1
|
Jin J, Cao J, Zhang R, Zheng L, Cai X, Li J. Population pharmacokinetics of bedaquiline: a systematic review. Eur J Clin Pharmacol 2025; 81:347-363. [PMID: 39779577 DOI: 10.1007/s00228-024-03788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND OBJECTIVES Bedaquiline (BDQ) plays a critical role in the treatment of multidrug-resistant tuberculosis (MDR-TB). However, the large pharmacokinetic (PK) variability of BDQ presents a significant challenge in its clinical use. This study aimed to summarize the population PK characteristics of BDQ and to identify significant covariates affecting the PK variation of BDQ. METHODS The PubMed and Web of Science databases were systematically searched from their inception to October 1, 2023. Population pharmacokinetics (PPK) studies on BDQ were searched and identified in this review. The PK characteristics of included studies and the significant covariates were systematically summarized. RESULTS Eight studies conducted in adults and one in children and adolescents were included in this review. A three disposition compartments with dynamic absorption transport chamber model was the commonly used structural model for BDQ. Body weight, race, albumin, and concomitant medication were significant covariates affecting BDQ PK variation. With the increase of weight and albumin levels, the clearance (CL) of BDQ was gradually increased. The average CL value per body weight in children was 1.49-fold higher than that in adults. Black race patients had an 84% higher CL than other populations. Moreover, combined with rifampicin and rifapentine, BDQ had 378% and 296% higher clearance rates, respectively. CONCLUSIONS Body weight, race, albumin level, and concomitant medication may be important factors affecting patients' exposure differences. Further PPK studies of BDQ are needed to facilitate optimal dosing regimens.
Collapse
Affiliation(s)
- Jie Jin
- Department of Pharmacy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jie Cao
- Department of Pharmacy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310000, Zhejiang, China
| | - Ruoying Zhang
- Department of Pharmacy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310000, Zhejiang, China
| | - Lifang Zheng
- Department of Pharmacy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310000, Zhejiang, China
| | - Xinjun Cai
- Department of Pharmacy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jinmeng Li
- Department of Pharmacy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
2
|
Prager M, Al Jalali V, Zeitlinger M. Clinical Pharmacokinetics of Antitubercular Drugs in the Overweight and Obese Population: Implications for Dosage Adjustments. Clin Pharmacokinet 2025; 64:193-214. [PMID: 39792209 PMCID: PMC11782447 DOI: 10.1007/s40262-024-01442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 01/12/2025]
Abstract
The rise in global obesity prevalence has increased the need to understand the pharmacokinetics of drugs in overweight and obese individuals. Tuberculosis remains a significant health challenge, and its treatment outcomes can be influenced by the pharmacokinetic profiles of antitubercular agents. This literature review aims to point out the clinical pharmacokinetics of antitubercular drugs in the overweight and obese patient population, highlighting considerations for potential dosage adjustments. We conducted a comprehensive search of the PubMed US National Library of Medicine from inception to January 2024. Articles focusing on the pharmacokinetics of antitubercular agents used for both drug-susceptible and multidrug-resistant tuberculosis in overweight and obese adults were included. In total, 349 scientific articles were identified and examined for human pharmacokinetic parameters. Of these, 19 were included in this article. To highlight potential differences, pharmacokinetic data for normal-weight tuberculosis patients are also presented, albeit selectively. In general, pharmacokinetic studies of antitubercular agents in overweight and obese individuals are lacking. Fixed-dose combinations often used in the treatment of drug-susceptible tuberculosis are not recommended when treating these population groups. Rather, individual dosing based on therapeutic drug monitoring and the known solubility of the substance should be considered. To improve the management of tuberculosis in overweight and obese patients, there is an urgent need for pharmacokinetic studies and, ultimately, adequate dosing in this patient population, especially given the increasing prevalence of obesity.
Collapse
Affiliation(s)
- Marlene Prager
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Valentin Al Jalali
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Johnson TM, Rivera CG, Lee G, Zeuli JD. Pharmacology of emerging drugs for the treatment of multi-drug resistant tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 37:100470. [PMID: 39188351 PMCID: PMC11345926 DOI: 10.1016/j.jctube.2024.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Mycobacterium tuberculosis (TB) remains the leading cause of infection-related mortality worldwide. Drug resistance, need for multiple antimycobacterial agents, prolonged treatment courses, and medication-related side effects are complicating factors to TB cure. The introduction of treatment regimens containing the novel agents bedaquiline, pretomanid, and linezolid, with or without moxifloxacin (BPaL-M or BPaL, respectively) have substantially reduced TB-related morbidity and mortality and are associated with favorable rates of treatment completion and cure. This review summarizes key information on the pharmacology and treatment principles for moxifloxacin, bedaquiline, delamanid, pretomanid, linezolid, and tedizolid in the treatment of multi-drug resistant TB, with recommendations provided to address and attenuate common adverse effects during treatment.
Collapse
Affiliation(s)
| | | | - Grace Lee
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - John D. Zeuli
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Bhatnagar AK, Hemanthkumar AK, Muthu Vijayalakshmi M, Vohra V, Padmapriyadarsini C, Ramesh PM, Taneja G, Chavan VN, Jeyadeepa B, Bhui NK, Solanki R. Effect of Bedaquiline and Delamanid Pharmacokinetics on Sputum Culture Conversion and Adverse Events in Drug-Resistant Tuberculosis. Ther Drug Monit 2024; 46:363-369. [PMID: 38161267 PMCID: PMC11078291 DOI: 10.1097/ftd.0000000000001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/13/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Pharmacokinetic studies of bedaquiline and delamanid in patients with pre-extensively drug-resistant tuberculosis (pre-XDR TB) will help in the optimization of these drugs for both culture conversion and adverse events. METHODS A prospective cohort of 165 adult patients (56% male with mean [SD] age 29 [9.7] years) with pre-XDR TB was treated with bedaquiline, delamanid, clofazimine, and linezolid for 24 weeks at 5 sites in India. Bedaquiline was administered at 400 mg daily for 2 weeks followed by 200 mg thrice weekly for 22 weeks, whereas delamanid was administered at 100 mg twice daily. In 23 consenting participants at 8 and 16 weeks of treatment, blood was collected at 0, 2, 4, 5, 6, 8, 12, and 24 hours postdosing for an intense pharmacokinetic study. Pharmacokinetic parameters were correlated with sputum culture conversion and adverse events. RESULTS The mean (SD) age and weight of patients were 30 (10) years and 54 kg, respectively. The median minimum concentration (C min ) and time-concentration curve (AUC) for bedaquiline, respectively, were 0.6 mcg/mL and 27 mcg/mL·h at week 8 and 0.8 mcg/mL and 36 mcg/mL·h at week 16, suggesting drug accumulation over time. The median C min and AUC of delamanid, respectively, were 0.17 mcg/mL and 5.1 mcg/mL·h at week 8 and 0.20 mcg/mL and 7.5 mcg/mL·h at week 16. Delay in sputum conversion was observed in patients with drug concentrations lower than the targeted concentration. At weeks 8 and 16, 13 adverse events were observed. Adverse events were resolved through symptomatic treatment. Body mass index was found to be significantly associated with drug-exposure parameters. CONCLUSIONS Bedaquiline and delamanid when co-administered exhibit plasma drug levels within the targeted concentrations, showing an exposure-response relationship.
Collapse
Affiliation(s)
- Anuj K. Bhatnagar
- Rajan Babu Institute of Pulmonary Medicine and Tuberculosis, New Delhi
| | | | | | - Vikram Vohra
- National Institute for Tuberculosis and Respiratory Diseases, New Delhi
| | | | | | - Gaurav Taneja
- Rajan Babu Institute of Pulmonary Medicine and Tuberculosis, New Delhi
| | | | | | | | | |
Collapse
|
5
|
Mehta K, Balazki P, van der Graaf PH, Guo T, van Hasselt JGC. Predictions of Bedaquiline Central Nervous System Exposure in Patients with Tuberculosis Meningitis Using Physiologically based Pharmacokinetic Modeling. Clin Pharmacokinet 2024; 63:657-668. [PMID: 38530588 PMCID: PMC11106169 DOI: 10.1007/s40262-024-01363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND AND OBJECTIVE The use of bedaquiline as a treatment option for drug-resistant tuberculosis meningitis (TBM) is of interest to address the increased prevalence of resistance to first-line antibiotics. To this end, we describe a whole-body physiologically based pharmacokinetic (PBPK) model for bedaquiline to predict central nervous system (CNS) exposure. METHODS A whole-body PBPK model was developed for bedaquiline and its metabolite, M2. The model included compartments for brain and cerebrospinal fluid (CSF). Model predictions were evaluated by comparison to plasma PK time profiles following different dosing regimens and sparse CSF concentrations data from patients. Simulations were then conducted to compare CNS and lung exposures to plasma exposure at clinically relevant dosing schedules. RESULTS The model appropriately described the observed plasma and CSF bedaquiline and M2 concentrations from patients with pulmonary tuberculosis (TB). The model predicted a high impact of tissue binding on target site drug concentrations in CNS. Predicted unbound exposures within brain interstitial exposures were comparable with unbound vascular plasma and unbound lung exposures. However, unbound brain intracellular exposures were predicted to be 7% of unbound vascular plasma and unbound lung intracellular exposures. CONCLUSIONS The whole-body PBPK model for bedaquiline and M2 predicted unbound concentrations in brain to be significantly lower than the unbound concentrations in the lung at clinically relevant doses. Our findings suggest that bedaquiline may result in relatively inferior efficacy against drug-resistant TBM when compared with efficacy against drug-resistant pulmonary TB.
Collapse
Affiliation(s)
- Krina Mehta
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | | | - Piet H van der Graaf
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Certara, Canterbury, UK
| | - Tingjie Guo
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - J G Coen van Hasselt
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov 2024; 23:381-403. [PMID: 38418662 PMCID: PMC11078618 DOI: 10.1038/s41573-024-00897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public-private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
7
|
Islam MM, Alam MS, Liu Z, Khatun MS, Yusuf B, Hameed HMA, Tian X, Chhotaray C, Basnet R, Abraha H, Zhang X, Khan SA, Fang C, Li C, Hasan S, Tan S, Zhong N, Hu J, Zhang T. Molecular mechanisms of resistance and treatment efficacy of clofazimine and bedaquiline against Mycobacterium tuberculosis. Front Med (Lausanne) 2024; 10:1304857. [PMID: 38274444 PMCID: PMC10809401 DOI: 10.3389/fmed.2023.1304857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/21/2023] [Indexed: 01/27/2024] Open
Abstract
Clofazimine (CFZ) and bedaquiline (BDQ) are currently used for the treatment of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) strains. In recent years, adding CFZ and BDQ to tuberculosis (TB) drug regimens against MDR Mtb strains has significantly improved treatment results, but these improvements are threatened by the emergence of MDR and extensively drug-resistant (XDR) Mtb strains. Recently, CFZ and BDQ have attracted much attention for their strong clinical efficacy, although very little is known about the mechanisms of action, drug susceptibility test (DST), resistance mechanisms, cross-resistance, and pharmacokinetics of these two drugs. In this current review, we provide recent updates on the mechanisms of action, DST, associated mutations with individual resistance and cross-resistance, clinical efficacy, and pharmacokinetics of CFZ and BDQ against Mtb strains. Presently, known mechanisms of resistance for CFZ and/or BDQ include mutations within the Rv0678, pepQ, Rv1979c, and atpE genes. The cross-resistance between CFZ and BDQ may reduce available MDR-/XDR-TB treatment options. The use of CFZ and BDQ for treatment in the setting of limited DST could allow further spread of drug resistance. The DST and resistance knowledge are urgently needed where CFZ and BDQ resistance do emerge. Therefore, an in-depth understanding of clinical efficacy, DST, cross-resistance, and pharmacokinetics for CFZ and BDQ against Mtb can provide new ideas for improving treatment outcomes, reducing mortality, preventing drug resistance, and TB transmission. Along with this, it will also help to develop rapid molecular diagnostic tools as well as novel therapeutic drugs for TB.
