1
|
Faivre C, Imtiyaz FD, Buyck JM, Marchand S, Marcotte M, Henry T, Anton N, Collot M, Tewes F. (E, E)-farnesol and myristic acid-loaded lipid nanoparticles overcome colistin resistance in Acinetobacter baumannii. Int J Pharm 2024; 667:124907. [PMID: 39500471 DOI: 10.1016/j.ijpharm.2024.124907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The rise of colistin-resistant Acinetobacter baumannii has severely limited treatment options for infections caused by this pathogen. While terpene alcohols and fatty acids have shown potential to enhance colistin's efficacy, but their high lipophilicity limits their clinical application. To address this, we developed water-dispersible lipid nanoparticles (LNPs) in two sizes (40 nm and 130 nm), loaded with these compounds to act as colistin adjuvants. Among eleven LNP formulations, six significantly reduced colistin's minimum inhibitory concentration (MIC) by 16- to 64-fold. The most effective, featuring (E,E)-farnesol and myristic acid, were further examined for bactericidal activity, membrane disruption, cytotoxicity, and in vivo efficacy in Galleria mellonella larvae. Time-kill studies demonstrated that at an adjuvant concentration of 60 mg/L, these LNPs eradicated bacteria when combined with 4 mg/L free colistin for resistant isolates (MIC = 128 mg/L) and 0.06 mg/L for susceptible isolates (MIC = 0.5 mg/L), without regrowth. Myristic acid-loaded LNPs combined with free colistin at 1/8 MIC resulted in a 4.2-fold higher mortality rate than the combination with (E,E)-farnesol-loaded LNPs in resistant strains. This result was correlated with a 45-fold faster increase in inner membrane permeability, measured by propidium iodide (PI) uptake, in the presence of myristic acid-loaded LNPs compared with a 13-fold faster increase with (E,E)-farnesol-loaded LNPs. DiSC3(5) assays revealed that LNPs alone depolarised the bacterial inner membrane, with enhanced effects when combined with colistin at 1/8 MIC, a result not observed with colistin alone at this concentration. As with PI uptake, this inner membrane depolarising effect was more pronounced with myristic acid-loaded LNPs than with (E,E)-farnesol-loaded LNPs in resistant strains, suggesting that the colistin adjuvant effect of these lipophilic compounds is due to their ability to help colistin destabilise the bacterial inner membrane. Cytotoxicity assays demonstrated no adverse effects on bone marrow macrophages after 6 h of exposure, although some toxicity was observed after 24 h. No mortality was observed in Galleria mellonella larvae over 7 days following three consecutive days of treatment with colistin and LNPs. Notably, the combination of (E,E)-farnesol-loaded LNPs and colistin significantly improved the survival of Galleria infected with A.baumannii. These results suggest that lipophilic-adjuvant-loaded LNPs may offer a promising strategy to enhance colistin efficacy and combat antibiotic-resistant A. baumannii infections.
Collapse
Affiliation(s)
- Carla Faivre
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France; INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France
| | | | - Julien M Buyck
- Université de Poitiers, PHAR2, INSERM U1070, Poitiers, France
| | - Sandrine Marchand
- Université de Poitiers, PHAR2, INSERM U1070, Poitiers, France; CHU de Poitiers, Laboratoire de Toxicologie et de Pharmacocinétique, Poitiers, France
| | - Melissa Marcotte
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ. Lyon, Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ. Lyon, Lyon, France
| | - Nicolas Anton
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | - Frédéric Tewes
- Université de Poitiers, PHAR2, INSERM U1070, Poitiers, France.
| |
Collapse
|
2
|
Khan MAS, Chaity SC, Hosen MA, Rahman SR. Genomic epidemiology of multidrug-resistant clinical Acinetobacter baumannii in Bangladesh. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105656. [PMID: 39116952 DOI: 10.1016/j.meegid.2024.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The rising frequency of multidrug-resistant (MDR) Acinetobacter baumannii infections represents a significant public health challenge in Bangladesh. Genomic analysis of bacterial pathogens enhances surveillance and control efforts by providing insights into genetic diversity, antimicrobial resistance (AMR) profiles, and transmission dynamics. In this study, we conducted a comprehensive bioinformatic analysis of 82 whole-genome sequences (WGS) of A. baumannii from Bangladesh to understand their genomic epidemiological characteristics. WGS of the MDR and biofilm-forming A. baumannii strain S1C revealed the presence of 28 AMR genes, predicting its pathogenicity and classification within sequence type ST2. Multi-locus sequence typing (MLST) genotyping suggested heterogeneity in the distribution of clinical A. baumannii strains in Bangladesh, with a predominance of ST575. The resistome diversity was evident from the detection of 82 different AMR genes, with antibiotic inactivation being the most prevalent resistance mechanism. All strains were predicted to be multidrug-resistant. The observed virulence genes were associated with immune evasion, biofilm formation, adherence, nutrient acquisition, effector delivery, and other mechanisms. Mobile genetic elements carrying AMR genes were predicted in 68.29% (N = 56) of the genomes. The "open" state of the pan-genome and a high proportion of accessory genes highlighted the genome plasticity and diversity of A. baumannii in Bangladesh. Additionally, phylogenomic analysis indicated clustering of A. baumannii strains into three separate clades according to sequence type. In summary, our findings offer detailed insights into the genomic landscape of A. baumannii in Bangladesh, contributing to our understanding of its epidemiology and pathogenicity and informing strategies to combat this pathogen.
Collapse
Affiliation(s)
| | | | - Md Arman Hosen
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
3
|
Carascal MB, Macalalad LS, Petronio-Santos JA, Destura RV, Rivera WL. Loop-mediated isothermal amplification assay detects multiple alleles of bla OXA-51-like genes in Acinetobacter baumannii and other Gram-negative bacteria despite primer-template mismatches. Heliyon 2024; 10:e35653. [PMID: 39170108 PMCID: PMC11337129 DOI: 10.1016/j.heliyon.2024.e35653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
The known intrinsic and polymorphic bla OXA-51-like genes of Acinetobacter baumannii were recently reported in other non-A. baumannii Gram-negative pathogens. Accurate detection of this potentially transferrable carbapenemase gene in the clinical setting is critical. This study developed a loop-mediated isothermal amplification (LAMP) assay targetting multiple alleles of bla OXA-51-like genes. Specifically, an alignment-based primer design, in silico primer screening, and in vitro assay confirmation were conducted. Both in silico and in vitro results revealed the tolerance of the LAMP assay to up to five primer-template mismatches outside the 3'-end primer regions. Within 90 min, the LAMP assay also detected the gene targets in other Gram-negative bacteria with known and novel bla OXA-51-like genes. Finally, it showed a superior limit of detection (as low as 101 CFU/mL) compared with polymerase chain reaction, and high specificity against non-targets. This study developed a highly adaptable LAMP assay to monitor bla OXA-51-like genes in the clinical setting and provided important insights into LAMP primer design and screening.
Collapse
Affiliation(s)
- Mark B. Carascal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
- Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City 1605, Philippines
| | - Lawrence S. Macalalad
- Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City 1605, Philippines
| | - Joy Ann Petronio-Santos
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
- Biological Research and Services Laboratory, Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Raul V. Destura
- Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City 1605, Philippines
- Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, City of Manila 1159, Philippines
| | - Windell L. Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| |
Collapse
|
4
|
Bandić Pavlović D, Pospišil M, Nađ M, Vrbanović Mijatović V, Luxner J, Zarfel G, Grisold A, Tonković D, Dobrić M, Bedenić B. Multidrug-Resistant Bacteria in Surgical Intensive Care Units: Antibiotic Susceptibility and β-Lactamase Characterization. Pathogens 2024; 13:411. [PMID: 38787264 PMCID: PMC11124292 DOI: 10.3390/pathogens13050411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Multidrug-resistant (MDR) bacteria of the utmost importance are extended-spectrum β-lactamase (ESBL) and carbapenemase-producing Enterobacterales (CRE), carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Pseudomonas aeruginosa (CRPA), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus spp. (VRE). In this study, an evaluation of MDR bacteria in surgical intensive care units in a tertiary referral hospital was conducted. The study aimed to characterize β-lactamases and other resistance traits of Gram-negative bacteria isolated in surgical intensive care units (ICUs). Disk diffusion and the broth dilution method were used for antibiotic susceptibility testing, whereas ESBL screening was performed through a double disk synergy test and an inhibitor-based test with clavulanic acid. A total of 119 MDR bacterial isolates were analysed. ESBL production was observed in half of the Proteus mirabilis, 90% of the Klebsiella pneumoniae and all of the Enterobacter cloacae and Escherichia coli isolates. OXA-48 carbapenemase, carried by the L plasmid, was detected in 34 K. pneumoniae and one E. coli and Enterobacter cloacae complex isolates, whereas NDM occurred sporadically and was identified in three K. pneumoniae isolates. OXA-48 positive isolates coharboured ESBLs belonging to the CTX-M family in all but one isolate. OXA-23 carbapenemase was confirmed in all A. baumannii isolates. The findings of this study provide valuable insight of resistance determinants of Enterobacterales and A. baumannii which will enhance surveillance and intervention strategies that are necessary to curb the ever-growing carbapenem resistance rates.
Collapse
Affiliation(s)
- Daniela Bandić Pavlović
- Department of Anesthesiology and Intensive Care, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (D.B.P.); (V.V.M.); (D.T.)
| | - Mladen Pospišil
- Department of Emergency Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Marina Nađ
- University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | - Vilena Vrbanović Mijatović
- Department of Anesthesiology and Intensive Care, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (D.B.P.); (V.V.M.); (D.T.)
| | - Josefa Luxner
- Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (J.L.); (G.Z.); (A.G.)
| | - Gernot Zarfel
- Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (J.L.); (G.Z.); (A.G.)
| | - Andrea Grisold
- Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (J.L.); (G.Z.); (A.G.)
| | - Dinko Tonković
- Department of Anesthesiology and Intensive Care, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (D.B.P.); (V.V.M.); (D.T.)
| | - Mirela Dobrić
- Department of Anesthesiology, Intensive Medicine and Pain Management, University Hospital Centre Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Branka Bedenić
- Biomedical Research Center Šalata—BIMIS, Department for Clinical Microbiology and Infection Prevention and Control, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Gashaw M, Gudina EK, Ali S, Gabriele L, Seeholzer T, Alemu B, Froeschl G, Kroidl A, Wieser A. Molecular characterization of carbapenem-resistance in Gram-negative isolates obtained from clinical samples at Jimma Medical Center, Ethiopia. Front Microbiol 2024; 15:1336387. [PMID: 38328425 PMCID: PMC10848150 DOI: 10.3389/fmicb.2024.1336387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Background In resource-constrained settings, limited antibiotic options make treating carbapenem-resistant bacterial infections difficult for healthcare providers. This study aimed to assess carbapenemase expression in Gram-negative bacteria isolated from clinical samples in Jimma, Ethiopia. Methods A cross-sectional study was conducted to assess carbapenemase expression in Gram-negative bacteria isolated from patients attending Jimma Medical Center. Totally, 846 Gram-negative bacteria were isolated and identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Phenotypic antibiotic resistance patterns were determined using the Kirby-Bauer disk diffusion method and Etest strips. Extended-spectrum β-lactamase phenotype was determined using MAST disks, and carbapenemases were characterized using multiplex polymerase chain reactions (PCR). Results Among the isolates, 19% (157/846) showed phenotypic resistance to carbapenem antibiotics. PCR analysis revealed that at least one carbapenemase gene was detected in 69% (107/155) of these strains. The most frequently detected acquired genes were blaNDM in 35% (37/107), blaVIM in 24% (26/107), and blaKPC42 in 13% (14/107) of the isolates. Coexistence of two or more acquired genes was observed in 31% (33/107) of the isolates. The most common coexisting acquired genes were blaNDM + blaOXA-23, detected in 24% (8/33) of these isolates. No carbapenemase-encoding genes could be detected in 31% (48/155) of carbapenem-resistant isolates, with P. aeruginosa accounting for 85% (41/48) thereof. Conclusion This study revealed high and incremental rates of carbapenem-resistant bacteria in clinical samples with various carbapenemase-encoding genes. This imposes a severe challenge to effective patient care in the context of already limited treatment options against Gram-negative bacterial infections in resource-constrained settings.
