1
|
Ding J, Hoglund RM, Tagbor H, Tinto H, Valéa I, Mwapasa V, Kalilani‐Phiri L, Van Geertruyden J, Nambozi M, Mulenga M, Hachizovu S, Ravinetto R, D'Alessandro U, Tarning J. Population pharmacokinetics of amodiaquine and piperaquine in African pregnant women with uncomplicated Plasmodium falciparum infections. CPT Pharmacometrics Syst Pharmacol 2024; 13:1893-1903. [PMID: 39228131 PMCID: PMC11578137 DOI: 10.1002/psp4.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 09/05/2024] Open
Abstract
Artemisinin-based combination therapy (ACT) is the first-line recommended treatment for uncomplicated malaria. Pharmacokinetic (PK) properties in pregnant women are often based on small studies and need to be confirmed and validated in larger pregnant patient populations. This study aimed to evaluate the PK properties of amodiaquine and its active metabolite, desethylamodiaquine, and piperaquine in women in their second and third trimester of pregnancy with uncomplicated P. falciparum infections. Eligible pregnant women received either artesunate-amodiaquine (200/540 mg daily, n = 771) or dihydroartemisinin-piperaquine (40/960 mg daily, n = 755) for 3 days (NCT00852423). Population PK properties were evaluated using nonlinear mixed-effects modeling, and effect of gestational age and trimester was evaluated as covariates. 1071 amodiaquine and 1087 desethylamodiaquine plasma concentrations, and 976 piperaquine plasma concentrations, were included in the population PK analysis. Amodiaquine concentrations were described accurately with a one-compartment disposition model followed by a two-compartment disposition model of desethylamodiaquine. The relative bioavailability of amodiaquine increased with gestational age (1.25% per week). The predicted exposure to desethylamodiaquine was 2.8%-32.2% higher in pregnant women than that reported in non-pregnant women, while day 7 concentrations were comparable. Piperaquine concentrations were adequately described by a three-compartment disposition model. Neither gestational age nor trimester had significant impact on the PK of piperaquine. The predicted exposure and day 7 concentrations of piperaquine were similar to that reported in non-pregnant women. In conclusion, the exposure to desethylamodiaquine and piperaquine was similar to that in non-pregnant women. Dose adjustment is not warranted for women in their second and their trimester of pregnancy.
Collapse
Affiliation(s)
- Junjie Ding
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Richard M. Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | | | | | | | - Victor Mwapasa
- Department of Community and Environmental Health, Kamuzu University of Health SciencesBlantyreMalawi
| | - Linda Kalilani‐Phiri
- Department of Community and Environmental Health, Kamuzu University of Health SciencesBlantyreMalawi
| | | | | | | | | | - Raffaella Ravinetto
- Public Health DepartmentInstitute of Tropical MedicineAntwerpBelgium
- School of Public HealthUniversity of the Western CapeCape TownSouth Africa
| | - Umberto D'Alessandro
- MRC Unit The Gambia at the London School of Hygiene and Tropical MedicineFajaraGambia
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
- The WorldWide Antimalarial Resistance NetworkOxfordUK
| |
Collapse
|
2
|
Dimbu PR, Labuda S, Ferreira CM, Caquece F, André K, Pembele G, Pode D, João MF, Pelenda VM, Nieto Andrade B, Horton B, Kennedy C, Svigel SS, Zhou Z, Morais JFM, do Rosário J, Fortes F, Martins JF, Plucinski MM. Therapeutic response to four artemisinin-based combination therapies in Angola, 2021. Antimicrob Agents Chemother 2024; 68:e0152523. [PMID: 38421163 PMCID: PMC10989004 DOI: 10.1128/aac.01525-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Monitoring antimalarial efficacy is important to detect the emergence of parasite drug resistance. Angola conducts in vivo therapeutic efficacy studies (TESs) every 2 years in its fixed sentinel sites in Benguela, Lunda Sul, and Zaire provinces. Children with uncomplicated Plasmodium falciparum malaria were treated with artemether-lumefantrine (AL), artesunate-amodiaquine (ASAQ), dihydroartemisinin-piperaquine (DP), or artesunate-pyronaridine (ASPY) and followed for 28 (AL and ASAQ) or 42 days (DP and ASPY) to assess clinical and parasitological response to treatment. Two drugs were sequentially assessed in each site in February-July 2021. The primary indicator was the Kaplan-Meier estimate of the PCR-corrected efficacy at the end of the follow-up period. A total of 622 patients were enrolled in the study and 590 (95%) participants reached a study endpoint. By day 3, ≥98% of participants were slide-negative in all study sites and arms. After PCR correction, day 28 AL efficacy was 88.0% (95% CI: 82%-95%) in Zaire and 94.7% (95% CI: 90%-99%) in Lunda Sul. For ASAQ, day 28 efficacy was 92.0% (95% CI: 87%-98%) in Zaire and 100% in Lunda Sul. Corrected day 42 efficacy was 99.6% (95% CI: 99%-100%) for ASPY and 98.3% (95% CI: 96%-100%) for DP in Benguela. High day 3 clearance rates suggest no clinical evidence of artemisinin resistance. This was the fourth of five rounds of TES in Angola showing a corrected AL efficacy <90% in a site. For Zaire, AL has had an efficacy <90% in 2013, 2015, and 2021. ASAQ, DP, and ASPY are appropriate choices as artemisinin-based combination therapies in Angola.
Collapse
Affiliation(s)
| | - Sarah Labuda
- United States President’s Malaria Initiative, United States Centers for Disease Control and Prevention, Luanda, Angola
| | | | - Felismina Caquece
- Field Epidemiology Training Program, Ministry of Health, Luanda, Angola
| | - Kialanda André
- Field Epidemiology Training Program, Ministry of Health, Luanda, Angola
| | - Garcia Pembele
- National Institute of Health Research, Ministry of Health, Luanda, Angola
| | - Dilunvuidi Pode
- Field Epidemiology Training Program, Ministry of Health, Luanda, Angola
| | | | | | | | - Breanna Horton
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Culzean Kennedy
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Samaly S. Svigel
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zhiyong Zhou
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Joana do Rosário
- United States President’s Malaria Initiative, USAID, Luanda, Angola
| | - Filomeno Fortes
- Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | | | - Mateusz M. Plucinski
- United States President’s Malaria Initiative, Malaria Branch, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Unger HW, Acharya S, Arnold L, Wu C, van Eijk AM, Gore-Langton GR, Ter Kuile FO, Lufele E, Chico RM, Price RN, Moore BR, Thriemer K, Rogerson SJ. The effect and control of malaria in pregnancy and lactating women in the Asia-Pacific region. Lancet Glob Health 2023; 11:e1805-e1818. [PMID: 37858590 DOI: 10.1016/s2214-109x(23)00415-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023]
Abstract
Half of all pregnancies at risk of malaria worldwide occur in the Asia-Pacific region, where Plasmodium falciparum and Plasmodium vivax co-exist. Despite substantial reductions in transmission, malaria remains an important cause of adverse health outcomes for mothers and offspring, including pre-eclampsia. Malaria transmission is heterogeneous, and infections are commonly subpatent and asymptomatic. High-grade antimalarial resistance poses a formidable challenge to malaria control in pregnancy in the region. Intermittent preventive treatment in pregnancy reduces infection risk in meso-endemic New Guinea, whereas screen-and-treat strategies will require more sensitive point-of-care tests to control malaria in pregnancy. In the first trimester, artemether-lumefantrine is approved, and safety data are accumulating for other artemisinin-based combinations. Safety of novel antimalarials to treat artemisinin-resistant P falciparum during pregnancy, and of 8-aminoquinolines during lactation, needs to be established. A more systematic approach to the prevention of malaria in pregnancy in the Asia-Pacific is required.
Collapse
Affiliation(s)
- Holger W Unger
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Obstetrics and Gynaecology, Royal Darwin Hospital, Tiwi, NT, Australia; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Sanjaya Acharya
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Lachlan Arnold
- Royal Melbourne Hospital Clinical School, The University of Melbourne, Parkville, VIC, Australia
| | - Connie Wu
- Royal Melbourne Hospital Clinical School, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Maria van Eijk
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Georgia R Gore-Langton
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Feiko O Ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elvin Lufele
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - R Matthew Chico
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Brioni R Moore
- Curtin Medical School, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia; Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, University of Melbourne, The Doherty Institute, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, The Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Assmus F, Driouich JS, Abdelnabi R, Vangeel L, Touret F, Adehin A, Chotsiri P, Cochin M, Foo CS, Jochmans D, Kim S, Luciani L, Moureau G, Park S, Pétit PR, Shum D, Wattanakul T, Weynand B, Fraisse L, Ioset JR, Mowbray CE, Owen A, Hoglund RM, Tarning J, de Lamballerie X, Nougairède A, Neyts J, Sjö P, Escudié F, Scandale I, Chatelain E. Need for a Standardized Translational Drug Development Platform: Lessons Learned from the Repurposing of Drugs for COVID-19. Microorganisms 2022; 10:1639. [PMID: 36014057 PMCID: PMC9460261 DOI: 10.3390/microorganisms10081639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
In the absence of drugs to treat or prevent COVID-19, drug repurposing can be a valuable strategy. Despite a substantial number of clinical trials, drug repurposing did not deliver on its promise. While success was observed with some repurposed drugs (e.g., remdesivir, dexamethasone, tocilizumab, baricitinib), others failed to show clinical efficacy. One reason is the lack of clear translational processes based on adequate preclinical profiling before clinical evaluation. Combined with limitations of existing in vitro and in vivo models, there is a need for a systematic approach to urgent antiviral drug development in the context of a global pandemic. We implemented a methodology to test repurposed and experimental drugs to generate robust preclinical evidence for further clinical development. This translational drug development platform comprises in vitro, ex vivo, and in vivo models of SARS-CoV-2, along with pharmacokinetic modeling and simulation approaches to evaluate exposure levels in plasma and target organs. Here, we provide examples of identified repurposed antiviral drugs tested within our multidisciplinary collaboration to highlight lessons learned in urgent antiviral drug development during the COVID-19 pandemic. Our data confirm the importance of assessing in vitro and in vivo potency in multiple assays to boost the translatability of pre-clinical data. The value of pharmacokinetic modeling and simulations for compound prioritization is also discussed. We advocate the need for a standardized translational drug development platform for mild-to-moderate COVID-19 to generate preclinical evidence in support of clinical trials. We propose clear prerequisites for progression of drug candidates for repurposing into clinical trials. Further research is needed to gain a deeper understanding of the scope and limitations of the presented translational drug development platform.