Collapse
Affiliation(s)
- Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Microbiology, Shaheed Shamsuzzoha Institute of Biosciences, Affiliated with University of Rajshahi, Rajshahi, Bangladesh
| | - Md Shah Alam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Mst Sumaia Khatun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chiranjibi Chhotaray
- Department of Medicine, Center for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Rajesh Basnet
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haftay Abraha
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaofan Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shahzad Akbar Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Laboratory of Pathology, Department of Pathobiology, University of Poonch Rawalakot, Azad Kashmir, Pakistan
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chunyu Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Sohel Hasan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shouyong Tan
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinxing Hu
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Singh S, Gumbo T, Alffenaar JW, Boorgula GD, Shankar P, Thomas TA, Dheda K, Malinga L, Raj P, Aryal S, Srivastava S. Meropenem-vaborbactam restoration of first-line drug efficacy and comparison of meropenem-vaborbactam-moxifloxacin versus BPaL MDR-TB regimen. Int J Antimicrob Agents 2023; 62:106968. [PMID: 37726063 PMCID: PMC10850916 DOI: 10.1016/j.ijantimicag.2023.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Meropenem in combination with β-lactamase inhibitors (BLIs) and other drugs was tested to identify alternative treatment regimens for multidrug-resistant tuberculosis (MDR-TB). METHODS The following were performed: (1) MIC experiments; (2) static time-kill studies (STKs) with different BLIs; and (3) a hollow fibre model system of TB (HFS-TB) studies with meropenem-vaborbactam combined with human equivalent daily doses of 20 mg/kg or 35 mg/kg rifampin, or moxifloxacin 400 mg, or linezolid 600 mg vs. bedaquiline-pretonamid-linezolid (BPaL) for MDR-TB. The studies were performed using Mycobacterium tuberculosis (M. tuberculosis) H37Rv and an MDR-TB clinical strain (named M. tuberculosis 16D) that underwent whole genome sequencing. Exponential decline models were used to calculate the kill rate constant (K) of different HFS-TB regimens. RESULTS Whole genome sequencing revealed mutations associated with resistance to rifampin, isoniazid, and cephalosporins. The meropenem-vaborbactam MIC of M. tuberculosis was H37Rv 2 mg/L and > 128 mg/L for M. tuberculosis 16D. Relebactam and vaborbactam improved both the potency and efficacy of meropenem in STKs. Meropenem-vaborbactam alone failed to kill M. tuberculosis 16D but killed below day 0 burden when combined with isoniazid and rifampin, with the moxifloxacin combination being the most effective and outranking bedaquiline and pretomanid. In the HFS-TB, meropenem-vaborbactam-moxifloxacin and BPaL had the highest K (log10 cfu/mL/day) of 0.31 (95% CI 0.17-0.58) and 0.34 (95% CI 0.21-0.56), while meropenem-vaborbactam-rifampin (35 mg/kg) had a K of 0.18 (95% CI 0.12-0.25). The K for meropenem-vaborbactam-moxifloxacin-linezolid demonstrated antagonism. CONCLUSION Adding meropenem-vaborbactam could potentially restore the efficacy of isoniazid and rifampin against MDR-TB. The meropenem-vaborbactam-moxifloxacin backbone regimen has implications for creating a new effective MDR-TB regimen.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, TX, USA
| | - Tawanda Gumbo
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA; Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc, Dallas, TX, USA
| | - Jan-Willem Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia; School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia; Westmead Hospital, Sydney, New South Wales, Australia
| | - Gunavanthi D Boorgula
- Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, TX, USA
| | - Prem Shankar
- Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, TX, USA
| | - Tania A Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Keertan Dheda
- The Center for Lung Infection and Immunity Unit, Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lesibana Malinga
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Prithvi Raj
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Santosh Aryal
- Department of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, USA
| | - Shashikant Srivastava
- Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, TX, USA; Department of Cellular and Molecular Biology, UT Health Science Centre at Tyler, Tyler, TX, US.
| |
Collapse
|
9
|
Lanni A, Iacobino A, Fattorini L, Giannoni F. Eradication of Drug-Tolerant Mycobacterium tuberculosis 2022: Where We Stand. Microorganisms 2023; 11:1511. [PMID: 37375013 PMCID: PMC10301435 DOI: 10.3390/microorganisms11061511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The lungs of tuberculosis (TB) patients contain a spectrum of granulomatous lesions, ranging from solid and well-vascularized cellular granulomas to avascular caseous granulomas. In solid granulomas, current therapy kills actively replicating (AR) intracellular bacilli, while in low-vascularized caseous granulomas the low-oxygen tension stimulates aerobic and microaerophilic AR bacilli to transit into non-replicating (NR), drug-tolerant and extracellular stages. These stages, which do not have genetic mutations and are often referred to as persisters, are difficult to eradicate due to low drug penetration inside the caseum and mycobacterial cell walls. The sputum of TB patients also contains viable bacilli called differentially detectable (DD) cells that, unlike persisters, grow in liquid, but not in solid media. This review provides a comprehensive update on drug combinations killing in vitro AR and drug-tolerant bacilli (persisters and DD cells), and sterilizing Mycobacterium tuberculosis-infected BALB/c and caseum-forming C3HeB/FeJ mice. These observations have been important for testing new drug combinations in noninferiority clinical trials, in order to shorten the duration of current regimens against TB. In 2022, the World Health Organization, following the results of one of these trials, supported the use of a 4-month regimen for the treatment of drug-susceptible TB as a possible alternative to the current 6-month regimen.
Collapse
Affiliation(s)
| | | | | | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Via Regina Elena 299, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| |
Collapse
|
10
|
Algharably EA, Kreutz R, Gundert-Remy U. Infant Exposure to Antituberculosis Drugs via Breast Milk and Assessment of Potential Adverse Effects in Breastfed Infants: Critical Review of Data. Pharmaceutics 2023; 15:pharmaceutics15041228. [PMID: 37111713 PMCID: PMC10143885 DOI: 10.3390/pharmaceutics15041228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Infants of mothers treated for tuberculosis might be exposed to drugs via breast milk. The existing information on the exposure of breastfed infants lacks a critical review of the published data. We aimed to evaluate the quality of the existing data on antituberculosis (anti-TB) drug concentrations in the plasma and milk as a methodologically sound basis for the potential risk of breastfeeding under therapy. We performed a systematic search in PubMed for bedaquiline, clofazimine, cycloserine/terizidone, levofloxacin, linezolid, pretomanid/pa824, pyrazinamide, streptomycin, ethambutol, rifampicin and isoniazid, supplemented with update references found in LactMed®. We calculated the external infant exposure (EID) for each drug and compared it with the recommended WHO dose for infants (relative external infant dose) and assessed their potential to elicit adverse effects in the breastfed infant. Breast milk concentration data were mainly not satisfactory to properly estimate the EID. Most of the studies suffer from limitations in the sample collection, quantity, timing and study design. Infant plasma concentrations are extremely scarce and very little data exist documenting the clinical outcome in exposed infants. Concerns for potential adverse effects in breastfed infants could be ruled out for bedaquiline, cycloserine/terizidone, linezolid and pyrazinamide. Adequate studies should be performed covering the scenario in treated mothers, breast milk and infants.
Collapse
Affiliation(s)
- Engi Abdelhady Algharably
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany
| | - Reinhold Kreutz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ursula Gundert-Remy
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
11
|
Jonny J, Saraswati PD, Ramadhani BP, Sitepu EC, Pasiak TF. Update on drug-resistant pulmonary tuberculosis treatment in hemodialysis patients. Indian J Tuberc 2023; 71 Suppl 1:S110-S116. [PMID: 39067942 DOI: 10.1016/j.ijtb.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 07/30/2024]
Abstract
World Health Organization (WHO) issued the latest recommendations regarding the management of drug-resistant Tuberculosis (TB) in 2022, allowing the replacement of ethambutol (6 months) with linezolid (2 months). This recommendation also introduced a new regimen, namely bedaquiline, pretomanide, linezolid, moxifloxacin (BPaLM) for fluoroquinolone-sensitive patients and bedaquiline, pretomanide, linezolid, (BPaL) for patients insensitive to fluoroquinolone (6-9 months). The latest TB regimen introduced by WHO provides a shorter-course treatment, however not much has been discussed about the impact of this new regimen on chronic kidney disease (CKD) patients, particularly on hemodialysis (HD). The condition of CKD can interfere with the pharmacokinetics of TB medication, thus could reduce effectiveness and increase toxicity. The drugs used on this new regimen are mostly safe for renal impairment patients due to the dominant metabolism in the liver. Particular precaution is given to the administration of linezolid due to increased hematology side effects and bedaquiline with the side effect of QTC interval lengthening and increased risk of arrhythmias. Although this regimen research has not been in many studies in renal failure patients, no significant side effects nor kidney damage evidence was found. This remains to be proven by more research on the patient population with renal failure.
Collapse
Affiliation(s)
- Jonny Jonny
- Department of Internal Medicine, Gatot Soebroto Central Army Hospital, DKI Jakarta, Indonesia; Faculty of Medicine, Jakarta Veterans National Development University, DKI Jakarta, Indonesia.
| | | | | | - Enda Cindylosa Sitepu
- Department of Internal Medicine, Gatot Soebroto Central Army Hospital, DKI Jakarta, Indonesia
| | - Taufiq Fredrik Pasiak
- Faculty of Medicine, Jakarta Veterans National Development University, DKI Jakarta, Indonesia
| |
Collapse
|
12
|
Shao G, Bao Z, Davies Forsman L, Paues J, Werngren J, Niward K, Schön T, Bruchfeld J, Alffenaar JW, Hu Y. Population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients. Front Pharmacol 2023; 14:1022090. [PMID: 37050904 PMCID: PMC10083270 DOI: 10.3389/fphar.2023.1022090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Aims: Bedaquiline is now recommended to all patients in the treatment of multidrug-resistant tuberculosis (MDR-TB) using standard dosing regimens. As the ability to measure blood drug concentrations is very limited, little is known about drug exposure and treatment outcome. Thus, this study aimed to model the population pharmacokinetics as well as to evaluate the currently recommended dosage.Methodology: A bedaquiline population pharmacokinetic (PK) model was developed based on samples collected from the development cohort before and 1, 2, 3, 4, 5, 6, 8, 12, 18, and 24 h after drug intake on week 2 and week 4 of treatment. In a prospective validation cohort of patients with MDR-TB, treated with bedaquiline-containing standardized regimen, drug exposure was assessed using the developed population PK model and thresholds were identified by relating to 2-month and 6-month sputum culture conversion and final treatment outcome using classification and regression tree analysis. In an exploratory analysis by the probability of target attainment (PTA) analysis, we evaluated the recommended dosage at different MIC levels by Middlebrook 7H11 agar dilution (7H11).Results: Bedaquiline pharmacokinetic data from 55 patients with MDR-TB were best described by a three-compartment model with dual zero-order input. Body weight was a covariate of the clearance and the central volume of distribution, albumin was a covariate of the clearance. In the validation cohort, we enrolled 159 patients with MDR-TB. The 7H11 MIC mode (range) of bedaquiline was 0.06 mg (0.008–0.25 mg/L). The study participants with AUC0-24h/MIC above 175.5 had a higher probability of culture conversion after 2-month treatment (adjusted relative risk, aRR:16.4; 95%CI: 5.3–50.4). Similarly, those with AUC0-24h/MIC above 118.2 had a higher probability of culture conversion after 6-month treatment (aRR:20.1; 95%CI: 2.9–139.4), and those with AUC0-24h/MIC above 74.6 had a higher probability of successful treatment outcome (aRR:9.7; 95%CI: 1.5–64.8). Based on the identified thresholds, simulations showed that the WHO recommended dosage (400 mg once daily for 14 days followed by 200 mg thrice weekly) resulted in PTA >90% for the majority of isolates (94%; MICs ≤0.125 mg/L).Conclusion: We established a population PK model for bedaquiline in patients with MDR-TB in China. Based on the thresholds and MIC distribution derived in a clinical study, the recommended dosage of bedaquiline is sufficient for the treatment of MDR-TB.
