1
|
Chan YL, Tang SN, Osman CP, Chee CF, Tay ST. Exploring naphthoquinone and anthraquinone derivatives as antibiotic adjuvants against Staphylococcus aureus biofilms: Synergistic effects of menadione. Microb Pathog 2024; 195:106886. [PMID: 39182855 DOI: 10.1016/j.micpath.2024.106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Given the ability of Staphylococcus aureus to form biofilms and produce persister cells, making infections difficult to treat with antibiotics alone, there is a pressing need for an effective antibiotic adjuvant to address this public health threat. In this study, a series of quinone derivatives were evaluated for their antimicrobial and antibiofilm activities against methicillin-susceptible and methicillin-resistant S. aureus reference strains. Following analyses using broth microdilution, growth curve analysis, checkerboard assay, time-kill experiments, and confocal laser scanning microscopy, menadione was identified as a hit compound. Menadione exhibited a notable antibacterial profile (minimum inhibitory concentration, MIC = 4-16 μg/ml; minimum bactericidal concentration, MBC = 256 μg/ml) against planktonic S. aureus and its biofilms (minimum biofilm inhibitory concentration, MBIC50 = 0.0625-0.25 μg/ml). When combined with oxacillin, erythromycin, and vancomycin, menadione exhibited a synergistic or additive effect against planktonic cells and biofilms of two S. aureus reference strains and six clinical isolates, highlighting its potential as a suitable adjuvant for further development against S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Yun Li Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo Nee Tang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Che Puteh Osman
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Stevens ET, Van Beeck W, Blackburn B, Tejedor-Sanz S, Rasmussen ARM, Carter ME, Mevers E, Ajo-Franklin CM, Marco ML. Lactiplantibacillus plantarum uses ecologically relevant, exogenous quinones for extracellular electron transfer. mBio 2023; 14:e0223423. [PMID: 37982640 PMCID: PMC10746273 DOI: 10.1128/mbio.02234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE While quinones are essential for respiratory microorganisms, their importance for microbes that rely on fermentation metabolism is not understood. This gap in knowledge hinders our understanding of anaerobic microbial habitats, such in mammalian digestive tracts and fermented foods. We show that Lactiplantibacillus plantarum, a model fermentative lactic acid bacteria species abundant in human, animal, and insect microbiomes and fermented foods, uses multiple exogenous, environmental quinones as electron shuttles for a hybrid metabolism involving EET. Interestingly, quinones both stimulate this metabolism as well as cause oxidative stress when extracellular electron acceptors are absent. We also found that quinone-producing, lactic acid bacteria species commonly enriched together with L. plantarum in food fermentations accelerate L. plantarum growth and medium acidification through a mainly quinone- and EET-dependent mechanism. Thus, our work provides evidence of quinone cross-feeding as a key ecological feature of anaerobic microbial habitats.
Collapse
Affiliation(s)
- Eric T. Stevens
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Wannes Van Beeck
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Benjamin Blackburn
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sara Tejedor-Sanz
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alycia R. M. Rasmussen
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Mackenzie E. Carter
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Emily Mevers
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Caroline M. Ajo-Franklin
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biosciences, Rice University, Houston, USA
| | - Maria L. Marco
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| |
Collapse
|
3
|
Saiki K, Urano-Tashiro Y, Yamanaka Y, Takahashi Y. Phylloquinone is preferable over menadione as a growth factor for Porphyromonas gingivalis. J Oral Biosci 2023; 65:273-279. [PMID: 37660730 DOI: 10.1016/j.job.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVES Porphyromonas gingivalis is the etiological agent of chronic periodontitis. Menadione (vitamin K3) and phylloquinone (vitamin K1) are well-known growth factors for P. gingivalis, while menadione is widely used in growth experiments. Here we attempted to determine the differences in phylloquinone and menadione in P. gingivalis growth experiments, which have not been well studied to date. METHODS We investigated the effects of menadione and phylloquinone on the growth of two W83 strains and seven ATCC 33277 strains of P. gingivalis. RESULTS The ATCC 33277 strains grew well with phylloquinone at 2.9 μM in a complex medium (nutrient medium) and at 29 μM in two minimal media. In contrast, the W83 strains grew well without menadione or phylloquinone in three different culture media. Menadione at 2.9 μM, the conventionally used concentration for culturing P. gingivalis, supported the growth of most ATCC 33277 strains but inhibited the growth of some W83 and ATCC 33277 strains. Furthermore, menadione at 14.5 μM frequently inhibited cell growth, while phylloquinone at 145 μM promoted cell growth. CONCLUSIONS These results indicate that menadione and phylloquinone act as growth factors for ATCC 33277 but that menadione also can inhibit P. gingivalis growth. Thus, we propose that phylloquinone be used instead of menadione in P. gingivalis growth experiments requiring vitamin K.
Collapse
Affiliation(s)
- Keitarou Saiki
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yumiko Urano-Tashiro
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yuki Yamanaka
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yukihiro Takahashi
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Grabowska-Grucza K, Kiersztyn B. Relationships between Legionella and Aeromonas spp. and associated lake bacterial communities across seasonal changes in an anthropogenic eutrophication gradient. Sci Rep 2023; 13:17076. [PMID: 37816753 PMCID: PMC10564844 DOI: 10.1038/s41598-023-43234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
Anthropogenic eutrophication of lakes threatens their homeostasis and carries an increased risk of development of potentially pathogenic microorganisms. In this paper we show how eutrophication affects seasonal changes in the taxonomic structure of bacterioplankton and whether these changes are associated with the relative abundance of pathogenic bacteria of the genera Legionella and Aeromonas. The subject of the study was a unique system of interconnected lakes in northern Poland (Great Masurian Lakes system), characterized by the presence of eutrophic gradient. We found that the taxonomic structure of the bacterial community in eutrophic lakes was significantly season dependent. No such significant seasonal changes were observed in meso-eutrophic lakes. We found that there is a specific taxonomic composition of bacteria associated with the occurrence of Legionella spp. The highest positive significant correlations were found for families Pirellulaceae, Mycobacteriaceae and Gemmataceae. The highest negative correlations were found for the families Sporichthyaceae, Flavobacteriaceae, the uncultured families of class Verrucomicrobia and Chitinophagaceae. We used also an Automatic Neural Network model to estimate the relative abundance of Legionella spp. based on the relative abundance of dominant bacterial families. In the case of Aeromonas spp. we did not find a clear relationship with bacterial communities inhabiting lakes of different trophic state. Our research has shown that anthropogenic eutrophication causes significant changes in the taxonomic composition of lake bacteria and contributes to an increase in the proportion of potentially pathogenic Legionella spp.
Collapse
Affiliation(s)
- Karolina Grabowska-Grucza
- Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warszawa, Poland.
| | - Bartosz Kiersztyn
- Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warszawa, Poland
| |
Collapse
|
5
|
Leitão AC, Ferreira TL, Gurgel do Amaral Valente Sá L, Rodrigues DS, de Souza BO, Barbosa AD, Moreira LEA, de Andrade Neto JB, Cabral VPDF, Rios MEF, Cavalcanti BC, Silva J, Marinho ES, Dos Santos HS, de Moraes MO, Júnior HVN, da Silva CR. Antibacterial activity of menadione alone and in combination with oxacillin against methicillin-resistant Staphylococcus aureus and its impact on biofilms. J Med Microbiol 2023; 72. [PMID: 37707372 DOI: 10.1099/jmm.0.001751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Introduction. Antibiotic resistance is a major threat to public health, particularly with methicillin-resistant Staphylococcus aureus (MRSA) being a leading cause of antimicrobial resistance. To combat this problem, drug repurposing offers a promising solution for the discovery of new antibacterial agents.Hypothesis. Menadione exhibits antibacterial activity against methicillin-sensitive and methicillin-resistant S. aureus strains, both alone and in combination with oxacillin. Its primary mechanism of action involves inducing oxidative stress.Methodology. Sensitivity assays were performed using broth microdilution. The interaction between menadione, oxacillin, and antioxidants was assessed using checkerboard technique. Mechanism of action was evaluated using flow cytometry, fluorescence microscopy, and in silico analysis.Aim. The aim of this study was to evaluate the in vitro antibacterial potential of menadione against planktonic and biofilm forms of methicillin-sensitive and resistant S. aureus strains. It also examined its role as a modulator of oxacillin activity and investigated the mechanism of action involved in its activity.Results. Menadione showed antibacterial activity against planktonic cells at concentrations ranging from 2 to 32 µg ml-1, with bacteriostatic action. When combined with oxacillin, it exhibited an additive and synergistic effect against the tested strains. Menadione also demonstrated antibiofilm activity at subinhibitory concentrations and effectively combated biofilms with reduced sensitivity to oxacillin alone. Its mechanism of action involves the production of reactive oxygen species (ROS) and DNA damage. It also showed interactions with important targets, such as DNA gyrase and dehydroesqualene synthase. The presence of ascorbic acid reversed its effects.Conclusion. Menadione exhibited antibacterial and antibiofilm activity against MRSA strains, suggesting its potential as an adjunct in the treatment of S. aureus infections. The main mechanism of action involves the production of ROS, which subsequently leads to DNA damage. Additionally, the activity of menadione can be complemented by its interaction with important virulence targets.
