1
|
Gay L, Desquiret-Dumas V, Nagot N, Rapenne C, Van de Perre P, Reynier P, Molès JP. Long-term persistence of mitochondrial dysfunctions after viral infections and antiviral therapies: A review of mechanisms involved. J Med Virol 2024; 96:e29886. [PMID: 39246064 DOI: 10.1002/jmv.29886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Mitochondria are vital for most cells' functions. Viruses hijack mitochondria machinery for misappropriation of energy supply or to bypass defense mechanisms. Many of these mitochondrial dysfunctions persist after recovery from treated or untreated viral infections, particularly when mitochondrial DNA is permanently damaged. Quantitative defects and structural rearrangements of mitochondrial DNA accumulate in post-mitotic tissues as recently reported long after SARS-CoV-2 or HIV infection, or following antiviral therapy. These observations are consistent with the "hit-and-run" concept proposed decades ago to explain viro-induced cell transformation and it could apply to delayed post-viral onsets of symptoms and advocate for complementary supportive care. Thus, according to this concept, following exposure to viruses or antiviral agents, mitochondrial damage could evolve into an autonomous clinical condition. It also establishes a pathogenic link between communicable and non-communicable chronic diseases.
Collapse
Affiliation(s)
- Laetitia Gay
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Valérie Desquiret-Dumas
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Clara Rapenne
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Pascal Reynier
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| |
Collapse
|
2
|
Sun Y, Xu M, Duan Q, Bryant JL, Xu X. The role of autophagy in the progression of HIV infected cardiomyopathy. Front Cell Dev Biol 2024; 12:1372573. [PMID: 39086659 PMCID: PMC11289186 DOI: 10.3389/fcell.2024.1372573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024] Open
Abstract
Although highly active antiretroviral therapy (HAART) has changed infection with human immunodeficiency virus (HIV) from a diagnosis with imminent mortality to a chronic illness, HIV positive patients who do not develop acquired immunodeficiency syndrome (AIDs) still suffer from a high rate of cardiac dysfunction and fibrosis. Regardless of viral load and CD count, HIV-associated cardiomyopathy (HIVAC) still causes a high rate of mortality and morbidity amongst HIV patients. While this is a well characterized clinical phenomena, the molecular mechanism of HIVAC is not well understood. In this review, we consolidate, analyze, and discuss current research on the intersection between autophagy and HIVAC. Multiple studies have linked dysregulation in various regulators and functional components of autophagy to HIV infection regardless of mode of viral entry, i.e., coronary, cardiac chamber, or pericardial space. HIV proteins, including negative regulatory factor (Nef), glycoprotein 120 (gp120), and transactivator (Tat), have been shown to interact with type II microtubule-associated protein-1 β light chain (LC3-II), Rubiquitin, SQSTM1/p62, Rab7, autophagy-specific gene 7 (ATG7), and lysosomal-associated membrane protein 1 (LAMP1), all molecules critical to normal autophagy. HIV infection can also induce dysregulation of mitochondrial bioenergetics by altering production and equilibrium of adenosine triphosphate (ATP), mitochondrial reactive oxygen species (ROS), and calcium. These changes alter mitochondrial mass and morphology, which normally trigger autophagy to clear away dysfunctional organelles. However, with HIV infection also triggering autophagy dysfunction, these abnormal mitochondria accumulate and contribute to myocardial dysfunction. Likewise, use of HAART, azidothymidine and Abacavir, have been shown to induce cardiac dysfunction and fibrosis by inducing abnormal autophagy during antiretroviral therapy. Conversely, studies have shown that increasing autophagy can reduce the accumulation of dysfunctional mitochondria and restore cardiomyocyte function. Interestingly, Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, has also been shown to reduce HIV-induced cytotoxicity by regulating autophagy-related proteins, making it a non-antiviral agent with the potential to treat HIVAC. In this review, we synthesize these findings to provide a better understanding of the role autophagy plays in HIVAC and discuss the potential pharmacologic targets unveiled by this research.