Collapse
Affiliation(s)
- Mulatu Gashaw
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- CIHLMU Center for International Health, Ludwig Maximilians Universität München, Munich, Germany
| | | | - Solomon Ali
- Saint Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Liegl Gabriele
- Max von Pettenkofer-Institute (Medical Microbiology), Ludwig Maximilian University of Munich, Munich, Germany
| | - Thomas Seeholzer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Bikila Alemu
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Guenter Froeschl
- CIHLMU Center for International Health, Ludwig Maximilians Universität München, Munich, Germany
- Division of Infectious Disease and Tropical Medicine, University Hospital (LMU), Munich, Germany
| | - Arne Kroidl
- CIHLMU Center for International Health, Ludwig Maximilians Universität München, Munich, Germany
- Division of Infectious Disease and Tropical Medicine, University Hospital (LMU), Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Andreas Wieser
- Max von Pettenkofer-Institute (Medical Microbiology), Ludwig Maximilian University of Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
- Division of Infectious Disease and Tropical Medicine, University Hospital (LMU), Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
6
|
Abordo AMS, Carascal MB, Remenyi R, Dalisay DS, Saludes JP. Clinically Isolated β-Lactam-Resistant Gram-Negative Bacilli in a Philippine Tertiary Care Hospital Harbor Multi-Class β-Lactamase Genes. Pathogens 2023; 12:1019. [PMID: 37623979 PMCID: PMC10459468 DOI: 10.3390/pathogens12081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
In the Philippines, data are scarce on the co-occurrence of multiple β-lactamases (BLs) in clinically isolated Gram-negative bacilli. To investigate this phenomenon, we characterized BLs from various β-lactam-resistant Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa isolated from a Philippine tertiary care hospital. The selected Gram-negative bacilli (n = 29) were resistant to either third-generation cephalosporins (resistance category 1 (RC1)), cephalosporins and penicillin-β-lactamase inhibitors (RC2), or carbapenems (RC3). Isolates resistant to other classes of antibiotics but susceptible to early-generation β-lactams were also selected (RC4). All isolates underwent antibiotic susceptibility testing, disk-diffusion-based BL detection assays, and PCR with sequence analysis of extended-spectrum BLs (ESBLs), metallo-BLs, AmpC BLs, and oxacillinases. Among the study isolates, 26/29 harbored multi-class BLs. All RC1 isolates produced ESBLs, with blaCTX-M as the dominant (19/29) gene. RC2 isolates produced ESBLs, four of which harbored blaTEM plus blaOXA-1 or other ESBL genes. RC3 isolates carried blaNDM and blaIMP, particularly in three of the metallo-BL producers. RC4 Enterobacteriaceae carried blaCTX-M, blaTEM, and blaOXA-24-like, while A. baumannii and P. aeruginosa in this category carried either blaIMP or blaOXA-24. Genotypic profiling, in complement with phenotypic characterization, revealed multi-class BLs and cryptic metallo-BLs among β-lactam-resistant Gram-negative bacilli.
Collapse
Affiliation(s)
- Alecks Megxel S. Abordo
- Clinical and Translational Research Institute, The Medical City, Pasig 1605, Philippines or (A.M.S.A.); (M.B.C.); (R.R.)
| | - Mark B. Carascal
- Clinical and Translational Research Institute, The Medical City, Pasig 1605, Philippines or (A.M.S.A.); (M.B.C.); (R.R.)
| | - Roland Remenyi
- Clinical and Translational Research Institute, The Medical City, Pasig 1605, Philippines or (A.M.S.A.); (M.B.C.); (R.R.)
| | - Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2) and Department of Biology, University of San Agustin, Iloilo 5000, Philippines;
- Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig 1631, Philippines
| | - Jonel P. Saludes
- Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig 1631, Philippines
- Center for Natural Drug Discovery and Development (CND3) and Department of Chemistry, University of San Agustin, Iloilo 5000, Philippines
| |
Collapse
|
7
|
Junaid M, Thirapanmethee K, Khuntayaporn P, Chomnawang MT. CRISPR-Based Gene Editing in Acinetobacter baumannii to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:920. [PMID: 37513832 PMCID: PMC10384873 DOI: 10.3390/ph16070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to the health, social, environment, and economic sectors on a global scale and requires serious attention to addressing this issue. Acinetobacter baumannii was given top priority among infectious bacteria because of its extensive resistance to nearly all antibiotic classes and treatment options. Carbapenem-resistant A. baumannii is classified as one of the critical-priority pathogens on the World Health Organization (WHO) priority list of antibiotic-resistant bacteria for effective drug development. Although available genetic manipulation approaches are successful in A. baumannii laboratory strains, they are limited when employed on newly acquired clinical strains since such strains have higher levels of AMR than those used to select them for genetic manipulation. Recently, the CRISPR-Cas (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system has emerged as one of the most effective, efficient, and precise methods of genome editing and offers target-specific gene editing of AMR genes in a specific bacterial strain. CRISPR-based genome editing has been successfully applied in various bacterial strains to combat AMR; however, this strategy has not yet been extensively explored in A. baumannii. This review provides detailed insight into the progress, current scenario, and future potential of CRISPR-Cas usage for AMR-related gene manipulation in A. baumannii.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
8
|
Wang J, Dong X, Wang F, Jiang J, Zhao Y, Gu J, Xu J, Mao X, Tu B. Molecular Characteristics and Genetic Analysis of Extensively Drug-Resistant Isolates with different Tn3 Mobile Genetic Elements. Curr Microbiol 2023; 80:246. [PMID: 37335402 DOI: 10.1007/s00284-023-03340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
Extensively drug-resistant (XDR) bacteria are the main caues for causing clinical infectious diseases. Our aim was to distinguish the present molecular epidemiological situation of XDR Klebsiella pneumoniae, Acinetobacter baumannii, and Escherichia coli isolates recovered from local hospitals in Changzhou. Antibiotic susceptibility and phenotypic analysis, multilocus sequence typing and Pulsed Field Gel Electrophoresis were performed to trace these isolates. Resistant phenotype and gene analysis from 29 XDR strains demonstrated that they mainly included TEM, CTX-M-1/2, OXA-48, and KPC products. A. baumannii strains belonged to sequence type (ST) ST224, and carrying the blaCTX-M-2/TEM gene. The quinolone genes aac(6')-ib-cr and qnrB were carrying only in A. baumannii and E.coli. Three (2.3%) of these strains were found to contain the blaNDM-1 or blaNDM-5 gene. A new genotype of K. pneumoniae was found as ST2639. Epidemic characteristics of the XDR clones showed that antibiotic resistance genes distributed unevenly in different wards in Changzhou's local hospitals. With the sequencing of blaNDM carrying isolates, the plasmids often carrying a highly conservative Tn3-relavent mobile genetic element. The especially coupled insert sequence ISKox3 may be a distinctive resistance gene transfer loci. The genotypic diversity variation of XDRs suggested that tracking and isolating the sources of antibiotic resistance especially MBL-encoding genes such as blaNDM-will help manage the risk of infection by these XDRs.
Collapse
Affiliation(s)
- Jiazhen Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin Dong
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Fengming Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Jinyi Jiang
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Ying Zhao
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Jingyue Gu
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jian Xu
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Xujian Mao
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Bowen Tu
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China.
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
9
|
Li J, Li Y, Cao X, Zheng J, Zhang Y, Xie H, Li C, Liu C, Shen H. Genome-wide identification and oxacillinase OXA distribution characteristics of Acinetobacter spp. based on a global database. Front Microbiol 2023; 14:1174200. [PMID: 37323896 PMCID: PMC10267304 DOI: 10.3389/fmicb.2023.1174200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Objective To use genomic analysis to identify Acinetobacter spp. and to explore the distribution characteristics of ß-lactamase oxallicinases (blaOXA) among Acinetobacter species globally. Methods Genomes of global Acinetobacter spp. were downloaded from GenBank using Aspera batch. After quality check using CheckM and QUAST software, the genomes were annotated using Prokka software to investigate the distribution of blaOXAs across Acinetobacter spp.; a phylogenetic tree was constructed to explore the evolutionary relationship among the blaOXA genes in Acinetobacter spp. Average-nucleotide identification (ANI) was performed to re-type the Acinetobacter spp. BLASTN comparison analysis was implemented to determine the sequence type (ST) of Acinetobacter baumannii strain. Results A total of 7,853 genomes were downloaded, of which only 6,639 were left for further analysis after quality check. Among them, 282 blaOXA variants were identified from the genomes of 5,893 Acinetobacter spp.; blaOXA-23 (n = 3,168, 53.8%) and blaOXA-66 (2,630, 44.6%) were the most frequent blaOXAs, accounting for 52.6% (3,489/6639), and the co-carriage of blaOXA-23 and blaOXA-66 was seen in 2223 (37.7%) strains. The 282 blaOXA variants were divided into 27 clusters according to the phylogenetic tree. The biggest clade was blaOXA-51-family carbapenem-hydrolyzing enzymes composed of 108 blaOXA variants. Overall, 4,923 A. baumannii were identified out of the 6,639 Acinetobacter spp. strains and 291 distinct STs were identified among the 4,904 blaOXA-carrying A. baumannii. The most prevalent ST was ST2 (n = 3,023, 61.6%) followed by ST1 (n = 228, 4.6%). Conclusion OXA-like carbapenemases were the main blaOXA-type β-lactamase spread widely across Acinetobacter spp. Both blaOXA-23 and blaOXA-66 were the predominant blaOXAs, among all A. baumannii strains, with ST2 (belonging to CC2) being the main clone disseminated globally.
Collapse
Affiliation(s)
- Jia Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yang Li
- Department of Nosocomial Infection Control, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jie Zheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yan Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hui Xie
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chuchu Li
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Chang Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Ababneh Q, Al Sbei S, Jaradat Z, Syaj S, Aldaken N, Ababneh H, Inaya Z. Extensively drug-resistant Acinetobacter baumannii: role of conjugative plasmids in transferring resistance. PeerJ 2023; 11:e14709. [PMID: 36718445 PMCID: PMC9884047 DOI: 10.7717/peerj.14709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/15/2022] [Indexed: 01/26/2023] Open
Abstract
Acinetobacter baumannii is one of the most successful pathogens that can cause difficult-to-treat nosocomial infections. Outbreaks and infections caused by multi-drug resistant A. baumannii are prevalent worldwide, with only a few antibiotics are currently available for treatments. Plasmids represent an ideal vehicle for acquiring and transferring resistance genes in A. baumannii. Five extensively drug-resistant A. baumannii clinical isolates from three major Jordanian hospitals were fully sequenced. Whole-Genome Sequences (WGS) were used to study the antimicrobial resistance and virulence genes, sequence types, and phylogenetic relationship of the isolates. Plasmids were characterized In-silico, followed by conjugation, and plasmid curing experiments. Eight plasmids were recovered; resistance plasmids carrying either aminoglycosides or sulfonamide genes were detected. Chromosomal resistance genes included blaOXA-66, blaOXA-91, and blaOXA-23, and the detected virulence factors were involved in biofilm formation, adhesion, and many other mechanisms. Conjugation and plasmid curing experiments resulted in the transfer or loss of several resistance phenotypes. Plasmid profiling along with phylogenetic analyses revealed high similarities between two A. baumannii isolates recovered from two different intensive care units (ICU). The high similarities between the isolates of the study, especially the two ICU isolates, suggest that there is a common A. baumannii strain prevailing in different ICU wards in Jordanian hospitals. Three resistance genes were plasmid-borne, and the transfer of the resistance phenotype emphasizes the role and importance of conjugative plasmids in spreading resistance among A. baumannii clinical strains.