Collapse
Affiliation(s)
- Frauke Assmus
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Jean-Sélim Driouich
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Laura Vangeel
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Franck Touret
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Ayorinde Adehin
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Palang Chotsiri
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Maxime Cochin
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Caroline S. Foo
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Seungtaek Kim
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Léa Luciani
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Grégory Moureau
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Soonju Park
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Paul-Rémi Pétit
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - David Shum
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Thanaporn Wattanakul
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Birgit Weynand
- Departmet of Imaging and Pathology, Katholieke Universiteit Leuven, Translational Cell and Tissue Research, 3000 Leuven, Belgium
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Jean-Robert Ioset
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Charles E. Mowbray
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Andrew Owen
- Centre for Excellence in Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 7ZX, UK
| | - Richard M. Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Peter Sjö
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Fanny Escudié
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| |
Collapse
|
5
|
Wattanakul T, Chotsiri P, Scandale I, Hoglund RM, Tarning J. A pharmacometric approach to evaluate drugs for potential repurposing as COVID-19 therapeutics. Expert Rev Clin Pharmacol 2022; 15:945-958. [PMID: 36017624 DOI: 10.1080/17512433.2022.2113388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Developing and evaluating novel compounds for treatment or prophylaxis of emerging infectious diseases is costly and time-consuming. Repurposing of already available marketed compounds is an appealing option as they already have an established safety profile. This approach could substantially reduce cost and time required to make effective treatments available to fight the COVID-19 pandemic. However, this approach is challenging since many drug candidates show efficacy in in vitro experiments, but fail to deliver effect when evaluated in clinical trials. Better approaches to evaluate in vitro data are needed, in order to prioritize drugs for repurposing. AREAS COVERED This article evaluates potential drugs that might be of interest for repurposing in the treatment of patients with COVID-19 disease. A pharmacometric simulation-based approach was developed to evaluate in vitro activity data in combination with expected clinical drug exposure, in order to evaluate the likelihood of achieving effective concentrations in patients. EXPERT OPINION The presented pharmacometric approach bridges in vitro activity data to clinically expected drug exposures, and could therefore be a useful compliment to other methods in order to prioritize repurposed drugs for evaluation in prospective randomized controlled clinical trials.
Collapse
Affiliation(s)
- Thanaporn Wattanakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Palang Chotsiri
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Richard M Hoglund
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Chotsiri P, White NJ, Tarning J. Pharmacokinetic considerations in seasonal malaria chemoprevention. Trends Parasitol 2022; 38:673-682. [DOI: 10.1016/j.pt.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/16/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
7
|
Antimalarial drug candidates in phase I and II drug development: a scoping review. Antimicrob Agents Chemother 2021; 66:e0165921. [PMID: 34843390 PMCID: PMC8846400 DOI: 10.1128/aac.01659-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence and spread of parasite resistance to currently available antimalarials has highlighted the importance of developing novel antimalarials. This scoping review provides an overview of antimalarial drug candidates undergoing phase I and II studies between 1 January 2016 and 28 April 2021. PubMed, Web of Science, Embase, clinical trial registries, and reference lists were searched for relevant studies. Information regarding antimalarial compound details, clinical trial characteristics, study population, and drug pharmacokinetics and pharmacodynamics (PK-PD) were extracted. A total of 50 studies were included, of which 24 had published their results and 26 were unpublished. New antimalarial compounds were evaluated as monotherapy (28 studies, 14 drug candidates) and combination therapy (9 studies, 10 candidates). Fourteen active compounds were identified in the current antimalarial drug development pipeline together with 11 compounds that are inactive, 6 due to insufficient efficacy. PK-PD data were available from 24 studies published as open-access articles. Four unpublished studies have made their results publicly available on clinical trial registries. The terminal elimination half-life of new antimalarial compounds ranged from 14.7 to 483 h. The log10 parasite reduction ratio over 48 h and parasite clearance half-life for Plasmodium falciparum following a single-dose monotherapy were 1.55 to 4.1 and 3.4 to 9.4 h, respectively. The antimalarial drug development landscape has seen a number of novel compounds, with promising PK-PD properties, evaluated in phase I and II studies over the past 5 years. Timely public disclosure of PK-PD data is crucial for informative decision-making and drug development strategy.
Collapse
|
8
|
High-throughput quantitation method for amodiaquine and desethylamodiaquine in plasma using supported liquid extraction technology. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122887. [PMID: 34364298 PMCID: PMC8417464 DOI: 10.1016/j.jchromb.2021.122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022]
Abstract
Amodiaquine is a drug used for treatment of malaria and is often used in combination with artesunate in areas where malaria parasites are still susceptible to amodiaquine. Liquid chromatography tandem-mass spectrometry was used to quantify amodiaquine and its active metabolite, desethylamodiaquine, in plasma samples. A low sample volume of 100 µl, and high-throughput extraction technique using a supported liquid extraction (SLE+) technique on an automated liquid handler platform for faster sample processing are some of the advantages of this method. Separation of amodiaquine from desethylamodiaquine was achieved using a reversed phase Zorbax SB-CN 50 mm × 4.6 mm, I.D. 3.5 µm column with acetonitrile and 20 mM ammonium formate with 1% formic acid pH ~ 2.6 (15-85, v/v) as mobile phase. The absolute recoveries of amodiaquine and desethylamodiaquine were 66% to 76%, and their isotope label internal standard were in the range of 73% to 85%. Validation results of the developed method demonstrated intra-batch and inter-batch precisions within the acceptance criteria range of ± 15.0%. There were no matrix or carry-over effects observed. The lower limit of quantification was 1.08 ng/ml for amodiaquine and 1.41 ng/ml for desethylamodiaquine. The method showed robust and accurate performance with high sensitivity. Thus, the validated method was successfully implemented and applied in the evaluation of a clinical trial where participants received artemether-lumefantrine plus amodiaquine twice daily for three days (amodiaquine dose of 10 mg base/kg/day).
Collapse
|
9
|
Piperaquine Pharmacokinetics during Intermittent Preventive Treatment for Malaria in Pregnancy. Antimicrob Agents Chemother 2021; 65:AAC.01150-20. [PMID: 33361303 PMCID: PMC8092554 DOI: 10.1128/aac.01150-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
Dihydroartemisinin-piperaquine (DP) is a long-acting artemisinin combination treatment that provides effective chemoprevention and has been proposed as an alternative antimalarial drug for intermittent preventive therapy in pregnancy (IPTp). Several pharmacokinetic studies have shown that dose adjustment may not be needed for the treatment of malaria in pregnancy with DP. Dihydroartemisinin-piperaquine (DP) is a long-acting artemisinin combination treatment that provides effective chemoprevention and has been proposed as an alternative antimalarial drug for intermittent preventive therapy in pregnancy (IPTp). Several pharmacokinetic studies have shown that dose adjustment may not be needed for the treatment of malaria in pregnancy with DP. However, there are limited data on the optimal dosing for IPTp. This study aimed to evaluate the population pharmacokinetics of piperaquine given as IPTp in pregnant women. Pregnant women were enrolled in clinical trials conducted in Kenya and Indonesia and treated with standard 3-day courses of DP, administered in 4- to 8-week intervals from the second trimester until delivery. Pharmacokinetic blood samples were collected for piperaquine drug measurements before each treatment round, at the time of breakthrough symptomatic malaria, and at delivery. Piperaquine population pharmacokinetic properties were investigated using nonlinear mixed-effects modeling with a prior approach. In total, data from 366 Kenyan and 101 Indonesian women were analyzed. The pharmacokinetic properties of piperaquine were adequately described using a flexible transit absorption (n = 5) followed by a three-compartment disposition model. Gestational age did not affect the pharmacokinetic parameters of piperaquine. After three rounds of monthly IPTp, 9.45% (95% confidence interval [CI], 1.8 to 26.5%) of pregnant women had trough piperaquine concentrations below the suggested target concentration (10.3 ng/ml). Translational simulations suggest that providing the full treatment course of DP at monthly intervals provides sufficient protection to prevent malaria infection. Monthly administration of DP has the potential to offer optimal prevention of malaria during pregnancy. (This study has been registered at ClinicalTrials.gov under identifier NCT01669941 and in the ISRCTN under number ISRCTN34010937.)
Collapse
|
10
|
Moore BR, Davis TM. Updated pharmacokinetic considerations for the use of antimalarial drugs in pregnant women. Expert Opin Drug Metab Toxicol 2020; 16:741-758. [PMID: 32729740 DOI: 10.1080/17425255.2020.1802425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The association between pregnancy and altered drug pharmacokinetic (PK) properties is acknowledged, as is its impact on drug plasma concentrations and thus therapeutic efficacy. However, there have been few robust PK studies of antimalarial use in pregnancy. Given that inadequate dosing for prevention or treatment of malaria in pregnancy can result in negative maternal/infant outcomes, along with the potential to select for parasite drug resistance, it is imperative that reliable pregnancy-specific dosing recommendations are established. AREAS COVERED PK studies of antimalarial drugs in pregnancy. The present review summarizes the efficacy and PK properties of WHO-recommended therapies used in pregnancy, with a focus on PK studies published since 2014. EXPERT OPINION Changes in antimalarial drug disposition in pregnancy are well described, yet pregnant women continue to receive treatment regimens optimized for non-pregnant adults. Contemporary in silico modeling has recently identified a series of alternative dosing regimens that are predicted to provide optimal therapeutic efficacy for pregnant women.
