1
|
Iturrieta-González I, Chahin C, Cabrera J, Concha C, Olivares-Ferretti P, Briones J, Vega F, Bustos-Medina L, Fonseca-Salamanca F. Molecular Study of Pneumocystis jirovecii in Respiratory Samples of HIV Patients in Chile. J Fungi (Basel) 2024; 10:117. [PMID: 38392789 PMCID: PMC10889964 DOI: 10.3390/jof10020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 02/24/2024] Open
Abstract
Pneumocystis is an opportunistic fungus that causes potentially fatal pneumonia (PCP) in immunocompromised patients. The objective of this study was to determine the prevalence of P. jirovecii in HIV patients through phenotypic and molecular study, to investigate the genetic polymorphisms of P. jirovecii at the mitochondrial gene mtLSU and at the nuclear dihydropteroate synthase gene (DHPS), and by analysis of molecular docking to study the effect of DHPS mutations on the enzymatic affinity for sulfamethoxazole. A PCP prevalence of 28.3% was detected, with mtLSU rRNA genotypes 3 (33.3%) and 2 (26.6%) being the most common. A prevalence of 6.7% (1/15) mutations in the DHPS gene was detected, specifically at codon 55 of the amino acid sequence of dihydropteroate synthase. Molecular docking analysis showed that the combination of mutations at 55 and 98 codons is required to significantly reduce the affinity of the enzyme for sulfamethoxazole. We observed a low rate of mutations in the DHPS gene, and molecular docking analysis showed that at least two mutations in the DHPS gene are required to significantly reduce the affinity of dihydropteroate synthase for sulfamethoxazole.
Collapse
Affiliation(s)
- Isabel Iturrieta-González
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
- Jeffrey Modell Foundation for Diagnosis and Research in Primary Immunodeficiencies, Center of Excellence in Translational Medicine, Medicine Faculty, Universidad de La Frontera, Temuco 4810296, Chile
| | - Carolina Chahin
- Infectology Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | - Johanna Cabrera
- Infectology Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | - Carla Concha
- Infectology Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | | | - Javier Briones
- Infectology Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | - Fernando Vega
- Critical Patient Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | - Luis Bustos-Medina
- Department of Public Health and CIGES, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Flery Fonseca-Salamanca
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Molecular Immunoparasitology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
2
|
Bongomin F, Kwizera R, Namusobya M, van Rhijn N, Andia-Biraro I, Kirenga BJ, Meya DB, Denning DW. Re-estimation of the burden of serious fungal diseases in Uganda. Ther Adv Infect Dis 2024; 11:20499361241228345. [PMID: 38328511 PMCID: PMC10848809 DOI: 10.1177/20499361241228345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Background It is of utmost importance to monitor any change in the epidemiology of fungal diseases that may arise from a change in the number of the at-risk population or the availability of local data. Objective We sought to update the 2015 publication on the incidence and prevalence of serious fungal diseases in Uganda. Methods Using the Leading International Fungal Education methodology, we reviewed published data on fungal diseases and drivers of fungal diseases in Uganda. Regional or global data were used where there were no Ugandan data. Results With a population of ~45 million, we estimate the annual burden of serious fungal diseases at 4,099,357 cases (about 9%). We estimated the burden of candidiasis as follows: recurrent Candida vaginitis (656,340 cases), oral candidiasis (29,057 cases), and esophageal candidiasis (74,686 cases) in HIV-infected people. Cryptococcal meningitis annual incidence is estimated at 5553 cases, Pneumocystis pneumonia at 4604 cases in adults and 2100 cases in children. For aspergillosis syndromes, invasive aspergillosis annual incidence (3607 cases), chronic pulmonary aspergillosis (26,765 annual cases and 63,574 5-year-period prevalent cases), and prevalence of allergic bronchopulmonary aspergillosis at 75,931 cases, and severe asthma with fungal sensitization at 100,228 cases. Tinea capitis is common with 3,047,989 prevalent cases. For other mycoses, we estimate the annual incidence of histoplasmosis to be 646 cases and mucormycosis at 9 cases. Conclusion Serious fungal diseases affect nearly 9% of Ugandans every year. Tuberculosis and HIV remain the most important predisposition to acute fungal infection necessitating accelerated preventive, diagnostic, and therapeutic interventions for the management of these diseases.
Collapse
Affiliation(s)
- Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard Kwizera
- Infectious Diseases Institute, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Martha Namusobya
- Department of Clinical Epidemiology and Biostatistics, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Norman van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Bruce J. Kirenga
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David B. Meya
- Infectious Diseases Institute, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David W. Denning
- Manchester Fungal Infection Group, CTF Building, The University of Manchester, Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
3
|
Tsvetkova N, Harizanov R, Rainova I, Ivanova A, Yancheva-Petrova N. Molecular Analysis of Dihydropteroate Synthase Gene Mutations in Pneumocystis jirovecii Isolates among Bulgarian Patients with Pneumocystis Pneumonia. Int J Mol Sci 2023; 24:16927. [PMID: 38069248 PMCID: PMC10707730 DOI: 10.3390/ijms242316927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Pneumocystis jirovecii pneumonia (PCP) is a significant cause of morbidity and mortality in immunocompromised people. The widespread use of trimethoprim-sulfamethoxazole (TMP-SMZ) for the treatment and prophylaxis of opportunistic infections (including PCP) has led to an increased selection of TMP-SMZ-resistant microorganisms. Sulfa/sulfone resistance has been demonstrated to result from specific point mutations in the DHPS gene. This study aims to investigate the presence of DHPS gene mutations among P. jirovecii isolates from Bulgarian patients with PCP. A total of 326 patients were examined via real-time PCR targeting the P. jirovecii mitochondrial large subunit rRNA gene and further at the DHPS locus. P. jirovecii DNA was detected in 50 (15.34%) specimens. A 370 bp DHPS locus fragment was successfully amplified in 21 samples from 19 PCP-positive patients, which was then purified, sequenced, and used for phylogenetic analysis. Based on the sequencing analysis, all (n = 21) P. jirovecii isolates showed DHPS genotype 1 (the wild type, with the nucleotide sequence ACA CGG CCT at codons 55, 56, and 57, respectively). In conclusion, infections caused by P. jirovecii mutants potentially resistant to sulfonamides are still rare events in Bulgaria. DHPS genotype 1 at codons 55 and 57 is the predominant P. jirovecii strain in the country.
Collapse
Affiliation(s)
- Nina Tsvetkova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Rumen Harizanov
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Iskra Rainova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Aleksandra Ivanova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Nina Yancheva-Petrova
- Department for AIDS, Specialized Hospital for Active Treatment of Infectious and Parasitic Diseases, Ivan Geshev Blvd. 17, 1431 Sofia, Bulgaria
| |
Collapse
|
4
|
Trubin PA, Azar MM. Current Concepts in the Diagnosis and Management of Pneumocystis Pneumonia in Solid Organ Transplantation. Infect Dis Clin North Am 2023:S0891-5520(23)00026-0. [PMID: 37142510 DOI: 10.1016/j.idc.2023.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pneumocystis infection manifests predominantly as an interstitial pneumonia in immunocompromised patients. Diagnostic testing in the appropriate clinical context can be highly sensitive and specific and involves radiographic imaging, fungal biomarkers, nucleic acid amplification, histopathology, and lung fluid or tissue sampling. Trimethoprim-sulfamethoxazole remains the first-choice agent for treatment and prophylaxis. Investigation continues to promote a deeper understanding of the pathogen's ecology, epidemiology, host susceptibility, and optimal treatment and prevention strategies in solid organ transplant recipients.