Collapse
Affiliation(s)
- Amanda Cavalcante Leitão
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thais Lima Ferreira
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Beatriz Oliveira de Souza
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lara Elloyse Almeida Moreira
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Vitória Pessoa de Farias Cabral
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Jacilene Silva
- Department of Chemistry, Theoretical Chemistry and Electrochemistry Group (GQTE), State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Theoretical Chemistry and Electrochemistry Group (GQTE), State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Hélcio Silva Dos Santos
- Center for Exact Sciences and Technology, Acaraú Valley State University, Sobral, CE, Brazil
| | | | - Hélio Vitoriano Nobre Júnior
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
6
|
Schlievert PM, Gaitán AV, Kilgore SH, Roe AL, Maukonen J, Lehtoranta L, Leung DYM, Marsman DS. Inhibition of Toxic Shock Syndrome-Associated Staphylococcus aureus by Probiotic Lactobacilli. Microbiol Spectr 2023; 11:e0173523. [PMID: 37404182 PMCID: PMC10434015 DOI: 10.1128/spectrum.01735-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Staphylococcus aureus is a human pathogen with many infections originating on mucosal surfaces. One common group of S. aureus is the USA200 (CC30) clonal group, which produces toxic shock syndrome toxin-1 (TSST-1). Many USA200 infections occur on mucosal surfaces, particularly in the vagina and gastrointestinal tract. This allows these organisms to cause cases of menstrual TSS and enterocolitis. The current study examined the ability of two lactobacilli, Lactobacillus acidophilus strain LA-14 and Lacticaseibacillus rhamnosus strain HN001, for their ability to inhibit the growth of TSST-1 positive S. aureus, the production of TSST-1, and the ability of TSST-1 to induce pro-inflammatory chemokines from human vaginal epithelial cells (HVECs). In competition growth experiments, L. rhamnosus did not affect the growth of TSS S. aureus but did inhibit the production of TSST-1; this effect was partially due to acidification of the growth medium. L. acidophilus was both bactericidal and prevented the production of TSST-1 by S. aureus. This effect appeared to be partially due to acidification of the growth medium, production of H2O2, and production of other antibacterial molecules. When both organisms were incubated with S. aureus, the effect of L. acidophilus LA-14 dominated. In in vitro experiments with HVECs, neither lactobacillus induced significant production of the chemokine interleukin-8, whereas TSST-1 did induce production of the chemokine. When the lactobacilli were incubated with HVECs in the presence of TSST-1, the lactobacilli reduced chemokine production. These data suggest that these two bacteria in probiotics could reduce the incidence of menstrual and enterocolitis-associated TSS. IMPORTANCE Toxic shock syndrome (TSS) Staphylococcus aureus commonly colonize mucosal surfaces, giving them the ability to cause TSS through the action of TSS toxin-1 (TSST-1). This study examined the ability of two probiotic lactobacilli to inhibit S. aureus growth and TSST-1 production, and the reduction of pro-inflammatory chemokine production by TSST-1. Lacticaseibacillus rhamnosus strain HN001 inhibited TSST-1 production due to acid production but did not affect S. aureus growth. Lactobacillus acidophilus strain LA-14 was bactericidal against S. aureus, partially due to acid and H2O2 production, and consequently also inhibited TSST-1 production. Neither lactobacillus induced the production of pro-inflammatory chemokines by human vaginal epithelial cells, and both inhibited chemokine production by TSST-1. These data suggest that the two probiotics could reduce the incidence of mucosa-associated TSS, including menstrual TSS and cases originating as enterocolitis.
Collapse
Affiliation(s)
- Patrick M. Schlievert
- Department of Microbiology and Immunology, University of Iowa; Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Samuel H. Kilgore
- Department of Microbiology and Immunology, University of Iowa; Carver College of Medicine, Iowa City, Iowa, USA
| | - Amy L. Roe
- The Procter & Gamble Company, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
7
|
Xu F, Liu M, Zhang S, Chen T, Sun J, Wu W, Zhao Z, Zhang H, Gong Y, Jiang J, Wang H, Kong Q. Treatment of atrazine-containing wastewater by algae-bacteria consortia: Signal transmission and metabolic mechanism. CHEMOSPHERE 2023:139207. [PMID: 37364639 DOI: 10.1016/j.chemosphere.2023.139207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Atrazine is a toxic endocrine disruptor. Biological treatment methods are considered to be effective. In the present study, a modified version of the algae-bacteria consortia (ABC) was established and a control was simultaneously set up to investigate the synergistic relationship between bacteria and algae and the mechanism by which atrazine is metabolized by those microorganisms. The total nitrogen (TN) removal efficiency of the ABC reached 89.24% and the atrazine concentration was reduced to below the level recommended by the Environment Protection Agency (EPA) regulatory standards within 25 days. The protein signal released from the extracellular polymeric substances (EPS) secreted by the microorganisms triggered the resistance mechanism of the algae, and the conversion of humic acid to fulvic acid and electron transfer constituted the synergistic mechanism between the bacteria and algae. The mechanism by which atrazine is metabolized by the ABC mainly consists of hydrogen bonding, H-pi interactions, and cation exchange with atzA for hydrolysis, followed by a reaction with atzC for decomposition to non-toxic cyanuric acid. Proteobacteria was the dominant phylum for bacterial community evolution under atrazine stress, and the analysis revealed that the removal of atrazine within the ABC was mainly dependent on the proportion of Proteobacteria and the expression of degradation genes (p < 0.01). EPS played a major role in the removal of atrazine within the single bacteria group (p < 0.01).
Collapse
Affiliation(s)
- Fei Xu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Mengyu Liu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Siju Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Tao Chen
- The Natural Resources and Planning Bureau of Weishan, Jining, 273100, PR China
| | - Jingyao Sun
- The Natural Resources and Planning Bureau of Weishan, Jining, 273100, PR China
| | - Wenjie Wu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Zheng Zhao
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Yanyan Gong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Jinpeng Jiang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Hao Wang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China; Dongying Institute, Shandong Normal University, Dongying, Shandong, 257092, PR China.
| |
Collapse
|
8
|
Negri LB, Mannaa Y, Korupolu S, Farinelli WA, Anderson RR, Gelfand JA. Vitamin K3 (Menadione) is a multifunctional microbicide acting as a photosensitizer and synergizing with blue light to kill drug-resistant bacteria in biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 244:112720. [PMID: 37186990 DOI: 10.1016/j.jphotobiol.2023.112720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Cutaneous bacterial wound infections typically involve gram-positive cocci such as Staphylococcus aureus (SA) and usually become biofilm infections. Bacteria in biofilms may be 100-1000-fold more resistant to an antibiotic than the clinical laboratory minimal inhibitory concentration (MIC) for that antibiotic, contributing to antimicrobial resistance (AMR). AMR is a growing global threat to humanity. One pathogen-antibiotic resistant combination, methicillin-resistant SA (MRSA) caused more deaths globally than any other such combination in a recent worldwide statistical review. Many wound infections are accessible to light. Antimicrobial phototherapy, and particularly antimicrobial blue light therapy (aBL) is an innovative non-antibiotic approach often overlooked as a possible alternative or adjunctive therapy to reduce antibiotic use. We therefore focused on aBL treatment of biofilm infections, especially MRSA, focusing on in vitro and ex vivo porcine skin models of bacterial biofilm infections. Since aBL is microbicidal through the generation of reactive oxygen species (ROS), we hypothesized that menadione (Vitamin K3), a multifunctional ROS generator, might enhance aBL. Our studies suggest that menadione can synergize with aBL to increase both ROS and microbicidal effects, acting as a photosensitizer as well as an ROS recycler in the treatment of biofilm infections. Vitamin K3/menadione has been given orally and intravenously worldwide to thousands of patients. We conclude that menadione/Vitamin K3 can be used as an adjunct to antimicrobial blue light therapy, increasing the effectiveness of this modality in the treatment of biofilm infections, thereby presenting a potential alternative to antibiotic therapy, to which biofilm infections are so resistant.