Collapse
Affiliation(s)
- Brioni R Moore
- School of Pharmacy and Biomedical Sciences, Curtin University , Bentley, Western Australia, Australia.,Medical School, University of Western Australia , Crawley, Western Australia, Australia
| | - Timothy M Davis
- Medical School, University of Western Australia , Crawley, Western Australia, Australia
| |
Collapse
|
11
|
Karbwang J, Na‐Bangchang K. The Role of Clinical Pharmacology in Chemotherapy of Multidrug‐Resistant
Plasmodium falciparum. J Clin Pharmacol 2020; 60:830-847. [DOI: 10.1002/jcph.1589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Juntra Karbwang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
- Department of Clinical Product developmentNagasaki Institute of Tropical MedicineNagasaki University Nagasaki Japan
| | - Kesara Na‐Bangchang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
| |
Collapse
|
12
|
Bretscher MT, Dahal P, Griffin J, Stepniewska K, Bassat Q, Baudin E, D'Alessandro U, Djimde AA, Dorsey G, Espié E, Fofana B, González R, Juma E, Karema C, Lasry E, Lell B, Lima N, Menéndez C, Mombo-Ngoma G, Moreira C, Nikiema F, Ouédraogo JB, Staedke SG, Tinto H, Valea I, Yeka A, Ghani AC, Guerin PJ, Okell LC. The duration of chemoprophylaxis against malaria after treatment with artesunate-amodiaquine and artemether-lumefantrine and the effects of pfmdr1 86Y and pfcrt 76T: a meta-analysis of individual patient data. BMC Med 2020; 18:47. [PMID: 32098634 PMCID: PMC7043031 DOI: 10.1186/s12916-020-1494-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/09/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The majority of Plasmodium falciparum malaria cases in Africa are treated with the artemisinin combination therapies artemether-lumefantrine (AL) and artesunate-amodiaquine (AS-AQ), with amodiaquine being also widely used as part of seasonal malaria chemoprevention programs combined with sulfadoxine-pyrimethamine. While artemisinin derivatives have a short half-life, lumefantrine and amodiaquine may give rise to differing durations of post-treatment prophylaxis, an important additional benefit to patients in higher transmission areas. METHODS We analyzed individual patient data from 8 clinical trials of AL versus AS-AQ in 12 sites in Africa (n = 4214 individuals). The time to PCR-confirmed reinfection after treatment was used to estimate the duration of post-treatment protection, accounting for variation in transmission intensity between settings using hidden semi-Markov models. Accelerated failure-time models were used to identify potential effects of covariates on the time to reinfection. The estimated duration of chemoprophylaxis was then used in a mathematical model of malaria transmission to determine the potential public health impact of each drug when used for first-line treatment. RESULTS We estimated a mean duration of post-treatment protection of 13.0 days (95% CI 10.7-15.7) for AL and 15.2 days (95% CI 12.8-18.4) for AS-AQ overall. However, the duration varied significantly between trial sites, from 8.7-18.6 days for AL and 10.2-18.7 days for AS-AQ. Significant predictors of time to reinfection in multivariable models were transmission intensity, age, drug, and parasite genotype. Where wild type pfmdr1 and pfcrt parasite genotypes predominated (<=20% 86Y and 76T mutants, respectively), AS-AQ provided ~ 2-fold longer protection than AL. Conversely, at a higher prevalence of 86Y and 76T mutant parasites (> 80%), AL provided up to 1.5-fold longer protection than AS-AQ. Our simulations found that these differences in the duration of protection could alter population-level clinical incidence of malaria by up to 14% in under-5-year-old children when the drugs were used as first-line treatments in areas with high, seasonal transmission. CONCLUSION Choosing a first-line treatment which provides optimal post-treatment prophylaxis given the local prevalence of resistance-associated markers could make a significant contribution to reducing malaria morbidity.
Collapse
Affiliation(s)
- Michael T Bretscher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Prabin Dahal
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jamie Griffin
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - Kasia Stepniewska
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Umberto D'Alessandro
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Abdoulaye A Djimde
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, USA
| | - Emmanuelle Espié
- Epicentre, Paris, France.,Clinical and Epidemiology Department, GSK Vaccines, R&D Center, Wavre, Belgium
| | - Bakary Fofana
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Raquel González
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Elizabeth Juma
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Corine Karema
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Bertrand Lell
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Centre de Recherches Medicales de Lambarene, Lambarene, Gabon
| | - Nines Lima
- Department of Paediatrics, University of Calabar, Calabar, Nigeria
| | - Clara Menéndez
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Medicales de Lambarene, Lambarene, Gabon.,Institute for Tropical Medicine, University of Tubingen, Tubingen, Germany.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clarissa Moreira
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Frederic Nikiema
- Institut de Recherche en Science de la Sante, Bobo-Dioulasso, Burkina Faso
| | - Jean B Ouédraogo
- Institut de Recherche en Science de la Sante, Bobo-Dioulasso, Burkina Faso
| | - Sarah G Staedke
- Department of Clinical Research, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Halidou Tinto
- Institut de Recherche en Science de la Sante, Nanoro, Burkina Faso
| | - Innocent Valea
- Institut de Recherche en Science de la Sante, Nanoro, Burkina Faso
| | - Adoke Yeka
- Uganda Malaria Surveillance Project, Kampala, Uganda
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Philippe J Guerin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| |
Collapse
|
13
|
Ding J, Coldiron ME, Assao B, Guindo O, Blessborn D, Winterberg M, Grais RF, Koscalova A, Langendorf C, Tarning J. Adherence and Population Pharmacokinetic Properties of Amodiaquine When Used for Seasonal Malaria Chemoprevention in African Children. Clin Pharmacol Ther 2019; 107:1179-1188. [PMID: 31652336 PMCID: PMC7232861 DOI: 10.1002/cpt.1707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/29/2019] [Indexed: 01/23/2023]
Abstract
Poor adherence to seasonal malaria chemoprevention (SMC) might affect the protective effectiveness of SMC. Here, we evaluated the population pharmacokinetic properties of amodiaquine and its active metabolite, desethylamodiaquine, in children receiving SMC under directly observed ideal conditions (n = 136), and the adherence of SMC at an implementation phase in children participating in a case‐control study to evaluate SMC effectiveness (n = 869). Amodiaquine and desethylamodiaquine concentration‐time profiles were described simultaneously by two‐compartment and three‐compartment disposition models, respectively. The developed methodology to evaluate adherence showed a sensitivity of 65–71% when the first dose of SMC was directly observed and 71–73% when no doses were observed in a routine programmatic setting. Adherence simulations and measured desethylamodiaquine concentrations in the case‐control children showed complete adherence (all doses taken) in < 20% of children. This result suggests that more efforts are needed urgently to improve the adherence to SMC among children in this area.
Collapse
Affiliation(s)
- Junjie Ding
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,The WorldWide Antimalarial Resistance Network, Oxford, UK.,Children's Hospital of Fudan University, Shanghai, China
| | | | | | | | - Daniel Blessborn
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Markus Winterberg
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | | - Joel Tarning
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,The WorldWide Antimalarial Resistance Network, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Saito M, Gilder ME, McGready R, Nosten F. Antimalarial drugs for treating and preventing malaria in pregnant and lactating women. Expert Opin Drug Saf 2018; 17:1129-1144. [PMID: 30351243 DOI: 10.1080/14740338.2018.1535593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Malaria in pregnancy and postpartum cause maternal mortality and adverse fetal outcomes. Efficacious and safe antimalarials are needed to treat and prevent such serious consequences. However, because of the lack of evidence on fetal safety, quinine, an old and less efficacious drug has long been recommended for pregnant women. Uncertainty about safety in relation to breastfeeding leads to withholding of efficacious treatments postpartum or cessation of breastfeeding. Areas covered: A search identified literature on humans in three databases (MEDLINE, Embase and Global health) using pregnancy or lactation, and the names of antimalarial drugs as search terms. Adverse reactions to the mother, fetus or breastfed infant were summarized together with efficacies. Expert opinion: Artemisinins are more efficacious and well-tolerated than quinine in pregnancy. Furthermore, the risks of miscarriage, stillbirth or congenital abnormality were not higher in pregnancies exposed to artemisinin derivatives for treatment of malaria than in pregnancies exposed to quinine or in the comparable background population unexposed to any antimalarials, and this was true for treatment in any trimester. Assessment of safety and efficacy of antimalarials including dose optimization for pregnant women is incomplete. Resistance to sulfadoxine-pyrimethamine in Plasmodium falciparum and long unprotected intervals between intermittent treatment doses begs reconsideration of current preventative recommendations in pregnancy. Data remain limited on antimalarials during breastfeeding; while most first-line drugs appear safe, further research is needed.
Collapse
Affiliation(s)
- Makoto Saito
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK.,c WorldWide Antimalarial Resistance Network (WWARN) , Oxford , UK
| | - Mary Ellen Gilder
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand
| | - Rose McGready
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - François Nosten
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
15
|
Moore BR, Davis TME. Pharmacotherapy for the prevention of malaria in pregnant women: currently available drugs and challenges. Expert Opin Pharmacother 2018; 19:1779-1796. [PMID: 30289730 DOI: 10.1080/14656566.2018.1526923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Malaria in pregnancy continues to be a significant public health burden globally, with over 100 million women at risk each year. Sulfadoxine-pyrimethamine (SP) is the only antimalarial recommended for intermittent preventive therapy in pregnancy (IPTp) but increasing parasite resistance threatens its viability. There are few other available antimalarial therapies that currently have sufficient evidence of tolerability, safety, and efficacy to replace SP. AREAS COVERED Novel antimalarial combinations are under investigation for potential use as chemoprophylaxis and in IPTp regimens. The present review summarizes currently available therapies, emerging candidate combination therapies, and the potential challenges to integrating these into mainstream policy. EXPERT OPINION Alternative drugs or combination therapies to SP for IPTp are desperately required. Dihydroartemisinin-piperaquine and azithromycin-based combinations are showing great promise as potential candidates for IPTp but pharmacokinetic data suggest that dose modification may be required to ensure adequate prophylactic efficacy. If a suitable candidate regimen is not identified in the near future, the success of chemopreventive strategies such as IPTp may be in jeopardy.
Collapse
Affiliation(s)
- Brioni R Moore
- a School of Pharmacy and Biomedical Sciences , Curtin University , Bentley , Western Australia , Australia.,b Medical School , University of Western Australia , Crawley , Western Australia , Australia
| | - Timothy M E Davis
- b Medical School , University of Western Australia , Crawley , Western Australia , Australia
| |
Collapse
|
16
|
Population Pharmacokinetics of the Antimalarial Amodiaquine: a Pooled Analysis To Optimize Dosing. Antimicrob Agents Chemother 2018; 62:AAC.02193-17. [PMID: 30038039 PMCID: PMC6153844 DOI: 10.1128/aac.02193-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 06/22/2018] [Indexed: 01/16/2023] Open
Abstract
Amodiaquine plus artesunate is the recommended antimalarial treatment in many countries where malaria is endemic. However, pediatric doses are largely based on a linear extrapolation from adult doses. Amodiaquine plus artesunate is the recommended antimalarial treatment in many countries where malaria is endemic. However, pediatric doses are largely based on a linear extrapolation from adult doses. We pooled data from previously published studies on the pharmacokinetics of amodiaquine, to optimize the dose across all age groups. Adults and children with uncomplicated malaria received daily weight-based doses of amodiaquine or artesunate-amodiaquine over 3 days. Plasma concentration-time profiles for both the parent drug and the metabolite were characterized using nonlinear mixed-effects modeling. Amodiaquine pharmacokinetics were adequately described by a two-compartment disposition model, with first-order elimination leading to the formation of desethylamodiaquine, which was best described by a three-compartment disposition model. Body size and age were the main covariates affecting amodiaquine clearance. After adjusting for the effect of weight, clearance rates for amodiaquine and desethylamodiaquine reached 50% of adult maturation at 2.8 months (95% confidence interval [CI], 1.5 to 3.7 months) and 3.9 months (95% CI, 2.6 to 5.3 months) after birth, assuming that the baby was born at term. Bioavailability was 22.4% (95% CI, 15.6 to 31.9%) lower at the start of treatment than during convalescence, which suggests a malaria disease effect. Neither the drug formulation nor the hemoglobin concentration had an effect on any pharmacokinetic parameters. Results from simulations showed that current manufacturer dosing recommendations resulted in low desethylamodiaquine exposure in patients weighing 8 kg, 15 to 17 kg, 33 to 35 kg, and >62 kg compared to that in a typical 50-kg patient. We propose possible optimized dosing regimens to achieve similar drug exposures among all age groups, which require further validation.