Collapse
Affiliation(s)
- Paul A Trubin
- Department of Medicine, Section of Infectious Diseases, Yale School of Medicine, 135 College Street, New Haven, CT 06510, USA.
| | - Marwan M Azar
- Department of Medicine, Section of Infectious Diseases; Department of Laboratory Medicine; Yale School of Medicine, 135 College Street, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Zhang ZQ, Gigliotti F, Wright TW. The Dual Benefit of Sulfasalazine on Pneumocystis Pneumonia-Related Immunopathogenesis and Antifungal Host Defense Does Not Require IL-4Rα-Dependent Macrophage Polarization. Infect Immun 2023; 91:e0049022. [PMID: 36916933 PMCID: PMC10112227 DOI: 10.1128/iai.00490-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Pneumocystis is a respiratory fungal pathogen that is among the most frequent causes of life-threatening pneumonia (PcP) in immunocompromised hosts. Alveolar macrophages play an important role in host defense against Pneumocystis, and several studies have suggested that M2 polarized macrophages have anti-Pneumocystis effector activity. Our prior work found that the immunomodulatory drug sulfasalazine (SSZ) provides a dual benefit during PcP-related immune reconstitution inflammatory syndrome (IRIS) by concurrently suppressing immunopathogenesis while also accelerating macrophage-mediated fungal clearance. The benefits of SSZ were associated with heightened Th2 cytokine production and M2 macrophage polarization. Therefore, to determine whether SSZ improves the outcome of PcP through a mechanism that requires Th2-dependent M2 polarization, RAG2-/- mice lacking interleukin 4 receptor alpha chain (IL-4Rα) on macrophage lineage cells were generated. As expected, SSZ treatment dramatically reduced the severity of PcP-related immunopathogenesis and accelerated fungal clearance in immune-reconstituted RAG2-/- mice. Similarly, SSZ treatment was also highly effective in immune-reconstituted RAG2/IL-4Rα-/- and RAG2/gamma interferon receptor (IFN-γR)-/- mice, demonstrating that neither IL-4Rα-dependent M2 nor IFN-γR-dependent M1 macrophage polarization programs were required for the beneficial effects of SSZ. Despite the fact that macrophages from RAG2/IL-4Rα-/- mice could not respond to the Th2 cytokines IL-4 and IL-13, M2-biased alveolar macrophages were identified in the lungs following SSZ treatment. These data demonstrate that not only does SSZ enhance phagocytosis and fungal clearance in the absence of macrophage IL-4Rα signaling, but also that SSZ promotes M2 macrophage polarization in an IL-4Rα-independent manner. These findings could have implications for the treatment of PcP and other diseases in which M2 polarization is beneficial.
Collapse
Affiliation(s)
- Zhuo-Qian Zhang
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Francis Gigliotti
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Terry W. Wright
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
6
|
Ibrahim A, Chattaraj A, Iqbal Q, Anjum A, Rehman MEU, Aijaz Z, Nasir F, Ansar S, Zangeneh TT, Iftikhar A. Pneumocystis jiroveci
Pneumonia: A Review of Management in Human Immunodeficiency Virus (HIV) and Non-HIV Immunocompromised Patients. Avicenna J Med 2023; 13:23-34. [PMID: 36969352 PMCID: PMC10038753 DOI: 10.1055/s-0043-1764375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Pneumocystis jirovecii
pneumonia is an opportunistic fungal infection that was mainly associated with pneumonia in patients with advanced human immunodeficiency virus (HIV) disease. There has been a decline in
Pneumocystis jirovecii
pneumonia incidence in HIV since the introduction of antiretroviral medications. However, its incidence is increasing in non-HIV immunocompromised patients including those with solid organ transplantation, hematopoietic stem cell transplantation, solid organ tumors, autoimmune deficiencies, and primary immunodeficiency disorders. We aim to review and summarize the etiology, epidemiology, clinical presentation, diagnosis, and management of
Pneumocystis jirovecii
pneumonia in HIV, and non-HIV patients. HIV patients usually have mild-to-severe symptoms, while non-HIV patients present with a rapidly progressing disease. Induced sputum or bronchoalveolar lavage fluid can be used to make a definitive diagnosis of
Pneumocystis jirovecii
pneumonia. Trimethoprim-sulfamethoxazole is considered to be the first-line drug for treatment and has proven to be highly effective for
Pneumocystis jirovecii
pneumonia prophylaxis in both HIV and non-HIV patients. Pentamidine, atovaquone, clindamycin, and primaquine are used as second-line agents. While several diagnostic tests, treatments, and prophylactic regimes are available at our disposal, there is need for more research to prevent and manage this disease more effectively.
Collapse
Affiliation(s)
- Atif Ibrahim
- North Mississippi Medical Center, Tupelo, Mississippi, United States
| | - Asmi Chattaraj
- University of Pittsburgh Medical Center, McKeesport, Pennsylvania, United States
| | - Qamar Iqbal
- TidalHealth, Salisbury, Maryland, United States
| | - Ali Anjum
- King Edward Medical University, Lahore, Pakistan
| | | | | | | | - Sadia Ansar
- Rawal Institute of Health Sciences, Islamabad, Pakistan
| | - Tirdad T. Zangeneh
- Division of Infectious Diseases, Department of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Ahmad Iftikhar
- Department of Internal Medicine, University of Arizona, Tucson, Arizona, United States
- Address for correspondence Ahmad Iftikhar, MD Department of Medicine, University of Arizona1525N. Campbell Avenue, PO Box 245212, Tucson, AZ 85724
| |
Collapse
|
7
|
Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM, Bowyer P, Bromley M, Brüggemann R, Garber G, Cornely OA, Gurr SJ, Harrison TS, Kuijper E, Rhodes J, Sheppard DC, Warris A, White PL, Xu J, Zwaan B, Verweij PE. Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol 2022; 20:557-571. [PMID: 35352028 PMCID: PMC8962932 DOI: 10.1038/s41579-022-00720-1] [Citation(s) in RCA: 373] [Impact Index Per Article: 186.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Invasive fungal infections pose an important threat to public health and are an under-recognized component of antimicrobial resistance, an emerging crisis worldwide. Across a period of profound global environmental change and expanding at-risk populations, human-infecting pathogenic fungi are evolving resistance to all licensed systemic antifungal drugs. In this Review, we highlight the main mechanisms of antifungal resistance and explore the similarities and differences between bacterial and fungal resistance to antimicrobial control. We discuss the research and innovation topics that are needed for risk reduction strategies aimed at minimizing the emergence of resistance in pathogenic fungi. These topics include links between the environment and One Health, surveillance, diagnostics, routes of transmission, novel therapeutics and methods to mitigate hotspots for fungal adaptation. We emphasize the global efforts required to steward our existing antifungal armamentarium, and to direct the research and development of future therapies and interventions.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Outbreak Analysis, Imperial College London, London, UK.
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Tihana Bicanic
- Institute of Infection and Immunity, St George's University London, London, UK
| | - Elaine M Bignell
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Michael Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Roger Brüggemann
- Department of Pharmacy, Radboudumc Institute for Health Sciences and Radboudumc - CWZ Centre of Expertise for Mycology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Gary Garber
- Department of Medicine and the School of Public Health and Epidemiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | | | - Thomas S Harrison
- Institute of Infection and Immunity, St George's University London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Ed Kuijper
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Outbreak Analysis, Imperial College London, London, UK
| | - Donald C Sheppard
- Infectious Disease in Global Health Program and McGill Interdisciplinary Initiative in Infection and Immunity, McGill University Health Centre, Montreal, Québec, Canada
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - P Lewis White
- Public Health Wales Mycology Reference Laboratory, University Hospital of Wales, Cardiff, UK
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Bas Zwaan
- Department of Plant Science, Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | - Paul E Verweij
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.