Collapse
Affiliation(s)
- Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Sara Al Sbei
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Sebawe Syaj
- Department of General Surgery and Urology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Neda’a Aldaken
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Hamza Ababneh
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Zeina Inaya
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
11
|
Noel HR, Petrey JR, Palmer LD. Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination. Ann N Y Acad Sci 2022; 1518:166-182. [PMID: 36316792 PMCID: PMC9771954 DOI: 10.1111/nyas.14918] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pathogenic Acinetobacter species, most notably Acinetobacter baumannii, are a significant cause of healthcare-associated infections worldwide. Acinetobacter infections are of particular concern to global health due to the high rates of multidrug resistance and extensive drug resistance. Widespread genome sequencing and analysis has determined that bacterial antibiotic resistance is often acquired and disseminated through the movement of mobile genetic elements, including insertion sequences (IS), transposons, integrons, and conjugative plasmids. In Acinetobacter specifically, resistance to carbapenems and cephalosporins is highly correlated with IS, as many ISAba elements encode strong outwardly facing promoters that are required for sufficient expression of β-lactamases to confer clinical resistance. Here, we review the role of mobile genetic elements in antibiotic resistance in Acinetobacter species through the framework of the mechanism of resistance acquisition and with a focus on experimentally validated mechanisms.
Collapse
Affiliation(s)
- Hannah R. Noel
- Department of Microbiology and Immunology University of Illinois Chicago Chicago Illinois USA
| | - Jessica R. Petrey
- Department of Microbiology and Immunology University of Illinois Chicago Chicago Illinois USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology University of Illinois Chicago Chicago Illinois USA
| |
Collapse
|
12
|
Sanchez-Carbonel A, Mondragón B, López-Chegne N, Peña-Tuesta I, Huayan-Dávila G, Blitchtein D, Carrillo-Ng H, Silva-Caso W, Aguilar-Luis MA, del Valle-Mendoza J. The effect of the efflux pump inhibitor Carbonyl Cyanide m-Chlorophenylhydrazone (CCCP) on the susceptibility to imipenem and cefepime in clinical strains of Acinetobacter baumannii. PLoS One 2021; 16:e0259915. [PMID: 34919563 PMCID: PMC8682880 DOI: 10.1371/journal.pone.0259915] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction In the last years the rapid expansion of multidrug-resistant A. baumannii strains have become a major health problem. Efflux pumps are a group of transport proteins that contribute to the development of antibiotic resistance. The aim of this study was to evaluate the effect of the efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) on the antimicrobial action of imipenem and cefepime on clinical strains of A. baumannii. Materials and methods A total of 49 non-duplicate clinical samples were collected during January through December of 2018 from patients hospitalized in the Hospital Regional Docente de Cajamarca. Of the 49 samples obtained, the confirmatory identification of A. baumannii was performed on 47 samples by molecular methods. The amplification of the blaOXA-51-like gene was carried out by polymerase chain reaction (PCR). The determination of the minimum inhibitory concentration (MIC) was calculated using the microdilution method in culture broth. The susceptibility to both antibiotics (cefepime and imipenem) was evaluated in the presence and absence of the inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Results A total of 47 strains of A. baumannii were isolated: 97.87% (46/47) were resistant to Imipenem, 2.13% (1/47) of them were classified as intermediate and none of these strains were susceptible. On the other hand, 51.06% (24/47) of isolates were resistant to cefepime; 19.15% (9/47) intermediate and 29.79% (14/47) susceptible. We considered a significant difference in antibiotic susceptibility if the MIC changed at least 4 dilutions, after the addition of the inhibitor. In the case of CCCP in addition to imipenem, 2.1% (1/47) had a significant change of 4 or more reductions in MIC, 59.6% (28/47) achieved a change equal or less than 3 dilutions and 17.0% (8/47) did not have any change. In the case of CCCP with cefepime the percentage of strains with the significant change of MIC was 8.5% (4/47). On the other hand, 53.2% (24/47) presented a reduction equal or less than 3 dilutions and 12.8% (6/47) did not show changes. Conclusion In conclusion, our results demonstrate that the use of CCCP may improve the antibiotic effect of imipenem and cefepime on clinical strains of A. baumannii. The relevance of this study is that it provides evidence that this efflux pump inhibitor may be an alternative treatment against multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Alejandra Sanchez-Carbonel
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Belén Mondragón
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | | | - Isaac Peña-Tuesta
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | | | - Dora Blitchtein
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Hugo Carrillo-Ng
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Wilmer Silva-Caso
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Miguel Angel Aguilar-Luis
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
- * E-mail: (JVM); (MAAL)
| | - Juana del Valle-Mendoza
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
- * E-mail: (JVM); (MAAL)
| |
Collapse
|
13
|
Clinical Status of Efflux Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10091117. [PMID: 34572699 PMCID: PMC8467137 DOI: 10.3390/antibiotics10091117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
Antibiotic efflux is a mechanism that is well-documented in the phenotype of multidrug resistance in bacteria. Efflux is considered as an early facilitating mechanism in the bacterial adaptation face to the concentration of antibiotics at the infectious site, which is involved in the acquirement of complementary efficient mechanisms, such as enzymatic resistance or target mutation. Various efflux pumps have been described in the Gram-negative bacteria most often encountered in infectious diseases and, in healthcare-associated infections. Some are more often involved than others and expel virtually all families of antibiotics and antibacterials. Numerous studies report the contribution of these pumps in resistant strains previously identified from their phenotypes. The authors characterize the pumps involved, the facilitating antibiotics and those mainly concerned by the efflux. However, today no study describes a process for the real-time quantification of efflux in resistant clinical strains. It is currently necessary to have at hospital level a reliable and easy method to quantify the efflux in routine and contribute to a rational choice of antibiotics. This review provides a recent overview of the prevalence of the main efflux pumps observed in clinical practice and provides an idea of the prevalence of this mechanism in the multidrug resistant Gram-negative bacteria. The development of a routine diagnostic tool is now an emergency need for the proper application of current recommendations regarding a rational use of antibiotics.
Collapse
|
14
|
Zhang T, Xu X, Xu CF, Bilya SR, Xu W. Mechanical ventilation-associated pneumonia caused by Acinetobacter baumannii in Northeast China region: analysis of genotype and drug resistance of bacteria and patients' clinical features over 7 years. Antimicrob Resist Infect Control 2021; 10:135. [PMID: 34526127 PMCID: PMC8444615 DOI: 10.1186/s13756-021-01005-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
Objective To investigate the clinical features and outcomes of patients with mechanical ventilation-associated pneumonia (VAP) caused by Acinetobacter baumannii (Ab), and to characterize the drug resistance of pathogenic strains and carbapenem resistance-associated genes. Methods Clinical data were collected from the PICU of Shengjing Hospital. Patients who met the diagnostic criteria of VAP and for whom Ab was a pathogen were selected as study participants. The patients were divided into carbapenem-resistant A. baumannii (CRAB) and carbapenem-sensitive A. baumannii (CSAB) groups. The genes closely associated with Ab resistance to carbapenems and the efflux pump-related genes were detected by real-time polymerase chain reaction, and results compared between the two groups. Results The total mechanical ventilation time and the administration time of antibiotics after a diagnosis of Ab infection were significantly higher in the CRAB group. And the CRAB group strains were only sensitive to amikacin, cephazolin, compound sulfamethoxazole, and tigecycline. Genetic test results indicated that IPM expression was not significantly different between two groups. The OXA-51 and OXA-23 in the CRAB group was markedly higher than that in the CSAB group, while OXA-24 expression was markedly lower. The expression of AdeABC and AdeFGH was significantly greater in the CRAB compared to CSAB group. Conclusion In pediatric patients with VAP caused by Ab infection, the detection rate of CRAB strains is far higher than that of CSAB strains; The abnormal expression of β-lactamase-producing genes (OXA-23, OXA-24, and OXA-51) and efflux pump-related genes (AdeABC and AdeFGH) is closely related to the production of CRAB.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang City, 110004, Liaoning Province, People's Republic of China
| | - Xiao Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang City, 110004, Liaoning Province, People's Republic of China
| | - Cai-Fang Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang City, 110004, Liaoning Province, People's Republic of China
| | - Salisu Rabiu Bilya
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang City, 110004, Liaoning Province, People's Republic of China
| | - Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang City, 110004, Liaoning Province, People's Republic of China.
| |
Collapse
|
15
|
Masoumi-Asl H, Heravi FS, Badamchi A, Khanaliha K, Farsimadan M, Naghadalipoor M, Tabasi M, Tabasi E, Tabatabaei A. Molecular characterization and antibiotic resistance pattern of isolated Acinetobacter baumannii in Iran. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Wareth G, Brandt C, Sprague LD, Neubauer H, Pletz MW. WGS based analysis of acquired antimicrobial resistance in human and non-human Acinetobacter baumannii isolates from a German perspective. BMC Microbiol 2021; 21:210. [PMID: 34243717 PMCID: PMC8272256 DOI: 10.1186/s12866-021-02270-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Acinetobacter baumannii ability to develop and acquire resistance makes it one of the most critical nosocomial pathogens globally. Whole-genome sequencing (WGS) was applied to identify the acquired or mutational variants of antimicrobial resistance (AMR) genes in 85 German A. baumannii strains utilizing Illumina technology. Additionally, the whole genome of 104 German isolates deposited in the NCBI database was investigated. Results In-silico analysis of WGS data revealed wide varieties of acquired AMR genes mediating resistance mostly to aminoglycosides, cephalosporins, carbapenems, sulfonamides, tetracyclines and macrolides. In the 189 analyzed genomes, the ant (3″)-IIa conferring resistance to aminoglycosides was the most frequent (55%), followed by blaADC.25 (38.6%) conferring resistance to cephalosporin, blaOXA-23 (29%) and the blaOXA-66 variant of the intrinsic blaOXA-51-likes (26.5%) conferring resistance to carbapenems, the sul2 (26%) conferring resistance to sulfonamides, the tet. B (19.5%) conferring resistance to tetracycline, and mph. E and msr. E (19%) conferring resistance to macrolides. blaTEM variants conferring resistance to cephalosporins were found in 12% of genomes. Thirteen variants of the intrinsic blaOXA-51 carbapenemase gene, blaOXA-510 and blaADC-25 genes were found in isolates obtained from dried milk samples. Conclusion The presence of strains harboring acquired AMR genes in dried milk raises safety concerns and highlights the need for changes in producing dried milk. Acquired resistance genes and chromosomal gene mutation are successful routes for disseminating AMR determinants among A. baumannii. Identification of chromosomal and plasmid-encoded AMR in the genome of A. baumannii may help understand the mechanism behind the genetic mobilization and spread of AMR genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02270-7.