Collapse
|
17
|
Berges A, Cerou M, Sahota T, Liefaard L, Ambery C, Zamuner S, Chen C, Hénin E. Time-to-Event Modeling of Left- or Right-Censored Toxicity Data in Nonclinical Drug Toxicology. Toxicol Sci 2018; 165:50-60. [PMID: 29788384 DOI: 10.1093/toxsci/kfy122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A time-to-event (TTE) model has been developed to characterize a histopathology toxicity that can only be detected at the time of animal sacrifice. The model of choice was a hazard model with a Weibull distribution and dose was a significant covariate. The diagnostic plots showed a satisfactory fit of the data, despite the high degree of left and right censoring. Comparison to a probabilistic logit model shows similar performance in describing the data with a slight underestimation of survival by the Logit model. However, the TTE model was found to be more predictive in extrapolating toxicity risk beyond the observation range of a truncated dataset. The diagnostic and comparison outcomes would suggest using the TTE approach as a first choice for characterizing short and long-term risk from nonclinical toxicity studies. However, further investigations are needed to explore the domain of application of this kind of approach in drug safety assessment.
Collapse
Affiliation(s)
- Alienor Berges
- Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, London, UK
| | - Marc Cerou
- Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, London, UK.,UMR 5558 Laboratoire Biométrie et de Biologie Evolutive, Equipe EMET, Université Claude Bernard Lyon1; Service de Pharmacologie Clinique et Essais Thérapeutiques, Hospices Civils de Lyon, Lyon, France
| | - Tarjinder Sahota
- Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, London, UK
| | - Lia Liefaard
- Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, London, UK
| | - Claire Ambery
- Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, London, UK
| | - Stefano Zamuner
- Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, London, UK
| | - Chao Chen
- Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, London, UK
| | - Emilie Hénin
- UMR 5558 Laboratoire Biométrie et de Biologie Evolutive, Equipe EMET, Université Claude Bernard Lyon1; Service de Pharmacologie Clinique et Essais Thérapeutiques, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
18
|
Population Pharmacokinetic Properties of Sulfadoxine and Pyrimethamine: a Pooled Analysis To Inform Optimal Dosing in African Children with Uncomplicated Malaria. Antimicrob Agents Chemother 2018; 62:AAC.01370-17. [PMID: 29463542 PMCID: PMC5923181 DOI: 10.1128/aac.01370-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/09/2018] [Indexed: 02/07/2023] Open
Abstract
Sulfadoxine-pyrimethamine with amodiaquine is recommended by the World Health Organization as seasonal malaria chemoprevention for children aged 3 to 59 months in the sub-Sahel regions of Africa. Suboptimal dosing in children may lead to treatment failure and increased resistance. Pooled individual patient data from four previously published trials on the pharmacokinetics of sulfadoxine and pyrimethamine in 415 pediatric and 386 adult patients were analyzed using nonlinear mixed-effects modeling to evaluate the current dosing regimen and, if needed, to propose an optimized dosing regimen for children under 5 years of age. The population pharmacokinetics of sulfadoxine and pyrimethamine were both best described by a one-compartment disposition model with first-order absorption and elimination. Body weight, age, and nutritional status (measured as the weight-for-age Z-score) were found to be significant covariates. Allometric scaling with total body weight and the maturation of clearance in children by postgestational age improved the model fit. Underweight-for-age children were found to have 15.3% and 26.7% lower bioavailabilities of sulfadoxine and pyrimethamine, respectively, for each Z-score unit below -2. Under current dosing recommendations, simulation predicted that the median day 7 concentration was below the 25th percentile for a typical adult patient (50 kg) for sulfadoxine for patients in the weight bands of 8 to 9, 19 to 24, 46 to 49, and 74 to 79 kg and for pyrimethamine for patients in the weight bands of 8 to 9, 14 to 24, and 42 to 49 kg. An evidence-based dosing regimen was constructed that would achieve sulfadoxine and pyrimethamine exposures in young children and underweight-for-age young children that were similar to those currently seen in a typical adult.
Collapse
|
19
|
D'Alessandro U, Hill J, Tarning J, Pell C, Webster J, Gutman J, Sevene E. Treatment of uncomplicated and severe malaria during pregnancy. THE LANCET. INFECTIOUS DISEASES 2018; 18:e133-e146. [PMID: 29395998 DOI: 10.1016/s1473-3099(18)30065-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/19/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Over the past 10 years, the available evidence on the treatment of malaria during pregnancy has increased substantially. Owing to their relative ease of use, good sensitivity and specificity, histidine rich protein 2 based rapid diagnostic tests are appropriate for symptomatic pregnant women; however, such tests are less appropriate for systematic screening because they will not detect an important proportion of infections among asymptomatic women. The effect of pregnancy on the pharmacokinetics of antimalarial drugs varies greatly between studies and class of antimalarial drugs, emphasising the need for prospective studies in pregnant and non-pregnant women. For the treatment of malaria during the first trimester, international guidelines are being reviewed by WHO. For the second and third trimester of pregnancy, results from several trials have confirmed that artemisinin-based combination treatments are safe and efficacious, although tolerability and efficacy might vary by treatment. It is now essential to translate such evidence into policies and clinical practice that benefit pregnant women in countries where malaria is endemic. Access to parasitological diagnosis or appropriate antimalarial treatment remains low in many countries and regions. Therefore, there is a pressing need for research to identify quality improvement interventions targeting pregnant women and health providers. In addition, efficient and practical systems for pharmacovigilance are needed to further expand knowledge on the safety of antimalarial drugs, particularly in the first trimester of pregnancy.
Collapse
Affiliation(s)
- Umberto D'Alessandro
- Medical Research Council Unit, Banjul, The Gambia; London School of Hygiene & Tropical Medicine, London, UK.
| | - Jenny Hill
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christopher Pell
- Centre for Social Science and Global Health, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
| | - Jayne Webster
- London School of Hygiene & Tropical Medicine, London, UK
| | - Julie Gutman
- Malaria Branch, US Centers for Diseases Control and Prevention, Atlanta, GA, USA
| | - Esperanca Sevene
- Manhiça Health Research Center (CISM), Manhiça, Mozambique; Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| |
Collapse
|
20
|
Edema O, Adehin A, Adeagbo BA, Olugbade TA. Simultaneous determination of amodiaquine and pioglitazone on dried blood spots (DBS) by HPLC–DAD and its usefulness in pharmacokinetic studies. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1399416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Opeyemi Edema
- Department of Pharmaceutical Chemistry, Faculty of Pharmay, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ayorinde Adehin
- Department of Pharmaceutical Chemistry, Faculty of Pharmay, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Babatunde Ayodeji Adeagbo
- Department of Pharmaceutical Chemistry, Faculty of Pharmay, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Tiwalade Adewale Olugbade
- Department of Pharmaceutical Chemistry, Faculty of Pharmay, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
21
|
Lohy Das J, Dondorp AM, Nosten F, Phyo AP, Hanpithakpong W, Ringwald P, Lim P, White NJ, Karlsson MO, Bergstrand M, Tarning J. Population Pharmacokinetic and Pharmacodynamic Modeling of Artemisinin Resistance in Southeast Asia. AAPS JOURNAL 2017; 19:1842-1854. [PMID: 28895080 DOI: 10.1208/s12248-017-0141-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022]
Abstract
Orally administered artemisinin-based combination therapy is the first-line treatment against uncomplicated P. falciparum malaria worldwide. However, the increasing prevalence of artemisinin resistance is threatening efforts to treat and eliminate malaria in Southeast Asia. This study aimed to characterize the exposure-response relationship of artesunate in patients with artemisinin sensitive and resistant malaria infections. Patients were recruited in Pailin, Cambodia (n = 39), and Wang Pha, Thailand (n = 40), and received either 2 mg/kg/day of artesunate mono-therapy for 7 consecutive days or 4 mg/kg/day of artesunate monotherapy for 3 consecutive days followed by mefloquine 15 and 10 mg/kg for 2 consecutive days. Plasma concentrations of artesunate and its active metabolite, dihydroartemisinin, and microscopy-based parasite densities were measured and evaluated using nonlinear mixed-effects modeling. All treatments were well tolerated with minor and transient adverse reactions. Patients in Cambodia had substantially slower parasite clearance compared to patients in Thailand. The pharmacokinetic properties of artesunate and dihydroartemisinin were well described by transit-compartment absorption followed by one-compartment disposition models. Parasite density was a significant covariate, and higher parasite densities were associated with increased absorption. Dihydroartemisinin-dependent parasite killing was described by a delayed sigmoidal Emax model, and a mixture function was implemented to differentiate between sensitive and resistant infections. This predicted that 84% and 16% of infections in Cambodia and Thailand, respectively, were artemisinin resistant. The final model was used to develop a simple diagnostic nomogram to identify patients with artemisinin-resistant infections. The nomogram showed > 80% specificity and sensitivity, and outperformed the current practice of day 3 positivity testing.
