOI: 10.3390/ph4050681] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/09/2011] [Accepted: 04/19/2011] [Indexed: 01/24/2023] Open
Abstract
The number of available and effective antimalarial drugs is quickly dwindling. This is mainly because a number of drug resistance-associated mutations in malaria parasite genes, such as crt, mdr1, dhfr/dhps, and others, have led to widespread resistance to all known classes of antimalarial compounds. Unfortunately, malaria parasites have started to exhibit some level of resistance in Southeast Asia even to the most recently introduced class of drugs, artemisinins. While there is much need, the antimalarial drug development pipeline remains woefully thin, with little chemical diversity, and there is currently no alternative to the precious artemisinins. It is difficult to predict where the next generation of antimalarial drugs will come from; however, there are six major approaches: (i) re-optimizing the use of existing antimalarials by either replacement/rotation or combination approach; (ii) repurposing drugs that are currently used to treat other infections or diseases; (iii) chemically modifying existing antimalarial compounds; (iv) exploring natural sources; (v) large-scale screening of diverse chemical libraries; and (vi) through parasite genome-based ("targeted") discoveries. When any newly discovered effective antimalarial treatment is used by the populus, we must maintain constant vigilance for both parasite-specific and human-related factors that are likely to hamper its success. This article is neither comprehensive nor conclusive. Our purpose is to provide an overview of antimalarial drug resistance, associated parasite genetic factors (1. Introduction; 2. Emergence of artemisinin resistance in P. falciparum), and the antimalarial drug development pipeline (3. Overview of the global pipeline of antimalarial drugs), and highlight some examples of the aforementioned approaches to future antimalarial treatment. These approaches can be categorized into "short term" (4. Feasible options for now) and "long term" (5. Next generation of antimalarial treatment-Approaches and candidates). However, these two categories are interrelated, and the approaches in both should be implemented in parallel with focus on developing a successful, long-lasting antimalarial chemotherapy.
Collapse
Affiliation(s)
- Brian T. Grimberg
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; E-Mails: (B.T.G.); (R.K.M.); Tel.: +1-216-368-6328 or +1-216-368-6172, Fax: +1-216-368-4825
| | - Rajeev K. Mehlotra
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; E-Mails: (B.T.G.); (R.K.M.); Tel.: +1-216-368-6328 or +1-216-368-6172, Fax: +1-216-368-4825
| |
Collapse
|