Collapse
Affiliation(s)
- Gamal Wareth
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743, Jena, Germany. .,Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany. .,Department of Bacteriology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt.
| | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Lisa D Sprague
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743, Jena, Germany
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743, Jena, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Research Campus Infectognostics, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
17
|
Abstract
Class D β-lactamases are composed of 14 families and the majority of the member enzymes are included in the OXA family. The genes for class D β-lactamases are frequently identified in the chromosome as an intrinsic resistance determinant in environmental bacteria and a few of these are found in mobile genetic elements carried by clinically significant pathogens. The most dominant OXA family among class D β-lactamases is superheterogeneous and the family needs to have an updated scheme for grouping OXA subfamilies through phylogenetic analysis. The OXA enzymes, even the members within a subfamily, have a diverse spectrum of resistance. Such varied activity could be derived from their active sites, which are distinct from those of the other serine β-lactamases. Their substrate profile is determined according to the size and position of the P-, Ω- and β5-β6 loops, assembling the active-site channel, which is very hydrophobic. Also, amino acid substitutions occurring in critical structures may alter the range of hydrolysed substrates and one subfamily could include members belonging to several functional groups. This review aims to describe the current class D β-lactamases including the functional groups, occurrence types (intrinsic or acquired) and substrate spectra and, focusing on the major OXA family, a new model for subfamily grouping will be presented.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
O'Donnell JN, Putra V, Lodise TP. Treatment of patients with serious infections due to carbapenem-resistant Acinetobacter baumannii: How viable are the current options? Pharmacotherapy 2021; 41:762-780. [PMID: 34170571 DOI: 10.1002/phar.2607] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
This review critically appraises the published microbiologic and clinical data on the treatment of patients with carbapenem-resistant Acinetobacter baumannii infections. Despite being recognized as an urgent threat pathogen by the CDC and WHO, optimal treatment of patients with serious CRAB infections remains ill-defined. Few commercially available agents exhibit reliable in vitro activity against CRAB. Historically, polymyxins have been the most active agents in vitro, though interpretations of susceptibility data are difficult given issues surrounding MIC testing methodologies and lack of correlation between MICs and clinical outcomes. Most available preclinical and clinical data involve use of polymyxins, tetracyclines, and sulbactam, alone and in combination. As the number of viable treatment options is limited, combination therapy with a polymyxin is often used for patients with CRAB infections, despite the significant risk of nephrotoxicity. However, no treatment regimen has been found to reduce mortality, which exceeds 40% across most studies, or substantially improve clinical response. While some newer agents, such as eravacycline and cefiderocol, have demonstrated in vitro activity, clinical efficacy has not been fully established. New agents with clinically relevant activity against CRAB isolates and favorable toxicity profiles are sorely needed.
Collapse
Affiliation(s)
- J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Vibert Putra
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
19
|
Verma P, Tiwari M, Tiwari V. Efflux pumps in multidrug-resistant Acinetobacter baumannii: Current status and challenges in the discovery of efflux pumps inhibitors. Microb Pathog 2021; 152:104766. [PMID: 33545327 DOI: 10.1016/j.micpath.2021.104766] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Acinetobacter baumannii is an ESKAPE pathogen known to cause fatal nosocomial infections. With the surge of multidrug resistance (MDR) in the bacterial system, effective treatment measures have become very limited. The MDR in A. baumannii is contributed by various factors out of which efflux pumps have gained major attention due to their broad substrate specificity and wide distribution among bacterial species. The efflux pumps are involved in the MDR as well as contribute to other physiological processes in bacteria, therefore, it is critically important to inhibit efflux pumps in order to combat emerging resistance. The present review provides insight about the different efflux pump systems in A. baumannii and their role in multidrug resistance. A major focus has been put on the different strategies and alternate therapeutics to inhibit the efflux system. This includes use of different efflux pump inhibitors-natural, synthetic or combinatorial therapy. The use of phage therapy and nanoparticles for inhibiting efflux pumps have also been discussed here. Moreover, the present review provides the knowledge of barriers in development of efflux pump inhibitors (EPIs) and their approval for commercialization. Here, different prospectives have been discussed to improve the therapeutic development process and make it more compatible for clinical use.
Collapse
Affiliation(s)
- Privita Verma
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|
20
|
Noshadi S, Khodavandi A. Expression analysis of drug-resistant gene (blaOXA-51) in carbapenemases producing Acinetobacter baumannii treated with imipenem/sulbactam combination. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-97902020000419048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020; 8:microorganisms8060935. [PMID: 32575913 PMCID: PMC7355832 DOI: 10.3390/microorganisms8060935] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance is one of the biggest challenges for the clinical sector and industry, environment and societal development. One of the most important pathogens responsible for severe nosocomial infections is Acinetobacter baumannii, a Gram-negative bacterium from the Moraxellaceae family, due to its various resistance mechanisms, such as the β-lactamases production, efflux pumps, decreased membrane permeability and altered target site of the antibiotic. The enormous adaptive capacity of A. baumannii and the acquisition and transfer of antibiotic resistance determinants contribute to the ineffectiveness of most current therapeutic strategies, including last-line or combined antibiotic therapy. In this review, we will present an update of the antibiotic resistance profiles and underlying mechanisms in A. baumannii and the current progress in developing innovative strategies for combating multidrug-resistant A. baumannii (MDRAB) infections.
Collapse
|
22
|
Leal NC, Campos TL, Rezende AM, Docena C, Mendes-Marques CL, de Sá Cavalcanti FL, Wallau GL, Rocha IV, Cavalcanti CLB, Veras DL, Alves LR, Andrade-Figueiredo M, de Barros MPS, de Almeida AMP, de Morais MMC, Leal-Balbino TC, Xavier DE, de-Melo-Neto OP. Comparative Genomics of Acinetobacter baumannii Clinical Strains From Brazil Reveals Polyclonal Dissemination and Selective Exchange of Mobile Genetic Elements Associated With Resistance Genes. Front Microbiol 2020; 11:1176. [PMID: 32655514 PMCID: PMC7326025 DOI: 10.3389/fmicb.2020.01176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic bacterial pathogen infecting immunocompromised patients and has gained attention worldwide due to its increased antimicrobial resistance. Here, we report a comparative whole-genome sequencing and analysis coupled with an assessment of antibiotic resistance of 46 Acinetobacter strains (45 A. baumannii plus one Acinetobacter nosocomialis) originated from five hospitals from the city of Recife, Brazil, between 2010 and 2014. An average of 3,809 genes were identified per genome, although only 2,006 genes were single copy orthologs or core genes conserved across all sequenced strains, with an average of 42 new genes found per strain. We evaluated genetic distance through a phylogenetic analysis and MLST as well as the presence of antibiotic resistance genes, virulence markers and mobile genetic elements (MGE). The phylogenetic analysis recovered distinct monophyletic A. baumannii groups corresponding to five known (ST1, ST15, ST25, ST79, and ST113) and one novel ST (ST881, related to ST1). A large number of ST specific genes were found, with the ST79 strains having the largest number of genes in common that were missing from the other STs. Multiple genes associated with resistance to β-lactams, aminoglycosides and other antibiotics were found. Some of those were clearly mapped to defined MGEs and an analysis of those revealed known elements as well as a novel Tn7-Tn3 transposon with a clear ST specific distribution. An association of selected resistance/virulence markers with specific STs was indeed observed, as well as the recent spread of the OXA-253 carbapenemase encoding gene. Virulence genes associated with the synthesis of the capsular antigens were noticeably more variable in the ST113 and ST79 strains. Indeed, several resistance and virulence genes were common to the ST79 and ST113 strains only, despite a greater genetic distance between them, suggesting common means of genetic exchange. Our comparative analysis reveals the spread of multiple STs and the genomic plasticity of A. baumannii from different hospitals in a single metropolitan area. It also highlights differences in the spread of resistance markers and other MGEs between the investigated STs, impacting on the monitoring and treatment of Acinetobacter in the ongoing and future outbreaks.
Collapse
Affiliation(s)
- Nilma C Leal
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Túlio L Campos
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Antonio M Rezende
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Cássia Docena
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | | | - Felipe L de Sá Cavalcanti
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil.,Department of Pathology, Institute of Biological Sciences, University of Pernambuco, Recife, Brazil
| | - Gabriel L Wallau
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Igor V Rocha
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | | | - Dyana L Veras
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Lilian R Alves
- Department of Tropical Medicine, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | | | - Danilo E Xavier
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | | |
Collapse
|
23
|
Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020; 10:biom10050720. [PMID: 32384624 PMCID: PMC7277208 DOI: 10.3390/biom10050720] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due to drug resistance, and opportunities for infection turned it into one of the most important threats to human health. Some of the clinical manifestations of A. baumannii nosocomial infection are pneumonia; bloodstream infections; lower respiratory tract, urinary tract, and wound infections; burn infections; skin and soft tissue infections (including necrotizing fasciitis); meningitis; osteomyelitis; and endocarditis. A. baumannii has an extraordinary genetic plasticity that results in a high capacity to acquire antimicrobial resistance traits. In particular, acquisition of resistance to carbapenems, which are among the antimicrobials of last resort for treatment of multidrug infections, is increasing among A. baumannii strains compounding the problem of nosocomial infections caused by this pathogen. It is not uncommon to find multidrug-resistant (MDR, resistance to at least three classes of antimicrobials), extensively drug-resistant (XDR, MDR plus resistance to carbapenems), and pan-drug-resistant (PDR, XDR plus resistance to polymyxins) nosocomial isolates that are hard to treat with the currently available drugs. In this article we review the acquired resistance to carbapenems by A. baumannii. We describe the enzymes within the OXA, NDM, VIM, IMP, and KPC groups of carbapenemases and the coding genes found in A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Robert A. Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics; Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- WRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
- Correspondence: ; Tel.: +657-278-5263
| |
Collapse
|
24
|
Dagher M, Ruffin F, Marshall S, Taracila M, Bonomo RA, Reilly R, Fowler VG, Thaden JT. Case Report: Successful Rescue Therapy of Extensively Drug-Resistant Acinetobacter baumannii Osteomyelitis With Cefiderocol. Open Forum Infect Dis 2020; 7:ofaa150. [PMID: 32494581 PMCID: PMC7252278 DOI: 10.1093/ofid/ofaa150] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Cefiderocol is a novel catechol siderophore cephalosporin antibiotic developed to treat resistant gram-negative infections. We describe its successful use as rescue therapy, combined with surgical debridement, to treat a patient with osteomyelitis due to extensively drug-resistant Acinetobacter baumannii. Bacterial whole-genome sequencing identified the strain and antibiotic resistance determinants.