Collapse
Affiliation(s)
- Jesmin Lohy Das
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sod, Thailand
| | - Aung Pyae Phyo
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sod, Thailand
| | - Warunee Hanpithakpong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Pascal Ringwald
- Global Malaria Programme World Health Organization, Geneva, Switzerland
| | - Pharath Lim
- Medical Care Development International (MCDI), Silver Spring, Maryland, 20910, USA
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mats O Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Martin Bergstrand
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Leang R, Khu NH, Mukaka M, Debackere M, Tripura R, Kheang ST, Chy S, Kak N, Buchy P, Tarantola A, Menard D, Roca-Felterer A, Fairhurst RM, Kheng S, Muth S, Ngak S, Dondorp AM, White NJ, Taylor WRJ. An optimised age-based dosing regimen for single low-dose primaquine for blocking malaria transmission in Cambodia. BMC Med 2016; 14:171. [PMID: 27784313 PMCID: PMC5081959 DOI: 10.1186/s12916-016-0701-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In 2012, the World Health Organization recommended the addition of single low-dose primaquine (SLDPQ, 0.25 mg base/kg body weight) to artemisinin combination therapies to block the transmission of Plasmodium falciparum without testing for glucose-6-phosphate dehydrogenase deficiency. The targeted group was non-pregnant patients aged ≥ 1 year (later changed to ≥ 6 months) with acute uncomplicated falciparum malaria, primarily in countries with artemisinin-resistant P. falciparum (ARPf). No dosing regimen was suggested, leaving malaria control programmes and clinicians in limbo. Therefore, we designed a user-friendly, age-based SLDPQ regimen for Cambodia, the country most affected by ARPf. METHODS By reviewing primaquine's pharmacology, we defined a therapeutic dose range of 0.15-0.38 mg base/kg (9-22.5 mg in a 60-kg adult) for a therapeutic index of 2.5. Primaquine doses (1-20 mg) were tested using a modelled, anthropometric database of 28,138 Cambodian individuals (22,772 healthy, 4119 with malaria and 1247 with other infections); age distributions were: 0.5-4 years (20.0 %, n = 5640), 5-12 years (9.1 %, n = 2559), 13-17 years (9.1 %, n = 2550), and ≥ 18 years (61.8 %, n = 17,389). Optimal age-dosing groups were selected according to calculated mg base/kg doses and proportions of individuals receiving a therapeutic dose. RESULTS Four age-dosing bands were defined: (1) 0.5-4 years, (2) 5-9 years, (3) 10-14 years, and (4) ≥15 years to receive 2.5, 5, 7.5, and 15 mg of primaquine base, resulting in therapeutic doses in 97.4 % (5494/5640), 90.5 % (1511/1669), 97.7 % (1473/1508), and 95.7 % (18,489/19,321) of individuals, respectively. Corresponding median (1st-99th centiles) mg base/kg doses of primaquine were (1) 0.23 (0.15-0.38), (2) 0.29 (0.18-0.45), (3) 0.27 (0.15-0.39), and (4) 0.29 (0.20-0.42). CONCLUSIONS This age-based SLDPQ regimen could contribute substantially to malaria elimination and requires urgent evaluation in Cambodia and other countries with similar anthropometric characteristics. It guides primaquine manufacturers on suitable tablet strengths and doses for paediatric-friendly formulations. Development of similar age-based dosing recommendations for Africa is needed.
Collapse
Affiliation(s)
- Rithea Leang
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Naw Htee Khu
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Mark Debackere
- MSF Belgium Cambodia Malaria Program, #19, Street 388, Sangkat Tuol Svay Prey, Khan Chamkarmon, PO Box 1933, Phnom Penh, Cambodia
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Soy Ty Kheang
- University Research Co., LLC, MK Building, House #10 (2nd floor), St. 214, Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
| | - Say Chy
- University Research Co., LLC, MK Building, House #10 (2nd floor), St. 214, Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
| | - Neeraj Kak
- University Research Co., LLC Washington DC: 7200 Wisconsin Ave, Bethesda, MD, 20814, USA
| | - Philippe Buchy
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Arnaud Tarantola
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Didier Menard
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Arantxa Roca-Felterer
- Malaria Consortium, House #91 Street 95, Boeung Trabek, Chamkar Morn, Phnom Penh, Cambodia
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Sim Kheng
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Sinoun Muth
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Song Ngak
- FHI 360 Cambodia Office, #03, Street 330 Boeung Keng Kang III Khan Chamkamon, PO Box: 2586, Phnom Penh, Cambodia
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Walter Robert John Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand. .,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK. .,Centre de Médecine Humanitaire, Hôpitaux Universitaires de Genève, Genève, Switzerland.
| |
Collapse
|
23
|
Adepiti AO, Elujoba AA, Bolaji OO. Evaluation of herbal antimalarial MAMA decoction-amodiaquine combination in murine malaria model. PHARMACEUTICAL BIOLOGY 2016; 54:2298-2303. [PMID: 27057621 DOI: 10.3109/13880209.2016.1155626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Co-administration of amodiaquine with MAMA decoction (MD), an herbal antimalarial drug comprising the leaves of Mangifera indica L. (Anacardiaceae), Alstonia boonei De Wild (Apocynaceae), Morinda lucida Benth (Rubiaceae) and Azadirachta indica A. Juss (Meliaceae) was investigated. The practice of concurrent administration of herbal medicines with orthodox drugs is currently on the increase globally. OBJECTIVE The study was designed to investigate the possible enhancement of the antimalarial potency as well as possible herb-drug interaction resulting from concurrent administration of MAMA decoction with amodiaquine (AQ). MATERIALS AND METHODS Combinations of MD with AQ were investigated in chloroquine (CQ)-sensitive Plasmodium berghei NK 65 in varying oral doses (mg/kg) at: sub-therapeutic [MD30 + AQ1.25], therapeutic [MD120 + AQ10] and median effective [MD40 + AQ3.8], using chemosuppressive and curative antimalarial test models. Secondly, P. berghei ANKA (CQ-resistant)-infected mice were orally treated with MD 120, 240, [MD120 + AQ10] and [MD240 + AQ10] mg/kg, using both models. The survival times of mice were monitored for 28 d. RESULTS ED50 values of MD and AQ were 48.8 and 4.1 mg/kg, respectively. A total parasite clearance of CQ-sensitive P. berghei NK65 was obtained with the therapeutic combination dose in the curative test giving an enhanced survival time. In CQ-resistant P. berghei ANKA-infected mice, [MD120 + AQ10] and [MD240 + AQ10] mg/kg gave comparable activities with AQ (10 mg/kg) in both models. CONCLUSION The therapeutic combination dose gave total parasite clearance of CQ-sensitive P. berghei NK65, whereas none of the doses tested showed notable activity against CQ-resistant P. berghei ANKA.
Collapse
Affiliation(s)
- Awodayo O Adepiti
- a Department of Pharmacognosy , Obafemi Awolowo University , Ile-Ife , Nigeria
| | - Anthony A Elujoba
- a Department of Pharmacognosy , Obafemi Awolowo University , Ile-Ife , Nigeria
| | - Oluseye O Bolaji
- b Department of Pharmaceutical Chemistry , Obafemi Awolowo University , Ile-Ife , Nigeria
| |
Collapse
|
24
|
Moore BR, Salman S, Davis TME. Treatment regimens for pregnant women with falciparum malaria. Expert Rev Anti Infect Ther 2016; 14:691-704. [PMID: 27322015 DOI: 10.1080/14787210.2016.1202758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION With increasing parasite drug resistance, the WHO has updated treatment recommendations for falciparum malaria including in pregnancy. This review assesses the evidence for choice of treatment for pregnant women. AREAS COVERED Relevant studies, primarily those published since 2010, were identified from reference databases and were used to identify secondary data sources. Expert commentary: WHO recommends use of intravenous artesunate for severe malaria, quinine-clindamycin for uncomplicated malaria in first trimester, and artemisinin combination therapy for uncomplicated malaria in second/third trimesters. Because fear of adverse outcomes has often excluded pregnant women from conventional drug development, available data for novel therapies are usually based on preclinical studies and cases of inadvertent exposure. Changes in antimalarial drug disposition in pregnancy have been observed but are yet to be translated into specific treatment recommendations. Such targeted regimens may become important as parasite resistance demands that drug exposure is optimized.
Collapse
Affiliation(s)
- Brioni R Moore
- a Fiona Stanley Hospital Unit, School of Medicine and Pharmacology , University of Western Australia , Perth , Australia.,b School of Pharmacy , Curtin University , Perth , Australia
| | - Sam Salman
- c Linear Clinical Research Limited, QEII Medical Centre , Nedlands , Australia.,d Fremantle Hospital Unit, School of Medicine and Pharmacology , University of Western Australia , Fremantle , Australia
| | - Timothy M E Davis
- d Fremantle Hospital Unit, School of Medicine and Pharmacology , University of Western Australia , Fremantle , Australia
| |
Collapse
|
25
|
Burger RJ, Visser BJ, Grobusch MP, van Vugt M. The influence of pregnancy on the pharmacokinetic properties of artemisinin combination therapy (ACT): a systematic review. Malar J 2016; 15:99. [PMID: 26891915 PMCID: PMC4757991 DOI: 10.1186/s12936-016-1160-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background Pregnancy has been reported to alter the pharmacokinetic properties of anti-malarial drugs, including the different components of artemisinin-based combination therapy (ACT). However, small sample sizes make it difficult to draw strong conclusions based on individual pharmacokinetic studies. The aim of this review is to summarize the evidence of the influence of pregnancy on the pharmacokinetic properties of different artemisinin-based combinations. Methods A PROSPERO-registered systematic review to identify clinical trials that investigated the influence of pregnancy on the pharmacokinetic properties of different forms of ACT was conducted, following PRISMA guidelines. Without language restrictions, Medline/PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of Science, LILACS, Biosis Previews and the African Index Medicus were searched for studies published up to November 2015. The following components of ACT that are currently recommend by the World Health Organization as first-line treatment of malaria in pregnancy were reviewed: artemisinin, artesunate, dihydroartemisinin, lumefantrine, amodiaquine, mefloquine, sulfadoxine, pyrimethamine, piperaquine, atovaquone and proguanil. Results The literature search identified 121 reports, 27 original studies were included. 829 pregnant women were included in the analysis. Comparison of the available studies showed lower maximum concentrations (Cmax) and exposure (AUC) of dihydroartemisinin, the active metabolite of all artemisinin derivatives, after oral administration of artemether, artesunate and dihydroartemisinin in pregnant women. Low day 7 concentrations were commonly seen in lumefantrine studies, indicating a low exposure and possibly reduced efficacy. The influence of pregnancy on amodiaquine and piperaquine seemed not to be clinically relevant. Sulfadoxine plasma concentration was significantly reduced and clearance rates were higher in pregnancy, while pyrimethamine and mefloquine need more research as no general conclusion can be drawn based on the available evidence. For atovaquone, the available data showed a lower maximum concentration and exposure. Finally, the maximum concentration of cycloguanil, the active metabolite of proguanil, was significantly lower, possibly compromising the efficacy. Conclusion These findings suggest that reassessment of the dose of the artemisinin derivate and some components of ACT are necessary to ensure the highest possible efficacy of malaria treatment in pregnant women. However, for most components of ACT, data were insufficient and extensive research with larger sample sizes will be necessary to identify the exact influences of pregnancy on the pharmacokinetic properties of different artemisinin-based combinations. In addition, different clinical studies used diverse study designs with various reported relevant outcomes. Future pharmacokinetic studies could benefit from more uniform designs, in order to increase quality, robustness and effectiveness. Study registration: CRD42015023756 (PROSPERO) Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1160-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Renée J Burger
- Division of Internal Medicine, Department of Infectious Diseases, Academic Medical Center, Center of Tropical Medicine and Travel Medicine, University of Amsterdam, Meibergdreef 9, PO Box 22700, 1100 DE, Amsterdam, The Netherlands.