Collapse
Affiliation(s)
- Laisa Bonafim Negri
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yara Mannaa
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sandeep Korupolu
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - William A Farinelli
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Gelfand
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Schlievert PM, Kilgore SH, Beck LA, Yoshida T, Klingelhutz AJ, Leung DYM. Host Cationic Antimicrobial Molecules Inhibit S. aureus Exotoxin Production. mSphere 2023; 8:e0057622. [PMID: 36598227 PMCID: PMC9942567 DOI: 10.1128/msphere.00576-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
Innate immune molecules, including antimicrobial peptides (for example, defensins) and lysozyme, function to delay or prevent bacterial infections. These molecules are commonly found on mucosal and skin surfaces. Staphylococcus aureus is a common pathogen and causes millions of infections annually. It is well known that innate immune molecules, such as defensins and lysozyme, either poorly inhibit or do not inhibit the growth of S. aureus. Our current studies show that the α-defensin human neutrophil α-defensin-1 (HNP-1) and lysozyme inhibit exotoxin production, both hemolysins and superantigens, which are required for S. aureus infection. HNP-1 inhibited exotoxin production at concentrations as low as 0.001 μg/mL. Lysozyme inhibited exotoxin production at 0.05 to 0.5 μg/mL. Both HNP-1 and lysozyme functioned through at least one two-component system (SrrA/B). The β-defensin human β-defensin 1 (HBD-1) inhibited hemolysin but not superantigen production. The cation chelator S100A8/A9 (calprotectin), compared to EDTA, was tested for the ability to inhibit exotoxin production. EDTA at high concentrations inhibited exotoxin production; these were the same concentrations that interfered with staphylococcal growth. S100A8/A9 at the highest concentration tested (10 μg/mL) had no effect on S. aureus growth but enhanced exotoxin production. Lower concentrations had no effect on growth or exotoxin production. Lysostaphin is regularly used to lyse S. aureus. The lytic concentrations of lysostaphin were the only concentrations that also inhibited growth and exotoxin production. Our studies demonstrate that a major activity of innate defensin peptides and lysozyme is inhibition of staphylococcal exotoxin production but not inhibition of growth. IMPORTANCE Staphylococcus aureus causes large numbers of both relatively benign and serious human infections, which are mediated in large part by the organisms' secreted exotoxins. Since 1921, it has been known that lysozyme and, as shown later in the 1900s, other innate immune peptides, including human neutrophil α-defensin-1 (HNP-1) and human β-defensin 1 (HBD-1), are either not antistaphylococcal or are only weakly inhibitory to growth. Our study confirms those findings but, importantly, shows that at subgrowth inhibitory concentrations, these positively charged innate immune peptides inhibit exotoxin production, including both hemolysins and the superantigen toxic shock syndrome toxin-1. The data show that the principal activity of innate immune peptides in the host is likely to be inhibition of exotoxin production required for staphylococcal mucosal or skin colonization rather than growth inhibition.
Collapse
Affiliation(s)
- Patrick M. Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Samuel H. Kilgore
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lisa A. Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
10
|
Yap CH, Lim SK, Chan YL, Chee CF, Tay ST. Potential application of menadione for antimicrobial coating of surgical sutures. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:20-27. [PMID: 39416925 PMCID: PMC11446358 DOI: 10.1016/j.biotno.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 10/19/2024]
Abstract
Staphylococcal-associated surgical site infections (SSI) are common nosocomial infections in healthcare facilities worldwide. The use of antiseptic-coated sutures has been recommended to minimise the risk of SSI in clinical settings. However, as there has been a growing concern over antibiotic resistance resulting from antiseptic usage, development of antimicrobial sutures using alternative compounds is necessary. In this study, menadione (2-methyl-1,4-napthoquinone), also known as Vitamin K3, was evaluated as a potential antimicrobial compound for suture coating. The anti-staphylococcal activity of menadione was assessed using microbroth dilution method and biofilm inhibition assays. The low menadione minimum biofilm inhibitory concentration values against both methicillin-susceptible and -resistant S. aureus strains indicate its inhibitory activity against staphylococcal biofilm. Menadione-coated sutures were prepared by dip-coating surgical sutures in slurries containing poly(D,L-lactide-co-glycolide) polymers (either 65:35 or 75:25) and calcium stearate. Zone of inhibition assays showed dose-dependent antimicrobial effects of the sutures up to four days. A ∼3 log10 colony forming unit/ml reduction of adherent bacteria (p < 0.05) on the sutures was demonstrated via bacterial adherence assays. The integrity and tensile strength of the sutures were unaffected by the coating procedure. In view of the increased antibiotic resistance and limited antimicrobials, menadione may be potentially useful for antimicrobial coating of surgical sutures.
Collapse
Affiliation(s)
- Cheng Hong Yap
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - See Khai Lim
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yun Li Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Mone NS, Syed S, Ravichandiran P, Satpute SK, Kim AR, Yoo DJ. How Structure-Function Relationships of 1,4-Naphthoquinones Combat Antimicrobial Resistance in Multidrug-Resistant (MDR) Pathogens. ChemMedChem 2023; 18:e202200471. [PMID: 36316281 DOI: 10.1002/cmdc.202200471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Antimicrobial resistance (AMR) is one of the top ten health-related threats worldwide. Among several antimicrobial agents, naphthoquinones (NQs) of plant/chemical origin possess enormous structural and functional diversity and are effective against multidrug-resistant (MDR) pathogens. 1,4-NQs possess alkyl, hydroxyl, halide, and metal groups as side chains on their double-ring structure, predominantly at the C-2, C-3, C-5, and C-8 positions. Among 1,4-NQs, hydroxyl groups at either C-2 or C-5 exhibit significant antibacterial activity against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. (ESKAPE) and MDR categories. 1,4-NQs exhibit antibacterial activities like plasmids curing, reactive oxygen species generation, efflux pumps inhibition, anti-DNA gyrase activity, membrane permeabilization, and biofilm inhibition. This review emphasizes the structure-function relationships of 1,4-NQs against ESKAPE and MDR pathogens based on a literature review of studies published in the last 15 years. Overall, 1,4-NQs have great potential for counteracting the antimicrobial resistance of MDR pathogens.
Collapse
Affiliation(s)
- Nishigandha S Mone
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Present address: Analytical, HP Green R&D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, 562114, Karnataka, India
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Ae Rhan Kim
- Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
12
|
The Intersection of the Staphylococcus aureus Rex and SrrAB Regulons: an Example of Metabolic Evolution That Maximizes Resistance to Immune Radicals. mBio 2021; 12:e0218821. [PMID: 34781744 PMCID: PMC8593685 DOI: 10.1128/mbio.02188-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is the most pathogenic member of the Staphylococcaceae. While it acquired an arsenal of canonical virulence determinants that mediate pathogenicity, it has also metabolically adapted to thrive at sites of inflammation. Notably, it has evolved to grow in the presence of nitric oxide (NO·). To this end, we note that the Rex regulon, composed of genes encoding dehydrogenases, metabolite transporters, and regulators, is much larger in S. aureus than other Staphylococcus species. Here, we demonstrate that this expanded Rex regulon is necessary and sufficient for NO· resistance. Preventing its expression results in NO· sensitivity, and the closely related species, Staphylococcus simiae, also possesses an expanded Rex regulon and exhibits NO· resistance. We hypothesize that the expanded Rex regulon initially evolved to provide efficient anaerobic metabolism but that S. aureus has co-opted this feature to thrive at sites of inflammation where respiration is limited. One distinguishing feature of the Rex regulon in S. aureus is that it contains the srrAB two-component system. Here, we show that Rex blocks the ability of SrrA to auto-induce the operon, thereby preventing maximal SrrAB expression. This results in NO·-responsive srrAB expression in S. aureus but not in other staphylococci. Consequently, higher expression of cytochromes and NO· detoxification are also observed in S. aureus alone, allowing for continued respiration at NO· concentrations beyond that of S. simiae. We therefore contend that the intersection of the Rex and SrrAB regulons represents an evolutionary event that allowed S. aureus to metabolically adapt to host inflammatory radicals during infection.