Collapse
Affiliation(s)
- Ge Shao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ziwei Bao
- The Fifth People’s Hospital of Suzhou, Infectious Disease Hospital Affiliated to Soochow University, Suzhou, China
| | - Lina Davies Forsman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, Stockholm, Sweden
| | - Jakob Paues
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Region Östergötland, Linköping University Hospital, Linköping, Sweden
| | - Jim Werngren
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Katarina Niward
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Region Östergötland, Linköping University Hospital, Linköping, Sweden
| | - Thomas Schön
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Region Östergötland, Linköping University Hospital, Linköping, Sweden
- Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Linköping University, Linköping, Sweden
| | - Judith Bruchfeld
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, Stockholm, Sweden
| | - Jan-Willem Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, NSW, Australia
- Westmead Hospital, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
- *Correspondence: Yi Hu,
| |
Collapse
|
13
|
Chamboko CR, Veldman W, Tata RB, Schoeberl B, Tastan Bishop Ö. Human Cytochrome P450 1, 2, 3 Families as Pharmacogenes with Emphases on Their Antimalarial and Antituberculosis Drugs and Prevalent African Alleles. Int J Mol Sci 2023; 24:ijms24043383. [PMID: 36834793 PMCID: PMC9961538 DOI: 10.3390/ijms24043383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Precision medicine gives individuals tailored medical treatment, with the genotype determining the therapeutic strategy, the appropriate dosage, and the likelihood of benefit or toxicity. Cytochrome P450 (CYP) enzyme families 1, 2, and 3 play a pivotal role in eliminating most drugs. Factors that affect CYP function and expression have a major impact on treatment outcomes. Therefore, polymorphisms of these enzymes result in alleles with diverse enzymatic activity and drug metabolism phenotypes. Africa has the highest CYP genetic diversity and also the highest burden of malaria and tuberculosis, and this review presents current general information on CYP enzymes together with variation data concerning antimalarial and antituberculosis drugs, while focusing on the first three CYP families. Afrocentric alleles such as CYP2A6*17, CYP2A6*23, CYP2A6*25, CYP2A6*28, CYP2B6*6, CYP2B6*18, CYP2C8*2, CYP2C9*5, CYP2C9*8, CYP2C9*9, CYP2C19*9, CYP2C19*13, CYP2C19*15, CYP2D6*2, CYP2D6*17, CYP2D6*29, and CYP3A4*15 are implicated in diverse metabolic phenotypes of different antimalarials such as artesunate, mefloquine, quinine, primaquine, and chloroquine. Moreover, CYP3A4, CYP1A1, CYP2C8, CYP2C18, CYP2C19, CYP2J2, and CYP1B1 are implicated in the metabolism of some second-line antituberculosis drugs such as bedaquiline and linezolid. Drug-drug interactions, induction/inhibition, and enzyme polymorphisms that influence the metabolism of antituberculosis, antimalarial, and other drugs, are explored. Moreover, a mapping of Afrocentric missense mutations to CYP structures and a documentation of their known effects provided structural insights, as understanding the mechanism of action of these enzymes and how the different alleles influence enzyme function is invaluable to the advancement of precision medicine.
Collapse
Affiliation(s)
- Chiratidzo R Chamboko
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Rolland Bantar Tata
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Birgit Schoeberl
- Translational Medicine, Novartis Institutes for BioMedical Research, 220 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
14
|
Bossù G, Autore G, Bernardi L, Buonsenso D, Migliori GB, Esposito S. Treatment options for children with multi-drug resistant tuberculosis. Expert Rev Clin Pharmacol 2023; 16:5-15. [PMID: 36378271 DOI: 10.1080/17512433.2023.2148653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION According to the latest report from the World Health Organization (WHO), approximately 10.0 million people fell ill with tuberculosis (TB) in 2020, 12% of which were children aged under 15 years. There is very few experience on treatment of multi-drug resistant (MDR)-TB in pediatrics. AREAS COVERED The aim of this review is to analyze and summarize therapeutic options available for children experiencing MDR-TB. We also focused on management of MDR-TB prophylaxis. EXPERT OPINION The therapeutic management of children with MDR-TB or MDR-TB contacts is complicated by a lack of knowledge, and the fact that many potentially useful drugs are not registered for pediatric use and there are no formulations suitable for children in the first years of life. Furthermore, most of the available drugs are burdened by major adverse events that need to be taken into account, particularly in the case of prolonged therapy. A close follow-up with a standardized timeline and a comprehensive assessment of clinical, laboratory, microbiologic and radiologic data is extremely important in these patients. Due to the complexity of their management, pediatric patients with confirmed or suspected MDR-TB should always be referred to a specialized center.
Collapse
Affiliation(s)
- Gianluca Bossù
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giovanni Autore
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Bernardi
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri - IRCCS, Tradate, Italia
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
15
|
Hughes JA, Solans BP, Draper HR, Schaaf HS, Winckler JL, van der Laan L, Radtke KK, Fourie B, Wiesner L, Hesseling AC, Savic RM, Garcia-Prats AJ. Pharmacokinetics and Safety of Bedaquiline in Human Immunodeficiency Virus (HIV)-Positive and Negative Older Children and Adolescents With Rifampicin-Resistant Tuberculosis. Clin Infect Dis 2022; 75:1772-1780. [PMID: 35377434 PMCID: PMC9662178 DOI: 10.1093/cid/ciac252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pharmacokinetic data for bedaquiline in children are limited. We described the pharmacokinetics and safety of bedaquiline in South African children and adolescents receiving treatment for multidrug/rifampicin-resistant tuberculosis (MDR/RR-TB) in routine care. METHODS In this observational cohort study, children aged 6-17 years receiving bedaquiline at recommended doses as part of MDR/RR-TB treatment underwent semi-intensive pharmacokinetic sampling. Bedaquiline and the M2 metabolite plasma concentrations were quantified, and nonlinear mixed-effects modeling performed. Pediatric data were described using a pre-established model of bedaquiline pharmacokinetics in adults. The exposure reference was 187 µg ⋅ h/mL, the median weekly area under the curve (AUC) of adults at week 24 of treatment with bedaquiline. Safety was assessed through monthly clinical, blood and electrocardiogram monitoring, and treatment outcomes described. RESULTS Fifteen children (3 human immunodeficiency virus [HIV]-positive) with median age 13.3 years (range 6.5-16.3) were included. A bedaquiline pharmacokinetic model was adapted to be allometrically scaled in clearance and volume, centered in the median child population weight. Bedaquiline bioavailability was 57% of that in adults. Overall bedaquiline exposures were below target, and AUC reference attainment was achieved in only 3 (20%) children. Ten children experienced 27 adverse events at least possibly related to bedaquiline; no adverse events led to bedaquiline withdrawal. Two adverse events (arthritis and arthralgia) were considered severe, and 2 children had mild QT interval corrected for heart rate using Fridericia's formula (QT) prolongation. CONCLUSIONS The evaluated doses of bedaquiline in children ≥ 6 years of age were safe but achieved slightly lower plasma concentrations compared to adults receiving the recommended dose, possibly due to delayed food intake relative to bedaquiline administration.
Collapse
Affiliation(s)
- Jennifer A Hughes
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Belén P Solans
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco Schools of Pharmacy and Medicine, San Francisco, California, USA
| | - Heather R Draper
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - H Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jana L Winckler
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Louvina van der Laan
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kendra K Radtke
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco Schools of Pharmacy and Medicine, San Francisco, California, USA
| | - Barend Fourie
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco Schools of Pharmacy and Medicine, San Francisco, California, USA
| | - Anthony J Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Combination Therapy to Kill Mycobacterium tuberculosis in Its Nonreplicating Persister Phenotype. Antimicrob Agents Chemother 2022; 66:e0069522. [PMID: 36165631 PMCID: PMC9578415 DOI: 10.1128/aac.00695-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) exists in various metabolic states, including a nonreplicating persister (NRP) phenotype which may affect response to therapy. We have adopted a model-informed strategy to accelerate discovery of effective Mtb treatment regimens and previously found pretomanid (PMD), moxifloxacin (MXF), and bedaquiline (BDQ) to readily kill logarithmic- and acid-phase Mtb. Here, we studied multiple concentrations of each drug in flask-based, time-kill studies against NRP Mtb in single-, two- and three-drug combinations, including the active M2 metabolite of BDQ. We used nonparametric population algorithms in the Pmetrics package for R to model the data and to simulate the 95% confidence interval of bacterial population decline due to the two-drug combination regimen of PMD + MXF and compared this to observed declines with three-drug regimens. PMD + MXF at concentrations equivalent to average or peak human concentrations effectively eradicated Mtb. Unlike other states for Mtb, we observed no sustained emergence of less susceptible isolates for any regimen. The addition of BDQ as a third drug significantly (P < 0.05) shortened time to total bacterial suppression by 3 days compared to the two-drug regimen, similar to our findings for Mtb in logarithmic or acid growth phases.
Collapse
|
17
|
Population Pharmacokinetic Modeling of Bedaquiline among Multidrug-Resistant Pulmonary Tuberculosis Patients from China. Antimicrob Agents Chemother 2022; 66:e0081122. [PMID: 36106884 PMCID: PMC9578397 DOI: 10.1128/aac.00811-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bedaquiline has been widely used as a part of combination dosage regimens for the treatment of multidrug-resistant tuberculosis (MDR-TB) patients with limited options. Although the effectiveness and safety of bedaquiline have been demonstrated in clinical trials, limited studies have investigated the significant pharmacokinetics and the impact of genotype on bedaquiline disposition. Here, we developed a population pharmacokinetic model of bedaquiline to describe the concentration-time data from Chinese adult patients diagnosed with MDR-TB. A total of 246 observations were collected from 99 subjects receiving the standard recommended dosage. Bedaquiline disposition was well described by a one-compartment model with first-order absorption. Covariate modeling identified that gamma-glutamyl transferase (GGT) and the single-nucleotide polymorphism (SNP) rs319952 in the AGBL4 gene were significantly associated with the apparent clearance of bedaquiline. The clearance (CL/F) was found to be 1.4 L/h lower for subjects with allele GG in SNP rs319952 than for subjects with alleles AG and AA and to decrease by 30% with a doubling in GGT. The model-based simulations were designed to assess the impact of GGT/SNP rs319952 on bedaquiline exposure and showed that patients with genotype GG in SNP rs319952 and GGT ranging from 10 to 50 U/L achieved the targeted maximum serum concentration at steady state (Cmax,ss). However, when GGT was increased to 100 U/L, Cmax,ss was 1.68-fold higher than the highest concentration pursued. The model developed provides the consideration of genetic polymorphism and hepatic function for bedaquiline dosage in MDR-TB adult patients.
Collapse
|
18
|
Haas DW, Abdelwahab MT, van Beek SW, Baker P, Maartens G, Bradford Y, Ritchie MD, Wasserman S, Meintjes G, Beeri K, Gandhi NR, Svensson EM, Denti P, Brust JCM. Pharmacogenetics of Between-Individual Variability in Plasma Clearance of Bedaquiline and Clofazimine in South Africa. J Infect Dis 2022; 226:147-156. [PMID: 35091749 PMCID: PMC9373148 DOI: 10.1093/infdis/jiac024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/24/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Plasma bedaquiline clearance is reportedly more rapid with African ancestry. Our objective was to determine whether genetic polymorphisms explained between-individual variability in plasma clearance of bedaquiline, its M2 metabolite, and clofazimine in a cohort of patients treated for drug-resistant tuberculosis in South Africa. METHODS Plasma clearance was estimated with nonlinear mixed-effects modeling. Associations between pharmacogenetic polymorphisms, genome-wide polymorphisms, and variability in clearance were examined using linear regression models. RESULTS Of 195 cohort participants, 140 were evaluable for genetic associations. Among 21 polymorphisms selected based on prior genome-wide significant associations with any drug, rs776746 (CYP3A5∗3) was associated with slower clearance of bedaquiline (P = .0017) but not M2 (P = .25). CYP3A5∗3 heterozygosity and homozygosity were associated with 15% and 30% slower bedaquiline clearance, respectively. The lowest P value for clofazimine clearance was with VKORC1 rs9923231 (P = .13). In genome-wide analyses, the lowest P values for clearance of bedaquiline and clofazimine were with RFX4 rs76345012 (P = 6.4 × 10-7) and CNTN5 rs75285763 (P = 2.9 × 10-8), respectively. CONCLUSIONS Among South Africans treated for drug-resistant tuberculosis, CYP3A5∗3 was associated with slower bedaquiline clearance. Different CYP3A5∗3 frequencies among populations may help explain the more rapid bedaquiline clearance reported in Africans. Associations with RFX4 and CNTN5 are likely by chance alone.