- Department of Medical Microbiology and Radboudumc - CWZ Centre of Expertise for Mycology, Radboud University Medical Centre, Nijmegen, Netherlands.
| |
Collapse
|
8
|
Sero-Epidemiology of Pneumocystis Infection among Infants, Children, and Adults in Chile. J Fungi (Basel) 2022; 8:jof8020136. [PMID: 35205890 PMCID: PMC8880143 DOI: 10.3390/jof8020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Previous serologic surveys show >80% of infants in Chile have anti-Pneumocystis antibodies by 2 years of age, but the seroepidemiology of Pneumocystis infection beyond infancy is unknown. We describe the sero-epidemiology in infants, children, and adults at different locations in Chile. Serum samples were prospectively obtained from 681 healthy adults (age ≥ 17 years) and 690 non-immunocompromised infants/children attending eight blood banks or outpatient clinics (2 in Santiago) in Chile. ELISA was used to measure serum IgM and IgG antibodies to Pneumocystis jirovecii major surface antigen (Msg) constructs MsgA and MsgC1. Serologic responses to Pneumocystis Msg showed a high frequency of reactivity, inferring infection. Among infants/children increasing age and the proportion with detectable IgM responses to MsgA, and IgG responses to MsgA, and MsgC1 were positively associated. Among adults there was almost universal seropositivity to one or more Pneumocystis Msg constructs. In infants and children rates of detectable IgM responses to MsgC1 and MsgA were greater than IgG responses. In Santiago, rates of seropositivity among infants/children were greater in clinics located in a more socio-economically deprived part of the city. In Chile, a serological response to Pneumocystis Msg constructs was common across ages regardless of geographical location and climatic conditions. Observed higher rates of IgM responses than IgG responses is consistent with concept of recent/ongoing exposure to Pneumocystis in children and adults. Higher rates of seropositivity in infants/children residing in more densely populated areas of Santiago infers crowding poses an increased risk of transmission.
Collapse
|
9
|
Rogers TR, Verweij PE, Castanheira M, Dannaoui E, White PL, Arendrup MC. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:2053-2073. [PMID: 35703391 PMCID: PMC9333407 DOI: 10.1093/jac/dkac161] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The increasing incidence and changing epidemiology of invasive fungal infections continue to present many challenges to their effective management. The repertoire of antifungal drugs available for treatment is still limited although there are new antifungals on the horizon. Successful treatment of invasive mycoses is dependent on a mix of pathogen-, host- and antifungal drug-related factors. Laboratories need to be adept at detection of fungal pathogens in clinical samples in order to effectively guide treatment by identifying isolates with acquired drug resistance. While there are international guidelines on how to conduct in vitro antifungal susceptibility testing, these are not performed as widely as for bacterial pathogens. Furthermore, fungi generally are recovered in cultures more slowly than bacteria, and often cannot be cultured in the laboratory. Therefore, non-culture-based methods, including molecular tests, to detect fungi in clinical specimens are increasingly important in patient management and are becoming more reliable as technology improves. Molecular methods can also be used for detection of target gene mutations or other mechanisms that predict antifungal drug resistance. This review addresses acquired antifungal drug resistance in the principal human fungal pathogens and describes known resistance mechanisms and what in-house and commercial tools are available for their detection. It is emphasized that this approach should be complementary to culture-based susceptibility testing, given the range of mutations, resistance mechanisms and target genes that may be present in clinical isolates, but may not be included in current molecular assays.
Collapse
Affiliation(s)
| | | | | | | | | | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Nijhuis RHT, Godschalk PCR, Smink JHI, van der Zee C, van Hannen EJ. Comparison of the PneumoGenius® and RealStar® Pneumocystis jirovecii PCR CE-IVD assays with a lab developed test for the detection of Pneumocystis jirovecii. Med Mycol 2021; 60:6459726. [PMID: 34894244 DOI: 10.1093/mmy/myab080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Pneumocystis jirovecii (Pj) is a fungal pathogen that can cause severe and potential fatal pneumonia (Pneumocystis pneumonia, PCP) in immunocompromised patients. Microbiological diagnosis is necessary to confirm PCP, for which mainly real-time PCR assays are used by detecting Pj from bronchoalveolar lavage (BAL) specimens. In this study, we evaluate the performance of the CE-IVD PneumoGenius® assay and CE-IVD RealStar® Pneumocystis jirovecii PCR assay in comparison to the lab developed test (LDT) that is used in routine diagnostics. Comparison was done by including 100 BAL specimens: 25 retrospective specimens, selected based on results obtained with LDT (15 positive/10 negative), and 75 prospectively collected specimens. LDT (targeting MSG) was performed according to local procedures and the PneumoGenius® (targeting mtLSU and DHPS fas) and RealStar® assays (targeting mtLSU) according to manufacturer's instructions. Combining results of retrospective and prospective analysis, sensitivity was 69.7%, 100% and 100% for the LDT, PneumoGenius® and RealStar®, respectively. Specificity was 100% for LDT and Pneumogenius®, whereas RealStar® showed a specificity of 97%. Correlation of fungal loads found with the PneumoGenius® and RealStar® assays was high (R2: 0.98). The PneumoGenius® and RealStar® assays performed comparable, and both showed high sensitivity in comparison to the LDT. For optimal diagnosis of PCP, the LDT has to be replaced by another, more sensitive assay.
Collapse
Affiliation(s)
- Roel H T Nijhuis
- Laboratory for medical microbiology and medical immunology, Meander Medical Center, Amersfoort, The Netherlands
| | - Peggy C R Godschalk
- Laboratory for medical microbiology and medical immunology, Meander Medical Center, Amersfoort, The Netherlands
| | - Jorike H I Smink
- Laboratory for medical microbiology and medical immunology, Meander Medical Center, Amersfoort, The Netherlands
| | - Cindy van der Zee
- Laboratory for medical microbiology and immunology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Erik J van Hannen
- Laboratory for medical microbiology and immunology, St. Antonius Hospital, Nieuwegein, The Netherlands
| |
Collapse
|
11
|
de la Horra C, Friaza V, Morilla R, Delgado J, Medrano FJ, Miller RF, de Armas Y, Calderón EJ. Update on Dihydropteroate Synthase (DHPS) Mutations in Pneumocystis jirovecii. J Fungi (Basel) 2021; 7:jof7100856. [PMID: 34682277 PMCID: PMC8540849 DOI: 10.3390/jof7100856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022] Open
Abstract
A Pneumocystis jirovecii is one of the most important microorganisms that cause pneumonia in immunosupressed individuals. The guideline for treatment and prophylaxis of Pneumocystis pneumonia (PcP) is the use of a combination of sulfa drug-containing trimethroprim and sulfamethoxazole. In the absence of a reliable method to culture Pneumocystis, molecular techniques have been developed to detect mutations in the dihydropteroate synthase gene, the target of sulfa drugs, where mutations are related to sulfa resistance in other microorganisms. The presence of dihydropteroate synthase (DHPS) mutations has been described at codon 55 and 57 and found almost around the world. In the current work, we analyzed the most common methods to identify these mutations, their geographical distribution around the world, and their clinical implications. In addition, we describe new emerging DHPS mutations. Other aspects, such as the possibility of transmitting Pneumocystis mutated organisms between susceptible patients is also described, as well as a brief summary of approaches to study these mutations in a heterologous expression system.