Collapse
Affiliation(s)
- Michael Dagher
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Felicia Ruffin
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Steven Marshall
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA.,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,United States of America CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Magdalena Taracila
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA.,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,United States of America CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA.,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,United States of America CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Rachel Reilly
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vance G Fowler
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joshua T Thaden
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
25
|
Abbasi E, Goudarzi H, Hashemi A, Chirani AS, Ardebili A, Goudarzi M, Sharahi JY, Davoudabadi S, Talebi G, Bostanghadiri N. Decreased carO gene expression and OXA-type carbapenemases among extensively drug-resistant Acinetobacter baumannii strains isolated from burn patients in Tehran, Iran. Acta Microbiol Immunol Hung 2020; 68:48-54. [PMID: 32365048 DOI: 10.1556/030.2020.01138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/04/2019] [Indexed: 01/18/2023]
Abstract
A major challenge in the treatment of infections has been the rise of extensively drug resistance (XDR) and multidrug resistance (MDR) in Acinetobacter baumannii. The goals of this study were to determine the pattern of antimicrobial susceptibility, blaOXA and carO genes among burn-isolated A. baumannii strains. In this study, 100 A. baumannii strains were isolated from burn patients and their susceptibilities to different antibiotics were determined using disc diffusion testing and broth microdilution. Presence of carO gene and OXA-type carbapenemase genes was tested by PCR and sequencing. SDS-PAGE was done to survey CarO porin and the expression level of carO gene was evaluated by Real-Time PCR. A high rate of resistance to meropenem (98%), imipenem (98%) and doripenem (98%) was detected. All tested A. baumannii strains were susceptible to colistin. The results indicated that 84.9% were XDR and 97.9% of strains were MDR. In addition, all strains bore blaOXA-51 like and blaOXA-23 like and carO genes. Nonetheless, blaOXA-58 like and blaOXA-24 like genes were harbored by 0 percent and 76 percent of strains, respectively. The relative expression levels of the carO gene ranged from 0.06 to 35.01 fold lower than that of carbapenem-susceptible A. baumannii ATCC19606 and SDS - PAGE analysis of the outer membrane protein showed that all 100 isolates produced CarO. The results of current study revealed prevalence of blaOXA genes and changes in carO gene expression in carbapenem resistant A.baumannii.
Collapse
Affiliation(s)
- Elham Abbasi
- 1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hossein Goudarzi
- 1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ali Hashemi
- 1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Salimi Chirani
- 1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Abdollah Ardebili
- 2Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran
- 3Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran
| | - Mehdi Goudarzi
- 1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Javad Yasbolaghi Sharahi
- 1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sara Davoudabadi
- 1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ghazaleh Talebi
- 1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Narjes Bostanghadiri
- 1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
26
|
Jeon J, Park JH, Yong D. Efficacy of bacteriophage treatment against carbapenem-resistant Acinetobacter baumannii in Galleria mellonella larvae and a mouse model of acute pneumonia. BMC Microbiol 2019; 19:70. [PMID: 30940074 PMCID: PMC6444642 DOI: 10.1186/s12866-019-1443-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/25/2019] [Indexed: 01/21/2023] Open
Abstract
Background Acinetobacter baumannii is an opportunistic pathogen that causes serious nosocomial infection in intensive care units. In particular, carbapenem-resistant A. baumannii (CRAB) strains have been increasing in the past decade, and they have caused major medical problems worldwide. In this study, a novel A. baumannii lytic phage, the YMC 13/03/R2096 ABA BP (phage Βϕ-R2096), which specifically causes the lysis of CRAB strains, was characterized in detail in vitro and in silico, and the in vivo effectiveness of phage therapy was evaluated using Galleria mellonella and a mouse model of acute pneumonia. Results The A. baumannii phage Βϕ-R2096 was isolated from sewage water using CRAB clinical strains selected from patients at a university hospital in South Korea. The complete genome of the phage Βϕ-R2096, which belongs to the Myoviridae family, was analyzed. Phage Βϕ-R2096 inhibited bacterial growth in a dose-dependent manner and exhibited high bacteriolytic activity at MOI = 10. In the evaluation of its therapeutic potential against CRAB clinical isolates using two in vivo models, phage Βϕ-R2096 increased the survival rates of both G. mellonella larvae (from 0 to 50% at 24 h) and mice (from 30% with MOI = 0.1 to 100% with MOI = 10 for 12 days) in post-infection of CRAB. In particular, phage Βϕ-R2096 strongly ameliorated histologic damage to infected lungs, with bacterial clearance in the lungs observed on day 3 postinfection in the mouse acute pneumonia model. Moreover, in vivo studies revealed no mortality or serious side effects in phage-treated groups. Conclusion The results of this study strongly suggest that phage Βϕ-R2096, a novel A. baumannii lytic phage, could be an alternative antibacterial agent to control CRAB infections. This study is the first report to compare in vivo evaluations (G. mellonella larvae and a mouse acute pneumonia model) of the therapeutic efficacy of a phage against CRAB infections. Electronic supplementary material The online version of this article (10.1186/s12866-019-1443-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jongsoo Jeon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Y, Seoul, Republic of Korea.
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwang-ju, 61186, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Y, Seoul, Republic of Korea. .,Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
27
|
D'Souza R, Pinto NA, Phuong NL, Higgins PG, Vu TN, Byun JH, Cho YL, Choi JR, Yong D. Phenotypic and Genotypic Characterization of Acinetobacter spp. Panel Strains: A Cornerstone to Facilitate Antimicrobial Development. Front Microbiol 2019; 10:559. [PMID: 30972044 PMCID: PMC6446969 DOI: 10.3389/fmicb.2019.00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/05/2019] [Indexed: 12/27/2022] Open
Abstract
Acinetobacter spp. have emerged as significant pathogens causing nosocomial infections. Treatment of these pathogens has become a major challenge to clinicians worldwide, due to their increasing tendency to antibiotic resistance. To address this, much revenue and technology are currently being dedicated toward developing novel drugs and antibiotic combinations to combat antimicrobial resistance. To address this issue, we have constructed a panel of Acinetobacter spp. strains expressing different antimicrobial resistance determinants such as narrow spectrum β-lactamases, extended-spectrum β-lactamases, OXA-type-carbapenemase, metallo-beta-lactamase, and over-expressed AmpC β-lactamase. Bacterial strains exhibiting different resistance phenotypes were collected between 2008 and 2013 from Severance Hospital, Seoul. Antimicrobial susceptibility was determined according to the CLSI guidelines using agar dilution method. Selected strains were sequenced using Ion Torrent PGM system, annotated using RAST server and analyzed using Geneious pro 8.0. Genotypic determinants, such as acquired resistance genes, changes in the expression of efflux pumps, mutations, and porin alternations, contributing to the relevant expressed phenotype were characterized. Isolates expressing ESBL phenotype consisted of bla PER-1 gene, the overproduction of intrinsic AmpC beta-lactamase associated with ISAba1 insertion, and carbapenem resistance associated with production of carbapenem-hydrolyzing Ambler class D β-lactamases, such as OXA-23, OXA-66, OXA-120, OXA-500, and metallo-β-lactamase, SIM-1. We have analyzed the relative expression of Ade efflux systems, and determined the sequences of their regulators to correlate with phenotypic resistance. Quinolone resistance-determining regions were analyzed to understand fluoroquinolone-resistance. Virulence factors responsible for pathogenesis were also identified. Due to several mutations, acquisition of multiple resistance genes and transposon insertion, phenotypic resistance decision scheme for for evaluating the resistance proved inaccurate, which highlights the urgent need for modification to this scheme. This complete illustration of mechanism contributing to specific resistance phenotypes can be used as a target for novel drug development. It can also be used as a reference strain in the clinical laboratory and for the evaluation of antibiotic efficacy for specific resistance mechanisms.
Collapse
Affiliation(s)
- Roshan D'Souza
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea.,J. Craig Venter Institute, Rockville, MD, United States
| | - Naina A Pinto
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Nguyen Le Phuong
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research, Partner site Bonn-Cologne, Germany
| | - Thao Nguyen Vu
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Jung-Hyun Byun
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea.,Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Young Lag Cho
- German Centre for Infection Research, Partner site Bonn-Cologne, Germany
| | - Jong Rak Choi
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongeun Yong
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
28
|
Molecular characterization of multidrug resistant strains of Acinetobacter baumannii isolated from pediatric intensive care unit in a Chinese tertiary hospital. BMC Infect Dis 2018; 18:614. [PMID: 30509192 PMCID: PMC6278058 DOI: 10.1186/s12879-018-3511-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
Background Acinetobacter baumannii is a nosocomial pathogen which is reported as a major cause of morbidity and mortality in intensive care units (ICUs). However, there is a lack of analysis focused on multidrug-resistant Acinetobacter baumannii (MDRAB) infection among patients from pediatric intensive care unit (PICU) in China. The aim of this study was to investigate the molecular characterization of MDRAB isolated from PICU. Methods In this study, 86 isolates of MDRAB were collected from PICU patients, from the First Affiliated Hospital of Sun Yat-sen University. The minimal inhibitory concentrations (MICs) of the isolates against common antibiotics were determined. The carbapenemase-encoding resistance genes and AdeABC-AdeRS efflux system genes of these isolates were detected by PCR. Real-time PCR was performed to determine the relative expression of the relevant efflux pumps. Results Among 86 strains of MDRAB, 76.7% (66/86) were carbapenem-resistant A. baumannii (CRAB). All 86 clinical isolates possessed the blaOXA-51 gene. BlaOXA-23 was detected as the second most frequent (90.7%) carbapenemase. Harboring AdeABC efflux pump genes was prevalent among the majority of the MDR isolates. Specially, the distributions of AdeABC-AdeRS efflux system genes in CRAB strains reached up to 90.0%. Compared with those of the CSAB strains, there was a statistically significant increasing distribution of the regulator AdeR and AdeS genes(p < 0.05). Moreover, CRAB strains showed significantly increased expression of AdeB(12.3- fold), but decreased expression of AdeR (3.3- fold)(p < 0.05). Conclusion The present study showed a high distribution of multiple genes, mainly the genes of blaOXA-23/blaOXA-51 carbapenemase and AdeABC efflux pump, is responsible to distinct drug-resistance in PICU. It is urgent to strengthen the molecular epidemiological surveillance of pediatric MDRAB isolates to prevent further outbreaks. This study is of significant help for the clinicians to make therapeutic decisions and manage infection control in PICU.
Collapse
|
29
|
Abdulzahra AT, Khalil MAF, Elkhatib WF. First report of colistin resistance among carbapenem-resistant Acinetobacter baumannii isolates recovered from hospitalized patients in Egypt. New Microbes New Infect 2018; 26:53-58. [PMID: 30224972 PMCID: PMC6138847 DOI: 10.1016/j.nmni.2018.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/29/2018] [Accepted: 08/03/2018] [Indexed: 12/25/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen that poses an increasing threat in the health-care community. Colistin is one of the promising options for treatment of multidrug-resistant A. baumannii. The current study investigated the emergence of colistin resistance among carbapenem-resistant strains of A. baumannii in Egypt. It involved identification of clinically recovered A. baumannii isolates using the VITEK-2 system, and screening of their antimicrobial susceptibilities using broth microdilution techniques. Characterizations of carbapenemase and 16S rRNA methyltransferase genes were performed using PCR. Colistin-resistance determinants were characterized by sequencing. Carbapenem-resistant A. baumannii isolates (n = 40) showed resistance to amoxicillin-clavulanic acid, cefotaxime, gentamicin and amikacin. Most isolates revealed resistance to ciprofloxacin (95%; n = 38) and co-trimoxazole (92.5%; n = 37). Resistance to tobramycin and doxycycline was 80% (n = 32) and 62.5% (n = 25), respectively. Only two A. baumannii isolates demonstrated colistin resistance. Carbapenemase activity was tested by modified Hodge test and 78% of isolates were positive. All isolates carried blaOXA-51-like genes whereas bla-OXA-23 was detected in 80% (n = 32) of isolates. Among 16S rRNA methylase genes, armA was detected in 22.5% (n = 9) of the isolates. Analyses of lpxA, lpxC, lpxD and pmrCAB genetic sequences suggest that colistin resistance could be attributed to mutations in pmrCAB genes. Alarmingly, colistin resistance was associated with high levels of resistance to other antimicrobials. The current findings represent a serious health-care problem capable of restraining future therapeutic options.