Collapse
Affiliation(s)
- David W Haas
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Internal Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Mahmoud Tareq Abdelwahab
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Stijn W van Beek
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paxton Baker
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Yuki Bradford
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marylyn D Ritchie
- Department of Genetics and Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sean Wasserman
- Division of Infectious Diseases, Department of Medicine, University of Cape Town, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Karen Beeri
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Neel R Gandhi
- Departments of Epidemiology & Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - James C M Brust
- Division of General Internal Medicine, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
19
|
van Beek SW, Tanneau L, Meintjes G, Wasserman S, Gandhi NR, Campbell A, Viljoen CA, Wiesner L, Aarnoutse RE, Maartens G, Brust JCM, Svensson EM. Model-Predicted Impact of ECG Monitoring Strategies During Bedaquiline Treatment. Open Forum Infect Dis 2022; 9:ofac372. [PMID: 36043179 PMCID: PMC9420883 DOI: 10.1093/ofid/ofac372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background The M2 metabolite of bedaquiline causes QT-interval prolongation, making electrocardiogram (ECG) monitoring of patients receiving bedaquiline for drug-resistant tuberculosis necessary. The objective of this study was to determine the relationship between M2 exposure and Fridericia-corrected QT (QTcF)-interval prolongation and to explore suitable ECG monitoring strategies for 6-month bedaquiline treatment. Methods Data from the PROBeX study, a prospective observational cohort study, were used to characterize the relationship between M2 exposure and QTcF. Established nonlinear mixed-effects models were fitted to pharmacokinetic and ECG data. In a virtual patient population, QTcF values were simulated for scenarios with and without concomitant clofazimine. ECG monitoring strategies to identify patients who need to interrupt treatment (QTcF > 500 ms) were explored. Results One hundred seventy patients were included, providing 1131 bedaquiline/M2 plasma concentrations and 1702 QTcF measurements; 2.1% of virtual patients receiving concomitant clofazimine had QTcF > 500 ms at any point during treatment (0.7% without concomitant clofazimine). With monthly monitoring, almost all patients with QTcF > 500 ms were identified by week 12; after week 12, patients were predominantly falsely identified as QTcF > 500 ms due to stochastic measurement error. Following a strategy with monitoring before treatment and at weeks 2, 4, 8, and 12 in simulations with concomitant clofazimine, 93.8% of all patients who should interrupt treatment were identified, and 26.4% of all interruptions were unnecessary (92.1% and 32.2%, respectively, without concomitant clofazimine). Conclusions Our simulations enable an informed decision for a suitable ECG monitoring strategy by weighing the risk of missing patients with QTcF > 500 ms and that of interrupting bedaquiline treatment unnecessarily. We propose ECG monitoring before treatment and at weeks 2, 4, 8, and 12 after starting bedaquiline treatment.
Collapse
Affiliation(s)
- Stijn W van Beek
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lénaïg Tanneau
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Graeme Meintjes
- Department of Medicine, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sean Wasserman
- Department of Medicine, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Neel R Gandhi
- Departments of Epidemiology & Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Angie Campbell
- Departments of Epidemiology & Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Charle A Viljoen
- Division of Cardiology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gary Maartens
- Department of Medicine, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - James C M Brust
- Division of General Internal Medicine, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Kambili C, Rossenu S, Hoetelmans RMW, Birmingham E, Bakare N. Addressing bedaquiline treatment interruptions in the treatment of drug-resistant TB. Int J Tuberc Lung Dis 2022; 26:671-677. [PMID: 35768912 PMCID: PMC9272739 DOI: 10.5588/ijtld.21.0678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
SETTING: The recommended dosing regimen for bedaquiline (BDQ), consisting of a 2-week loading phase (400 mg/day), followed by a maintenance phase (200 mg three times/week), might pose challenges when treatment is interrupted and needs to be reinitiated. Guidance on BDQ treatment re-initiation is, therefore, needed.OBJECTIVE: This pharmacokinetic-based simulation study aimed to provide recommendations for re-initiating BDQ following treatment interruptions.DESIGN: Simulations of treatment interruptions, defined as any time a patient misses ≥2 consecutive BDQ doses for up to 56 consecutive days (2 months), were assessed using the BDQ population-pharmacokinetic model.RESULTS: Any treatment interruption lasting ≤28 days prior to completing the 14-day loading phase can be managed by completing the remaining loading doses. Scenarios when it is sufficient to simply restart maintenance dosing are discussed. In some scenarios, treatment interruptions require reloading for 1 week prior to restarting maintenance dosing.CONCLUSIONS: This simulation study provided recommendations for managing BDQ treatment interruptions and underscores the importance of having a robust population-pharmacokinetic model for TB drugs to inform clinical guidance. Such recommendations are valuable to help ensure optimal treatment with BDQ for treating multidrug-resistant TB.
Collapse
Affiliation(s)
- C Kambili
- Johnson & Johnson Global Public Health, New Brunswick, NJ, USA
| | - S Rossenu
- Janssen Pharmaceutica, Beerse, Belgium
| | | | - E Birmingham
- Janssen Research & Development, Titusville, NJ, USA
| | - N Bakare
- Johnson & Johnson Global Public Health, Janssen Research & Development, Titusville, NJ, USA
| |
Collapse
|
21
|
Zhurkin D, Gurbanova E, Campbell JR, Menzies D, Setkina S, Hurevich H, Solodovnikova V, Viatushka D, Altraja A, Skrahina A. Safety of prolonged treatment with bedaquiline in programmatic conditions. ERJ Open Res 2022; 8:00685-2021. [PMID: 35586446 PMCID: PMC9108964 DOI: 10.1183/23120541.00685-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/17/2022] [Indexed: 11/05/2022] Open
Abstract
Bedaquiline is now considered a first-line medicine for treatment of rifampicin-resistant tuberculosis (RR-TB). We evaluated the safety of treatment with bedaquiline for longer than 190 days in individuals with RR-TB under programmatic conditions. In a prospective cohort study enrolling pulmonary RR-TB patients, we initiated bedaquiline-based treatment at a tertiary hospital in Belarus. We defined standard bedaquiline use as <190 days and prolonged as ≥190 days. We recorded adverse events (AEs) and classified their seriousness and relation to bedaquiline. Our primary outcome in regression analyses was the incidence of serious AEs occurring within 5 months of bedaquiline cessation. We used generalised estimating equations to estimate the adjusted incidence rate ratio (aIRR) of serious AEs between the prolonged and standard bedaquiline groups. We enrolled 113 patients, 83 (73%) of whom received standard and 30 (27%) received prolonged treatment. A total of 2030 AEs occurred during treatment. Of these, 63 (3.1%) were serious AEs occurring within 5 months of bedaquiline cessation; QTcF prolongation was the most common bedaquiline-related serious AE. The incidence of serious AEs per 100 person-months was 5.4 (3.9 to 7.2) in the standard group and 4.4 (2.6 to 7.0) in the prolonged group. In adjusted analyses, serious AEs were no different (aIRR: 0.82, 95% CI 0.42–1.61) in the prolonged group. One patient in the standard bedaquiline group died of acute cardiopulmonary failure deemed possibly related to bedaquiline. Prolonged use of bedaquiline under programmatic conditions appears safe. Clinicians should carefully monitor QTcF interval since its prolongation was commonly observed. This study demonstrated that prolonged use of bedaquiline under programmatic conditions appears to be safe. However, clinicians should carefully monitor QTcF interval throughout treatment with bedaquiline due to proven risk of QTcF prolongation.https://bit.ly/36UHHc3
Collapse
|
22
|
Wilby KJ. A Scoping Review of the Clinical Pharmacokinetics of Bedaquiline. Clin Pharmacokinet 2022; 61:481-488. [PMID: 35083732 DOI: 10.1007/s40262-022-01107-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/03/2022]
Abstract
Tuberculosis continues to be a major infectious disease burden worldwide. Increasing drug resistance to first-line agents is making treatment more difficult. Bedaquiline is an orally administered drug active against Mycobacterium tuberculosis and is indicated for patients with confirmed multi-drug-resistant tuberculosis. This review aims to identify published literature reporting on the pharmacokinetics of bedaquiline, with a focus on key factors and drug interactions that may affect its use. Findings identified multiple areas for future study. First, exposure-response relationships should be further developed to determine the best ways to monitor both efficacy and safety. Second, dosing may be optimized through greater understanding of specific factors that may influence observed concentrations, including patient demographics and comorbidities. Finally, firm guidance for co-administration of bedaquiline with other drugs known to induce or inhibit cytochrome P450 enzymes is urgently required.
Collapse
Affiliation(s)
- Kyle J Wilby
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
23
|
Optimized loading dose strategies for bedaquiline when restarting interrupted drug-resistant tuberculosis treatment. Antimicrob Agents Chemother 2022; 66:e0174921. [DOI: 10.1128/aac.01749-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interruption of treatment is common in drug-resistant tuberculosis patients. Bedaquiline has a long terminal half-life therefore, restarting after an interruption without a loading dose could increase the risk of suboptimal treatment outcome and resistance development. We aimed to identify the most suitable loading dose strategies for bedaquiline restart after an interruption. A model-based simulation study was performed. Pharmacokinetic profiles of bedaquiline and its metabolite M2 (associated with QT-prolongation) were simulated for 5000 virtual patients for different durations and starting points of treatment interruption. Weekly bedaquiline area under the concentration-time curve (AUC) and M2 maximum concentration (Cmax) deviation before interruption and after reloading were assessed to evaluate the efficacy and safety respectively of the reloading strategies. Bedaquiline weekly AUC and M2 Cmax deviation were mainly driven by the duration of interruption and only marginally by the starting point of interruption. For interruptions with a duration shorter than two weeks, no new loading dose is needed. For interruptions with durations between two weeks and one month, one month and one year, and longer than one year, reloading periods of three days, one week, and two weeks, respectively, are recommended. This reloading strategy results in an average bedaquiline AUC deviation of 1.88% to 5.98% compared with -16.4% to -59.8% without reloading for interruptions of two weeks and one year respectively, without increasing M2 Cmax. This study presents easy-to-implement reloading strategies for restarting a patient on bedaquiline treatment after an interruption.
Collapse
|
24
|
Kim S, Louie A, Drusano GL, Almoslem M, Kim S, Myrick J, Nole J, Duncanson B, Peloquin CA, Scanga CA, Yamada W, Neely M, Schmidt S. Evaluating the effect of clofazimine against Mycobacterium tuberculosis when given alone or in combination with pretomanid, bedaquiline or linezolid. Int J Antimicrob Agents 2021; 59:106509. [PMID: 34958863 DOI: 10.1016/j.ijantimicag.2021.106509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/19/2022]
Abstract
Clofazimine (CFZ) has been regaining prominence for treating tuberculosis in recent years. However, as a single drug, it shows limited efficacy and optimal combination partners have not been identified. Therefore, the objective of our analysis was to evaluate the efficacy of CFZ-containing two-drug regimen with pretomanid (PMD), bedaquiline (BDQ) or linezolid (LZD) by determining: i) their pharmacodynamic (PD) mode of interaction against Mycobacterium tuberculosis (Mtb) strain H37Rv in log- and acid-metabolic states, and Mtb strain 18b in a non-replicating persister metabolic state, ii) to predict bacterial cell kill of the drugs alone and in combination, and iii) to evaluate the relationship between the interaction mode and bacterial cell kill amount. The results of our Greco universal response surface analysis showed that CFZ was at least additive with a clear trend towards synergy when combined with PMD, BDQ, and LZD against Mtb in all explored metabolic states under in vitro checkerboard assay conditions. They further showed that all 2-drug combination regimens exerted more bacterial kill than any of the drugs alone. CFZ alone showed the least antimicrobial efficacy amongst the evaluated drugs and there was a lack of correlation between the mode of interaction and the amount of bacterial kill. However, we may underestimate the effect of CFZ in this screening approach due to limited in vitro study duration and neglect of target site accumulation.