Collapse
|
13
|
Impact of Phytochemicals on Viability and Cereulide Toxin Synthesis in Bacillus cereus Revealed by a Novel High-Throughput Method, Coupling an AlamarBlue-Based Assay with UPLC-MS/MS. Toxins (Basel) 2021; 13:toxins13090672. [PMID: 34564676 PMCID: PMC8470179 DOI: 10.3390/toxins13090672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Due to its food-poisoning potential, Bacillus cereus has attracted the attention of the food industry. The cereulide-toxin-producing subgroup is of particular concern, as cereulide toxin is implicated in broadscale food-borne outbreaks and occasionally causes fatalities. The health risks associated with long-term cereulide exposure at low doses remain largely unexplored. Natural substances, such as plant-based secondary metabolites, are widely known for their effective antibacterial potential, which makes them promising as ingredients in food and also as a surrogate for antibiotics. In this work, we tested a range of structurally related phytochemicals, including benzene derivatives, monoterpenes, hydroxycinnamic acid derivatives and vitamins, for their inhibitory effects on the growth of B. cereus and the production of cereulide toxin. For this purpose, we developed a high-throughput, small-scale method which allowed us to analyze B. cereus survival and cereulide production simultaneously in one workflow by coupling an AlamarBlue-based viability assay with ultraperformance liquid chromatography–mass spectrometry (UPLC-MS/MS). This combinatory method allowed us to identify not only phytochemicals with high antibacterial potential, but also ones specifically eradicating cereulide biosynthesis already at very low concentrations, such as gingerol and curcumin.
Collapse
|
14
|
Kandhasamy S, Liang B, Yang DP, Zeng Y. Antibacterial Vitamin K3 Carnosine Peptide-Laden Silk Fibroin Electrospun Fibers for Improvement of Skin Wound Healing in Diabetic Rats. ACS APPLIED BIO MATERIALS 2021; 4:4769-4788. [PMID: 35007027 DOI: 10.1021/acsabm.0c01650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The utilization of a multifunctional bioactive molecule functionalized electrospun dressing in tissue repair and regenerative function is a prominent therapeutic strategy for preparing efficient biomaterials to promote chronic wound healing. Designing robust and highly efficient antibacterial agents in resistance against microbes and bacterial infections is a key challenge for accelerating diabetic wound healing until today. In this study, we developed a vitamin K3 carnosine peptide (VKC)-laden silk fibroin electrospun scaffold (SF-VKC) for diabetic wound healing. The structural confirmation of synthesized VKC was characterized by 1H NMR, 13C NMR, electrospray ionization mass spectrometry (ESI-MS), and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy analysis, and the cell viability of VKC was evaluated by the CCK-8 assay in HFF1 and NIH 3T3 cells. VKC shows excellent cell viability on both cell lines, and the VKC and SF-VKC electrospun mats exhibited excellent antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Prepared SF and SF-VKC fibrous mats were well characterized, and the SF-VKC nanofiber mat presented good biodegradability, adhesiveness, unique mechanical property, expedient water uptake property, sustained drug release, and excellent biocompatibility for chronic wound healing. The in vitro tissue engineering study depicted excellent cell migration and cell-cell interaction in the NIH 3T3 cells over the VKC-impregnated silk fibroin (SF-VKC) mat. A higher population of cell migration was observed in cells' denuded area (scratched region) compared to the native SF fibrous mat. Interestingly, our results demonstrated that the prepared VKC-impregnated SF mat had potentially promoted the STZ-induced diabetic wound healing in a shorter period than the pure SF mat. Thus, obtained in vitro and in vivo outcomes suggest that the VKC-laden SF electrospun fibrous mat could be a better and inexpensive fibrous antibacterial biomaterial to elicit earlier re-epithelialization and efficient matrix remodeling for accelerating chronic infected wound reconstruction in skin diabetic wound healing applications.
Collapse
Affiliation(s)
- Subramani Kandhasamy
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Bo Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Yiming Zeng
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
15
|
Liu X, Abraham MH, Acree WE. Descriptors for vitamin K3 (menadione); calculation of biological and physicochemical properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Naphthoquinones and Their Derivatives: Emerging Trends in Combating Microbial Pathogens. COATINGS 2021. [DOI: 10.3390/coatings11040434] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the current era, an ever-emerging threat of multidrug-resistant (MDR) pathogens pose serious health challenges to mankind. Researchers are uninterruptedly putting their efforts to design and develop alternative, innovative strategies to tackle the antibiotic resistance displayed by varied pathogens. Among several naturally derived and chemically synthesized compounds, quinones have achieved a distinct position to defeat microbial pathogens. This review unleashes the structural diversity and promising biological activities of naphthoquinones (NQs) and their derivatives documented in the past two decades. Further, realizing their functional potentialities, researchers were encouraged to approach NQs as lead molecules. We have retrieved information that is dedicated on biological applications (antibacterial, antifungal, antiparasitic) of NQs. The multiple roles of NQs offer them a promising armory to combat microbial pathogens including MDR and the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) group. In bacteria, NQs may exhibit their function in the following ways (1) plasmid curing, (2) inhibiting efflux pumps (EPs), (3) generating reactive oxygen species (ROS), (4) the inhibition of topoisomerase activity. Sparse but meticulous literature suggests the mechanistic roles of NQs. We have highlighted the possible mechanisms of NQs and how the targeted drug synthesis can be achieved via molecular docking analysis. This bioinformatics-oriented approach will explicitly lead to the development of effective and most potent drugs against targeted pathogens. The mechanistic approaches of emerging molecules like NQs might prove a milestone to defeat the battle against microbial pathogens.
Collapse
|
17
|
Vitamin K Analogs Influence the Growth and Virulence Potential of Enterohemorrhagic Escherichia coli. Appl Environ Microbiol 2020; 86:AEM.00583-20. [PMID: 32769190 DOI: 10.1128/aem.00583-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) causes serious foodborne disease worldwide. It produces the very potent Shiga toxin 2 (Stx2). The Stx2-encoding genes are located on a prophage, and production of the toxin is linked to the synthesis of Stx phages. There is, currently, no good treatment for EHEC infections, as antibiotics may trigger lytic cycle activation of the phages and increased Stx production. This study addresses how four analogs of vitamin K, phylloquinone (K1), menaquinone (K2), menadione (K3), and menadione sodium bisulfite (MSB), influence growth, Stx2-converting phage synthesis, and Stx2 production by the EHEC O157:H7 strain EDL933. Menadione and MSB conferred a concentration-dependent negative effect on bacterial growth, while phylloquinone or menaquinone had little and no effect on bacterial growth, respectively. All four vitamin K analogs affected Stx2 phage production negatively in uninduced cultures and in cultures induced with either hydrogen peroxide (H2O2), ciprofloxacin, or mitomycin C. Menadione and MSB reduced Stx2 production in cultures induced with either H2O2 or ciprofloxacin. MSB also had a negative effect on Stx2 production in two other EHEC isolates tested. Phylloquinone and menaquinone had, on the other hand, variable and concentration-dependent effects on Stx2 production. MSB, which conferred the strongest inhibitory effect on both Stx2 phage and Stx2 production, improved the growth of EHEC in the presence of H2O2 and ciprofloxacin, which could be explained by the reduced uptake of ciprofloxacin into the bacterial cell. Together, the data suggest that vitamin K analogs have a growth- and potential virulence-reducing effect on EHEC, which could be of therapeutic interest.IMPORTANCE Enterohemorrhagic E. coli (EHEC) can cause serious illness and deaths in humans by producing toxins that can severely damage our intestines and kidneys. There is currently no optimal treatment for EHEC infections, as antibiotics can worsen disease development. Consequently, the need for new treatment options is urgent. Environmental factors in our intestines can affect the virulence of EHEC and help our bodies fight EHEC infections. The ruminant intestine, the main reservoir for EHEC, contains high levels of vitamin K, but the levels are variable in humans. This study shows that vitamin K analogs can inhibit the growth of EHEC and/or production of its main virulence factor, the Shiga toxin. They may also inhibit the spreading of the Shiga toxin encoding bacteriophage. Our findings indicate that vitamin K analogs have the potential to suppress the development of serious disease caused by EHEC.