Collapse
Affiliation(s)
- Amani T Abdulzahra
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St Abbassia, Cairo, Egypt
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Walid F Elkhatib
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St Abbassia, Cairo, Egypt
| |
Collapse
|
30
|
Multiple substitutions lead to increased loop flexibility and expanded specificity in Acinetobacter baumannii carbapenemase OXA-239. Biochem J 2018; 475:273-288. [PMID: 29229762 DOI: 10.1042/bcj20170702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 11/17/2022]
Abstract
OXA-239 is a class D carbapenemase isolated from an Acinetobacter baumannii strain found in Mexico. This enzyme is a variant of OXA-23 with three amino acid substitutions in or near the active site. These substitutions cause OXA-239 to hydrolyze late-generation cephalosporins and the monobactam aztreonam with greater efficiency than OXA-23. OXA-239 activity against the carbapenems doripenem and imipenem is reduced ∼3-fold and 20-fold, respectively. Further analysis demonstrated that two of the substitutions (P225S and D222N) are largely responsible for the observed alteration of kinetic parameters, while the third (S109L) may serve to stabilize the protein. Structures of OXA-239 with cefotaxime, doripenem and imipenem bound as acyl-intermediates were determined. These structures reveal that OXA-239 has increased flexibility in a loop that contains P225S and D222N. When carbapenems are bound, the conformation of this loop is essentially identical with that observed previously for OXA-23, with a narrow active site that makes extensive contacts to the ligand. When cefotaxime is bound, the loop can adopt a different conformation that widens the active site to allow binding of that bulky drug. This alternate conformation is made possible by P225S and further stabilized by D222N. Taken together, these results suggest that the three substitutions were selected to expand the substrate specificity profile of OXA-23 to cephalosporins and monobactams. The loss of activity against imipenem, however, suggests that there may be limits to the plasticity of class D enzymes with regard to evolving active sites that can effectively bind multiple classes of β-lactam drugs.
Collapse
|
31
|
Lee HY, Hsu SY, Hsu JF, Chen CL, Wang YH, Chiu CH. Risk factors and molecular epidemiology of Acinetobacter baumannii bacteremia in neonates. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:367-376. [PMID: 28830746 DOI: 10.1016/j.jmii.2017.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Acinetobacter baumannii infections in neonates are not uncommon but rarely studied. METHODS Clinical and molecular epidemiology of 40 patients with A. baumannii bacteremia in the neonatal intensive care units (NICUs) of a medical center from 2004 to 2014 was analyzed. RESULTS Multi-drug resistance was found in only 3 isolates (7.5%). Sequence types (STs) of A. baumannii defined by multilocus sequencing typing were diverse, and 72.4% identified isolates belonged to novel STs. Majority of the isolates were susceptible to antibiotics tested. Among the 3 imipenem-resistant A. baumannii (IRAB) isolates, 2 (66.7%) belonged to ST684, a novel ST. All of the 3 isolates were susceptible to tigecycline and colistin. The predominant mechanism of imipenem resistance in these neonatal isolates is ISAba1-blaOXA-80, which has never been reported in Asia before. Most infected newborns were premature (95%), with very low birth weight (70% < 1500 g), prolonged intubation, usage of percutaneous central venous catheter (65%) and long-term usage of total parenteral nutrition or intravenous lipid (95%). IRAB infection, inappropriate initial therapy, 1-minute Apgar score and early onset infection within the first 10 days of life were found to correlate with mortality by log-rank test. Prior use of imipenem for at least 5 days and use of high frequency oscillation ventilation (HFOV) were statistically significant risk factors for acquiring IRAB infections. CONCLUSIONS To reduce mortality of IRAB infection, it is crucial to consider giving effective agents, such as colistin, in 2 days for high risk neonates who has been given imipenem or used HFOV.
Collapse
Affiliation(s)
- Hao-Yuan Lee
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Pediatrics, Wei-Gong Memorial Hospital, Miaoli, Taiwan
| | - Shih-Yun Hsu
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jen-Fu Hsu
- Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Hsin Wang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
32
|
Meropenem selection induced overproduction of the intrinsic carbapenemase as well as phenotype divergence in Acinetobacter baumannii. Int J Antimicrob Agents 2017; 50:419-426. [PMID: 28669829 DOI: 10.1016/j.ijantimicag.2017.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 01/24/2023]
Abstract
Acinetobacter baumannii 37662 is a carbapenem-susceptible isolate with blaOXA-51-like as the sole carbapenemase gene. Following selection with meropenem (MEM) at a subinhibitory concentration, two morphologically different mutants, designated 37662RM1 and 37662RM2, were obtained and characterised. Compared with the parent strain, resistant mutant 37662RM1 grew at a slower rate and had impaired capsule synthesis, whereas 37662RM2 grew fast and abolished capsule synthesis. In addition, the latter resistant mutant also lost pathogenicity but showed significantly enhanced biofilm formation. Transposition of the insertion sequence ISAba1 and formation of ISAba1-blaOXA-51-like was responsible for the upregulated expression of blaOXA-51-like. The blaOXA-51-like gene of A. baumannii 37662 is a close variant of blaOXA-138 and has been designated blaOXA-508. Overproduction of OXA-508 conferred major carbapenem resistance to these two mutants. Overall, these results indicate that a subinhibitory concentration of MEM can induce phenotype divergence together with carbapenem resistance in A. baumannii.
Collapse
|
33
|
Saranathan R, Kumari R, Kalaivani R, Suresh S, Rani A, Purty S, Prashanth K. Detection of ISAba1 in association with a novel allelic variant of the β-lactamase ADC-82 and class D β-lactamase genes mediating carbapenem resistance among the clinical isolates of MDR A. baumannii. J Med Microbiol 2017; 66:103-111. [PMID: 28260590 DOI: 10.1099/jmm.0.000395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The objective of the present study is to investigate the diverse resistance determinants, their association with insertion sequence mobile elements and predilection of a particular clone for such associations in Acinetobacter baumannii. METHODOLOGY Fifty-four consecutive isolates collected during 2011-2012 from a tertiary care hospital were subjected to susceptibility testing followed by PCR screening of commonly reported β-lactamases and 16S rRNA methyltransferase encoding genes. The integrity of resistance-nodulation-cell division efflux pump-related genes in their respective operons was also investigated. RESULTS β-Lactamase genes such as blaADC (100 %), blaOXA-23 (81 %), blaPER-1 (81 %), blaIMP-1 (31 %) and blaNDM-1 (15 %) were found to be present more frequently while blaVIM-2 and blaOXA-24 were not observed in our study population. ISAba1 was associated only with blaOXA-51-like like (30 %), blaOXA-23-like (55 %) and blaADC-like (33 %). armA was found in 87 % of isolates and ISAba1 linked with one novel variant of ADC, namely blaADC-82, which was identified to have 15 nucleotide differences with blaADC-79, and this finding is of much significance. In many isolates, efflux pump genes were not intact, resulting in severely altered effluxing functions. For the first time, we have identified ISAba1-mediated disruption of adeN among the isolates of ST 195B, which would have led to overexpression of AdeIJK efflux pump causing elevated resistance. Multilocus sequence typing revealed the predominance of CC 92B (IC-IIB) and CC 447B clonal complexes. CONCLUSION High incidence of IC-II clones, novel resistance determinants (ADC-82) and elevated resistance mediated by ISAba1 reported here will be of enormous importance while assessing the emergence of extremely resistant A. baumannii in India.
Collapse
Affiliation(s)
- Rajagopalan Saranathan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Rinki Kumari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Ramakrishnan Kalaivani
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute, Pondicherry, India.,Department of Clinical Microbiology, Pondicherry Institute of Medical Sciences (PIMS), Pondicherry, India
| | - Sah Suresh
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Anshu Rani
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Shashikala Purty
- Department of Clinical Microbiology, Pondicherry Institute of Medical Sciences (PIMS), Pondicherry, India
| | - K Prashanth
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
34
|
Zhu W, Wang H, Zhang JP. A comparison of adeB gene expression levels under conditions of induced resistance by different drugs in vitro in Acinetobacter baumannii. Exp Ther Med 2017; 13:2177-2182. [PMID: 28565825 PMCID: PMC5443273 DOI: 10.3892/etm.2017.4242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/06/2016] [Indexed: 11/05/2022] Open
Abstract
The present study was designed to analyze the difference of the adeB gene expression levels under conditions of induced resistance and to verify the significance of the AdeABC efflux pump in the in vitro induction of Acinetobacter baumannii (A. baumannii). Strains were isolated from blood or drainage samples in the First Hospital of China Medical University. The minimum inhibitory concentration (MIC) was determined by a broth microdilution method. In addition, an in vitro induction of drug-resistance tests was confirmed with the three drugs. The expression level of the adeB was determined by quantitative polymerase chain reaction (qPCR), and there were 19, 17 and 25 strains isolated from this test that were susceptible to amikacin, netilmicin and imipenem, respectively. Furthermore, 11, 15 and 8 stably resistant strains generated against amikacin, netilmicin and imipenem, respectively, by in vitro induction. The MIC values of all the imipenem-sensitive and imipenem-resistant strains decreased by no more than 2-fold under carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-containing conditions. The MIC values of 10 amikacin-resistant and 14 netilmicin-resistant strains decreased 4-fold or more under CCCP-containing conditions. Furthermore, qPCR revealed that none of the imipenem-sensitive or the imipenem-resistant strains expressed the adeB gene, but there were 10 amikacin-resistant and 5 netilmicin-resistant strains that expressed the adeB gene. In conclusion, the present study confirmed that in vitro induction of drug-resistance tests in sensitive A. baumannii strains could produce drug-resistance following long-term exposure to low doses of antibacterial drugs. In addition, amikacin and netilmicin are more prone to producing drug-resistance compared to imipenem in vitro. The results of the efflux phenotype indicate the possible application of CCCP in the inhibition of the efflux system in some drugs. The inconsistency between efflux phenotype and qPCR of adeB indicates that other mechanisms may also be included in the induction of drug-resistance that work with the active mechanism in order to increase drug resistance to common clinically-used antimicrobial drugs.