| | - Benjamin J Visser
- Division of Internal Medicine, Department of Infectious Diseases, Academic Medical Center, Center of Tropical Medicine and Travel Medicine, University of Amsterdam, Meibergdreef 9, PO Box 22700, 1100 DE, Amsterdam, The Netherlands. .,Centre de Recherches de Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, Lambaréné, Gabon.
| | - Martin P Grobusch
- Division of Internal Medicine, Department of Infectious Diseases, Academic Medical Center, Center of Tropical Medicine and Travel Medicine, University of Amsterdam, Meibergdreef 9, PO Box 22700, 1100 DE, Amsterdam, The Netherlands. .,Centre de Recherches de Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, Lambaréné, Gabon.
| | - Michèle van Vugt
- Division of Internal Medicine, Department of Infectious Diseases, Academic Medical Center, Center of Tropical Medicine and Travel Medicine, University of Amsterdam, Meibergdreef 9, PO Box 22700, 1100 DE, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Exposure-Response Analyses for Tafenoquine after Administration to Patients with Plasmodium vivax Malaria. Antimicrob Agents Chemother 2015; 59:6188-94. [PMID: 26248362 DOI: 10.1128/aac.00718-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/17/2015] [Indexed: 11/20/2022] Open
Abstract
Tafenoquine (TQ), a new 8-aminoquinoline with activity against all stages of the Plasmodium vivax life cycle, is being developed for the radical cure of acute P. vivax malaria in combination with chloroquine. The efficacy and exposure data from a pivotal phase 2b dose-ranging study were used to conduct exposure-response analyses for TQ after administration to subjects with P. vivax malaria. TQ exposure (i.e., area under the concentration-time curve [AUC]) and region (Thailand compared to Peru and Brazil) were found to be statistically significant predictors of clinical response based on multivariate logistic regression analyses. After accounting for region/country, the odds of being relapse free at 6 months increased by approximately 51% (95% confidence intervals [CI], 25%, 82%) for each 25-U increase in AUC above the median value of 54.5 μg · h/ml. TQ exposure was also a significant predictor of the time to relapse of the infection. The final parametric, time-to-event model for the time to relapse, included a Weibull distribution hazard function, AUC, and country as covariates. Based on the model, the risk of relapse decreased by 30% (95% CI, 17% to 42%) for every 25-U increase in AUC. Monte Carlo simulations indicated that the 300-mg dose of TQ would provide an AUC greater than the clinically relevant breakpoint obtained in a classification and regression tree (CART) analysis (56.4 μg · h/ml) in more than 90% of subjects and consequently result in a high probability of being relapse free at 6 months. This model-based approach was critical in selecting an appropriate phase 3 dose. (This study has been registered at ClinicalTrials.gov under registration no. NCT01376167.).
Collapse
|
27
|
Patel K, Simpson JA, Batty KT, Zaloumis S, Kirkpatrick CM. Modelling the time course of antimalarial parasite killing: a tour of animal and human models, translation and challenges. Br J Clin Pharmacol 2015; 79:97-107. [PMID: 24251882 PMCID: PMC4294080 DOI: 10.1111/bcp.12288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/31/2013] [Indexed: 01/06/2023] Open
Abstract
Malaria remains a global public health concern and current treatment options are suboptimal in some clinical settings. For effective chemotherapy, antimalarial drug concentrations must be sufficient to remove completely all of the parasites in the infected host. Optimized dosing therefore requires a detailed understanding of the time course of antimalarial response, whilst simultaneously considering the parasite life cycle and host immune elimination. Recently, the World Health Organization (WHO) has recommended the development of mathematical models for understanding better antimalarial drug resistance and management. Other international groups have also suggested that mechanistic pharmacokinetic (PK) and pharmacodynamic (PD) models can support the rationalization of antimalarial dosing strategies. At present, artemisinin-based combination therapy (ACT) is recommended as first line treatment of falciparum malaria for all patient groups. This review summarizes the PK-PD characterization of artemisinin derivatives and other partner drugs from both preclinical studies and human clinical trials. We outline the continuous and discrete time models that have been proposed to describe antimalarial activity on specific stages of the parasite life cycle. The translation of PK-PD predictions from animals to humans is considered, because preclinical studies can provide rich data for detailed mechanism-based modelling. While similar sampling techniques are limited in clinical studies, PK-PD models can be used to optimize the design of experiments to improve estimation of the parameters of interest. Ultimately, we propose that fully developed mechanistic models can simulate and rationalize ACT or other treatment strategies in antimalarial chemotherapy.
Collapse
Affiliation(s)
- Kashyap Patel
- Centre for Medicine Use and Safety, Monash UniversityMelbourne, VIC, Australia
| | - Julie A Simpson
- Centre for Molecular, Environmental, Genetic & Analytic Epidemiology, Melbourne School of Population and Global Health, The University of MelbourneMelbourne, VIC, Australia
| | - Kevin T Batty
- School of Pharmacy, Curtin UniversityBentley, WA, Australia
- West Coast InstituteJoondalup, WA, Australia
| | - Sophie Zaloumis
- Centre for Molecular, Environmental, Genetic & Analytic Epidemiology, Melbourne School of Population and Global Health, The University of MelbourneMelbourne, VIC, Australia
| | - Carl M Kirkpatrick
- Centre for Medicine Use and Safety, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
28
|
Tarning J, Thana P, Phyo AP, Lwin KM, Hanpithakpong W, Ashley EA, Day NPJ, Nosten F, White NJ. Population Pharmacokinetics and Antimalarial Pharmacodynamics of Piperaquine in Patients With Plasmodium vivax Malaria in Thailand. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e132. [PMID: 25163024 PMCID: PMC4150927 DOI: 10.1038/psp.2014.29] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/19/2014] [Indexed: 01/24/2023]
Abstract
Dihydroartemisinin-piperaquine is an effective drug in the treatment of Plasmodium falciparum and P. vivax malaria. The objective of this study was to evaluate the population pharmacokinetics and pharmacodynamics of piperaquine in patients with P. vivax malaria in Thailand after a standard regimen of dihydroartemisinin-piperaquine to determine whether residual piperaquine prevents or delays the emergence of P. vivax relapse. Sparse blood samples were collected from 116 patients. Piperaquine pharmacokinetics were described well by a three-compartment distribution model. Relapsing P. vivax malaria was accommodated by a constant baseline hazard (8.94 relapses/year) with the addition of a surge function in a fixed 3-week interval and a protective piperaquine effect. The results suggest that a large proportion of the first relapses were suppressed completely by residual piperaquine concentrations and that recurrences resulted mainly from emergence of the second or third relapse or from reinfection. This suggests a significant reduction in P. vivax morbidity when using dihydroartemisinin-piperaquine compared with other antimalarial drugs with shorter terminal postprophylactic effects.
Collapse
Affiliation(s)
- J Tarning
- 1] Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand [2] Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - P Thana
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - A P Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak, Thailand
| | - K M Lwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak, Thailand
| | - W Hanpithakpong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - E A Ashley
- 1] Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand [2] Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK [3] Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak, Thailand
| | - N P J Day
- 1] Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand [2] Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - F Nosten
- 1] Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand [2] Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK [3] Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak, Thailand
| | - N J White
- 1] Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand [2] Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Zongo I, Somé FA, Somda SAM, Parikh S, Rouamba N, Rosenthal PJ, Tarning J, Lindegardh N, Nosten F, Ouédraogo JB. Efficacy and day 7 plasma piperaquine concentrations in African children treated for uncomplicated malaria with dihydroartemisinin-piperaquine. PLoS One 2014; 9:e103200. [PMID: 25133389 PMCID: PMC4136730 DOI: 10.1371/journal.pone.0103200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND One promising new Artemisinin-based combination therapies (ACTs) is dihydroartemisinin-piperaquine (DHA-PQ). However, the pharmacokinetics of piperaquine and the relationship between drug levels and clinical efficacy are incompletely characterized, particularly in children. METHODS We performed a single-arm open-label trial in Bobo-Dioulasso, Burkina Faso. A total of 379 participants aged 6 months or more with uncomplicated falciparum malaria were enrolled. Each participant received daily dose of DHA-PQ for three days and followed for 42 days. Parasitological efficacy was analyzed, considering rates of recrudescence and overall recurrence. PK was an exploratory endpoint and a priori, no sample size had been determined. Day 7 capillary and venous plasma concentrations of piperaquine were measured in children aged 2-10 years. RESULTS Of the 379 participants, 365 (96.3%) completed 42 days of follow-up. The median daily dose of PQ was 18.5 mg/kg [6.5-24]. Treatment with DHA-PQ was well tolerated with fever and parasitemia resolution within 48 hours in nearly all children. Recurrent malaria within 42 days of follow-up occurred in 31.3% (10/34) of children less than 2 years old, 16.0% (16/106) of those aged 2-5 years, 9.4% (15/160) of those aged 5-10 years, and none (0/68) of those over 10 years old. After genotyping, 3 of 41 recurrent episodes were recrudescence. An exploratory analysis shows that children with successful treatment outcomes had significantly higher median plasma concentrations of PQ compared to those with recurrent malaria within 42 days after therapy, considering either capillary samples (68 ng/ml [50-85] compared to 48 ng/ml [36-55], p<0.001) or venous samples (42 ng/ml [29-59] compared to 25 ng/ml [19-44], p<0.001). CONCLUSION DHA-PQ was effective for uncomplicated P. falciparum malaria treatment and offers an alternative to other ACTs. Recurrent malaria was mainly due to new infections after treatment and was correlated with low day 7 PQ concentration in the youngest patients. TRIAL REGISTRATION Controlled-Trials.com ISRCTN59761234.