Collapse
Affiliation(s)
- Carmen de la Horra
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
| | - Vicente Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Correspondence: (V.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| | - Rubén Morilla
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Departamento de Enfermería, Universidad de Sevilla, 41009 Seville, Spain
| | - Juan Delgado
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
| | - Francisco J. Medrano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departamento de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Robert F. Miller
- Institute for Global Health, University College London, London WC1E 6JB, UK;
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Yaxsier de Armas
- Department of Clinical Microbiology Diagnostic, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba;
- Pathology Department, Hospital Center of Institute of Tropical Medicine “Pedro Kourí,” Havana 11400, Cuba
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departamento de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Correspondence: (V.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| |
Collapse
|
12
|
Jitmuang A, Nititammaluk A, Boonsong T, Sarasombath PT, Sompradeekul S, Chayakulkeeree M. A novel droplet digital polymerase chain reaction for diagnosis of Pneumocystis pneumonia (PCP)-a clinical performance study and survey of sulfamethoxazole-trimethoprim resistant mutations. J Infect 2021; 83:701-708. [PMID: 34562541 DOI: 10.1016/j.jinf.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Objectives To determine the performance of droplet digital polymerase chain reaction (ddPCR) assays in diagnosing Pneumocystis pneumonia (PCP), and to survey the sulfamethoxazole-trimethoprim (SMX-TMP) resistant mutations in our PCP cohort. Methods A prospective study was conducted from January 2017 to June 2018. Adult immunocompromised subjects with pneumonia were enrolled. Bronchoalveolar lavage fluid samples were obtained for standard microscopic testing and ddPCR to quantify the Pneumocystis MSG gene. DHPS and DHFR gene sequencings were performed to detect SMX-TMP resistance. Results Of 54 subjects, 12 had definite PCP, 7 had probable PCP, and 35 were non-PCP. In the PCP cohort, 10 (53%) had HIV infections. Using a cutoff value of ≥ 1.94 copies/µL, the ddPCR exhibited an overall sensitivity of 91.7% (61.5-99.8%) and specificity of 88.1% (74.4-96%). It showed a better performance when different cutoff values were used in subjects with HIV (≥ 1.80 copies/µL) and non-HIV (≥ 4.5 copies/µL). ROC curves demonstrated an AUC of 0.80 (95% CI, 0.56-1.0) for the HIV group, and 0.99 (95% CI, 0.95-1.0) for the non-HIV group. Of 16 PCP samples tested for DHPS- and DHFR-mutations, only DHPS mutations were detected (2). Most of the subjects, including those with DHPS mutations, demonstrated favorable outcomes. Conclusions The ddPCR exhibited a satisfactory diagnostic performance for PCP. Based on very limited data, the treatment outcomes of PCP did not seem to be affected by the DHPS mutations.
Collapse
Affiliation(s)
- Anupop Jitmuang
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Anapat Nititammaluk
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Thitaya Boonsong
- Department of Internal Medicine, Hatyai Hospital, Songkhla, Thailand
| | | | - Suree Sompradeekul
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Methee Chayakulkeeree
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand.
| |
Collapse
|
13
|
Wróbel A, Drozdowska D. Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents. Curr Med Chem 2021; 28:910-939. [PMID: 31622199 DOI: 10.2174/0929867326666191016151018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances in the research of new DHFR inhibitors with potential anticancer activity. METHODS The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationships were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. RESULTS This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searches for about eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. CONCLUSION Thorough physicochemical characterization and biological investigations highlight the structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| |
Collapse
|
14
|
Arastehfar A, Gabaldón T, Garcia-Rubio R, Jenks JD, Hoenigl M, Salzer HJF, Ilkit M, Lass-Flörl C, Perlin DS. Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium. Antibiotics (Basel) 2020; 9:antibiotics9120877. [PMID: 33302565 PMCID: PMC7764418 DOI: 10.3390/antibiotics9120877] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
The high clinical mortality and economic burden posed by invasive fungal infections (IFIs), along with significant agricultural crop loss caused by various fungal species, has resulted in the widespread use of antifungal agents. Selective drug pressure, fungal attributes, and host- and drug-related factors have counteracted the efficacy of the limited systemic antifungal drugs and changed the epidemiological landscape of IFIs. Species belonging to Candida, Aspergillus, Cryptococcus, and Pneumocystis are among the fungal pathogens showing notable rates of antifungal resistance. Drug-resistant fungi from the environment are increasingly identified in clinical settings. Furthermore, we have a limited understanding of drug class-specific resistance mechanisms in emerging Candida species. The establishment of antifungal stewardship programs in both clinical and agricultural fields and the inclusion of species identification, antifungal susceptibility testing, and therapeutic drug monitoring practices in the clinic can minimize the emergence of drug-resistant fungi. New antifungal drugs featuring promising therapeutic profiles have great promise to treat drug-resistant fungi in the clinical setting. Mitigating antifungal tolerance, a prelude to the emergence of resistance, also requires the development of effective and fungal-specific adjuvants to be used in combination with systemic antifungals.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, 08034 Barcelona, Spain;
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), 08024 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies. Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin Hoenigl
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | | | - Macit Ilkit
- Division of Mycology, University of Çukurova, 01330 Adana, Turkey
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| |
Collapse
|
15
|
Bateman M, Oladele R, Kolls JK. Diagnosing Pneumocystis jirovecii pneumonia: A review of current methods and novel approaches. Med Mycol 2020; 58:1015-1028. [PMID: 32400869 PMCID: PMC7657095 DOI: 10.1093/mmy/myaa024] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Pneumocystis jirovecii can cause life-threatening pneumonia in immunocompromised patients. Traditional diagnostic testing has relied on staining and direct visualization of the life-forms in bronchoalveolar lavage fluid. This method has proven insensitive, and invasive procedures may be needed to obtain adequate samples. Molecular methods of detection such as polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and antibody-antigen assays have been developed in an effort to solve these problems. These techniques are very sensitive and have the potential to detect Pneumocystis life-forms in noninvasive samples such as sputum, oral washes, nasopharyngeal aspirates, and serum. This review evaluates 100 studies that compare use of various diagnostic tests for Pneumocystis jirovecii pneumonia (PCP) in patient samples. Novel diagnostic methods have been widely used in the research setting but have faced barriers to clinical implementation including: interpretation of low fungal burdens, standardization of techniques, integration into resource-poor settings, poor understanding of the impact of host factors, geographic variations in the organism, heterogeneity of studies, and limited clinician recognition of PCP. Addressing these barriers will require identification of phenotypes that progress to PCP and diagnostic cut-offs for colonization, generation of life-form specific markers, comparison of commercial PCR assays, investigation of cost-effective point of care options, evaluation of host factors such as HIV status that may impact diagnosis, and identification of markers of genetic diversity that may be useful in diagnostic panels. Performing high-quality studies and educating physicians will be crucial to improve the rates of diagnosis of PCP and ultimately to improve patient outcomes.
Collapse
Affiliation(s)
- Marjorie Bateman
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70122, USA
| | - Rita Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Nigeria
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70122, USA
| |
Collapse
|
16
|
Consensus Multilocus Sequence Typing Scheme for Pneumocystis jirovecii. J Fungi (Basel) 2020; 6:jof6040259. [PMID: 33143112 PMCID: PMC7711988 DOI: 10.3390/jof6040259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Accepted: 10/18/2020] [Indexed: 12/26/2022] Open
Abstract
Pneumocystis jirovecii is an opportunistic human pathogenic fungus causing severe pneumonia mainly in immunocompromised hosts. Multilocus sequence typing (MLST) remains the gold standard for genotyping of this unculturable fungus. However, the lack of a consensus scheme impedes a global comparison, large scale population studies and the development of a global MLST database. To overcome this problem this study compared all genetic regions (19 loci) currently used in 31 different published Pneumocystis MLST schemes. The most diverse/commonly used eight loci, β-TUB, CYB, DHPS, ITS1, ITS1/2, mt26S and SOD, were further assess for their ability to be successfully amplified and sequenced, and for their discriminatory power. The most successful loci were tested to identify genetically related and unrelated cases. A new consensus MLST scheme consisting of four genetically independent loci: β-TUB, CYB, mt26S and SOD, is herein proposed for standardised P. jirovecii typing, successfully amplifying low and high fungal burden specimens, showing adequate discriminatory power, and correctly identifying suspected related and unrelated isolates. The new consensus MLST scheme, if accepted, will for the first time provide a powerful tool to investigate outbreak settings and undertake global epidemiological studies shedding light on the spread of this important human fungal pathogen.