Collapse
Affiliation(s)
- Wan Zhu
- Department of Nosocomial Infection Control, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hui Wang
- Division of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jing-Ping Zhang
- Division of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
35
|
Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, Cha CJ, Jeong BC, Lee SH. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front Cell Infect Microbiol 2017; 7:55. [PMID: 28348979 PMCID: PMC5346588 DOI: 10.3389/fcimb.2017.00055] [Citation(s) in RCA: 517] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Moonhee Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji UniversityYongin, South Korea; DNA Analysis Division, Seoul Institute, National Forensic ServiceSeoul, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Il Kwon Bae
- Department of Dental Hygiene, College of Health and Welfare, Silla University Busan, South Korea
| | - Young Bae Kim
- Biotechnology Program, North Shore Community College Danvers, MA, USA
| | - Chang-Jun Cha
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University Anseong, South Korea
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
36
|
Characterization of BRP MBL, the Bleomycin Resistance Protein Associated with the Carbapenemase NDM. Antimicrob Agents Chemother 2017; 61:AAC.02413-16. [PMID: 28069656 DOI: 10.1128/aac.02413-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/04/2017] [Indexed: 12/24/2022] Open
Abstract
The metallo-β-lactamase NDM-1 is among the most worrisome resistance determinants and is spreading worldwide among Gram-negative bacilli. A bleomycin resistance gene, bleMBL, downstream of the blaNDM-1 gene has been associated with resistance almost systematically. Here, we characterized the corresponding protein, BRPMBL, conferring resistance to bleomycin, an antitumoral glycopeptide molecule. We have determined whether the expression of the blaNDM-1-bleMBL operon is inducible in the presence of carbapenems and/or bleomycin-like molecules using quantitative reverse transcription-PCR (qRT-PCR), determination of imipenem and zeocin MICs, and carbapenemase-specific activity assays. We showed that the blaNDM-1-bleMBL operon is constitutively expressed. Using electrophoretic mobility shift and DNA protection assays performed with purified glutathione S-transferase (GST)-BRPMBL, we demonstrated that BRPMBL is able to bind and sequester bleomycin-like molecules, thus preventing bleomycin-dependent DNA degradation. In silico modeling confirmed that the mechanism of action required the dimerization of the BRPMBL protein in order to sequester bleomycin and prevent DNA damage. BRPMBL acts specifically on bleomycin-like molecules since cloning and expression of bleMBL in Staphyloccoccus aureus did not confer cross-resistance to any other antimicrobial glycopeptides such as vancomycin and teicoplanin.
Collapse
|
37
|
June CM, Muckenthaler TJ, Schroder EC, Klamer ZL, Wawrzak Z, Powers RA, Szarecka A, Leonard DA. The structure of a doripenem-bound OXA-51 class D β-lactamase variant with enhanced carbapenemase activity. Protein Sci 2016; 25:2152-2163. [PMID: 27636561 DOI: 10.1002/pro.3040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 11/10/2022]
Abstract
OXA-51 is a class D β-lactamase that is thought to be the native carbapenemase of Acinetobacter baumannii. Many variants of OXA-51 containing active site substitutions have been identified from A. baumannii isolates, and some of these substitutions increase hydrolytic activity toward carbapenem antibiotics. We have determined the high-resolution structures of apo OXA-51 and OXA-51 with one such substitution (I129L) with the carbapenem doripenem trapped in the active site as an acyl-intermediate. The structure shows that acyl-doripenem adopts an orientation very similar to carbapenem ligands observed in the active site of OXA-24/40 (doripenem) and OXA-23 (meropenem). In the OXA-51 variant/doripenem complex, the indole ring of W222 is oriented away from the doripenem binding site, thereby eliminating a clash that is predicted to occur in wildtype OXA-51. Similarly, in the OXA-51 variant complex, L129 adopts a different rotamer compared to I129 in wildtype OXA-51. This alternative position moves its side chain away from the hydroxyethyl moiety of doripenem and relieves another potential clash between the enzyme and carbapenem substrates. Molecular dynamics simulations of OXA-51 and OXA-51 I129L demonstrate that compared to isoleucine, a leucine at this position greatly favors a rotamer that accommodates the ligand. These results provide a molecular justification for how this substitution generates enhanced binding affinity for carbapenems, and therefore helps explain the prevalence of this substitution in clinical OXA-51 variants.
Collapse
Affiliation(s)
- Cynthia M June
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| | | | - Emma C Schroder
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| | - Zachary L Klamer
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan, 49401
| | - Zdzislaw Wawrzak
- Life Sciences Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, Illinois, 60439
| | - Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| | - Agnieszka Szarecka
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan, 49401
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| |
Collapse
|
38
|
Clinical Variants of the Native Class D β-Lactamase of Acinetobacter baumannii Pose an Emerging Threat through Increased Hydrolytic Activity against Carbapenems. Antimicrob Agents Chemother 2016; 60:6155-64. [PMID: 27480863 DOI: 10.1128/aac.01277-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
The threat posed by the chromosomally encoded class D β-lactamase of Acinetobacter baumannii (OXA-51/66) has been unclear, in part because of its relatively low affinity and turnover rate for carbapenems. Several hundred clinical variants of OXA-51/66 have been reported, many with substitutions of active-site residues. We determined the kinetic properties of OXA-66 and five clinical variants with respect to a wide variety of β-lactam substrates. The five variants displayed enhanced activity against carbapenems and in some cases against penicillins, late-generation cephalosporins, and the monobactam aztreonam. Molecular dynamics simulations show that in OXA-66, P130 inhibits the side-chain rotation of I129 and thereby prevents doripenem binding because of steric clash. A single amino acid substitution at this position (P130Q) in the variant OXA-109 greatly enhances the mobility of both I129 and a key active-site tryptophan (W222), thereby facilitating carbapenem binding. This expansion of substrate specificity represents a very worrisome development for the efficacy of β-lactams against this troublesome pathogen.
Collapse
|
39
|
Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii. Microorganisms 2016; 4:microorganisms4030029. [PMID: 27681923 PMCID: PMC5039589 DOI: 10.3390/microorganisms4030029] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022] Open
Abstract
Horizontal gene transfer (HGT) is a driving force to the evolution of bacteria. The fast emergence of antimicrobial resistance reflects the ability of genetic adaptation of pathogens. Acinetobacter baumannii has emerged in the last few decades as an important opportunistic nosocomial pathogen, in part due to its high capacity of acquiring resistance to diverse antibiotic families, including to the so-called last line drugs such as carbapenems. The rampant selective pressure and genetic exchange of resistance genes hinder the effective treatment of resistant infections. A. baumannii uses all the resistance mechanisms to survive against carbapenems but production of carbapenemases are the major mechanism, which may act in synergy with others. A. baumannii appears to use all the mechanisms of gene dissemination. Beyond conjugation, the mostly reported recent studies point to natural transformation, transduction and outer membrane vesicles-mediated transfer as mechanisms that may play a role in carbapenemase determinants spread. Understanding the genetic mobilization of carbapenemase genes is paramount in preventing their dissemination. Here we review the carbapenemases found in A. baumannii and present an overview of the current knowledge of contributions of the various HGT mechanisms to the molecular epidemiology of carbapenem resistance in this relevant opportunistic pathogen.
Collapse
|
40
|
Aly MM, Abu Alsoud NM, Elrobh MS, Al Johani SM, Balkhy HH. High prevalence of the PER-1 gene among carbapenem-resistant Acinetobacter baumannii in Riyadh, Saudi Arabia. Eur J Clin Microbiol Infect Dis 2016; 35:1759-1766. [PMID: 27527351 DOI: 10.1007/s10096-016-2723-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022]
Abstract
The prevalence of carbapenem-resistant Acinetobacter baumannii in Saudi Arabia and their resistance genetic mechanisms are yet to be identified. We studied the prevalence and genetic diversity of extended-spectrum beta-lactamase genes, particularly the PER-1 gene, among carbapenem-resistant A. baumannii strains from patients at a tertiary care hospital in Riyadh, Saudi Arabia between 2006 and 2014. Fresh subcultured samples were tested for antimicrobial susceptibility minimum inhibitory concentration (MIC). Total genomic DNA was extracted from each isolate and further used for polymerase chain reaction (PCR) genotyping, sequence-based typing (SBT) of PER-1 and OXA-51-like gene, and multilocus sequence typing (MLST) of positive isolates. Randomly selected clinical isolates (n = 100) were subjected to MLST. A total of 503 isolates were characterized as multidrug-resistant (MDR) using the MIC. Isolates were further PCR tested for bla -TEM and bla -PER-1 resistance genes (n = 503). The genotyping results showed that 68/503 (14 %) isolates were positive to bla TEM. The genotyping results of PER-1-like genes showed that 384/503 (76.3 %) were positive among MDR Acinetobacter isolates. Based on SBT, the majority of these isolates were clustered into three main groups including isolates harboring PER-1: AB11 (bla -PER-1), isolate AB16 (bla -PER-1), and, finally, the plasmid pAB154 (bla -PER-7). Remarkably, many isolates were concealing the PER-1 gene and harboring the TEM resistance genes as well. MLST results for selected isolates (n = 100) identified four main sequence types (STs: 2, 19, 20, and 25) and four novel isolates (ST 486-489). We report 76.3 % prevalence of the PER-1 resistance gene among Acinetobacter clinical isolates from Riyadh, Saudi Arabia. Further work is needed to explore the clinical risks and patient outcome with such resistance related to healthcare-associated infections and investigate the genetic and molecular mechanisms that confer the MDR phenotype.
Collapse
Affiliation(s)
- M M Aly
- National Guard Health Affairs, King Abdullah International Medical Research Center (KAIMRC), P.O. Box 22490, Riyadh, 11426, Saudi Arabia. .,Department of Pathology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - N M Abu Alsoud
- National Guard Health Affairs, King Abdullah International Medical Research Center (KAIMRC), P.O. Box 22490, Riyadh, 11426, Saudi Arabia
| | - M S Elrobh
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - S M Al Johani
- Department of Pathology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - H H Balkhy
- National Guard Health Affairs, King Abdullah International Medical Research Center (KAIMRC), P.O. Box 22490, Riyadh, 11426, Saudi Arabia.,Department of Infection Prevention and Control, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Salimizand H, Menbari S, Ramazanzadeh R, Khonsha M, Saleh Vahedi M. DNA fingerprinting and antimicrobial susceptibility pattern of clinical and environmentalAcinetobacter baumanniiisolates: a multicentre study. J Chemother 2016; 28:277-83. [DOI: 10.1080/1120009x.2016.1175706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Sung JY. Clonal Dissemination of Multidrug Resistant Acinetobacter baumanniiIsolates Harboring blaOXA-23at One University Hospital in Daejeon, Korea. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2016. [DOI: 10.15324/kjcls.2016.48.2.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ji Youn Sung
- Department of Biomedical Laboratory Science, Far East University, Eumseong, Korea
| |
Collapse
|
43
|
Abstract
The OXA β-lactamases were among the earliest β-lactamases detected; however, these molecular class D β-lactamases were originally relatively rare and always plasmid mediated. They had a substrate profile limited to the penicillins, but some became able to confer resistance to cephalosporins. From the 1980s onwards, isolates of Acinetobacter baumannii that were resistant to the carbapenems emerged, manifested by plasmid-encoded β-lactamases (OXA-23, OXA-40, and OXA-58) categorized as OXA enzymes because of their sequence similarity to earlier OXA β-lactamases. It was soon found that every A. baumannii strain possessed a chromosomally encoded OXA β-lactamase (OXA-51-like), some of which could confer resistance to carbapenems when the genetic environment around the gene promoted its expression. Similarly, Acinetobacter species closely related to A. baumannii also possessed their own chromosomally encoded OXA β-lactamases; some could be transferred to A. baumannii, and they formed the basis of transferable carbapenem resistance in this species. In some cases, the carbapenem-resistant OXA β-lactamases (OXA-48) have migrated into the Enterobacteriaceae and are becoming a significant cause of carbapenem resistance. The emergence of OXA enzymes that can confer resistance to carbapenems, particularly in A. baumannii, has transformed these β-lactamases from a minor hindrance into a major problem set to demote the clinical efficacy of the carbapenems.