Collapse
Affiliation(s)
- Yuting Sun
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mengmeng Xu
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University, New York, NY, United States
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| | - Joseph L. Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
3
|
Du J, Liu F, Liu X, Zhao D, Wang D, Sun H, Yan C, Zhao Y. Lysosomal dysfunction and overload of nucleosides in thymidine phosphorylase deficiency of MNGIE. J Transl Med 2024; 22:449. [PMID: 38741129 PMCID: PMC11089807 DOI: 10.1186/s12967-024-05275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Inherited deficiency of thymidine phosphorylase (TP), encoded by TYMP, leads to a rare disease with multiple mitochondrial DNA (mtDNA) abnormalities, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the impact of TP deficiency on lysosomes remains unclear, which are important for mitochondrial quality control and nucleic acid metabolism. Muscle biopsy tissue and skin fibroblasts from MNGIE patients, patients with m.3243 A > G mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) and healthy controls (HC) were collected to perform mitochondrial and lysosomal functional analyses. In addition to mtDNA abnormalities, compared to controls distinctively reduced expression of LAMP1 and increased mitochondrial content were detected in the muscle tissue of MNGIE patients. Skin fibroblasts from MNGIE patients showed decreased expression of LAMP2, lowered lysosomal acidity, reduced enzyme activity and impaired protein degradation ability. TYMP knockout or TP inhibition in cells can also induce the similar lysosomal dysfunction. Using lysosome immunoprecipitation (Lyso- IP), increased mitochondrial proteins, decreased vesicular proteins and V-ATPase enzymes, and accumulation of various nucleosides were detected in lysosomes with TP deficiency. Treatment of cells with high concentrations of dThd and dUrd also triggers lysosomal dysfunction and disruption of mitochondrial homeostasis. Therefore, the results provided evidence that TP deficiency leads to nucleoside accumulation in lysosomes and lysosomal dysfunction, revealing the widespread disruption of organelles underlying MNGIE.
Collapse
Affiliation(s)
- Jixiang Du
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
- Department of Rheumatology and Immunology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Fuchen Liu
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
| | - Xihan Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Science, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
| | - Dongdong Wang
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
| | - Hongsheng Sun
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Rheumatology and Immunology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China.
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, Shandong, China.
- Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, China.
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
DeMarino C, Cowen M, Williams A, Khatkar P, Abulwerdi FA, Henderson L, Denniss J, Pleet ML, Luttrell DR, Vaisman I, Liotta LA, Steiner J, Le Grice SFJ, Nath A, Kashanchi F. Autophagy Deregulation in HIV-1-Infected Cells Increases Extracellular Vesicle Release and Contributes to TLR3 Activation. Viruses 2024; 16:643. [PMID: 38675983 PMCID: PMC11054313 DOI: 10.3390/v16040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection can result in HIV-associated neurocognitive disorder (HAND), a spectrum of disorders characterized by neurological impairment and chronic inflammation. Combined antiretroviral therapy (cART) has elicited a marked reduction in the number of individuals diagnosed with HAND. However, there is continual, low-level viral transcription due to the lack of a transcription inhibitor in cART regimens, which results in the accumulation of viral products within infected cells. To alleviate stress, infected cells can release accumulated products, such as TAR RNA, in extracellular vesicles (EVs), which can contribute to pathogenesis in neighboring cells. Here, we demonstrate that cART can contribute to autophagy deregulation in infected cells and increased EV release. The impact of EVs released from HIV-1 infected myeloid cells was found to contribute to CNS pathogenesis, potentially through EV-mediated TLR3 (Toll-like receptor 3) activation, suggesting the need for therapeutics to target this mechanism. Three HIV-1 TAR-binding compounds, 103FA, 111FA, and Ral HCl, were identified that recognize TAR RNA and reduce TLR activation. These data indicate that packaging of viral products into EVs, potentially exacerbated by antiretroviral therapeutics, may induce chronic inflammation of the CNS observed in cART-treated patients, and novel therapeutic strategies may be exploited to mitigate morbidity.