Collapse
Affiliation(s)
- Issaka Zongo
- Direction Régionale de l'Ouest, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Fabrice A. Somé
- Direction Régionale de l'Ouest, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Serge A. M. Somda
- Non Transmissible disease department, Centre Muraz Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
| | - Sunil Parikh
- Department of Medicine, Yale University School of Public Health, New Haven, Connecticut, United States of America
| | - Noel Rouamba
- Direction Régionale de l'Ouest, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Niklas Lindegardh
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - François Nosten
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Jean Bosco Ouédraogo
- Direction Régionale de l'Ouest, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Non Transmissible disease department, Centre Muraz Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
- * E-mail:
| |
Collapse
|
30
|
Abstract
INTRODUCTION Chemotherapy of malaria has become a rapidly changing field. Less than two decades ago, treatment regimens were increasingly bound to fail due to emerging drug resistance against 4-aminoquinolines and sulfa compounds. By now, artemisinin-based combination therapies (ACTs) constitute the standard of care for uncomplicated falciparum malaria and are increasingly also taken into consideration for the treatment of non-falciparum malaria. AREAS COVERED This narrative review provides an overview of the state-of-art antimalarial drug therapy, highlights the global portfolio of current Phase III/IV clinical trials and summarizes current developments. EXPERT OPINION Malaria chemotherapy remains a dynamic field, with novel drugs and drug combinations continuing to emerge in order to outpace the development of large-scale drug resistance against the currently most important drug class, the artemisinin derivatives. More randomized controlled studies are urgently needed especially for the treatment of malaria in first trimester pregnant women. ACTs should be used for the treatment of imported malaria more consequently. Gaining sufficient efficacy and safety information on ACT use for non-falciparum species including Plasmodium ovale and malariae should be a research priority. Continuous investment into malaria drug development is a vital factor to combat artemisinin resistance and successfully improve malaria control toward the ultimate goal of elimination.
Collapse
Affiliation(s)
- Benjamin J Visser
- University of Amsterdam, Academic Medical Centre, Center of Tropical Medicine and Travel Medicine, Division of Infectious Diseases , Amsterdam , The Netherlands
| | | | | |
Collapse
|
31
|
Kloprogge F, Jullien V, Piola P, Dhorda M, Muwanga S, Nosten F, Day NPJ, White NJ, Guerin PJ, Tarning J. Population pharmacokinetics of quinine in pregnant women with uncomplicated Plasmodium falciparum malaria in Uganda. J Antimicrob Chemother 2014; 69:3033-40. [PMID: 24970740 PMCID: PMC4195470 DOI: 10.1093/jac/dku228] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Oral quinine is used for the treatment of uncomplicated malaria during pregnancy, but few pharmacokinetic data are available for this population. Previous studies have reported a substantial effect of malaria on the pharmacokinetics of quinine resulting from increased α-1-acid glycoprotein levels and decreased cytochrome P450 3A4 activity. The aim of this study was to investigate the pharmacokinetic properties of oral quinine in pregnant women with uncomplicated malaria in Uganda using a population approach. Methods Data from 22 women in the second and third trimesters of pregnancy with uncomplicated Plasmodium falciparum malaria were analysed. Patients received quinine sulphate (10 mg of salt/kg) three times daily (0, 8 and 16 h) for 7 days. Plasma samples were collected daily and at frequent intervals after the first and last doses. A population pharmacokinetic model for quinine was developed accounting for different disposition, absorption, error and covariate models. Results Parasitaemia, as a time-varying covariate affecting relative bioavailability, and body temperature on admission as a covariate on elimination clearance, explained the higher exposure to quinine during acute malaria compared with the convalescent phase. Neither the estimated gestational age nor the trimester influenced the pharmacokinetic properties of quinine significantly. Conclusions A population model was developed that adequately characterized quinine pharmacokinetics in pregnant Ugandan women with acute malaria. Quinine exposure was lower than previously reported in patients who were not pregnant. The measurement of free quinine concentration will be necessary to determine the therapeutic relevance of these observations.
Collapse
Affiliation(s)
- Frank Kloprogge
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vincent Jullien
- Université Paris Descartes, INSERM U663, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Vincent de Paul, Paris, France
| | - Patrice Piola
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Epicentre, Paris, France Mbarara University of Science & Technology, Mbarara, Uganda
| | - Mehul Dhorda
- Epicentre, Paris, France Epicentre, Mbarara, Uganda Malaria Group, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - François Nosten
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas P J Day
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Philippe J Guerin
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Epicentre, Paris, France
| | - Joel Tarning
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
32
|
Scarsi KK, Fehintola FA, Ma Q, Aweeka FT, Darin KM, Morse GD, Akinola IT, Adedeji WA, Lindegardh N, Tarning J, Ojengbede O, Adewole IF, Taiwo B, Murphy RL, Akinyinka OO, Parikh S. Disposition of amodiaquine and desethylamodiaquine in HIV-infected Nigerian subjects on nevirapine-containing antiretroviral therapy. J Antimicrob Chemother 2014; 69:1370-6. [PMID: 24446424 DOI: 10.1093/jac/dkt513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Artesunate plus amodiaquine is used for malaria treatment in regions with overlapping HIV endemicity. Co-administration of artesunate/amodiaquine with antiretroviral therapy (ART) may result in drug-drug interactions, but minimal data exist. This study evaluated the impact of nevirapine-based ART, containing a backbone of zidovudine and lamivudine, on the disposition of amodiaquine and its active metabolite, desethylamodiaquine (DEAQ). METHODS This was an open-label, parallel-group pharmacokinetic comparison between HIV-infected, adult subjects receiving steady-state nevirapine-based ART (n = 10) and ART-naive subjects (control group, n = 11). All subjects received a loose formulation of artesunate/amodiaquine (200/600 mg) daily for 3 days, with serial pharmacokinetic sampling over 96 h following the final dose of artesunate/amodiaquine. Amodiaquine and DEAQ were quantified using a validated HPLC method with UV detection. Pharmacokinetic parameters were determined using standard non-compartmental methods. RESULTS Exposures to both amodiaquine and DEAQ were significantly lower in the nevirapine-based ART group compared with the control group (amodiaquine AUC₀₋₂₄ 145 versus 204 ng·h/mL, P = 0.02; DEAQ AUC₀₋₉₆ 14,571 versus 21,648 ng·h/mL, P < 0.01). The AUCDEAQ/AUC(amodiaquine) ratio was not different between groups (ART group 116 versus control group 102, P = 0.67). CONCLUSIONS Subjects on nevirapine-based ART had lower exposure to both amodiaquine and DEAQ (28.9% and 32.7%, respectively). Consequently, this may negatively impact the effectiveness of artesunate/amodiaquine in HIV-infected individuals on this ART combination.
Collapse
Affiliation(s)
- Kimberly K Scarsi
- Division of Infectious Diseases and Center for Global Health, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McCormack SA, Best BM. Obstetric Pharmacokinetic Dosing Studies are Urgently Needed. Front Pediatr 2014; 2:9. [PMID: 24575394 PMCID: PMC3920104 DOI: 10.3389/fped.2014.00009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/26/2014] [Indexed: 12/28/2022] Open
Abstract
Use of pharmacotherapy during pregnancy is common and increasing. Physiologic changes during pregnancy may significantly alter the overall systemic drug exposure, necessitating dose changes. A search of PubMed for pharmacokinetic clinical trials showed 494 publications during pregnancy out of 35,921 total pharmacokinetic published studies (1.29%), from the late 1960s through August 31, 2013. Closer examination of pharmacokinetic studies in pregnant women published since 2008 (81 studies) revealed that about a third of the trials were for treatment of acute labor and delivery issues, a third included studies of infectious disease treatment during pregnancy, and the remaining third were for varied ante-partum indications. Approximately, two-thirds of these recent studies were primarily funded by government agencies worldwide, one-quarter were supported by private non-profit foundations or combinations of government and private funding, and slightly <10% were supported by pharmaceutical industry. As highlighted in this review, vast gaps exist in pharmacology information and evidence for appropriate dosing of medications in pregnant women. This lack of knowledge and understanding of drug disposition throughout pregnancy place both the mother and the fetus at risk for avoidable therapeutic misadventures - suboptimal efficacy or excess toxicity - with medication use in pregnancy. Increased efforts to perform and support obstetric dosing and pharmacokinetic studies are greatly needed.
Collapse
Affiliation(s)
- Shelley A McCormack
- Pediatrics Department, School of Medicine, Rady Children's Hospital San Diego, University of California San Diego , San Diego, CA , USA
| | - Brookie M Best
- Pediatrics Department, School of Medicine, Rady Children's Hospital San Diego, University of California San Diego , San Diego, CA , USA ; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
34
|
Jamsen KM, Duffull SB, Tarning J, Price RN, Simpson JA. A robust design for identification of the Parasite Clearance Estimator. Malar J 2013; 12:410. [PMID: 24225256 PMCID: PMC3831256 DOI: 10.1186/1475-2875-12-410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/01/2013] [Indexed: 01/16/2023] Open
Abstract
Background Anti-malarial efficacy needs to be monitored continually to ensure optimal dosing in the face of emerging anti-malarial drug resistance. The efficacy of artemisinin based combination therapies (ACT) is assessed by repeated measurements of parasite density in the blood of patients following treatment. Parasite density is measured from a capillary or venous blood sample, but this can be logistically and ethically challenging if multiple samples are required within a short time period. The aim of this work was to apply optimal design theory to derive clinically feasible blood sampling schedules from which parasite clearance could be defined using the Parasite Clearance Estimator (PCE), a recently developed tool to identify and quantify artemisinin resistance. Methods Robust T-optimal design methodology was applied to offer a sampling schedule that allows for discrimination across models that best describe an individual patient’s parasite-time profile. The design was based on typical parasite-time profiles derived from the literature combined with key sampling constraints of no more than six samples per patient within 48 hours of initial treatment. The design was evaluated with a simulation-estimation procedure that implemented the PCE. Results The optimal sampling times (sampling windows) were: 0 (0 to 1.1), 5.8 (4.0 to 6.0), 9.9 (8.4 to 11.5), 24.8 (24.0 to 24.9), 36.3 (34.8 to 37.2) and 48 (47.3, 48.0) hours post initial treatment. The simulation-estimation procedure showed that the design supported identification of the appropriate method by the PCE to determine an individual’s parasite clearance rate constant (the main output calculation from the PCE). Conclusions The proposed sampling design requires six samples per patient within the first 48 hours. The derived design requires validation in a real world setting, but should be considered for future studies that intend to employ the PCE.