Collapse
|
18
|
Panthee S, Paudel A, Hamamoto H, Uhlemann AC, Sekimizu K. The Role of Amino Acid Substitution in HepT Toward Menaquinone Isoprenoid Chain Length Definition and Lysocin E Sensitivity in Staphylococcus aureus. Front Microbiol 2020; 11:2076. [PMID: 32983054 PMCID: PMC7479192 DOI: 10.3389/fmicb.2020.02076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Staphylococcus aureus Smith strain is a historical strain widely used for research purposes in animal infection models for testing the therapeutic activity of antimicrobial agents. We found that it displayed higher sensitivity toward lysocin E, a menaquinone (MK) targeting antibiotic, compared to other S. aureus strains. Therefore, we further explored the mechanism of this hypersensitivity. METHODS MK production was analyzed by high-performance liquid chromatography and mass spectrometric analysis. S. aureus Smith genome sequence was completed using a hybrid assembly approach, and the MK biosynthetic genes were compared with other S. aureus strains. The hepT gene was cloned and introduced into S. aureus RN4220 strain using phage mediated recombination, and lysocin E sensitivity was analyzed by the measurement of colony-forming units. RESULTS We found that Smith strain produced MKs with the length of the side chain ranging between 8 and 10, as opposed to other S. aureus strains that produce MKs 7-9. We revealed that Smith strain possessed the classical pathway for MK biosynthesis like the other S. aureus. HepT, a polyprenyl diphosphate synthase involved in chain elongation of isoprenoid, in Smith strain harbored a Q25P substitution. Introduction of hepT from Smith to RN4220 led to the production of MK-10 and an increased sensitivity toward lysocin E. CONCLUSION We found that HepT was responsible for the definition of isoprenoid chain length of MKs and antibiotic sensitivity.
Collapse
Affiliation(s)
- Suresh Panthee
- Teikyo University Institute of Medical Mycology, Hachioji, Japan
| | - Atmika Paudel
- Teikyo University Institute of Medical Mycology, Hachioji, Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology, Hachioji, Japan
| | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | | |
Collapse
|
19
|
Sheng L, Zhang Z, Sun G, Wang L. Light-driven antimicrobial activities of vitamin K3 against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Enteritidis. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107235] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Simultaneous Determination of Vitamin E and Vitamin K in Food Supplements Using Adsorptive Stripping Square-Wave Voltammetry at Glassy Carbon Electrode. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new voltammetric method for the simultaneous determination of vitamin E and vitamin K present in different types of commercially available food supplements has been developed. This electroanalytical method is based on the ex situ adsorptive accumulation of these biologically active compounds onto the surface of a solid glassy carbon electrode (GCE) with subsequent electrochemical detection by square-wave adsorptive stripping voltammetry in 0.01-mol L−1 HNO3 containing 0.1-mol L−1 KCl at pH 2.08. Due to reversible electrochemical reactions of phylloquinone, a subsequent voltammetric detection of both vitamins in anodic mode can be performed. Since individual forms of vitamins E and K usually exhibit nearly identical electrochemical behavior, it is therefore impossible to distinguish individual forms (quinones and tocopherols) and determine their molar concentrations in this way. Thus, the values of vitamin content were expressed as mass equivalent of phylloquinone and α-tocopherol as they are the most biologically active forms. Despite the high sensitivity, relatively short linear ranges were obtained due to the interaction (competition) of both vitamins during adsorption onto the freshly polished surface of the GCE from a 50% aqueous–acetonitrile mixture. The obtained results showed that the voltammetric approach is a very simple and low-cost analytical method that can be used in analyses of food supplements.
Collapse
|
21
|
The SrrAB two-component system regulates Staphylococcus aureus pathogenicity through redox sensitive cysteines. Proc Natl Acad Sci U S A 2020; 117:10989-10999. [PMID: 32354997 DOI: 10.1073/pnas.1921307117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus infections can lead to diseases that range from localized skin abscess to life-threatening toxic shock syndrome. The SrrAB two-component system (TCS) is a global regulator of S. aureus virulence and critical for survival under environmental conditions such as hypoxic, oxidative, and nitrosative stress found at sites of infection. Despite the critical role of SrrAB in S. aureus pathogenicity, the mechanism by which the SrrAB TCS senses and responds to these environmental signals remains unknown. Bioinformatics analysis showed that the SrrB histidine kinase contains several domains, including an extracellular Cache domain and a cytoplasmic HAMP-PAS-DHp-CA region. Here, we show that the PAS domain regulates both kinase and phosphatase enzyme activity of SrrB and present the structure of the DHp-CA catalytic core. Importantly, this structure shows a unique intramolecular cysteine disulfide bond in the ATP-binding domain that significantly affects autophosphorylation kinetics. In vitro data show that the redox state of the disulfide bond affects S. aureus biofilm formation and toxic shock syndrome toxin-1 production. Moreover, with the use of the rabbit infective endocarditis model, we demonstrate that the disulfide bond is a critical regulatory element of SrrB function during S. aureus infection. Our data support a model whereby the disulfide bond and PAS domain of SrrB sense and respond to the cellular redox environment to regulate S. aureus survival and pathogenesis.
Collapse
|
22
|
Ribeiro LMBC, Fumagalli F, Mello RB, Froes TQ, da Silva MVS, Villamizar Gómez SM, Barros TF, Emery FS, Castilho MS. Structure-activity relationships and mechanism of action of tetragomycin derivatives as inhibitors of Staphylococcus aureus staphyloxanthin biosynthesis. Microb Pathog 2020; 144:104127. [PMID: 32169485 DOI: 10.1016/j.micpath.2020.104127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Despite the main strategy to overcome bacterial resistance has focused on the development of more potent antimicrobial agents, the evolutionary pressure caused by such drugs makes this strategy limited. Molecules that interfere with virulence factors appear as a promising alternative though, as they cause reduced selective pressure. As a matter of fact, staphyloxanthin biosynthesis inhibition (STXBI) has been pursued as promising strategy to reduce S. aureus virulence. Herein, we report the inhibitory profile of 27 tetrangomycin derivatives over staphyloxanthin production. The experimental result showed that naphthoquinone dehydro-α-lapachone (25 - EC50 = 57.29 ± 1.15 μM) and 2-Isopropylnaphtho[2,3-b]furan-4,9-dione (26 EC50 = 82.10 ± 1.09 μM) are the most potent compounds and suggest that hydrogen acceptor groups and lipophilic moieties decorating the naphthoquinone ring are crucial for STXBI. In addition, we present an in situ analysis, through RAMAN spectroscopy, that is inexpensive and might be employed to probe the mechanism of action of staphyloxanthin biosynthesis inhibitors. Therefore, our molecular simplification strategies afforded promising lead compounds for the development of drugs that modulate S. aureus staphyloxanthin biosynthesis.