Collapse
Affiliation(s)
- Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| | - Fardokht A. Abulwerdi
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA; (F.A.A.); (S.F.J.L.G.)
| | - Lisa Henderson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Julia Denniss
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| | - Delores R. Luttrell
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Iosif Vaisman
- Laboratory for Structural Bioinformatics, School of Systems Biology, George Mason University, Manassas, VA 20110, USA;
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA;
| | - Joseph Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Stuart F. J. Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA; (F.A.A.); (S.F.J.L.G.)
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| |
Collapse
|
5
|
Xie Y, Chi YL, Liu SQ, Zhu WY. BCX4430 inhibits the replication of rabies virus by suppressing mTOR-dependent autophagy invitro. Virology 2023; 585:21-31. [PMID: 37267717 DOI: 10.1016/j.virol.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Rabies is a fatal neurological infectious disease caused by rabies virus (RABV). However, no effective anti-RABV drugs for treatment during the symptomatic phase are available. The novel adenosine nucleoside analog galidesivir (BCX4430) has broad-spectrum activity against a wide variety of highly pathogenic RNA viruses. In this study, we observed no apparent cytotoxicity of BCX4430 at the highest concentration of 250 μΜ, and which was displayed stronger antiviral activity against different virulent RABV in N2a or BHK-21 cells until 72 hpi. Meanwhile, BCX4430 showed greater anti-RABV activity than T-705 and anti-RABV activity similar to that of ribavirin in N2a cells. Furthermore, BCX4430 dose- and time-dependently inhibited RABV replication via mTOR-dependent autophagy inhibition in N2a cells with increased phospho-mTOR and phospho-SQSTM1 and decreased LC3-II levels. Taken together, these findings suggest that BCX4430 has potent anti-RABV activity in vitro and might provide a basis for the development of novel drug therapies against RABV.
Collapse
Affiliation(s)
- Yuan Xie
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, PR China
| | - Ying Lin Chi
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, PR China; School of Public Health, Baotou Medical College, Baotou, 014040, Inner Mongolia, PR China
| | - Shu Qing Liu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, PR China.
| | - Wu Yang Zhu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, PR China.
| |
Collapse
|
6
|
Ghahari N, Telittchenko R, Loucif H, Isnard S, Routy JP, Olagnier D, van Grevenynghe J. Harnessing Autophagy to Overcome Antigen-Specific T-Cell Dysfunction: Implication for People Living with HIV-1. Int J Mol Sci 2023; 24:11018. [PMID: 37446195 DOI: 10.3390/ijms241311018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Like other chronic viral infections, HIV-1 persistence inhibits the development of antigen-specific memory T-cells, resulting in the exhaustion of the immune response and chronic inflammation. Autophagy is a major lysosome-dependent mechanism of intracellular large-target degradation such as lipid and protein aggregates, damaged organelles, and intracellular pathogens. Although it is known that autophagy may target HIV-1 for elimination, knowledge of its function as a metabolic contributor in such viral infection is only in its infancy. Recent data show that elite controllers (EC), who are HIV-1-infected subjects with natural and long-term antigen (Ag)-specific T-cell protection against the virus, are characterized by distinct metabolic autophagy-dependent features in their T-cells compared to other people living with HIV-1 (PLWH). Despite durable viral control with antiretroviral therapy (ART), HIV-1-specific immune dysfunction does not normalize in non-controller PLWH. Therefore, the hypothesis of inducing autophagy to strengthen their Ag-specific T-cell immunity against HIV-1 starts to be an enticing concept. The aim of this review is to critically analyze promises and potential limitations of pharmacological and dietary interventions to activate autophagy in an attempt to rescue Ag-specific T-cell protection among PLWH.