Collapse
Affiliation(s)
- Sarah Kim
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, USA
| | - George L Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, USA
| | - Mohammed Almoslem
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA; Department of Clinical Pharmacy, University of Ha'il, Ha'il, Kingdom of Saudi Arabia
| | - Soyoung Kim
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA
| | - Jenny Myrick
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, USA
| | - Jocelyn Nole
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, USA
| | - Brandon Duncanson
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, USA
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Lab, College of Pharmacy, and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter Yamada
- Laboratory of Applied Pharmacokinetics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael Neely
- Laboratory of Applied Pharmacokinetics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA.
| |
Collapse
|
25
|
Pharmacodynamics and the Bactericidal Activity of Bedaquiline in Pulmonary Tuberculosis. Antimicrob Agents Chemother 2021; 66:e0163621. [PMID: 34871099 DOI: 10.1128/aac.01636-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bedaquiline is a diarylquinoline antimycobacterial drug and a key component of several regimens in clinical development for treatment of tuberculosis (TB), but with ongoing phase 3 trials that include assessment of simplified dosing. A pharmacokinetic-pharmacodynamic model of bedaquiline Mycobacterium tuberculosis killing kinetics in adults with pulmonary TB was developed to inform dose selection of bedaquiline-containing regimens. The model parameters were estimated with data from the 14-day early bactericidal activity (EBA) study TMC207-CL001 conducted in Cape Town, South Africa. The study included 60 adult males and females with drug-susceptible pulmonary TB, who were administered bedaquiline with loading doses on the first two days followed by once daily 100 mg, 200 mg, 300 mg, or 400 mg. The modeling results included expected values (mean±SD) for a maximum drug kill rate constant equal to 0.23±0.03 log10 CFU/mL sputum/day, a half-maximum effect plasma concentration equal to 1.6±0.3 mg/L, and an average time to onset of activity equal to 40±7 h. Model simulations showed once daily 200 mg, 300 mg, and 400 mg (without loading doses) attained 40%, 50%, and 60%, respectively, of an expected maximum 14-day EBA equal to 0.18 log10 CFU/mL/day, or 10 h/day assessed by liquid culture time to positivity (TTP). Additional simulations illustrated efficacy outcomes during eight weeks of treatment with the recommended and alternative dosages. The results demonstrate a general mathematical and statistical approach to analysis of EBA studies with broad application to TB regimen development.
Collapse
|
26
|
Model-Based Exposure-Response Assessment for Spectinamide 1810 in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother 2021; 65:e0174420. [PMID: 34424046 DOI: 10.1128/aac.01744-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite decades of research, tuberculosis remains a leading cause of death from a single infectious agent. Spectinamides are a promising novel class of antituberculosis agents, and the lead spectinamide 1810 has demonstrated excellent efficacy, safety, and drug-like properties in numerous in vitro and in vivo assessments in mouse models of tuberculosis. In the current dose ranging and dose fractionation study, we used 29 different combinations of dose level and dosing frequency to characterize the exposure-response relationship for spectinamide 1810 in a mouse model of Mycobacterium tuberculosis infection and in healthy animals. The obtained data on 1810 plasma concentrations and counts of CFU in lungs were analyzed using a population pharmacokinetic/pharmacodynamic (PK/PD) approach as well as classical anti-infective PK/PD indices. The analysis results indicate that there was no difference in the PK of 1810 in infected compared to healthy, uninfected animals. The PK/PD index analysis showed that bacterial killing of 1810 in mice was best predicted by the ratio of maximum free drug concentration to MIC (fCmax/MIC) and the ratio of the area under the free concentration-time curve to the MIC (fAUC/MIC) rather than the cumulative percentage of time that the free drug concentration is above the MIC (f%TMIC). A novel PK/PD model with consideration of postantibiotic effect could adequately describe the exposure-response relationship for 1810 and supports the notion that the in vitro observed postantibiotic effect of this spectinamide also translates to the in vivo situation in mice. The obtained results and pharmacometric model for the exposure-response relationship of 1810 provide a rational basis for dose selection in future efficacy studies of this compound against M. tuberculosis.
Collapse
|
27
|
Pieterman ED, Keutzer L, van der Meijden A, van den Berg S, Wang H, Zimmerman MD, Simonsson USH, Bax HI, de Steenwinkel JEM. Superior Efficacy of a Bedaquiline, Delamanid, and Linezolid Combination Regimen in a Mouse Tuberculosis Model. J Infect Dis 2021; 224:1039-1047. [PMID: 33502537 PMCID: PMC9034336 DOI: 10.1093/infdis/jiab043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/21/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The treatment success rate of drug-resistant (DR) tuberculosis is alarmingly low. Therefore, more effective and less complex regimens are urgently required. METHODS We compared the efficacy of an all oral DR tuberculosis drug regimen consisting of bedaquiline (25 mg/kg), delamanid (2.5 mg/kg), and linezolid (100 mg/kg) (BDL) on the mycobacterial load in the lungs and spleen of tuberculosis-infected mice during a treatment period of 24 weeks. This treatment was compared with the standard regimen of isoniazid, rifampicin, pyrazinamide, and ethambutol (HRZE). Relapse was assessed 12 weeks after treatment. Two logistic regression models were developed to compare the efficacy of both regimens. RESULTS Culture negativity in the lungs was achieved at 8 and 20 weeks of treatment with BDL and HRZE, respectively. After 14 weeks of treatment only 1 mouse had relapse in the BDL group, while in the HRZE group relapse was still observed at 24 weeks of treatment. Predictions from the final mathematical models showed that a 95% cure rate was reached after 20.5 and 28.5 weeks of treatment with BDL and HRZE, respectively. CONCLUSION The BDL regimen was observed to be more effective than HRZE and could be a valuable option for the treatment of DR tuberculosis.
Collapse
Affiliation(s)
- Elise D Pieterman
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam,the Netherlands
| | - Lina Keutzer
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala,Sweden
| | - Aart van der Meijden
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam,the Netherlands
| | - Sanne van den Berg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam,the Netherlands
| | - Han Wang
- Center for Discovery and Innovation, Hackensack Meridian Health
, Nutley, New Jersey,
USA
| | - Matthew D Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health
, Nutley, New Jersey,
USA
| | | | - Hannelore I Bax
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam,the Netherlands
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam,the Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam,the Netherlands
| |
Collapse
|
28
|
Nyang'wa BT, Kloprogge F, Moore DAJ, Bustinduy A, Motta I, Berry C, Davies GR. Population pharmacokinetics and pharmacodynamics of investigational regimens' drugs in the TB-PRACTECAL clinical trial (the PRACTECAL-PKPD study): a prospective nested study protocol in a randomised controlled trial. BMJ Open 2021; 11:e047185. [PMID: 34489274 PMCID: PMC8422304 DOI: 10.1136/bmjopen-2020-047185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Drug-resistant tuberculosis (TB) remains a global health threat, with little over 50% of patients successfully treated. Novel regimens like the ones being studied in the TB-PRACTECAL trial are urgently needed. Understanding anti-TB drug exposures could explain the success or failure of these trial regimens. We aim to study the relationship between the patients' exposure to anti-TB drugs in TB-PRACTECAL investigational regimens and their treatment outcomes. METHODS AND ANALYSIS Adults with multidrug-resistant TB randomised to investigational regimens in TB-PRACTECAL will be recruited to a nested pharmacokinetic-pharmacodynamic (PKPD) study. Venous blood samples will be collected at 0, 2 and 23 hours postdose on day 1 and 0, 6.5 and 23 hours postdose during week 8 to quantify drug concentrations in plasma. Trough samples will be collected during week 12, 16, 20 and 24 visits. Opportunistic samples will be collected during weeks 32 and 72. Drug concentrations will be quantified using liquid chromatography-tandem mass spectrometry. Sputum samples will be collected at baseline, monthly to week 24 and then every 2 months to week 108 for MICs and bacillary load quantification. Full blood count, urea and electrolytes, liver function tests, lipase, ECGs and ophthalmology examinations will be conducted at least monthly during treatment.PK and PKPD models will be developed for each drug with nonlinear mixed effects methods. Optimal dosing will be investigated using Monte-Carlo simulations. ETHICS AND DISSEMINATION The study has been approved by the Médecins sans Frontières (MSF) Ethics Review Board, the LSHTM Ethics Committee, the Belarus RSPCPT ethics committee and PharmaEthics and the University of Witwatersrand Human Research ethics committee in South Africa. Written informed consent will be obtained from all participants. The study results will be shared with public health authorities, presented at scientific conferences and published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT04081077; Pre-results.
Collapse
Affiliation(s)
- Bern-Thomas Nyang'wa
- Manson Unit, Médecins Sans Frontières, London, UK
- Clinical research Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Frank Kloprogge
- Institute for Global Health, University College London, London, UK
| | - David A J Moore
- Clinical research Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Amaya Bustinduy
- Clinical research Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Ilaria Motta
- Manson Unit, Médecins Sans Frontières, London, UK
| | | | - Geraint R Davies
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
29
|
Pharmacokinetics and Target Attainment of SQ109 in Plasma and Human-Like Tuberculosis Lesions in Rabbits. Antimicrob Agents Chemother 2021; 65:e0002421. [PMID: 34228540 PMCID: PMC8370215 DOI: 10.1128/aac.00024-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
SQ109 is a novel well-tolerated drug candidate in clinical development for the treatment of drug-resistant tuberculosis (TB). It is the only inhibitor of the MmpL3 mycolic acid transporter in clinical development. No SQ109-resistant mutant has been directly isolated thus far in vitro, in mice, or in patients, which is tentatively attributed to its multiple targets. It is considered a potential replacement for poorly tolerated components of multidrug-resistant TB regimens. To prioritize SQ109-containing combinations with the best potential for cure and treatment shortening, one must understand its contribution against different bacterial populations in pulmonary lesions. Here, we have characterized the pharmacokinetics of SQ109 in the rabbit model of active TB and its penetration at the sites of disease—lung tissue, cellular and necrotic lesions, and caseum. A two-compartment model with first-order absorption and elimination described the plasma pharmacokinetics. At the human-equivalent dose, parameter estimates fell within the ranges published for preclinical species. Tissue concentrations were modeled using an “effect” compartment, showing high accumulation in lung and cellular lesion areas with penetration coefficients in excess of 1,000 and lower passive diffusion in caseum after 7 daily doses. These results, together with the hydrophobic nature and high nonspecific caseum binding of SQ109, suggest that multiweek dosing would be required to reach steady state in caseum and poorly vascularized compartments, similar to bedaquiline. Linking lesion pharmacokinetics to SQ109 potency in assays against replicating, nonreplicating, and intracellular M. tuberculosis showed SQ109 concentrations markedly above pharmacokinetic-pharmacodynamic targets in lung and cellular lesions throughout the dosing interval.