Collapse
Affiliation(s)
- L M B C Ribeiro
- Programa de Pós-graduação Em Biotecnologia, Universidade Estadual de Feira de Santana, Brazil
| | - F Fumagalli
- Centro de Ciências da Saúde da Universidade Federal de Santa Maria, Brazil
| | - R B Mello
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - T Q Froes
- Programa de Pós-graduação Em Biotecnologia, Universidade Estadual de Feira de Santana, Brazil
| | - M V S da Silva
- Instituto de Física da Universidade Federal da Bahia, Brazil
| | | | - T F Barros
- Faculdade de Farmácia da Universidade Federal da Bahia, Brazil
| | - F S Emery
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - M S Castilho
- Programa de Pós-graduação Em Biotecnologia, Universidade Estadual de Feira de Santana, Brazil; Faculdade de Farmácia da Universidade Federal da Bahia, Brazil.
| |
Collapse
|
23
|
Shabalin IG, Gritsunov A, Hou J, Sławek J, Miks CD, Cooper DR, Minor W, Christendat D. Structural and biochemical analysis of Bacillus anthracis prephenate dehydrogenase reveals an unusual mode of inhibition by tyrosine via the ACT domain. FEBS J 2019; 287:2235-2255. [PMID: 31750992 DOI: 10.1111/febs.15150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/05/2019] [Accepted: 11/19/2019] [Indexed: 01/19/2023]
Abstract
Tyrosine biosynthesis via the shikimate pathway is absent in humans and other animals, making it an attractive target for next-generation antibiotics, which is increasingly important due to the looming proliferation of multidrug-resistant pathogens. Tyrosine biosynthesis is also of commercial importance for the environmentally friendly production of numerous compounds, such as pharmaceuticals, opioids, aromatic polymers, and petrochemical aromatics. Prephenate dehydrogenase (PDH) catalyzes the penultimate step of tyrosine biosynthesis in bacteria: the oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate. The majority of PDHs are competitively inhibited by tyrosine and consist of a nucleotide-binding domain and a dimerization domain. Certain PDHs, including several from pathogens on the World Health Organization priority list of antibiotic-resistant bacteria, possess an additional ACT domain. However, biochemical and structural knowledge was lacking for these enzymes. In this study, we successfully established a recombinant protein expression system for PDH from Bacillus anthracis (BaPDH), the causative agent of anthrax, and determined the structure of a BaPDH ternary complex with NAD+ and tyrosine, a binary complex with tyrosine, and a structure of an isolated ACT domain dimer. We also conducted detailed kinetic and biophysical analyses of the enzyme. We show that BaPDH is allosterically regulated by tyrosine binding to the ACT domains, resulting in an asymmetric conformation of the BaDPH dimer that sterically prevents prephenate binding to either active site. The presented mode of allosteric inhibition is unique compared to both the competitive inhibition established for other PDHs and to the allosteric mechanisms for other ACT-containing enzymes. This study provides new structural and mechanistic insights that advance our understanding of tyrosine biosynthesis in bacteria. ENZYMES: Prephenate dehydrogenase from Bacillus anthracis (PDH): EC database ID: 1.3.1.12. DATABASES: Coordinates and structure factors have been deposited in the Protein Data Bank (PDB) with accession numbers PDB ID: 6U60 (BaPDH complex with NAD+ and tyrosine), PDB ID: 5UYY (BaPDH complex with tyrosine), and PDB ID: 5V0S (BaPDH isolated ACT domain dimer). The diffraction images are available at http://proteindiffraction.org with DOIs: https://doi.org/10.18430/M35USC, https://doi.org/10.18430/M35UYY, and https://doi.org/10.18430/M35V0S.
Collapse
Affiliation(s)
- Ivan G Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, USA
| | - Artyom Gritsunov
- Department of Cell and Systems Biology, University of Toronto, ON, Canada
| | - Jing Hou
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, USA
| | - Joanna Sławek
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, USA.,Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Charles D Miks
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - David R Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, USA
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of Toronto, ON, Canada
| |
Collapse
|
24
|
Barker LA, Bakkum BW, Chapman C. The Clinical Use of Monolaurin as a Dietary Supplement: A Review of the Literature. J Chiropr Med 2019; 18:305-310. [PMID: 32952476 PMCID: PMC7486475 DOI: 10.1016/j.jcm.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The purpose of this study was to determine what the peer-reviewed literature says about the clinical applications, therapeutic dosages, bioavailability, efficacy, and safety of monolaurin as a dietary supplement. METHODS This was a narrative review using the PubMed database and the terms "monolaurin" and its chemical synonyms. Commercial websites that sell monolaurin were also searched for pertinent references. The reference sections of the newer articles were searched for any other relevant articles. Consensus was reached among the authors as to what articles had clinical relevance. RESULTS Twenty-eight articles were found that appeared to address the clinical use of monolaurin. CONCLUSION There are many articles that address the antimicrobial effects of monolaurin in vitro. Only 3 peer-reviewed papers that evidence in vivo antimicrobial effects of monolaurin in humans were located, and these were only for intravaginal and intraoral-that is, topical-use. No peer-reviewed evidence was found for the clinical use of monolaurin as a human dietary supplement other than as a nutrient.
Collapse
Affiliation(s)
- Lisa A. Barker
- Hartsburg Chiropractic Health Center, Danbury, Connecticut
| | | | | |
Collapse
|
25
|
Ravichandiran P, Masłyk M, Sheet S, Janeczko M, Premnath D, Kim AR, Park B, Han M, Yoo DJ. Synthesis and Antimicrobial Evaluation of 1,4-Naphthoquinone Derivatives as Potential Antibacterial Agents. ChemistryOpen 2019; 8:589-600. [PMID: 31098338 PMCID: PMC6507621 DOI: 10.1002/open.201900077] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
1,4-Naphthoquinones are an important class of compounds present in a number of natural products. In this study, a new series of 1,4-naphthoquinone derivatives were synthesized. All the synthesized compounds were tested for in vitro antimicrobial activity. In this present investigation, two Gram-positive and five Gram-negative bacterial strains and one pathogenic yeast strain were used to determine the antibacterial activity. Naphthoquinones tested for its antibacterial potencies, among seven of them displayed better antimicrobial activity against Staphylococcus aureus (S. aureus; 30-70 μg/mL). Some of the tested compounds showed moderate to low antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) and Salmonella bongori (S. bongori; 70-150 μg/mL). In addition, most active compounds against S. aureus were evaluated for toxicity to human blood cells using a hemolysis assay. For better understanding, reactive oxygen species (ROS) generation, time-kill kinetic study, and apoptosis, necrosis responses were investigated for three representative compounds.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research CenterChonbuk National University, Jeollabuk-do54896Republic of Korea
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental SciencesThe John Paul II Catholic University of Lublinul. Konstantynów 1i20-708LublinPoland
| | - Sunirmal Sheet
- Department of Forest Science and Technology, College of Agriculture and Life SciencesChonbuk National University, 567 Baekje-daero, Deokjin-guJeonju-si561-756, Jeollabuk-doRepublic of Korea
| | - Monika Janeczko
- Department of Molecular Biology, Faculty of Biotechnology and Environmental SciencesThe John Paul II Catholic University of Lublinul. Konstantynów 1i20-708LublinPoland
| | - Dhanraj Premnath
- Department of BiotechnologyKarunya Institute of Technology and ScienceSchool of Agriculture and Biosciences, Karunya NagarCoimbatore641114, Tamil NaduIndia
| | - Ae Rhan Kim
- R&D Center for CANUTECH, Business Incubation Center, Department of Bioenvironmental ChemistryChonbuk National University, Jeollabuk-do54896Republic of Korea.
| | - Byung‐Hyun Park
- Department of BiochemistryChonbuk National University Medical School, Jeollabuk-do54896Republic of Korea
| | - Myung‐Kwan Han
- Department of MicrobiologyChonbuk National University Medical School, Jeollabuk-do54896Republic of Korea
| | - Dong Jin Yoo
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research CenterChonbuk National University, Jeollabuk-do54896Republic of Korea
| |
Collapse
|
26
|
Lee MH, Yang JY, Cho Y, Woo HJ, Kwon HJ, Kim DH, Park M, Moon C, Yeon MJ, Kim HW, Seo WD, Kim SH, Kim JB. Inhibitory Effects of Menadione on Helicobacter pylori Growth and Helicobacter pylori-Induced Inflammation via NF-κB Inhibition. Int J Mol Sci 2019; 20:ijms20051169. [PMID: 30866458 PMCID: PMC6429389 DOI: 10.3390/ijms20051169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
H. pylori is classified as a group I carcinogen by WHO because of its involvement in gastric cancer development. Several reports have suggested anti-bacterial effects of menadione, although the effect of menadione on major virulence factors of H. pylori and H. pylori-induced inflammation is yet to be elucidated. In this study, therefore, we demonstrated that menadione has anti-H. pylori and anti-inflammatory effects. Menadione inhibited growth of H. pylori reference strains and clinical isolates. Menadione reduced expression of vacA in H. pylori, and translocation of VacA protein into AGS (gastric adenocarcinoma cell) was also decreased by menadione treatment. This result was concordant with decreased apoptosis in AGS cells infected with H. pylori. Moreover, cytotoxin-associated protein A (CagA) translocation into H. pylori-infected AGS cells was also decreased by menadione. Menadione inhibited expression of several type IV secretion system (T4SS) components, including virB2, virB7, virB8, and virB10, that are responsible for translocation of CagA into host cells. In particular, menadione inhibited nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation and thereby reduced expression of the proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α in AGS as well as in THP-1 (monocytic leukemia cell) cell lines. Collectively, these results suggest the anti-bacterial and anti-inflammatory effects of menadione against H. pylori.