Collapse
Affiliation(s)
- Nazanin Ghahari
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1M7, Canada
| | - Roman Telittchenko
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1M7, Canada
| | - Hamza Loucif
- EVAH Corp., 500 Boulevard Cartier Ouest, Laval, QC H7V 5B7, Canada
| | - Stephane Isnard
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen Site, Montreal, QC H4A 3J1, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen Site, Montreal, QC H4A 3J1, Canada
| | - David Olagnier
- Department of Biomedicine, Research Center for Innate Immunology, Aarhus University, 8000 Aarhus, Denmark
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1M7, Canada
| |
Collapse
|
7
|
Shah H, Stankov M, Panayotova-Dimitrova D, Yazdi A, Budida R, Klusmann JH, Behrens GMN. Autolysosomal activation combined with lysosomal destabilization efficiently targets myeloid leukemia cells for cell death. Front Oncol 2023; 13:999738. [PMID: 36816923 PMCID: PMC9931186 DOI: 10.3389/fonc.2023.999738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Current cancer research has led to a renewed interest in exploring lysosomal membrane permeabilization and lysosomal cell death as a targeted therapeutic approach for cancer treatment. Evidence suggests that differences in lysosomal biogenesis between cancer and normal cells might open a therapeutic window. Lysosomal membrane stability may be affected by the so-called 'busy lysosomal behaviour' characterized by higher lysosomal abundance and activity and more intensive fusion or interaction with other vacuole compartments. Methods We used a panel of multiple myeloid leukemia (ML) cell lines as well as leukemic patient samples and updated methodology to study auto-lysosomal compartment, lysosomal membrane permeabilization and lysosomal cell death. Results Our analyses demonstrated several-fold higher constitutive autolysosomal activity in ML cells as compared to human CD34+ hematopoietic cells. Importantly, we identified mefloquine as a selective activator of ML cells' lysosomal biogenesis, which induced a sizeable increase in ML lysosomal mass, acidity as well as cathepsin B and L activity. Concomitant mTOR inhibition synergistically increased lysosomal activity and autolysosomal fusion and simultaneously decreased the levels of key lysosomal stabilizing proteins, such as LAMP-1 and 2. Discussion In conclusion, mefloquine treatment combined with mTOR inhibition synergistically induced targeted ML cell death without additional toxicity. Taken together, these data provide a molecular mechanism and thus a rationale for a therapeutic approach for specific targeting of ML lysosomes.
Collapse
Affiliation(s)
- Harshit Shah
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Metodi Stankov
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Diana Panayotova-Dimitrova
- Department of Dermatology and Allergology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany
| | - Amir Yazdi
- Department of Dermatology and Allergology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany
| | | | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Georg M. N. Behrens
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany,*Correspondence: Georg M. N. Behrens,
| |
Collapse
|
8
|
Barbaro JM, Cuervo AM, Berman JW. HIV Increases the Inhibitory Impact of Morphine and Antiretrovirals on Autophagy in Primary Human Macrophages: Contributions to Neuropathogenesis. Cells 2021; 10:2183. [PMID: 34571832 PMCID: PMC8470112 DOI: 10.3390/cells10092183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
HIV enters the CNS early after peripheral infection, establishing reservoirs in perivascular macrophages that contribute to development of HIV-associated neurocognitive disorders (HAND) in 15-40% of people with HIV (PWH) despite effective antiretroviral therapy (ART). Opioid use may contribute to dysregulated macrophage functions resulting in more severe neurocognitive symptoms in PWH taking opioids. Macroautophagy helps maintain quality control in long-lived cell types, such as macrophages, and has been shown to regulate, in part, some macrophage functions in the CNS that contribute to HAND. Using Western blotting and confocal immunofluorescence in primary human macrophages, we demonstrated that morphine and a commonly prescribed ART regimen induce bulk autophagy. Morphine and ART also inhibited completion of autophagy. HIV infection increased these inhibitory effects. We also examined two types of selective autophagy that degrade aggregated proteins (aggrephagy) and dysfunctional mitochondria (mitophagy). Morphine and ART inhibited selective autophagy mediated by p62 regardless of HIV infection, and morphine inhibited mitophagic flux in HIV-infected cells demonstrating potential mitotoxicity. These results indicate that inhibition of autophagy, both in bulk and selective, in CNS macrophages may mediate neurocognitive dysfunction in PWH using opioids. Increasing autophagic activity in the context of HIV may represent a novel therapeutic strategy for reducing HAND in these individuals.