Collapse
|
44
|
Tiwari M, Roy R, Tiwari V. Screening of Herbal-Based Bioactive Extract Against Carbapenem-Resistant Strain of Acinetobacter baumannii. Microb Drug Resist 2016; 22:364-71. [PMID: 26910023 DOI: 10.1089/mdr.2015.0270] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Acinetobacter baumannii is grouped in the ESKAPE pathogens by Infectious Disease Society of America, which is linked to high degree of morbidity, mortality, and increased costs. The high level of acquired and intrinsic resistance mechanisms of these bacteria makes it an urgent requirement to find a suitable alternative to carbapenem, a commonly prescribed drug for Acinetobacter infection. In this study, methanolic extracts of six medicinal plants were subjected to phytochemical screening and their antimicrobial activity was tested against two strains of A. baumannii (ATCC 19606, carbapenem-sensitive strain, and RS 307, carbapenem-resistant strain). Synergistic effect of the plant extracts and antibiotics was also tested. Bael or Aegle marmelos contains tannin, phenol, terpenoids, glycoside, alkaloids, coumarine, steroid, and quinones. Flowers of madar or Calotropis procera possess tannin, phenol, terpenoids, glycoside, quinone, anthraquinone, anthocyanin, coumarin, and steroid. An inhibitory growth curve was seen for both the bacterial strains when treated with A. marmelos, Curcuma longa, and leaves and flowers of C. procera. Antibiotics alone showed a small zone of inhibition, but when used with herbal extracts they exhibited larger zone of inhibition. Synergistic effect of A. marmelos and imipenem was the best against both the strains of A. baumannii. From this study, it can be concluded that extracts from A. marmelos and leaves and flowers of C. procera exhibited the most effective antibacterial activity. These herbal extracts may be used to screen the bioactive compound against the carbapenem-resistant strain of A. baumannii.
Collapse
Affiliation(s)
- Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan , Ajmer, India
| | - Ranita Roy
- Department of Biochemistry, Central University of Rajasthan , Ajmer, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan , Ajmer, India
| |
Collapse
|
45
|
Sen B, Joshi S. Studies on Acinetobacter baumannii
involving multiple mechanisms of carbapenem resistance. J Appl Microbiol 2016; 120:619-29. [DOI: 10.1111/jam.13037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/26/2023]
Affiliation(s)
- B. Sen
- Department of Microbiology and Immunology; Center for Surgical Infections and Biofilms; Drexel University; Philadelphia 19102 PA USA
| | - S.G. Joshi
- Department of Microbiology and Immunology; Center for Surgical Infections and Biofilms; Drexel University; Philadelphia 19102 PA USA
- School of Biomedical Engineering, Science and Health Systems; Center for Surgical Infections and Biofilms; Drexel University; Philadelphia 19102 PA USA
| |
Collapse
|
46
|
Prevalence of Genes of OXA-23 Carbapenemase and AdeABC Efflux Pump Associated with Multidrug Resistance of Acinetobacter baumannii Isolates in the ICU of a Comprehensive Hospital of Northwestern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:10079-92. [PMID: 26308027 PMCID: PMC4555330 DOI: 10.3390/ijerph120810079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 01/25/2023]
Abstract
The objective of this study was to explore the molecular epidemiology and the genetic support of clinical multidrug resistant (MDR) Acinetobacter baumannii (A. baumannii) isolates in an ICU ward of a comprehensive hospital. A total of 102 non-duplicate drug-resistant A. baumannii isolates were identified and 93 (91.1%) of them were MDR strains. Molecular analysis demonstrated that carbapenemase genes blaOXA-23 and blaOXA-51 were presented in all 93 MDR isolates (100%), but other carbapenemase genes, including blaOXA-24, blaOXA-58, blaIMP-1, blaIMP-4, blaSIM, and blaVIM genes were completely absent in all isolates. In addition, genes of AdeABC efflux system were detected in 88.2% (90/102) isolates. Interestingly, an addition to efflux pump inhibitor, reserpine could significantly enhance the susceptibility of MDR isolates to moxifloxacin, cefotaxime, and imipenem (p < 0.01). Clonal relationship analysis further grouped these clinical drug-resistant isolates into nine clusters, and the MDR strains were mainly in clusters A, B, C, and D, which include 16, 13, 25, and 15 isolates, respectively. This study demonstrated that clinical isolates carrying carbapenemase-encoding genes blaOXA-23 and AdeABC efflux pump genes are the main prevalent MDR A. baumannii, and the co-expression of oxacillinase and efflux pump proteins are thus considered to be the important reason for the prevalence of this organism in the ICU of this hospital.
Collapse
|
47
|
Tiwari V, Roy R, Tiwari M. Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens. Front Microbiol 2015; 6:618. [PMID: 26150810 PMCID: PMC4471432 DOI: 10.3389/fmicb.2015.00618] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/03/2015] [Indexed: 11/27/2022] Open
Abstract
Bacterial pathogens cause a number of lethal diseases. Opportunistic bacterial pathogens grouped into ESKAPE pathogens that are linked to the high degree of morbidity, mortality and increased costs as described by Infectious Disease Society of America. Acinetobacter baumannii is one of the ESKAPE pathogens which cause respiratory infection, pneumonia and urinary tract infections. The prevalence of this pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source and resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. The high level of acquired and intrinsic carbapenem resistance mechanisms acquired by these bacteria makes their eradication difficult. The pharmaceutical industry has no solution to this problem. Hence, it is an urgent requirement to find a suitable alternative to carbapenem, a commonly prescribed drug for Acinetobacter infection. In order to do this, here we have made an effort to review the active compounds of plants that have potent antibacterial activity against many bacteria including carbapenem resistant strain of A. baumannii. We have also briefly highlighted the separation and identification methods used for these active compounds. This review will help researchers involved in the screening of herbal active compounds that might act as a replacement for carbapenem.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan Ajmer, India
| | - Ranita Roy
- Department of Biochemistry, Central University of Rajasthan Ajmer, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan Ajmer, India
| |
Collapse
|
48
|
Saranathan R, Vasanth V, Vasanth T, Shabareesh PRV, Shashikala P, Devi CS, Kalaivani R, Asir J, Sudhakar P, Prashanth K. Emergence of carbapenem non-susceptible multidrug resistantAcinetobacter baumanniistrains of clonal complexes 103Band 92Bharboring OXA-type carbapenemases and metallo-β-lactamases in Southern India. Microbiol Immunol 2015; 59:277-84. [DOI: 10.1111/1348-0421.12252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 01/13/2015] [Accepted: 02/23/2015] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Thamodharan Vasanth
- Department of Biotechnology; School of Life Sciences; Pondicherry University
| | | | - P. Shashikala
- Department of Clinical Microbiology; Pondicherry Institute of Medical Sciences; Pondicherry India
| | - Chandrakesan Sheela Devi
- Department of Clinical Microbiology; Pondicherry Institute of Medical Sciences; Pondicherry India
| | - Ramakrishnan Kalaivani
- Department of Clinical Microbiology; Pondicherry Institute of Medical Sciences; Pondicherry India
| | - Johny Asir
- Department of Clinical Microbiology; Pondicherry Institute of Medical Sciences; Pondicherry India
| | - Pagal Sudhakar
- Department of Biotechnology; School of Life Sciences; Pondicherry University
| | - K Prashanth
- Department of Biotechnology; School of Life Sciences; Pondicherry University
| |
Collapse
|
49
|
Yang YS, Lee YT, Wang YC, Chiu CH, Kuo SC, Sun JR, Yin T, Chen TL, Lin JC, Fung CP, Chang FY. Molecular epidemiology of carbapenem non-susceptible Acinetobacter nosocomialis in a medical center in Taiwan. INFECTION GENETICS AND EVOLUTION 2015; 31:305-11. [PMID: 25724091 DOI: 10.1016/j.meegid.2015.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 02/07/2023]
Abstract
The mechanism by which carbapenem non-susceptible Acinetobacter nosocomialis (CNSAN) is disseminated is rarely described in the literature. In this study, we delineated the molecular epidemiology of CNSAN isolated from patients in a medical center in Taiwan. Fifty-four non-duplicate bloodstream isolates of CNSAN were collected at the Taipei Veterans General Hospital between 2001 and 2007. Pulsed-field gel electrophoresis (PFGE) was performed to determine their clonal relationship. Carbapenem-resistance genes and associated genetic structures were detected by polymerase chain reaction (PCR) mapping. Southern hybridization was performed to determine the plasmid location of carbapenem-resistance genes. Transmissibility of these genes to Acinetobacterbaumannii was demonstrated by conjugation tests. The overall carbapenem non-susceptibility rate among A. nosocomialis isolates during the study period was 21.6% (54/250). PFGE revealed three major pulsotypes: H (n=23), I (n=10), and K (n=8). The most common carbapenem-resistance gene was blaOXA-58 (43/54, 79.6%), containing an upstream insertion sequence IS1006 and a truncated ISAba3 (IS1006-ΔISAba3-like-blaOXA-58). All isolates belonging to the pulsotypes H, I, and K carried plasmid located IS1006-ΔISAba3-like-blaOXA-58. A common plasmid carrying ISAba1-blaOXA-82 was found in six isolates, which belonged to five pulsotypes. A type 1 integron that carried blaIMP-1 was detected in different plasmids of seven isolates, which belonged to five pulsotypes. Plasmids carrying these carbapenem-resistant determinants were transmissible from A. nosocomialis to A. baumannii via conjugation. In this medical center, CNSAN mainly emerged through clonal dissemination; propagation of plasmids and integrons carrying carbapenem-resistant determinants played a minor role. This study showed that plasmids carrying carbapenem-resistant determinants are transmissible from A. nosocomialis to A. baumannii.
Collapse
Affiliation(s)
- Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Tzu Lee
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Chih Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Hsiang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chen Kuo
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Jun-Ren Sun
- Clinical Microbiology Laboratory Division of Clinical Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ti Yin
- Department of Nursing, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; School of Nursing, National Yang-Ming University, Taipei, Taiwan
| | - Te-Li Chen
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Infectious Diseases, Cheng-Hsin General Hospital, Taipei, Taiwan.
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Phone Fung
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
50
|
Lin MF, Lan CY. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J Clin Cases 2014; 2:787-814. [PMID: 25516853 PMCID: PMC4266826 DOI: 10.12998/wjcc.v2.i12.787] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 08/25/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is undoubtedly one of the most successful pathogens in the modern healthcare system. With invasive procedures, antibiotic use and immunocompromised hosts increasing in recent years, A. baumannii has become endemic in hospitals due to its versatile genetic machinery, which allows it to quickly evolve resistance factors, and to its remarkable ability to tolerate harsh environments. Infections and outbreaks caused by multidrug-resistant A. baumannii (MDRAB) are prevalent and have been reported worldwide over the past twenty or more years. To address this problem effectively, knowledge of species identification, typing methods, clinical manifestations, risk factors, and virulence factors is essential. The global epidemiology of MDRAB is monitored by persistent surveillance programs. Because few effective antibiotics are available, clinicians often face serious challenges when treating patients with MDRAB. Therefore, a deep understanding of the resistance mechanisms used by MDRAB can shed light on two possible strategies to combat the dissemination of antimicrobial resistance: stringent infection control and antibiotic treatments, of which colistin-based combination therapy is the mainstream strategy. However, due to the current unsatisfying therapeutic outcomes, there is a great need to develop and evaluate the efficacy of new antibiotics and to understand the role of other potential alternatives, such as antimicrobial peptides, in the treatment of MDRAB infections.
Collapse
|