Collapse
Affiliation(s)
- Min Ho Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
- Forensic DNA Division, National Forensic Service, Wonju 26460, Korea.
| | - Ji Yeong Yang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| | - Yoonjung Cho
- Forensic DNA Division, National Forensic Service, Wonju 26460, Korea.
| | - Hyun Jun Woo
- Department of Clinical Laboratory Science, College of Medical Sciences, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Hye Jin Kwon
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| | - Do Hyun Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| | - Min Park
- Department of Biomedical Laboratory Science, Daekyeung University, Gyeongsan 38547, Korea.
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea.
| | - Min Ji Yeon
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung 25451, Korea.
| | - Hyun Woo Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| | - Woo-Duck Seo
- National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju-Gun 55365, Korea.
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea.
| | - Jong-Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea.
| |
Collapse
|
27
|
Kim SY, Park C, Jang HJ, Kim BO, Bae HW, Chung IY, Kim ES, Cho YH. Antibacterial strategies inspired by the oxidative stress and response networks. J Microbiol 2019; 57:203-212. [DOI: 10.1007/s12275-019-8711-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/29/2022]
|
28
|
Li Z, Quan G, Jiang X, Yang Y, Ding X, Zhang D, Wang X, Hardwidge PR, Ren W, Zhu G. Effects of Metabolites Derived From Gut Microbiota and Hosts on Pathogens. Front Cell Infect Microbiol 2018; 8:314. [PMID: 30276161 PMCID: PMC6152485 DOI: 10.3389/fcimb.2018.00314] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
Intestinal metabolites participate in various physiological processes, including energy metabolism, cell-to-cell communication, and host immunity. These metabolites mainly originate from gut microbiota and hosts. Although many host metabolites are dominant in intestines, such as free fatty acids, amino acids and vitamins, the metabolites derived from gut microbiota are also essential for intestinal homeostasis. In addition, some metabolites are only generated and released by gut microbiota, such as bacteriocins, short-chain fatty acids, and quorum-sensing autoinducers. In this review, we summarize recent studies regarding the crosstalk between pathogens and metabolites from different sources, including the influence on bacterial development and the activation/inhibition of immune responses of hosts. All of these functions would affect the colonization of and infection by pathogens. This review provides clear ideas and directions for further exploring the regulatory mechanisms and effects of metabolites on pathogens.
Collapse
Affiliation(s)
- Zhendong Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Guomei Quan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xinyi Jiang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Yang Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xueyan Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Dong Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xiuqing Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University Manhattan, KS, United States
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| |
Collapse
|
29
|
Kim L, Brudzynski K. Identification of menaquinones (vitamin K2 homologues) as novel constituents of honey. Food Chem 2018; 249:184-192. [DOI: 10.1016/j.foodchem.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/29/2017] [Accepted: 01/01/2018] [Indexed: 11/26/2022]
|
30
|
Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis 2017; 75:ftx005. [PMID: 28104617 DOI: 10.1093/femspd/ftx005] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an eminent human pathogen that can colonize the human host and cause severe life-threatening illnesses. This bacterium can reside in and infect a wide range of host tissues, ranging from superficial surfaces like the skin to deeper tissues such as in the gastrointestinal tract, heart and bones. Due to its multifaceted lifestyle, S. aureus uses complex regulatory networks to sense diverse signals that enable it to adapt to different environments and modulate virulence. In this minireview, we explore well-characterized environmental and host cues that S. aureus responds to and describe how this pathogen modulates virulence in response to these signals. Lastly, we highlight therapeutic approaches undertaken by several groups to inhibit both signaling and the cognate regulators that sense and transmit these signals downstream.
Collapse
Affiliation(s)
- Divya Balasubramanian
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Lamia Harper
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, NY 10016 USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
31
|
Delpech P, Rifa E, Ball G, Nidelet S, Dubois E, Gagne G, Montel MC, Delbès C, Bornes S. New Insights into the Anti-pathogenic Potential of Lactococcus garvieae against Staphylococcus aureus Based on RNA Sequencing Profiling. Front Microbiol 2017; 8:359. [PMID: 28337182 PMCID: PMC5340753 DOI: 10.3389/fmicb.2017.00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/21/2017] [Indexed: 11/13/2022] Open
Abstract
The bio-preservation potential of Lactococcus garvieae lies in its capacity to inhibit the growth of staphylococci, especially Staphylococcus aureus, in dairy products and in vitro. In vitro, inhibition is modulated by the level of aeration, owing to hydrogen peroxide (H2O2) production by L. garvieae under aeration. The S. aureus response to this inhibition has already been studied. However, the molecular mechanisms of L. garvieae underlying the antagonism against S. aureus have never been explored. This study provides evidence of the presence of another extracellular inhibition effector in vitro. This effector was neither a protein, nor a lipid, nor a polysaccharide, nor related to an L-threonine deficiency. To better understand the H2O2-related inhibition mechanism at the transcriptome level and to identify other mechanisms potentially involved, we used RNA sequencing to determine the transcriptome response of L. garvieae to different aeration levels and to the presence or absence of S. aureus. The L. garvieae transcriptome differed radically between different aeration levels mainly in biological processes related to fundamental functions and nutritional adaptation. The transcriptomic response of L. garvieae to aeration level differed according to the presence or absence of S. aureus. The higher concentration of H2O2 with high aeration was not associated with a higher expression of L. garvieae H2O2-synthesis genes (pox, sodA, and spxA1) but rather with a repression of L. garvieae H2O2-degradation genes (trxB1, ahpC, ahpF, and gpx). We showed that L. garvieae displayed an original, previously undiscovered, H2O2 production regulation mechanism among bacteria. In addition to the key factor H2O2, the involvement of another extracellular effector in the antagonism against S. aureus was shown. Future studies should explore the relation between H2O2-metabolism, H2O2-producing LAB and the pathogen they inhibit. The nature of the other extracellular effector should also be determined.