Collapse
Affiliation(s)
- John M. Barbaro
- Montefiore Medical Center, Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Ana Maria Cuervo
- Montefiore Medical Center, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Joan W. Berman
- Montefiore Medical Center, Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
- Montefiore Medical Center, Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
9
|
Cheney L, Barbaro JM, Berman JW. Antiretroviral Drugs Impact Autophagy with Toxic Outcomes. Cells 2021; 10:909. [PMID: 33920955 PMCID: PMC8071244 DOI: 10.3390/cells10040909] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
Antiretroviral drugs have dramatically improved the morbidity and mortality of people living with HIV (PLWH). While current antiretroviral therapy (ART) regimens are generally well-tolerated, risks for side effects and toxicity remain as PLWH must take life-long medications. Antiretroviral drugs impact autophagy, an intracellular proteolytic process that eliminates debris and foreign material, provides nutrients for metabolism, and performs quality control to maintain cell homeostasis. Toxicity and adverse events associated with antiretrovirals may be due, in part, to their impacts on autophagy. A more complete understanding of the effects on autophagy is essential for developing antiretroviral drugs with decreased off target effects, meaning those unrelated to viral suppression, to minimize toxicity for PLWH. This review summarizes the findings and highlights the gaps in our knowledge of the impacts of antiretroviral drugs on autophagy.
Collapse
Affiliation(s)
- Laura Cheney
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - John M. Barbaro
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; (J.M.B.); (J.W.B.)
| | - Joan W. Berman
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; (J.M.B.); (J.W.B.)
- Department of Microbiology and Immunology, Montefiore Medical Center and Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
10
|
Jankowski CM, Mawhinney S, Wilson MP, Campbell TB, Kohrt WM, Schwartz RS, Brown TT, Erlandson KM. Body Composition Changes in Response to Moderate- or High-Intensity Exercise Among Older Adults With or Without HIV Infection. J Acquir Immune Defic Syndr 2020; 85:340-345. [PMID: 32701826 PMCID: PMC8040534 DOI: 10.1097/qai.0000000000002443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND People with HIV (PWH) are at an increased risk for adiposity and sarcopenia, despite effective antiretroviral therapy. Our objective was to compare the effects of prescribed exercise on body composition in older PWH and uninfected controls. SETTING Academic medical center. METHODS Sedentary PWH (n = 27) and uninfected controls (n = 28) aged 50-75 years completed 24 weeks of cardiovascular and resistance exercise. Participants completed 12 weeks of moderate-intensity exercise and then were randomized to moderate- or high-intensity exercise for 12 additional weeks. Total lean (LEAN) and fat mass (FAT), and visceral adipose tissue area (VAT) were measured using dual-energy x-ray absorptiometry at baseline and 24 weeks; baseline and intervention differences were compared by HIV serostatus using multivariable regression analyses adjusted for baseline values, age, and exercise adherence. RESULTS At baseline, PWH had significantly lower FAT (P = 0.003), but no significant differences in LEAN or VAT compared with controls (P > 0.20). Changes over 24 weeks were not significantly different by HIV serostatus, although controls tended to gain more LEAN (0.8 kg; range, 0-1.6 kg; P = 0.04] than PWH (0.6 kg; range, -0.2 to 1.4 kg; P = 0.12) and lose less FAT and VAT (controls: (-0.9 kg; range, -1.8 to 0.0 kg and -10.3 cm; range, -19.6, 1.0) cm; both P = 0.03 vs PWH: -2.0 kg; range, -2.9 to -1.1 kg and -17.7 cm; range, -27.1 to -8.2 cm; both P < 0.001). Exercise intensity differences were not apparent for LEAN, FAT, or VAT. CONCLUSIONS Exercise reduced total and visceral fat in older PWH and controls. Minimal gains in lean mass suggest that greater emphasis on resistance exercise may be needed to more effectively increase muscle in PWH.