Collapse
|
30
|
Gausi K, Ignatius EH, Sun X, Kim S, Moran L, Wiesner L, von Groote-Bidlingmaier F, Hafner R, Donahue K, Vanker N, Rosenkranz SL, Swindells S, Diacon AH, Nuermberger EL, Dooley KE, Denti P. A Semi-Mechanistic Model of the Bactericidal Activity of High-Dose Isoniazid Against Multi-Drug-Resistant Tuberculosis: Results from a Randomized Clinical Trial. Am J Respir Crit Care Med 2021; 204:1327-1335. [PMID: 34403326 DOI: 10.1164/rccm.202103-0534oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE There is accumulating evidence that higher-than-standard doses of isoniazid are effective against low-to-intermediate-level isoniazid-resistant strains of Mycobacterium tuberculosis, but the optimal dose remains unknown. OBJECTIVE Characterizing the association between isoniazid pharmacokinetics (standard or high-dose) and early bactericidal activity against M. tuberculosis (drug-sensitive and inhA-mutated) and N-acetyltransferase 2 status. METHODS ACTG A5312/INHindsight is 7-day early bactericidal activity study with isoniazid at normal dose (5 mg/kg) for patients with drug-sensitive bacteria and 5, 10, and 15 mg/kg doses for patients with inhA mutants. Participants with pulmonary TB received daily isoniazid monotherapy and collected sputum daily. Colony-forming units (CFU) on solid culture and time-to-positivity (TTP) in liquid culture were jointly analyzed using nonlinear mixed-effects modeling. RESULTS Fifty-nine adults were included in this analysis. Decline in sputum CFU was described by a one-compartment model, while an exponential bacterial growth model was used to interpret TTP data. The model found bacterial kill is modulated by isoniazid concentration using an effect compartment and a sigmoidal Emax relationship. The model predicted lower potency but similar maximum-kill of isoniazid against inhA-mutated isolates compared to drug-sensitive. Based on simulations from the PK/PD model, to achieve a drop in bacterial load comparable to 5mg/kg against drug-sensitive TB, 10- and 15-mg/kg doses are necessary against inhA-mutated isolates in slow and intermediate N-acetyltransferase 2 acetylators, respectively. Fast acetylators underperformed even at 15 mg/kg. CONCLUSIONS Dosing of isoniazid based on N-acetyltransferase 2 acetylator status may help patients attain effective exposures against inhA-mutated isolates while mitigating toxicity risks associated with higher doses. Clinical trial registration available at www.clinicaltrials.gov, ID: NCT01936831.
Collapse
Affiliation(s)
- Kamunkhwala Gausi
- University of Cape Town Faculty of Health Sciences, 63726, Observatory, Western Cape, South Africa
| | | | - Xin Sun
- Harvard University T H Chan School of Public Health, 1857, Boston, Massachusetts, United States
| | - Soyeon Kim
- Frontier Science Foundation, 2402, Brookline, Massachusetts, United States
| | - Laura Moran
- Social & Scientific Systems Inc, 43740, Silver Spring, Maryland, United States
| | - Lubbe Wiesner
- University of Cape Town Faculty of Health Sciences, 63726, Observatory, Western Cape, South Africa
| | | | - Richard Hafner
- National Institutes of Health, Division of AIDS, Bethesda, Maryland, United States
| | - Kathleen Donahue
- Frontier Science and Technology Research Foundation, 2402, Boston, Massachusetts, United States
| | - Naadira Vanker
- TASK Applied Science and Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Susan L Rosenkranz
- Harvard University T H Chan School of Public Health, 1857, Boston, Massachusetts, United States.,Frontier Science and Technology Research Foundation, 2402, Boston, Massachusetts, United States
| | - Susan Swindells
- University of Nebraska Medical Center, 12284, Department of Internal Medicine, Omaha, Nebraska, United States
| | - Andreas H Diacon
- TASK Applied Science and Stellenbosch University, Cape Town, Western Cape, South Africa
| | | | - Kelly E Dooley
- Johns Hopkins University, Medicine, Baltimore, Maryland, United States
| | - Paolo Denti
- University of Cape Town Faculty of Health Sciences, 63726, Observatory, Western Cape, South Africa;
| | | |
Collapse
|
31
|
Relationship between plasma and intracellular concentrations of bedaquiline and its M2 metabolite in South African patients with rifampin-resistant TB. Antimicrob Agents Chemother 2021; 65:e0239920. [PMID: 34370588 PMCID: PMC8522761 DOI: 10.1128/aac.02399-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bedaquiline is recommended for the treatment of all patients with rifampin-resistant tuberculosis (RR-TB). Bedaquiline accumulates within cells, but its intracellular pharmacokinetics have not been characterized, which may have implications for dose optimization. We developed a novel assay using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure the intracellular concentrations of bedaquiline and its primary metabolite M2 in patients with RR-TB in South Africa. Twenty-one participants were enrolled and underwent sparse sampling of plasma and peripheral blood mononuclear cells (PBMCs) at months 1, 2, and 6 of treatment and at 3 and 6 months after bedaquiline treatment completion. Intensive sampling was performed at month 2. We used noncompartmental analysis to describe plasma and intracellular exposures and a population pharmacokinetic model to explore the relationship between plasma and intracellular pharmacokinetics and the effects of key covariates. Bedaquiline concentrations from month 1 to month 6 of treatment ranged from 94.7 to 2,540 ng/ml in plasma and 16.2 to 5,478 ng/ml in PBMCs, and concentrations of M2 over the 6-month treatment period ranged from 34.3 to 496 ng/ml in plasma and 109.2 to 16,764 ng/ml in PBMCs. Plasma concentrations of bedaquiline were higher than those of M2, but intracellular concentrations of M2 were considerably higher than those of bedaquiline. In the pharmacokinetic modeling, we estimated a linear increase in the intracellular-plasma accumulation ratio for bedaquiline and M2, reaching maximum effect after 2 months of treatment. The typical intracellular-plasma ratios 1 and 2 months after start of treatment were 0.61 (95% confidence interval [CI]: 0.42 to 0.92) and 1.10 (95% CI: 0.74 to 1.63) for bedaquiline and 12.4 (95% CI: 8.8 to 17.8) and 22.2 (95% CI: 15.6 to 32.3) for M2. The intracellular-plasma ratios for both bedaquiline and M2 were decreased by 54% (95% CI: 24 to 72%) in HIV-positive patients compared to HIV-negative patients. Bedaquiline and M2 were detectable in PBMCs 6 months after treatment discontinuation. M2 accumulated at higher concentrations intracellularly than bedaquiline, supporting in vitro evidence that M2 is the main inducer of phospholipidosis.
Collapse
|
32
|
Building optimal 3-drug combination chemotherapy regimens to eradicate Mycobacterium tuberculosis in its slow growth acid phase. Antimicrob Agents Chemother 2021; 65:e0069321. [PMID: 34339275 DOI: 10.1128/aac.00693-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) metabolic state affects the response to therapy. Quantifying the effect of antimicrobials in the acid- and nonreplicating-metabolic phases of Mtb growth will help to optimize therapy for tuberculosis. As a brute-force approach to all possible drug combinations against Mtb in all different metabolic states is impossible, we have adopted a model-informed strategy to accelerate the discovery. Using multiple concentrations of each drug in time kill studies, we examined single-, two- and three-drug combinations of pretomanid, moxifloxacin, and bedaquiline plus its active metabolite against Mtb in its acid-phase metabolic state. We used a nonparametric modeling approach to generate full distributions of interaction terms between pretomanid and moxifloxacin for susceptible and less-susceptible populations. From the model, we could predict the 95% confidence interval of the simulated total bacterial population decline due to the 2-drug combination regimen of pretomanid and moxifloxacin and compare this to observed declines with 3 drug regimens. We found that the combination of pretomanid and moxifloxacin at concentrations equivalent to average or peak human concentrations effectively eradicated Mtb in its acid growth phase and prevented emergence of less susceptible isolates. The addition of bedaquiline as a third drug shortened time to total and less susceptible bacterial suppression by 8 days compared to the 2-drug regimen, which was significantly faster than the 2-drug kill.
Collapse
|
33
|
Alghamdi WA, Al-Shaer MH, Kipiani M, Barbakadze K, Mikiashvili L, Kempker RR, Peloquin CA. Pharmacokinetics of bedaquiline, delamanid and clofazimine in patients with multidrug-resistant tuberculosis. J Antimicrob Chemother 2021; 76:1019-1024. [PMID: 33378452 DOI: 10.1093/jac/dkaa550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pharmacokinetic data are needed for newly implemented anti-tuberculosis drugs to help optimize their use. OBJECTIVES To help fill existing knowledge gaps, we evaluated the pharmacokinetic parameters of novel and repurposed anti-tuberculosis drugs among patients with drug-resistant pulmonary tuberculosis. METHODS A prospective cohort study among patients ≥16 years with confirmed pulmonary drug-resistant TB was conducted in Tbilisi, Georgia. Patients receiving bedaquiline, delamanid and/or clofazimine were included. Blood samples were collected 4-6 weeks after drug initiation, and serum concentrations were measured using validated liquid chromatography tandem mass spectrometry assays. A non-compartmental analysis was performed, and the association of exposure parameters with covariates was explored. RESULTS Among 99 patients, the average age and weight were 40 years and 65 kg, respectively. The median Cmin was 0.68 mg/L for bedaquiline, 0.17 mg/L for delamanid, and 0.52 mg/L for clofazimine. The median AUC0-24 was 30.6 mg·h/L for bedaquiline, 16.1 mg·h/L for clofazimine, and the AUC0-12 was 2.9 mg·h/L for delamanid. Among the significant covariates associated with drug exposure parameters were weight and sex for bedaquiline, alcohol use for delamanid, and weight for clofazimine. CONCLUSIONS We found a strong association of weight with bedaquiline and clofazimine exposure parameters, suggesting the need for weight-based dosing for those agents.
Collapse
Affiliation(s)
- Wael A Alghamdi
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad H Al-Shaer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Maia Kipiani
- National Center for TB and Lung Diseases, Tbilisi, Georgia
| | | | | | - Russell R Kempker
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Kurosawa K, Rossenu S, Biewenga J, Ouwerkerk-Mahadevan S, Willems W, Ernault E, Kambili C. Population Pharmacokinetic Analysis of Bedaquiline-Clarithromycin for Dose Selection Against Pulmonary Nontuberculous Mycobacteria Based on a Phase 1, Randomized, Pharmacokinetic Study. J Clin Pharmacol 2021; 61:1344-1355. [PMID: 33991350 PMCID: PMC8518967 DOI: 10.1002/jcph.1887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 11/10/2022]
Abstract
Based on the in vitro profile of bedaquiline against mycobacterial species, it is being investigated for clinical efficacy against pulmonary nontuberculous mycobacteria (PNTM). Being a cytochrome P450 3A substrate, pharmacokinetic interactions of bedaquiline are anticipated with clarithromycin (a cytochrome P450 3A inhibitor), which is routinely used in pulmonary nontuberculous mycobacteria treatment. This phase 1, randomized, crossover study assessed the impact of steady-state clarithromycin (500 mg every 12 hours for 14 days) on the pharmacokinetics of bedaquiline and its metabolite (M2) after single-dose bedaquiline (100 mg; n = 16). Using these data, population pharmacokinetic modeling and simulation analyses were performed to determine the effect of clarithromycin on steady-state bedaquiline exposure. Although no effect was observed on maximum plasma concentration of bedaquiline and time to achieve maximum plasma concentration, its mean plasma exposure increased by 14% after 10 days of clarithromycin coadministration, with slower formation of M2. Simulations showed that bedaquiline plasma trough concentration at steady state was higher (up to 41% until week 48) with clarithromycin coadministration as compared to its monotherapy (400 mg once daily for 2 weeks, followed by 200 mg 3 times a week for 46 weeks; reference regimen). The overall exposure of a simulated bedaquiline regimen (400 mg once dialy for 2 weeks, followed by 200 mg twice a week for 46 weeks) with clarithromycin was comparable (<15% difference) to the monotherapy. Overall, combination of bedaquiline (400 mg once daily for 2 weeks, followed by 200 mg twice a week for 46 weeks) with clarithromycin seems a suitable regimen to be explored for efficacy and safety against pulmonary nontuberculous mycobacteria.
Collapse
Affiliation(s)
- Ken Kurosawa
- Department of Clinical Pharmacology, Janssen Pharmaceutical KK, Tokyo, Japan
| | | | | | | | | | | | - Chrispin Kambili
- Johnson and Johnson Services, Inc, New Brunswick, New Jersey, USA
| |
Collapse
|
35
|
A Review of Clinical Pharmacokinetic and Pharmacodynamic Relationships and Clinical Implications for Drugs Used to Treat Multi-drug Resistant Tuberculosis. Eur J Drug Metab Pharmacokinet 2021; 45:305-313. [PMID: 31925745 DOI: 10.1007/s13318-019-00604-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is becoming a global health crisis. The World Health Organization has released new guidelines for the use of tuberculosis-active drugs for the treatment of patients with MDR-TB. Despite documented activity against tuberculosis isolates, doses and exposure targets are yet to be optimized. Our objective was therefore to review the clinical pharmacokinetic and pharmacodynamic literature pertaining to drugs recommended to treat MDR-TB and to identify target areas for future research. To date, published research is limited but studies were identified that evaluated the pharmacokinetics and pharmacodynamics of these drugs. Exposure targets were assessed and summarized for each drug. Exposure-based targets (e.g., area under the concentration curve/minimum inhibitory concentration) appear to be most commonly associated with predicting drug efficacy. Dose variation studies based on these targets were largely inconclusive. Future research should focus on determining the risks and benefits of dose optimization to meet exposure targets and improve patient outcomes. The role of therapeutic drug monitoring also remains yet to be confirmed, both from a clinical perspective as well as a resource allocation perspective in regions where MDR-TB is active.