Collapse
Affiliation(s)
- Pierre Delpech
- Université Clermont Auvergne, INRA, UMRF Aurillac, France
| | - Etienne Rifa
- Université Clermont Auvergne, INRA, UMRF Aurillac, France
| | - Graham Ball
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University Nottingham, UK
| | - Sabine Nidelet
- Montpellier GenomiX, Institut de Génomique Fonctionnelle Montpellier, France
| | - Emeric Dubois
- Montpellier GenomiX, Institut de Génomique Fonctionnelle Montpellier, France
| | | | | | - Céline Delbès
- Université Clermont Auvergne, INRA, UMRF Aurillac, France
| | | |
Collapse
|
32
|
Rumah KR, Vartanian TK, Fischetti VA. Oral Multiple Sclerosis Drugs Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium, Clostridium perfringens. Front Cell Infect Microbiol 2017; 7:11. [PMID: 28180112 PMCID: PMC5263136 DOI: 10.3389/fcimb.2017.00011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/06/2017] [Indexed: 01/16/2023] Open
Abstract
There are currently three oral medications approved for the treatment of multiple sclerosis (MS). Two of these medications, Fingolimod, and Teriflunomide, are considered to be anti-inflammatory agents, while dimethyl fumarate (DMF) is thought to trigger a robust antioxidant response, protecting vulnerable cells during an MS attack. We previously proposed that epsilon toxin from the gut bacterium, Clostridium perfringens, may initiate newly forming MS lesions due to its tropism for blood-brain barrier (BBB) vasculature and central nervous system myelin. Because gut microbiota will be exposed to these oral therapies prior to systemic absorption, we sought to determine if these compounds affect C. perfringens growth in vitro. Here we show that Fingolimod, Teriflunomide, and DMF indeed inhibit C. perfringens growth. Furthermore, several compounds similar to DMF in chemical structure, namely α, β unsaturated carbonyls, also known as Michael acceptors, inhibit C. perfringens. Sphingosine, a Fingolimod homolog with known antibacterial properties, proved to be a potent C. perfringens inhibitor with a Minimal Inhibitory Concentration similar to that of Fingolimod. These findings suggest that currently approved oral MS therapies and structurally related compounds possess antibacterial properties that may alter the gut microbiota. Moreover, inhibition of C. perfringens growth and resulting blockade of epsilon toxin production may contribute to the clinical efficacy of these disease-modifying drugs.
Collapse
Affiliation(s)
- Kareem R Rumah
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University New York, NY, USA
| | - Timothy K Vartanian
- The Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medical College New York, NY, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University New York, NY, USA
| |
Collapse
|
33
|
New family of antimicrobial agents derived from 1,4-naphthoquinone. Eur J Med Chem 2016; 124:1019-1025. [DOI: 10.1016/j.ejmech.2016.10.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 11/21/2022]
|
34
|
Wang KC, Huang CH, Ding SM, Chen CK, Fang HW, Huang MT, Fang SB. Role of yqiC in the Pathogenicity of Salmonella and Innate Immune Responses of Human Intestinal Epithelium. Front Microbiol 2016; 7:1614. [PMID: 27777572 PMCID: PMC5056187 DOI: 10.3389/fmicb.2016.01614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/27/2016] [Indexed: 01/12/2023] Open
Abstract
The yqiC gene of Salmonella enterica serovar Typhimurium (S. Typhimurium) regulates bacterial growth at different temperatures and mice survival after infection. However, the role of yqiC in bacterial colonization and host immunity remains unknown. We infected human LS174T, Caco-2, HeLa, and THP-1 cells with S. Typhimurium wild-type SL1344, its yqiC mutant, and its complemented strain. Bacterial colonization and internalization in the four cell lines significantly reduced on yqiC depletion. Post-infection production of interleukin-8 and human β-defensin-3 in LS174T cells significantly reduced because of yqiC deleted in S. Typhimurium. The phenotype of yqiC mutant exhibited few and short flagella, fimbriae on the cell surface, enhanced biofilm formation, upregulated type-1 fimbriae expression, and reduced bacterial motility. Type-1 fimbriae, flagella, SPI-1, and SPI-2 gene expression was quantified using real-time PCR. The data show that deletion of yqiC upregulated fimA and fimZ expression and downregulated flhD, fliZ, invA, and sseB expression. Furthermore, thin-layer chromatography and high-performance liquid chromatography revealed the absence of menaquinone in the yqiC mutant, thus validating the importance of yqiC in the bacterial electron transport chain. Therefore, YqiC can negatively regulate FimZ for type-1 fimbriae expression and manipulate the functions of its downstream virulence factors including flagella, SPI-1, and SPI-2 effectors.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical UniversityTaipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Chih-Hung Huang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology Taipei, Taiwan
| | - Shih-Min Ding
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical UniversityTaipei, Taiwan; Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of TechnologyTaipei, Taiwan
| | - Ching-Kuo Chen
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology Taipei, Taiwan
| | - Hsu-Wei Fang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of TechnologyTaipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine - National Health Research InstitutesZhunan, Taiwan
| | - Ming-Te Huang
- Department of Surgery, Shuang Ho Hospital, Taipei Medical UniversityTaipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Shiuh-Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical UniversityTaipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
35
|
Franza T, Delavenne E, Derré-Bobillot A, Juillard V, Boulay M, Demey E, Vinh J, Lamberet G, Gaudu P. A partial metabolic pathway enables group b streptococcus to overcome quinone deficiency in a host bacterial community. Mol Microbiol 2016; 102:81-91. [PMID: 27328751 DOI: 10.1111/mmi.13447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 11/28/2022]
Abstract
Aerobic respiration metabolism in Group B Streptococcus (GBS) is activated by exogenous heme and menaquinone. This capacity enhances resistance of GBS to acid and oxidative stress and improves its survival. In this work, we discovered that GBS is able to respire in the presence of heme and 1,4-dihydroxy-2-naphthoic acid (DHNA). DHNA is a biosynthetic precursor of demethylmenaquinone (DMK) in many bacterial species. A GBS gene (gbs1789) encodes a homolog of the MenA 1,4-dihydroxy-2-naphthoate prenyltransferase enzyme, involved in the synthesis of demethylmenaquinone. In this study, we showed that gbs1789 is involved in the biosynthesis of long-chain demethylmenaquinones (DMK-10). The Δgbs1789 mutant cannot respire in the presence of heme and DHNA, indicating that endogenously synthesized DMKs are cofactors of the GBS respiratory chain. We also found that isoprenoid side chains from GBS DMKs are produced by the protein encoded by the gbs1783 gene, since this gene can complement an Escherichia coli ispB mutant defective for isoprenoids chain synthesis. In the gut or vaginal microbiote, where interspecies metabolite exchanges occur, this partial DMK biosynthetic pathway can be important for GBS respiration and survival in different niches.
Collapse
Affiliation(s)
- Thierry Franza
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France.
| | - Emilie Delavenne
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Aurélie Derré-Bobillot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Vincent Juillard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Mylène Boulay
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | | | - Joelle Vinh
- ESPCI Paris, SMBP USR3149 CNRS, Paris, F-75005, France
| | - Gilles Lamberet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Philippe Gaudu
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| |
Collapse
|
36
|
Andrey DO, Jousselin A, Villanueva M, Renzoni A, Monod A, Barras C, Rodriguez N, Kelley WL. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus. PLoS One 2015; 10:e0135579. [PMID: 26275216 PMCID: PMC4537247 DOI: 10.1371/journal.pone.0135579] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/24/2015] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1), encoded by tst(H), and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1), RNAIII, rot, and the alternative stress sigma factor sigB (σB). By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression.
Collapse
Affiliation(s)
- Diego O. Andrey
- Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Ambre Jousselin
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
| | - Maite Villanueva
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Antoinette Monod
- Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Christine Barras
- Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Natalia Rodriguez
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
| | - William L. Kelley
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
- * E-mail:
| |
Collapse
|
37
|
Antibacterial synergy of glycerol monolaurate and aminoglycosides in Staphylococcus aureus biofilms. Antimicrob Agents Chemother 2014; 58:6970-3. [PMID: 25182634 DOI: 10.1128/aac.03672-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycerol monolaurate (GML) is a natural surfactant with antimicrobial properties. At ∼0.3 mM, both GML and its component lauric acid were bactericidal for antibiotic-resistant Staphylococcus aureus biofilms. With the use of MICs of antibiotics obtained from planktonic cells, GML and lauric acid acted synergistically with gentamicin and streptomycin, but not ampicillin or vancomycin, to eliminate detectable viable biofilm bacteria. Images of GML-treated biofilms suggested that GML may facilitate antibiotic interaction with matrix-embedded bacteria.
Collapse
|
38
|
Merriman JA, Nemeth KA, Schlievert PM. Novel antimicrobial peptides that inhibit gram positive bacterial exotoxin synthesis. PLoS One 2014; 9:e95661. [PMID: 24748386 PMCID: PMC3991719 DOI: 10.1371/journal.pone.0095661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 03/29/2014] [Indexed: 01/31/2023] Open
Abstract
Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges.
Collapse
Affiliation(s)
- Joseph A. Merriman
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Kimberly A. Nemeth
- The Procter & Gamble Company, Cincinnati, Ohio, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|