Collapse
Affiliation(s)
| | - Samantha Mawhinney
- Department of Biostatistics, University of Colorado Anschutz Medical Campus, School of Public Health, Aurora, CO
| | - Melissa P Wilson
- Department of Biostatistics, University of Colorado Anschutz Medical Campus, School of Public Health, Aurora, CO
| | - Thomas B Campbell
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Wendy M Kohrt
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Eastern Colorado VA Geriatric Research, Education and Clinical Center, Denver, CO; and
| | - Robert S Schwartz
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Eastern Colorado VA Geriatric Research, Education and Clinical Center, Denver, CO; and
| | - Todd T Brown
- Department of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Johns Hopkins University, Baltimore, MD
| | - Kristine M Erlandson
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
11
|
Ma W, Wei S, Zhang B, Li W. Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Front Cell Dev Biol 2020; 8:434. [PMID: 32582710 PMCID: PMC7283551 DOI: 10.3389/fcell.2020.00434] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
Homeostatic regulation of cardiomyocytes plays a crucial role in maintaining the normal physiological activity of cardiac tissue. Severe cardiotoxicity results in cardiac diseases including but not limited to arrhythmia, myocardial infarction and myocardial hypertrophy. Drug-induced cardiotoxicity limits or forbids further use of the implicated drugs. Such drugs that are currently available in the clinic include anti-tumor drugs (doxorubicin, cisplatin, trastuzumab, etc.), antidiabetic drugs (rosiglitazone and pioglitazone), and an antiviral drug (zidovudine). This review focused on cardiomyocyte death forms and related mechanisms underlying clinical drug-induced cardiotoxicity, including apoptosis, autophagy, necrosis, necroptosis, pryoptosis, and ferroptosis. The key proteins involved in cardiomyocyte death signaling were discussed and evaluated, aiming to provide a theoretical basis and target for the prevention and treatment of drug-induced cardiotoxicity in the clinical practice.
Collapse
Affiliation(s)
- Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
12
|
Modulation of mTORC1 Signaling Pathway by HIV-1. Cells 2020; 9:cells9051090. [PMID: 32354054 PMCID: PMC7291251 DOI: 10.3390/cells9051090] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cellular proliferation and survival which controls cellular response to different stresses, including viral infection. HIV-1 interferes with the mTORC1 pathway at every stage of infection. At the same time, the host cells rely on the mTORC1 pathway and autophagy to fight against virus replication and transmission. In this review, we will provide the most up-to-date picture of the role of the mTORC1 pathway in the HIV-1 life cycle, latency and HIV-related diseases. We will also provide an overview of recent trends in the targeting of the mTORC1 pathway as a promising strategy for HIV-1 eradication.
Collapse
|
13
|
Ranganathan A, Owiredu S, Jang DH, Eckmann DM. Prophylaxis of mitochondrial dysfunction caused by cellular decompression from hyperbaric exposure. Mitochondrion 2020; 52:8-19. [PMID: 32045716 DOI: 10.1016/j.mito.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction occurring in response to cellular perturbations can include altered mitochondrial motility and bioenergetic function having intracellular heterogeneity. Exogenous mitochondrial directed therapy may correct these dysfunctions. Using in vitro approaches, we find that cell perturbations induced by rapid decompression from hyperbaric conditions with specific gas exposures has differential effects on mitochondrial motility, inner membrane potential, cellular respiration, reactive oxygen species production, impaired maintenance of cell shape and altered intracellular distribution of bioenergetic capacity in perinuclear and cell peripheral domains. Addition of a first-generation cell-permeable succinate prodrug to support mitochondrial function has positive overall effects in blunting the resultant bioenergy responses. Our results with this model of perturbed cell function induced by rapid decompression indicate that alterations in bioenergetic state are partitioned within the cell, as directly assessed by a combination of mitochondrial respiration and dynamics measurements. Reductions in the observed level of dysfunction produced can be achieved with application of the cell-permeable succinate prodrug.
Collapse
Affiliation(s)
- Abhay Ranganathan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Shawn Owiredu
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David H Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|