Collapse
|
17
|
Munir MU, Ahmed A, Usman M, Salman S. Recent Advances in Nanotechnology-Aided Materials in Combating Microbial Resistance and Functioning as Antibiotics Substitutes. Int J Nanomedicine 2020; 15:7329-7358. [PMID: 33116477 PMCID: PMC7539234 DOI: 10.2147/ijn.s265934] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
The ongoing escalation of drug-resistant bacteria creates the leading challenges for human health. Current predictions show that deaths due to bacterial illness will be more in comparison to cancer in 2050. Irrational use of antibiotics, prolonged regimen and using as a prophylactic treatment for various infections are leading cause of microbial resistance. It is an emerging approach to introduce evolving nanomaterials (NMs) as a base of antibacterial therapy to overcome the bacterial resistance pattern. NMs can implement several bactericidal ways and turn into a challenge for bacteria to survive and develop resistance against NMs. All the pathways depend on the surface chemistry, shape, core material and size of NMs. Because of these reasons, NMs based stuff shows a critical role in advancing the treatment efficiency by interacting with the cellular system of bacteria and functioned as an antibiotic substitute. We divided this review into two sections. The first part highlights the development of microbial resistance to antibiotics and their mechanisms. The second section details the NMs mechanisms to combat antibiotic resistance. In short, we try to summarize the advances in NMs role to deal with microbial resistance and giving solution as antibiotics substitute.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72388, Saudi Arabia.,Nanobiotech Group, Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Muhammad Usman
- Department of Physics, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| |
Collapse
|
18
|
Zhu M, Ye N, Xu J. Clinical characteristics and prevalence of dihydropteroate synthase gene mutations in Pneumocystis jirovecii-infected AIDS patients from low endemic areas of China. PLoS One 2020; 15:e0238184. [PMID: 32911508 PMCID: PMC7482917 DOI: 10.1371/journal.pone.0238184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
Pneumocystis pneumonia (PCP) is an opportunistic and potentially life-threatening infection of AIDS patients caused by the fungus Pneumocystis jirovecii (P. jirovecii). Trimethoprim-sulfamethoxazole (TMP-SMX) is the most commonly used drug combination in the treatment and prophylaxis of PCP. However, with long-term use of this combination, mutations in the dihydropteroate synthase (DHPS) gene of P. jirovecii bring about the development of resistance. Data on the prevalence of P. jirovecii and its DHPS mutants in China, especially in low endemic areas, are still limited. Thus, in the present study, we measured the P. jirovecii infection rate among HIV-positive and AIDS (HIV/AIDS) patients with suspected PCP and investigated the relationship between CD4+ T cell count and PCP occurrence. As well as the polymerase chain reaction (PCR) analysis and sequencing, the restriction fragment length polymorphism (RFLP) method was used to analyze DHPS point mutation in P. jirovecii strains. P. jirovecii was detected in 40.82% of cases. The clinical symptoms and signs of PCP were not typical; with decreasing CD4+ T cell counts, PCP infection in HIV/AIDS patients increased. In only one case (1.67%), the patients' DHPS gene could not be cut by the Acc I restriction enzyme. Furthermore, mutation at codon 171 was detected in 11 cases and no mutation was found at codon 57. Patients treated with sulfamethoxazole combined with Voriconazole or Caspofungin exhibited favorable results. After treatment, the symptoms of dyspnea were alleviated, and chest computed tomography findings showed the improvement of lung shadows. These indicated that the prevalence of DHPS mutations in P. jirovecii isolates in AIDS-PCP patients in the region was low. Thus, the contribution of gene mutations to treatment failure requires further research.
Collapse
Affiliation(s)
- Mingli Zhu
- Department of Microbiology and Immunology, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Clinical Laboratory, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ning Ye
- Department of Clinical Laboratory, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Jiru Xu
- Department of Microbiology and Immunology, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- * E-mail:
| |
Collapse
|
19
|
Pneumocystis jirovecii Pneumonia and Human Immunodeficiency Virus Co-Infection in Western Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2019; 48:2065-2069. [PMID: 31970106 PMCID: PMC6961188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND The human immunodeficiency virus (HIV) is one of the greatest health challenges facing worldwide. The virus suppresses the immune system of the patient. The purpose of this study was to describe the epidemiology of Pneumocystis jirovecii colonization, rarely found in normal people, in patients with stage 4 HIV infection in Kermanshah, Iran, from Mar 1995 to Feb 2016. METHODS In this retrospective study, we surveyed medical records of stage 4 HIV-positive patients with Pneumocystis admitted to Behavioral Counseling Center of Kermanshah. Several parameters were analyzed including demographic characteristics, body mass index (BMI), treatment regimen, diagnostic methods, presenting signs and symptoms, presence of co-pathogens (bacteria, viruses, or fungi), and nadir of CD4 T-cell count before and after treatment. RESULTS During the study period, 114 HIV-positive patients were analyzed, of whom 93 were male and 21 were female, respectively. Of 114 cases, 26 (22.8%) patients had Pneumocystis. All 26 colonized patients had CD4 cell counts below 200 cells/mm3 (range 9-186). The median CD4 count increased from 91 cells/mm3 pre-trimethoprim/sulfamethoxazole (TMP/SMX) to an estimated 263 cells/mm3 after starting (TMP/SMX). BMI was normal in the majority of the patients (85%) and coughs, sputum, and chest pain (19; 73%) followed by dyspnea, weakness, and lethargy (7; 27%) were the most common presentations of fungal pneumonia. CONCLUSION HIV/AIDS-infected patients are an environmental reservoir of P. jirovecii infection that might transmit the infection from one person to another via the airborne route. In addition, rapid identification of such individuals may reduce the morbidity and mortality rate of this disease.
Collapse
|
20
|
Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J Antibiot (Tokyo) 2019; 73:5-27. [PMID: 31578455 PMCID: PMC7102388 DOI: 10.1038/s41429-019-0240-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022]
Abstract
The development of new mechanisms of resistance among pathogens, the occurrence and transmission of genes responsible for antibiotic insensitivity, as well as cancer diseases have been a serious clinical problem around the world for over 50 years. Therefore, intense searching of new leading structures and active substances, which may be used as new drugs, especially against strain resistant to all available therapeutics, is very important. Dihydrofolate reductase (DHFR) has attracted a lot of attention as a molecular target for bacterial resistance over several decades, resulting in a number of useful agents. Trimethoprim (TMP), (2,4-diamino-5-(3′,4′,5′-trimethoxybenzyl)pyrimidine) is the well-known dihydrofolate reductase inhibitor and one of the standard antibiotics used in urinary tract infections (UTIs). This review highlights advances in design, synthesis, and biological evaluations in structural modifications of TMP as DHFR inhibitors. In addition, this report presents the differences in the active site of human and pathogen DHFR. Moreover, an excellent review of DHFR inhibition and their relevance to antimicrobial and parasitic chemotherapy was presented.