Collapse
Affiliation(s)
- Kris M Jamsen
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.
| | | | | | | | | |
Collapse
|
35
|
Kloprogge F, Piola P, Dhorda M, Muwanga S, Turyakira E, Apinan S, Lindegårdh N, Nosten F, Day NPJ, White NJ, Guerin PJ, Tarning J. Population Pharmacokinetics of Lumefantrine in Pregnant and Nonpregnant Women With Uncomplicated Plasmodium falciparum Malaria in Uganda. CPT Pharmacometrics Syst Pharmacol 2013; 2:e83. [PMID: 24226803 PMCID: PMC3852159 DOI: 10.1038/psp.2013.59] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/12/2013] [Indexed: 11/10/2022] Open
Abstract
Pregnancy alters the pharmacokinetic properties of many antimalarial compounds. The objective of this study was to evaluate the pharmacokinetic properties of lumefantrine in pregnant and nonpregnant women with uncomplicated Plasmodium falciparum malaria in Uganda after a standard fixed oral artemether-lumefantrine treatment. Dense venous (n = 26) and sparse capillary (n = 90) lumefantrine samples were drawn from pregnant patients. A total of 17 nonpregnant women contributed with dense venous lumefantrine samples. Lumefantrine pharmacokinetics was best described by a flexible absorption model with multiphasic disposition. Pregnancy and body temperature had a significant impact on the pharmacokinetic properties of lumefantrine. Simulations from the final model indicated 27% lower day 7 concentrations in pregnant women compared with nonpregnant women and a decreased median time of 0.92 and 0.42 days above previously defined critical concentration cutoff values (280 and 175 ng/ml, respectively). The standard artemether-lumefantrine dose regimen in P. falciparum malaria may need reevaluation in nonimmune pregnant women.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e83; doi:10.1038/psp.2013.59; advance online publication 13 November 2013.
Collapse
Affiliation(s)
- F Kloprogge
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - P Piola
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Epicentre, Paris, France
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - M Dhorda
- Epicentre, Paris, France
- Epicentre, Mbarara, Uganda
- Malaria Group, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, USA
| | | | - E Turyakira
- Mbarara University of Science and Technology, Mbarara, Uganda
- Epicentre, Mbarara, Uganda
| | - S Apinan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - N Lindegårdh
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Deceased
| | - F Nosten
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - N P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - N J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - P J Guerin
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Epicentre, Paris, France
| | - J Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Pharmacokinetic properties of artemether, dihydroartemisinin, lumefantrine, and quinine in pregnant women with uncomplicated plasmodium falciparum malaria in Uganda. Antimicrob Agents Chemother 2013; 57:5096-103. [PMID: 23917320 PMCID: PMC3811434 DOI: 10.1128/aac.00683-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pregnancy alters the pharmacokinetic properties of many drugs used in the treatment of malaria, usually resulting in lower drug exposures. This increases the risks of treatment failure, adverse outcomes for the fetus, and the development of resistance. The pharmacokinetic properties of artemether and its principal metabolite dihydroartemisinin (n = 21), quinine (n = 21), and lumefantrine (n = 26) in pregnant Ugandan women were studied. Lumefantrine pharmacokinetics in a nonpregnant control group (n = 17) were also studied. Frequently sampled patient data were evaluated with noncompartmental analysis. No significant correlation was observed between estimated gestational age and artemether, dihydroartemisinin, lumefantrine, or quinine exposures. Artemether/dihydroartemisinin and quinine exposures were generally low in these pregnant women compared to values reported previously for nonpregnant patients. Median day 7 lumefantrine concentrations were 488 (range, 30.7 to 3,550) ng/ml in pregnant women compared to 720 (339 to 2,150) ng/ml in nonpregnant women (P = 0.128). There was no statistical difference in total lumefantrine exposure or maximum concentration. More studies with appropriate control groups in larger series are needed to characterize the degree to which pregnant women are underdosed with current antimalarial dosing regimens.
Collapse
|
37
|
Abstract
Pregnant women have a higher risk of malaria compared to non-pregnant women. This review provides an update on knowledge acquired since 2000 on P. falciparum and P.vivax infections in pregnancy. Maternal risk factors for malaria in pregnancy (MiP) include low maternal age, low parity, and low gestational age. The main effects of MIP include maternal anaemia, low birth weight (LBW), preterm delivery and increased infant and maternal mortality. P. falciparum infected erythrocytes sequester in the placenta by expressing surface antigens, mainly variant surface antigen (VAR2CSA), that bind to specific receptors, mainly chondroitin sulphate A. In stable transmission settings, the higher malaria risk in primigravidae can be explained by the non-recognition of these surface antigens by the immune system. Recently, placental sequestration has been described also for P.vivax infections. The mechanism of preterm delivery and intrauterine growth retardation is not completely understood, but fever (preterm delivery), anaemia, and high cytokines levels have been implicated. Clinical suspicion of MiP should be confirmed by parasitological diagnosis. The sensitivity of microscopy, with placenta histology as the gold standard, is 60% and 45% for peripheral and placental falciparum infections in African women, respectively. Compared to microscopy, RDTs have a lower sensitivity though when the quality of microscopy is low RDTs may be more reliable. Insecticide treated nets (ITN) and intermittent preventive treatment in pregnancy (IPTp) are recommended for the prevention of MiP in stable transmission settings. ITNs have been shown to reduce malaria infection and adverse pregnancy outcomes by 28–47%. Although resistance is a concern, SP has been shown to be equivalent to MQ and AQ for IPTp. For the treatment of uncomplicated malaria during the first trimester, quinine plus clindamycin for 7 days is the first line treatment and artesunate plus clindamycin for 7 days is indicated if this treatment fails; in the 2nd and 3rd trimester first line treatment is an artemisinin-based combination therapy (ACT) known to be effective in the region or artesunate and clindamycin for 7 days or quinine and clindamycin. For severe malaria, in the second and third trimester parenteral artesunate is preferred over quinine. In the first trimester, both artesunate and quinine (parenteral) may be considered as options. Nevertheless, treatment should not be delayed and should be started immediately with the most readily available drug.
Collapse
|
38
|
Hoglund RM, Adam I, Hanpithakpong W, Ashton M, Lindegardh N, Day NPJ, White NJ, Nosten F, Tarning J. A population pharmacokinetic model of piperaquine in pregnant and non-pregnant women with uncomplicated Plasmodium falciparum malaria in Sudan. Malar J 2012. [PMID: 23190801 PMCID: PMC3551687 DOI: 10.1186/1475-2875-11-398] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Pregnancy is associated with an increased risk of developing a malaria infection and a higher risk of developing severe malaria. The pharmacokinetic properties of many anti-malarials are also altered during pregnancy, often resulting in a decreased drug exposure. Piperaquine is a promising anti-malarial partner drug used in a fixed-dose combination with dihydroartemisinin. The aim of this study was to investigate the population pharmacokinetics of piperaquine in pregnant and non-pregnant Sudanese women with uncomplicated Plasmodium falciparum malaria. Method Symptomatic patients received a standard dose regimen of the fixed dose oral piperaquine-dihydroartemisinin combination treatment. Densely sampled plasma aliquots were collected and analysed using a previously described LC-MS/MS method. Data from 12 pregnant and 12 non-pregnant women were analysed using nonlinear mixed-effects modelling. A Monte Carlo Mapped Power (MCMP) analysis was conducted based on a previously published study to evaluate the power of detecting covariates in this relatively small study. Results A three-compartment disposition model with a transit-absorption model described the observed data well. Body weight was added as an allometric function on all clearance and volume parameters. A statistically significant decrease in estimated terminal piperaquine half-life in pregnant compared with non-pregnant women was found, but there were no differences in post-hoc estimates of total piperaquine exposure. The MCMP analysis indicated a minimum of 13 pregnant and 13 non-pregnant women were required to identify pregnancy as a covariate on relevant pharmacokinetic parameters (80% power and p=0.05). Pregnancy was, therefore, evaluated as a categorical and continuous covariate (i.e. estimate gestational age) in a full covariate approach. Using this approach pregnancy was not associated with any major change in piperaquine elimination clearance. However, a trend of increasing elimination clearance with increasing gestational age could be seen. Conclusions The population pharmacokinetic properties of piperaquine were well described by a three-compartment disposition model in pregnant and non-pregnant women with uncomplicated malaria. The modelling approach showed no major difference in piperaquine exposure between the two groups and data presented here do not warrant a dose adjustment in pregnancy in this vulnerable population.
Collapse
Affiliation(s)
- Richard M Hoglund
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tarning J, Kloprogge F, Piola P, Dhorda M, Muwanga S, Turyakira E, Nuengchamnong N, Nosten F, Day NPJ, White NJ, Guerin PJ, Lindegardh N. Population pharmacokinetics of Artemether and dihydroartemisinin in pregnant women with uncomplicated Plasmodium falciparum malaria in Uganda. Malar J 2012; 11:293. [PMID: 22913677 PMCID: PMC3502166 DOI: 10.1186/1475-2875-11-293] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/15/2012] [Indexed: 01/06/2023] Open
Abstract
Background Malaria in pregnancy increases the risk of maternal anemia, abortion and low birth weight. Approximately 85.3 million pregnancies occur annually in areas with Plasmodium falciparum transmission. Pregnancy has been reported to alter the pharmacokinetic properties of many anti-malarial drugs. Reduced drug exposure increases the risk of treatment failure. The objective of this study was to evaluate the population pharmacokinetic properties of artemether and its active metabolite dihydroartemisinin in pregnant women with uncomplicated P. falciparum malaria in Uganda. Methods Twenty-one women with uncomplicated P. falciparum malaria in the second and third trimesters of pregnancy received the fixed oral combination of 80 mg artemether and 480 mg lumefantrine twice daily for three days. Artemether and dihydroartemisinin plasma concentrations after the last dose administration were quantified using liquid chromatography coupled to tandem mass-spectroscopy. A simultaneous drug-metabolite population pharmacokinetic model for artemether and dihydroartemisinin was developed taking into account different disposition, absorption, error and covariate models. A separate modeling approach and a non-compartmental analysis (NCA) were also performed to enable a comparison with literature values and different modeling strategies. Results The treatment was well tolerated and there were no cases of recurrent malaria. A flexible absorption model with sequential zero-order and transit-compartment absorption followed by a simultaneous one-compartment disposition model for both artemether and dihydroartemisinin provided the best fit to the data. Artemether and dihydroartemisinin exposure was lower than that reported in non-pregnant populations. An approximately four-fold higher apparent volume of distribution for dihydroartemisinin was obtained by non-compartmental analysis and separate modeling compared to that from simultaneous modeling of the drug and metabolite. This highlights a potential pitfall when analyzing drug/metabolite data with traditional approaches. Conclusion The population pharmacokinetic properties of artemether and dihydroartemisinin, in pregnant women with uncomplicated P. falciparum malaria in Uganda, were described satisfactorily by a simultaneous drug-metabolite model without covariates. Concentrations of artemether and its metabolite dihydroartemisinin were relatively low in pregnancy compared to literature data. However, this should be interpreted with caution considered the limited literature available. Further studies in larger series are urgently needed for this vulnerable group.
Collapse
Affiliation(s)
- Joel Tarning
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|