Collapse
|
36
|
Sturkenboom MGG, Märtson AG, Svensson EM, Sloan DJ, Dooley KE, van den Elsen SHJ, Denti P, Peloquin CA, Aarnoutse RE, Alffenaar JWC. Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clin Pharmacokinet 2021; 60:685-710. [PMID: 33674941 PMCID: PMC7935699 DOI: 10.1007/s40262-021-00997-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB) is still the number one cause of death due to an infectious disease. Pharmacokinetics and pharmacodynamics of anti-TB drugs are key in the optimization of TB treatment and help to prevent slow response to treatment, acquired drug resistance, and adverse drug effects. The aim of this review was to provide an update on the pharmacokinetics and pharmacodynamics of anti-TB drugs and to show how population pharmacokinetics and Bayesian dose adjustment can be used to optimize treatment. We cover aspects on preclinical, clinical, and population pharmacokinetics of different drugs used for drug-susceptible TB and multidrug-resistant TB. Moreover, we include available data to support therapeutic drug monitoring of these drugs and known pharmacokinetic and pharmacodynamic targets that can be used for optimization of therapy. We have identified a wide range of population pharmacokinetic models for first- and second-line drugs used for TB, which included models built on NONMEM, Pmetrics, ADAPT, MWPharm, Monolix, Phoenix, and NPEM2 software. The first population models were built for isoniazid and rifampicin; however, in recent years, more data have emerged for both new anti-TB drugs, but also for defining targets of older anti-TB drugs. Since the introduction of therapeutic drug monitoring for TB over 3 decades ago, further development of therapeutic drug monitoring in TB next steps will again depend on academic and clinical initiatives. We recommend close collaboration between researchers and the World Health Organization to provide important guideline updates regarding therapeutic drug monitoring and pharmacokinetics/pharmacodynamics.
Collapse
Affiliation(s)
- Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Derek J Sloan
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Liverpool School of Tropical Medicine, Liverpool, UK.,School of Medicine, University of St Andrews, St Andrews, UK
| | - Kelly E Dooley
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simone H J van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy, Hospital Group Twente, Almelo, Hengelo, the Netherlands
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. .,Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia. .,Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
37
|
Kareem AI, Malan SF, Joubert J. Radical Releasing Anti-Tuberculosis Agents and the Treatment of Mycobacterial Tuberculosis Infections - An Overview. Mini Rev Med Chem 2021; 22:387-407. [PMID: 33605858 DOI: 10.2174/1389557521666210219161045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 11/22/2022]
Abstract
The treatment and management of tuberculosis (TB) is a major global concern. Approved drugs for the treatment of TB to date displayed various modes of action which can be grouped into radical releasing and non-radical releasing anti TB agents. Radical releasing agents are of special interest because they diffuse directly into the mycobacterium cell wall, interact with the host cell DNA causing DNA strand breakages and fatal destabilization of the DNA helix inhibiting nucleic acid synthase. As a therapeutic agent with aforementioned activity, nitroimidazoles and most especially bicyclic nitroimidazoles are currently in clinical use for the treatment of tuberculosis. However, the approved drugs, pretomanid (PR) and delamanid (DE) are limited in their nitric oxide radical (NO•) releasing abilities to cause effective bactericidity. It is believed that their bactericidal activity can be improved by harnessing alternative strategies to increase NO• release. The last decade has witness the strategic inclusion of NO-donors into native drugs to improve their activities and/or reverse resistance. The rationale behind this strategy is the targeting of NO• release at specific therapeutic sites. This review therefore aims to highlight various radical releasing agents that may be effective in the treatment of TB. The review also investigates various structural modification to PR and DE and suggests alternative strategies to improve NO• release as well as some applications where NO-donor hybrid drugs have been used with good therapeutic effect.
Collapse
Affiliation(s)
- Afeez I Kareem
- Department of Pharmaceutical Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535. South Africa
| | - Sarel F Malan
- Department of Pharmaceutical Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535. South Africa
| | - Jacques Joubert
- Department of Pharmaceutical Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535. South Africa
| |
Collapse
|
38
|
The Funnel: a Screening Technique for Identifying Optimal Two-Drug Combination Chemotherapy Regimens. Antimicrob Agents Chemother 2021; 65:AAC.02172-20. [PMID: 33199386 DOI: 10.1128/aac.02172-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
The Mycobacterium tuberculosis drug discovery effort has generated a substantial number of new/repurposed drugs for therapy for this pathogen. The arrival of these drugs is welcome, but another layer of difficulty has emerged. Single agent therapy is insufficient for patients with late-stage tuberculosis because of resistance emergence. To achieve our therapeutic ends, it is requisite to identify optimal combination regimens. These regimens go through a lengthy and expensive evaluative process. If we have a modest group of 6 to 8 new or repurposed agents, this translates into 15 to 28 possible 2-drug combinations. There is neither time nor resources to give an extensive evaluation for all combinations. We sought a screening procedure that would identify combinations that had a high likelihood of achieving good bacterial burden decline. We examined pretomanid, moxifloxacin, linezolid, and bedaquiline in log-phase growth, acid-phase growth, and nonreplicative persister (NRP) phase in the Greco interaction model. We employed the interaction term α and the calculated bacterial burden decline as metrics to rank different regimens in different metabolic states. No relationship was found between α and bacterial kill. We chose bacterial kill as the prime metric. The combination of pretomanid plus moxifloxacin emerged as the clear frontrunner, as the largest bacterial declines were seen in log phase and acid phase with this regimen and it was second best in NRP phase. Bedaquiline also produced good kill. This screening process may identify optimal combinations that can be further evaluated in both the hollow-fiber infection model and in animal models of Mycobacterium tuberculosis infection.
Collapse
|
39
|
Martín-García M, Esteban J. Evaluating bedaquiline as a treatment option for multidrug-resistant tuberculosis. Expert Opin Pharmacother 2021; 22:535-541. [PMID: 33393406 DOI: 10.1080/14656566.2020.1867538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Despite efforts to the contrary, tuberculosis remains one of the leading causes of death in the world. The appearance of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis has increased the need for new therapeutic options against these strains.Areas covered: This review covers the in vitro susceptibility, pharmacokinetics, and pharmacodynamics of bedaquiline, a new drug shown to be active against M. tuberculosis-resistant strains. The authors further review clinical data concerning its use against MDR and XDR strains, discussing recent clinical guidelines from different international societies.Expert opinion: Available data demonstrate the usefulness of bedaquiline against resistant M. tuberculosis. Despite the difficulty in analyzing multidrug therapies, the use of bedaquiline in MDR and XDR tuberculosis increases success rates, allowing shortened treatments and lower drug use than previously recommended regimens. Moreover, the fact that MDR and XDR strains are common in many places creates a need to include this drug in the currently available protocols. It is essential to overcome the substantial barriers that some countries encounter in obtaining bedaquiline, as doing so will make therapeutic regimens including this drug available for all patients.
Collapse
Affiliation(s)
- Marta Martín-García
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| |
Collapse
|
40
|
Drusano GL, Neely MN, Kim S, Yamada WM, Schmidt S, Duncanson B, Nole J, Mtchedlidze N, Peloquin CA, Louie A. Building Optimal Three-Drug Combination Chemotherapy Regimens. Antimicrob Agents Chemother 2020; 64:e01610-20. [PMID: 32900682 PMCID: PMC7577121 DOI: 10.1128/aac.01610-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022] Open
Abstract
Multidrug therapy is often required. Examples include antiviral therapy, nosocomial infections, and, most commonly, anti-Mycobacterium tuberculosis therapy. Our laboratory previously identified a mathematical approach to identify 2-drug regimens with a synergistic or additive interaction using a full factorial study design. Our objective here was to generate a method to identify an optimal 3-drug therapy. We studied M. tuberculosis isolate H37Rv in log-phase growth in flasks. Pretomanid and moxifloxacin were chosen as the base 2-drug regimen. Bedaquiline (plus M2 metabolite) was chosen as the third drug for evaluation. Total bacterial burden and bacterial burden less-susceptible to study drugs were enumerated. A large mathematical model was fit to all the data. This allowed extension to evaluation of the 3-drug regimen by employing a Monte Carlo simulation. Pretomanid plus moxifloxacin demonstrated excellent bacterial kill and suppressed amplification of less-susceptible pathogens. Total bacterial burden was driven to extinction in 3 weeks in 6 of 9 combination therapy evaluations. Only the lowest pretomanid/moxifloxacin exposures in combination did not extinguish the bacterial burden. No combination regimen allowed resistance amplification. Generation of 95% credible intervals about estimates of the interaction parameters α (αs, αr-p, and αr-m) by bootstrapping showed the interaction was near synergistic. The addition of bedaquiline/M2 metabolite was evaluated by forming a 95% confidence interval regarding the decline in bacterial burden. The addition of bedaquiline/M2 metabolite shortened the time to eradication by 1 week and was significantly different. A model-based system approach to evaluating combinations of 3 agents shows promise to rapidly identify the most promising combinations that can then be trialed.
Collapse
Affiliation(s)
- G L Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Michael N Neely
- Division of Pediatric Infectious Diseases, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Sarah Kim
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Walter M Yamada
- Division of Pediatric Infectious Diseases, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Brandon Duncanson
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Jocelyn Nole
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Nino Mtchedlidze
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Charles A Peloquin
- Division Head for the Translational Research Division, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| |
Collapse
|
41
|
Guglielmetti L, Chiesi S, Eimer J, Dominguez J, Masini T, Varaine F, Veziris N, Ader F, Robert J. Bedaquiline and delamanid for drug-resistant tuberculosis: a clinician's perspective. Future Microbiol 2020; 15:779-799. [PMID: 32700565 DOI: 10.2217/fmb-2019-0309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drug-resistant tuberculosis (TB) represents a substantial threat to the global efforts to control this disease. After decades of stagnation, the treatment of drug-resistant TB is undergoing major changes: two drugs with a new mechanism of action, bedaquiline and delamanid, have been approved by stringent regulatory authorities and are recommended by the WHO. This narrative review summarizes the evidence, originating from both observational studies and clinical trials, which is available to support the use of these drugs, with a focus on special populations. Areas of uncertainty, including the use of the two drugs together or for prolonged duration, are discussed. Ongoing clinical trials are aiming to optimize the use of bedaquiline and delamanid to shorten the treatment of drug-resistant TB.
Collapse
Affiliation(s)
- Lorenzo Guglielmetti
- APHP, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, F-75013 Paris, France.,Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 2, F-75013, Paris, France.,Médecins Sans Frontières, France
| | - Sheila Chiesi
- Department of Infectious Diseases, 'GB Rossi' Hospital, Verona, Italy.,University of Verona, Verona, Italy
| | - Johannes Eimer
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jose Dominguez
- Research Institute Germans Trias i Pujol, CIBER Respiratory Diseases, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | | | - Nicolas Veziris
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 2, F-75013, Paris, France.,APHP, Département de Bactériologie, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Hôpitaux Universitaires de l'Est Parisien, F-75012, Paris, France
| | - Florence Ader
- Département des Maladies infectieuses et tropicales, Hospices Civils de Lyon, F-69004, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Inserm 1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France
| | - Jérôme Robert
- APHP, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, F-75013 Paris, France.,Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 2, F-75013, Paris, France
| |
Collapse
|
42
|
Ordonez AA, Carroll LS, Abhishek S, Mota F, Ruiz-Bedoya CA, Klunk MH, Singh AK, Freundlich JS, Mease RC, Jain SK. Radiosynthesis and PET Bioimaging of 76Br-Bedaquiline in a Murine Model of Tuberculosis. ACS Infect Dis 2019; 5:1996-2002. [PMID: 31345032 PMCID: PMC6911007 DOI: 10.1021/acsinfecdis.9b00207] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bedaquiline is a promising drug against tuberculosis (TB), but limited data are available on its intralesional pharmacokinetics. Moreover, current techniques rely on invasive tissue resection, which is difficult in humans and generally limited even in animals. In this study, we developed a novel radiosynthesis for 76Br-bedaquiline and performed noninvasive, longitudinal whole-body positron emission tomography (PET) in live, Mycobacterium tuberculosis-infected mice over 48 h. After the intravenous injection, 76Br-bedaquiline distributed to all organs and selectively localized to adipose tissue and liver, with excellent penetration into infected lung lesions (86%) and measurable penetration into the brain parenchyma (15%). Ex vivo high resolution, two-dimensional autoradiography, and same section hematoxylin/eosin and immunofluorescence provided detailed intralesional drug biodistribution. PET bioimaging and high-resolution autoradiography are novel techniques that can provide detailed, multicompartment, and intralesional pharmacokinetics of new and existing TB drugs. These technologies can significantly advance efforts to optimize drug dosing.