Collapse
|
21
|
White PL, Price JS, Backx M. Pneumocystis jirovecii Pneumonia: Epidemiology, Clinical Manifestation and Diagnosis. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00349-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Wang M, Xu X, Guo Y, Tao R, Hu C, Dong X, Huang Y, Zhu B. Polymorphisms involving the Pneumocystis jirovecii-related genes in AIDS patients in eastern China. INFECTION GENETICS AND EVOLUTION 2019; 75:103955. [PMID: 31284044 DOI: 10.1016/j.meegid.2019.103955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the genetic polymorphisms of mitochondrial large ribosomal subunit (mtLSU)-rRNA, dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), cytochrome b (CYB), and superoxide dismutase (SOD) genes and its correlation with clinical outcomes of Pneumocystis jirovecii pneumonia in acquired immune deficiency(AIDS) patients. METHODS Eighty AIDS patients with P. jirovecii pneumonia that were admitted to our hospital from 2016 to 2018 were included in this study. Their demographic information and clinical data were collected, as well as corresponding saliva specimens for PCR and sequencing of mtLSU-rRNA, DHFR, DHPS, CYB, and SOD genes to analyze genetic polymorphisms, different polymorphic combinations, and clinical outcomes. RESULTS Of the 80 saliva specimens, mtLSU-rRNA was successfully amplified and sequenced in 30 cases; CYB was successfully amplified and sequenced in 26 cases; and SOD, DHFR, and DHPS were successfully amplified and sequenced in 18 cases. These results indicate that The mtLSU-rRNA, CYB, and SOD genes were highly polymorphic. mt85T and CYB1 were the variants dominantly detected at the mtLSU-rRNA and CYB loci, respectively. The SOD1 and SOD2 variants (each in 50% of the cases) were detected at the SOD locus. Among the 18 cases that were successfully amplified and sequenced for DHFR and DHPS, three DHFR nonsense mutations and no DHPS mutation were observed. The mt85C, CYB1, SOD1, and DHFR312T genes harbored common polymorphisms (n = 4; 22.22%) and the mt85T, CYB1, SOD1, DHFR312T genes were associated with poor clinical outcomes. CONCLUSION The types of genetic polymorphisms and polymorphic combinations of mtLSU-rRNA, DHFR, DHPS, CYB, and SOD in P. jirovecii were related to the clinical outcomes of patients with P. jirovecii pneumonia in Zhejiang Province, China.
Collapse
Affiliation(s)
- Mengyan Wang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaoke Xu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Yongzheng Guo
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Ran Tao
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Caiqin Hu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaotian Dong
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Ying Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Biao Zhu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Singh Y, Mirdha BR, Guleria R, Kabra SK, Mohan A, Chaudhry R, Kumar L, Dwivedi SN, Agarwal SK. Genetic polymorphisms associated with treatment failure and mortality in pediatric Pneumocystosis. Sci Rep 2019; 9:1192. [PMID: 30718779 PMCID: PMC6361943 DOI: 10.1038/s41598-018-38052-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
Data on the genetic diversity of Pneumocystis jirovecii causing Pneumocystis pneumonia (PCP) among children are still limited, and there are no available data from the Indian subcontinent, particularly associations between genotypes and clinical characteristics. A total of 37 children (62 days-12 years [median 5.5 years]) were included in this study. Pneumocystis was diagnosed by microscopy using Grocott-Gomori methenamine silver stain in 12 cases and by nested PCR using mtLSUrRNA in 25 cases. Genotyping was performed using three different genes, mitochondrial large subunit ribosomal RNA (mtLSUrRNA), dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR). mtLSUrRNA genotype 3 and novel mutations at the gene target DHFR (401 T > C) and DHPS 96/98 were frequently observed and clinically associated with severe PCP and treatment failure. Phylogenetic analyses revealed 13 unique sequence types (STs). Two STs (i) 3-DHFR 401 T > C-DHPS 96/98 – PJ1 and (ii) 3-DHFR 401 T > C-DHPS 96- PJ3 were significantly associated with treatment failure and high mortality among PCP-positive patients. In conclusion, the present study strongly suggests the emergence of virulent P. jirovecii strains or genetic polymorphisms, leading to treatment failure and high mortality. Our study is the first of its kind from the Indian subcontinent and has highlighted the genetic diversity of Pneumocystis jirovecii among children and their clinical outcomes. These findings emphasize the need to focus more on genotypes to better understand the epidemiology of Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Yogita Singh
- All India Institute of Medical Sciences, Department of Microbiology, New Delhi, 110029, India
| | - Bijay Ranjan Mirdha
- All India Institute of Medical Sciences, Department of Microbiology, New Delhi, 110029, India.
| | - Randeep Guleria
- All India Institute of Medical Sciences, Department of Pulmonary Medicine and Sleep Disorders, New Delhi, 110029, India
| | - Sushil K Kabra
- All India Institute of Medical Sciences, Department of Pediatrics, New Delhi, 110029, India
| | - Anant Mohan
- All India Institute of Medical Sciences, Department of Pulmonary Medicine and Sleep Disorders, New Delhi, 110029, India
| | - Rama Chaudhry
- All India Institute of Medical Sciences, Department of Microbiology, New Delhi, 110029, India
| | - Lalit Kumar
- All India Institute of Medical Sciences, Department of Medical Oncology, New Delhi, 110029, India
| | - Sada Nand Dwivedi
- All India Institute of Medical Sciences, Department of Biostatistics, New Delhi, 110029, India
| | - Sanjay K Agarwal
- All India Institute of Medical Sciences, Department of Nephrology, New Delhi, 110029, India
| |
Collapse
|
24
|
Singh Y, Mirdha BR, Guleria R, Kabra SK, Mohan A, Chaudhry R, Kumar L, Dwivedi SN, Agarwal SK. Novel dihydropteroate synthase gene mutation in Pneumocystis jirovecii among HIV-infected patients in India: Putative association with drug resistance and mortality. J Glob Antimicrob Resist 2019; 17:236-239. [PMID: 30658203 DOI: 10.1016/j.jgar.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Pneumocystis pneumonia (PCP) remains a debilitating cause of death among HIV-infected patients. The combination trimethoprim/sulfamethoxazole (SXT) is the most effective anti-Pneumocystis treatment and prophylaxis. However, long-term use of this combination has raised alarms about the emergence of resistant organisms. This study was performed to investigate mutations in the dihydropteroate synthase (DHPS) gene and their clinical consequences in HIV-infected patients with PCP. METHODS A total of 76 clinically suspected cases of PCP among HIV-seropositive adult patients from March 2014 to March 2017 were included. Clinical samples (bronchoalveolar lavage fluid and sputum) were investigated for the detection of Pneumocystis jirovecii using both microscopy and nested PCR. DHPS genotyping and mutational analyses were performed and the data were correlated with clinical characteristics. RESULTS Among the 76 enrolled HIV-positive patients, only 17 (22.4%) were positive for P. jirovecii. DHPS gene sequencing showed a novel nucleotide substitution at position 288 (Val96Ile) in three patients (3/12; 25.0%). Patients infected with the mutant P. jirovecii genotype had severe episodes of PCP, did not respond to SXT and had a fatal outcome (P=0.005). All three patients had a CD4+ T-cell count <100 cells/μL, and two also had co-infections. CONCLUSION This study suggests that the emergence of a mutant P. jirovecii genotype is probably associated with drug resistance and mortality. The data also suggest that DHPS mutational analyses should be performed in HIV-seropositive patients to avoid treatment failure and death due to PCP. However, the role of underlying disease severity and co-morbidities should not be underestimated.
Collapse
Affiliation(s)
- Yogita Singh
- All India Institute of Medical Sciences, Department of Microbiology, New Delhi 110029, India
| | - Bijay Ranjan Mirdha
- All India Institute of Medical Sciences, Department of Microbiology, New Delhi 110029, India.
| | - Randeep Guleria
- All India Institute of Medical Sciences, Department of Pulmonary Medicine and Sleep Disorders, New Delhi 110029, India
| | - Sushil K Kabra
- All India Institute of Medical Sciences, Department of Pediatrics, New Delhi 110029, India
| | - Anant Mohan
- All India Institute of Medical Sciences, Department of Pulmonary Medicine and Sleep Disorders, New Delhi 110029, India
| | - Rama Chaudhry
- All India Institute of Medical Sciences, Department of Microbiology, New Delhi 110029, India
| | - Lalit Kumar
- All India Institute of Medical Sciences, Department of Medical Oncology, New Delhi 110029, India
| | - Sada Nand Dwivedi
- All India Institute of Medical Sciences, Department of Biostatistics, New Delhi 110029, India
| | - Sanjay K Agarwal
- All India Institute of Medical Sciences, Department of Nephrology, New Delhi 110029, India
| |
Collapse
|
25
|
Yang DH, Xu Y, Hong L, Song ZY, Ge WH. Efficacy of caspofungin combined with clindamycin for Pneumocystis jirovecii pneumonia in a systemic lupus erythematosus patient: A case report and literature review. Respir Med Case Rep 2018; 26:108-111. [PMID: 30581728 PMCID: PMC6299158 DOI: 10.1016/j.rmcr.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/25/2022] Open
Abstract
Background Pneumocystis jirovecii pneumonia (PCP) is an opportunistic infection with a difficult diagnosis, rapid progression, high mortality rate and poor prognosis. The primary treatment and prevention of PCP is trimethoprim/sulfamethoxazole (TMP/SMZ). However, there are many cases of intolerance or resistance to the drug, so the convenient and effective alternatives are deficient. Case presentation A 66-year-old woman who took an immunosuppressive agent for a long time was diagnosed with PCP. Poor compliance of treatment was found out after monitoring TMP/SMZ plasma concentrations in this patient. She stopped taking the drug herself because of nausea. As a result of intolerance to TMP/SMZ, caspofungin combined with clindamycin were chosen to continue anti-PCP treatment in this patient. She finally improved and discharged from hospital. Conclusion The new combination of caspofungin and clindamycin may be beneficial for patients with PCP who have failed treatment or are intolerant of TMP/SMZ. In addition, the trend of β-glucan levels can be a predictor of therapeutic efficacy in PCP.
Collapse
Affiliation(s)
- Di-Hong Yang
- Department of Pharmacy, The Affiliated Drum Tower Hospital, Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.,School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing, 211198, China
| | - Yuan Xu
- Department of Pharmacy, The Affiliated Drum Tower Hospital, Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Lu Hong
- Department of Pharmacy, The Affiliated Drum Tower Hospital, Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.,School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing, 211198, China
| | - Zhou-Ye Song
- Department of Pharmacy, Zhejiang Hospital, No. 12 Lingyin Road, Hangzhou, 310007, China
| | - Wei-Hong Ge
- Department of Pharmacy, The Affiliated Drum Tower Hospital, Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| |
Collapse
|
26
|
White PL, Price JS, Backx M. Therapy and Management of Pneumocystis jirovecii Infection. J Fungi (Basel) 2018; 4:E127. [PMID: 30469526 PMCID: PMC6313306 DOI: 10.3390/jof4040127] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022] Open
Abstract
The rates of Pneumocystis pneumonia (PcP) are increasing in the HIV-negative susceptible population. Guidance for the prophylaxis and treatment of PcP in HIV, haematology, and solid-organ transplant (SOT) recipients is available, although for many other populations (e.g., auto-immune disorders) there remains an urgent need for recommendations. The main drug for both prophylaxis and treatment of PcP is trimethoprim/sulfamethoxazole, but resistance to this therapy is emerging, placing further emphasis on the need to make a mycological diagnosis using molecular based methods. Outbreaks in SOT recipients, particularly renal transplants, are increasingly described, and likely caused by human-to-human spread, highlighting the need for efficient infection control policies and sensitive diagnostic assays. Widespread prophylaxis is the best measure to gain control of outbreak situations. This review will summarize diagnostic options, cover prophylactic and therapeutic management in the main at risk populations, while also covering aspects of managing resistant disease, outbreak situations, and paediatric PcP.
Collapse
Affiliation(s)
- P Lewis White
- Public Health Wales Microbiology Cardiff, UHW, Heath Park, Cardiff CF14 4XW, UK.
| | - Jessica S Price
- Public Health Wales Microbiology Cardiff, UHW, Heath Park, Cardiff CF14 4XW, UK.
| | - Matthijs Backx
- Public Health Wales Microbiology Cardiff, UHW, Heath Park, Cardiff CF14 4XW, UK.
| |
Collapse
|
27
|
Szydłowicz M, Jakuszko K, Szymczak A, Piesiak P, Kowal A, Kopacz Ż, Wesołowska M, Lobo ML, Matos O, Hendrich AB, Kicia M. Prevalence and genotyping of Pneumocystis jirovecii in renal transplant recipients-preliminary report. Parasitol Res 2018; 118:181-189. [PMID: 30392033 PMCID: PMC6329730 DOI: 10.1007/s00436-018-6131-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022]
Abstract
Pneumocystis jirovecii is an opportunistic fungus occurring in human lungs. The group at highest risk consists of HIV-infected and non-HIV-infected immunosuppressed individuals. In these patients, P. jirovecii infection may lead to Pneumocystis pneumonia; it may, however, persist also in an asymptomatic form. This study aimed to determine the prevalence of P. jirovecii and potential risk factors for infection in a group of renal transplant recipients and to characterize the genetic diversity of this fungus in the studied population. Sputum specimens from 72 patients were tested for presence of P. jirovecii using immunofluorescence microscopy, as well as nested PCR targeting the mtLSU rRNA gene. Genotyping involving analysis of four loci—mtLSU rRNA, CYB, DHPS, and SOD—was used to characterize the diversity of the detected organisms. Pneumocystis DNA was detected in eight (11.11%) patients. It has been shown that low eosinophil count and dual immunosuppressive treatment combining prednisone and calcineurin inhibitors are potential risk factors for colonization. Analysis of genotype distribution showed an association of the wild-type genotype of mtLSU rRNA with lower average age of patients and shorter time after kidney transplantation. Furthermore, CYB 2 genotype was detected only in patients with the ongoing prophylaxis regimen. In conclusion, renal transplant recipients are at risk of Pneumocystis colonization even a long time after transplantation. The present preliminary study identifies specific polymorphisms that appear to be correlated with certain patient characteristics and highlights the need for deeper investigation of these associations in renal transplant recipients.
Collapse
Affiliation(s)
- Magdalena Szydłowicz
- Department of Biology and Medical Parasitology, Wroclaw Medical University, ul. J. Mikulicza-Radeckiego 9, 50-345, Wroclaw, Poland.
| | - Katarzyna Jakuszko
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Szymczak
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Piesiak
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Aneta Kowal
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Żaneta Kopacz
- Department of Biology and Medical Parasitology, Wroclaw Medical University, ul. J. Mikulicza-Radeckiego 9, 50-345, Wroclaw, Poland
| | - Maria Wesołowska
- Department of Biology and Medical Parasitology, Wroclaw Medical University, ul. J. Mikulicza-Radeckiego 9, 50-345, Wroclaw, Poland
| | - Maria Luísa Lobo
- Global Health and Tropical Medicine, Unit of Medical Parasitology, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Olga Matos
- Global Health and Tropical Medicine, Unit of Medical Parasitology, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Andrzej B Hendrich
- Department of Biology and Medical Parasitology, Wroclaw Medical University, ul. J. Mikulicza-Radeckiego 9, 50-345, Wroclaw, Poland
| | - Marta Kicia
- Department of Biology and Medical Parasitology, Wroclaw Medical University, ul. J. Mikulicza-Radeckiego 9, 50-345, Wroclaw, Poland
| |
Collapse
|
28
|
Brakemeier S, Pfau A, Zukunft B, Budde K, Nickel P. Prophylaxis and treatment of Pneumocystis Jirovecii pneumonia after solid organ transplantation. Pharmacol Res 2018; 134:61-67. [PMID: 29890253 DOI: 10.1016/j.phrs.2018.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/21/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Pneumocystis jirovecii pneumonia (PJP) is an opportunistic infection diagnosed in immunocompromized patients. After solid organ transplantation, early infection has decreased as a result of effective prophylaxis, but late infections and even outbreaks caused by interpatient transmission of pneumocystis by air are present in the SOT community. Different risk factors for PJP have been described and several indications for PJP prophylaxis have to be considered by clinicians in patients even years after transplantation. Diagnosis of PJP is confirmed by microscopy and immunofluorescence staining of bronchial fluid but PCR as well as serum ß-D-Glucan analysis have become increasingly valuable diagnostic tools. Treatment of choice is Trimethoprim/sulfamethoxazole and early treatment improves prognosis. However, mortality of PJP in solid organ transplant patients is still high and many aspects including the optimal management of immunosuppression during PJP treatment require further investigations.