Collapse
Affiliation(s)
- Alvaro A. Ordonez
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laurence S. Carroll
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of
Medicine, Baltimore, Maryland, USA
| | - Sudhanshu Abhishek
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Filipa Mota
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Camilo A. Ruiz-Bedoya
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariah H. Klunk
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alok K. Singh
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School,
Newark, NJ, USA
| | - Ronnie C. Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of
Medicine, Baltimore, Maryland, USA
| | - Sanjay K. Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of
Medicine, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Abstract
Tuberculosis (TB) has now surpassed HIV as the leading infectious cause of death, and treatment success rates are declining. Multidrug-resistant TB, extensively drug-resistant TB, and even totally drug-resistant TB threaten to further destabilize disease control efforts. The second wave in TB drug development, which includes the diarylquinoline, bedaquiline, and the nitroimidazoles delamanid and pretomanid, may offer options for simpler, shorter, and potentially all-oral regimens to treat drug-resistant TB. The "third wave" of TB drug development includes numerous promising compounds, including less toxic versions of older drug classes and candidates with novel mechanisms of action.
Collapse
Affiliation(s)
- Elisa H Ignatius
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 Building Room 450B, 1830 East Monument Street, Baltimore, MD 21287, USA
| | - Kelly E Dooley
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Osler 527, Baltimore, MD, USA.
| |
Collapse
|
44
|
Daily Dosing for Bedaquiline in Patients with Tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.00463-19. [PMID: 31451504 PMCID: PMC6811417 DOI: 10.1128/aac.00463-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/05/2019] [Indexed: 11/20/2022] Open
Abstract
The bedaquiline regimen for the treatment of multidrug-resistant tuberculosis (MDR-TB) in adults is a loading dose of 400 mg QD for 2 weeks followed by 200 mg thrice weekly (TIW) for 22 weeks. Most TB antibiotics administered with bedaquiline are given QD. Using pharmacokinetic simulations, we explored alternative QD bedaquiline regimens and determined that 200 mg QD for 8 weeks followed by 100 mg QD provides comparable exposures to the approved regimen. This simpler regimen is under clinical evaluation.
Collapse
|
45
|
Rajoli RKR, Podany AT, Moss DM, Swindells S, Flexner C, Owen A, Siccardi M. Modelling the long-acting administration of anti-tuberculosis agents using PBPK: a proof of concept study. Int J Tuberc Lung Dis 2019; 22:937-944. [PMID: 29991405 DOI: 10.5588/ijtld.17.0515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
SETTING Anti-tuberculosis formulations necessitate uninterrupted treatment to cure tuberculosis (TB), but are characterised by suboptimal adherence, which jeopardises therapeutic efficacy. Long-acting injectable (LAI) formulations or implants could address these associated issues. OBJECTIVE niazid, rifapentine, bedaquiline and delamanid-in adults for treatment for latent tuberculous infection (LTBI). DESIGN PBPK models were developed and qualified against available clinical data by integrating drug physicochemical properties and in vitro and population pharmacokinetic data into a mechanistic description of drug distribution. Combinations of optimal dose and release rates were simulated such that plasma concentrations were maintained over the epidemiological cut-off or minimum inhibitory concentration for the dosing interval. RESULTS The PBPK model identified 1500 mg of delamanid and 250 mg of rifapentine as sufficient doses for monthly intramuscular administration, if a formulation or device can deliver the required release kinetics of 0.001-0.0025 h-1 and 0.0015-0.0025 h-1, respectively. Bedaquiline and isoniazid would require weekly to biweekly intramuscular dosing. CONCLUSION We identified the theoretical doses and release rates of LAI anti-tuberculosis formulations. Such a strategy could ease the problem of suboptimal adherence provided the associated technological complexities for LTBI treatment are addressed.
Collapse
Affiliation(s)
- R K R Rajoli
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - A T Podany
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - D M Moss
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK, School of Pharmacy, Keele University, Newcastle, UK
| | - S Swindells
- College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - C Flexner
- Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - A Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - M Siccardi
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
46
|
de Vos M, Ley SD, Wiggins KB, Derendinger B, Dippenaar A, Grobbelaar M, Reuter A, Dolby T, Burns S, Schito M, Engelthaler DM, Metcalfe J, Theron G, van Rie A, Posey J, Warren R, Cox H. Bedaquiline Microheteroresistance after Cessation of Tuberculosis Treatment. N Engl J Med 2019; 380:2178-2180. [PMID: 31141643 PMCID: PMC6518951 DOI: 10.1056/nejmc1815121] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Serej D Ley
- Stellenbosch University, Cape Town, South Africa
| | | | | | | | | | - Anja Reuter
- Médecins sans Frontières, Cape Town, South Africa
| | - Tania Dolby
- National Health Laboratory Services, Cape Town, South Africa
| | - Scott Burns
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | | | - John Metcalfe
- University of California, San Francisco, San Francisco, CA
| | - Grant Theron
- Stellenbosch University, Cape Town, South Africa
| | | | - James Posey
- Centers for Disease Control and Prevention, Atlanta, GA
| | - Rob Warren
- South African Medical Research Council, Cape Town, South Africa
| | - Helen Cox
- University of Cape Town, Cape Town, South Africa
| |
Collapse
|
47
|
Safety, efficacy, and pharmacokinetics of bedaquiline in Japanese patients with pulmonary multidrug-resistant tuberculosis: An interim analysis of an open-label, phase 2 study. Respir Investig 2019; 57:345-353. [PMID: 30745177 DOI: 10.1016/j.resinv.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/08/2018] [Accepted: 01/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bedaquiline, a diarylquinoline with a novel mode of action that specifically inhibits mycobacterial adenosine 5׳-triphosphate (ATP) synthase, has been approved in over 50 countries including the USA and EU for the treatment of pulmonary multidrug-resistant tuberculosis (pMDR-TB) in adults. METHODS This study was conducted to evaluate the safety, efficacy, and pharmacokinetics of bedaquiline in adult Japanese patients with pMDR-TB. In this study, patients received bedaquiline for 24 weeks or more (maximum 48 weeks) with an individualized background regimen (BR). Efficacy was assessed as the time to sputum culture conversion after the initiation of bedaquiline treatment. RESULTS Treatment-emergent adverse events (TEAEs) were reported in 5/6 patients (83.3%) during the investigational phase (bedaquiline treatment + 1 week). The TEAEs observed in >1 patient were hepatic function abnormal (4/6), hypoaesthesia (3/6), nasopharyngitis, acne, and nausea (2/6 each). The TEAEs leading to treatment discontinuation of bedaquiline were none. The time to sputum culture conversion was 14-15 days. Plasma bedaquiline Cmax was achieved within 4-6 h of bedaquiline administration and AUC24h ranged from 50,637 to 107,300 ng*h/mL (5 patients) at week 2 and were 58,513 and 77,148 ng *h/mL (2 patients) at week 24. CONCLUSIONS No new safety signals in patients, including those receiving bedaquiline with BR beyond 24 weeks, and the faster culture conversion time indicate that the administration of bedaquiline as part of a multi-drug regimen for at least 24 weeks is a suitable treatment for adult Japanese patients with pMDR-TB.
Collapse
|
48
|
Li Y, Sun F, Zhang W. Bedaquiline and delamanid in the treatment of multidrug-resistant tuberculosis: Promising but challenging. Drug Dev Res 2018; 80:98-105. [PMID: 30548290 PMCID: PMC6590425 DOI: 10.1002/ddr.21498] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022]
Abstract
Improving treatment outcomes in multidrug‐resistant tuberculosis (MDR‐TB) is partly hampered by inadequate effective antitubercular agents. Development of bedaquiline and delamanid has potentially changed the treatment landscape for MDR‐TB. This review provides an update on the progress of these novel antitubercular agents. We review published studies aimed at evaluating clinical efficacy and effectiveness of bedaquiline and delamanid. Five prospective clinical studies and seven retrospective studies on bedaquiline showed that patients treated with a bedaquiline‐containing regimen had a high culture conversion rate ranging from 65 to 100% and a satisfactory treatment outcome. The combined use with linezolid might add to the effectiveness of bedaquiline. Controversies about bedaquiline resistance are discussed. Three clinical trials have reported outcomes on delamanid and showed that introducing delamanid to a background regimen improved culture conversion rate at 2 months from 29.6% to more than 40%. A higher favorable treatment rate was also observed among patients who received delamanid for more than 6 months, but about a quarter of patients defaulted in the control group. Seven retrospective studies were summarized and found a treatment benefit as well. More reliable evidence from randomized clinical trials reporting on the treatment outcomes is needed urgently to support a strong recommendation for the use of delamanid. Advances in the combined use of bedaquiline and delamanid are also reviewed, and the combination may be well tolerated but requires electrocardiograph monitoring.
Collapse
Affiliation(s)
- Yang Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Sun
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Rawal T, Patel S, Butani S. Chitosan nanoparticles as a promising approach for pulmonary delivery of bedaquiline. Eur J Pharm Sci 2018; 124:273-287. [DOI: 10.1016/j.ejps.2018.08.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 11/28/2022]
|
50
|
Lyons MA. Modeling and Simulation of Pretomanid Pharmacokinetics in Pulmonary Tuberculosis Patients. Antimicrob Agents Chemother 2018; 62:e02359-17. [PMID: 29661865 PMCID: PMC6021621 DOI: 10.1128/aac.02359-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/09/2018] [Indexed: 01/28/2023] Open
Abstract
Pretomanid is a nitroimidazole antibiotic in late-phase clinical testing as a component of several novel antituberculosis (anti-TB) regimens. A population pharmacokinetic model for pretomanid was constructed using a Bayesian analysis of data from two phase 2 studies, PA-824-CL-007 and PA-824-CL-010, conducted with adult (median age, 27 years) patients in Cape Town, South Africa, with newly diagnosed pulmonary TB. Combined, these studies included 63 males and 59 females administered once-daily oral pretomanid doses of 50, 100, 150, 200, 600, 1,000, or 1,200 mg for 14 days. The observed pretomanid plasma concentration-time profiles for all tested doses were described by a one-compartment model with first-order absorption and elimination and a sigmoidal bioavailability dependent on dose, time, and the predose fed state. Allometric scaling with body weight (normalized to 70 kg) was used for volume of distribution and clearance, with the scaling exponents equal to 1 and 3/4, respectively. The posterior population geometric means for the clearance and volume of distribution allometric constants were 4.8 ± 0.2 liters/h and 130 ± 5 liters, respectively, and the posterior population geometric mean for the half-maximum-effect dose for the reduction of bioavailability was 450 ± 50 mg. Interindividual variability, described by the percent coefficient of variation, was 32% ± 3% for clearance, 17% ± 4% for the volume of distribution, and 74% ± 9% for the half-maximum-effect dose. This model provides a dose-exposure relationship for pretomanid in adult TB patients with potential applications to dose selection in individuals and to further clinical testing of novel pretomanid-containing anti-TB regimens.
Collapse
Affiliation(s)
- Michael A Lyons
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|