Collapse
Affiliation(s)
- Susanne Brakemeier
- Department of Nephrology and Medical Intensive Care, Charité, Berlin, Germany.
| | - Anja Pfau
- Department of Nephrology and Medical Intensive Care, Charité, Berlin, Germany
| | - Bianca Zukunft
- Department of Nephrology and Medical Intensive Care, Charité, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité, Berlin, Germany
| | - Peter Nickel
- Department of Nephrology and Medical Intensive Care, Charité, Berlin, Germany
| |
Collapse
|
29
|
Shah K, Lin X, Queener SF, Cody V, Pace J, Gangjee A. Targeting species specific amino acid residues: Design, synthesis and biological evaluation of 6-substituted pyrrolo[2,3-d]pyrimidines as dihydrofolate reductase inhibitors and potential anti-opportunistic infection agents. Bioorg Med Chem 2018; 26:2640-2650. [PMID: 29691153 DOI: 10.1016/j.bmc.2018.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/14/2018] [Indexed: 11/28/2022]
Abstract
To combine the potency of trimetrexate (TMQ) or piritrexim (PTX) with the species selectivity of trimethoprim (TMP), target based design was carried out with the X-ray crystal structure of human dihydrofolate reductase (hDHFR) and the homology model of Pneumocystis jirovecii DHFR (pjDHFR). Using variation of amino acids such as Met33/Phe31 (in pjDHFR/hDHFR) that affect the binding of inhibitors due to their distinct positive or negative steric effect at the active binding site of the inhibitor, we designed a series of substituted-pyrrolo[2,3-d]pyrimidines. The best analogs displayed better potency (IC50) than PTX and high selectivity for pjDHFR versus hDHFR, with 4 exhibiting a selectivity for pjDHFR of 24-fold.
Collapse
Affiliation(s)
- Khushbu Shah
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Xin Lin
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Sherry F Queener
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Vivian Cody
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, United States
| | - Jim Pace
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
30
|
Epstein DJ, Seo SK, Brown JM, Papanicolaou GA. Echinocandin prophylaxis in patients undergoing haematopoietic cell transplantation and other treatments for haematological malignancies. J Antimicrob Chemother 2018; 73:i60-i72. [PMID: 29304213 PMCID: PMC7189969 DOI: 10.1093/jac/dkx450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antifungal prophylaxis is the standard of care for patients undergoing intensive chemotherapy for haematological malignancy or haematopoietic cell transplantation (HCT). Prophylaxis with azoles reduces invasive fungal infections and may reduce mortality. However, breakthrough infections still occur, and the use of azoles is sometimes complicated by pharmacokinetic variability, drug interactions, adverse events and other issues. Echinocandins are highly active against Candida species, including some organisms resistant to azoles, and have some clinical activity against Aspergillus species as well. Although currently approved echinocandins require daily intravenous administration, the drugs have a favourable safety profile and more predictable pharmacokinetics than mould-active azoles. Clinical data support the efficacy and safety of echinocandins for antifungal prophylaxis in haematology and HCT patients, though data are less robust than for azoles. Notably, sparse evidence exists supporting the use of echinocandins as antifungal prophylaxis for patients with significant graft-versus-host disease (GvHD) after HCT. Two drugs that target (1,3)-β-d-glucan are in development, including an oral glucan synthase inhibitor and an echinocandin with unique pharmacokinetics permitting subcutaneous and weekly administration. Echinocandins are a reasonable alternative to azoles and other agents for antifungal prophylaxis in patients undergoing intensive chemotherapy for haematological malignancy or those receiving HCT, excluding those with significant GvHD.
Collapse
Affiliation(s)
- David J Epstein
- Division of Infectious Diseases, Stanford University, Palo Alto, CA, USA
| | - Susan K Seo
- Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Janice M Brown
- Division of Infectious Diseases, Stanford University, Palo Alto, CA, USA
| | - Genovefa A Papanicolaou
- Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
31
|
Huang YS, Yang JJ, Lee NY, Chen GJ, Ko WC, Sun HY, Hung CC. Treatment of Pneumocystis jirovecii pneumonia in HIV-infected patients: a review. Expert Rev Anti Infect Ther 2017; 15:873-892. [PMID: 28782390 DOI: 10.1080/14787210.2017.1364991] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Pneumocystis pneumonia is a potentially life-threatening pulmonary infection that occurs in immunocompromised individuals and HIV-infected patients with a low CD4 cell count. Trimethoprim-sulfamethoxazole has been used as the first-line agent for treatment, but mutations within dihydropteroate synthase gene render potential resistance to sulfamide. Despite advances of combination antiretroviral therapy (cART), Pneumocystis pneumonia continues to occur in HIV-infected patients with late presentation for cART or virological and immunological failure after receiving cART. Areas covered: This review summarizes the diagnosis and first-line and alternative treatment and prophylaxis for Pneumocystis pneumonia in HIV-infected patients. Articles for this review were identified through searching PubMed. Search terms included: 'Pneumocystis pneumonia', 'Pneumocystis jirovecii pneumonia', 'Pneumocystis carinii pneumonia', 'trimethoprim-sulfamethoxazole', 'primaquine', 'trimetrexate', 'dapsone', 'pentamidine', 'atovaquone', 'echinocandins', 'human immunodeficiency virus infection', 'acquired immunodeficiency syndrome', 'resistance to sulfamide' and combinations of these terms. We limited the search to English language papers that were published between 1981 and March 2017. We screened all identified articles and cross-referenced studies from retrieved articles. Expert commentary: Trimethoprim-sulfamethoxazole will continue to be the first-line agent for Pneumocystis pneumonia given its cost, availability of both oral and parenteral formulations, and effectiveness or efficacy in both treatment and prophylaxis. Whether resistance due to mutations within dihydropteroate synthase gene compromises treatment effectiveness remains controversial. Continued search for effective alternatives with better safety profiles for Pneumocystis pneumonia is warranted.
Collapse
Affiliation(s)
- Yu-Shan Huang
- a Department of Internal Medicine , National Taiwan University Hospital Hsin-Chu Branch , Hsin-Chu , Taiwan
| | - Jen-Jia Yang
- b Department of Internal Medicine , Po Jen General Hospital , Taipei , Taiwan
| | - Nan-Yao Lee
- c Department of Internal Medicine , National Cheng Kung University Hospital , Tainan , Taiwan.,d Department of Medicine , College of Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Guan-Jhou Chen
- e Department of Internal Medicine , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| | - Wen-Chien Ko
- c Department of Internal Medicine , National Cheng Kung University Hospital , Tainan , Taiwan.,d Department of Medicine , College of Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Hsin-Yun Sun
- e Department of Internal Medicine , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| | - Chien-Ching Hung
- e Department of Internal Medicine , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan.,f Department of Parasitology , National Taiwan University College of Medicine , Taipei , Taiwan.,g Department of Medical Research , China Medical University Hospital , Taichung , Taiwan.,h China Medical University , Taichung , Taiwan
| |
Collapse
|