1
|
Segovia X, Srivastava B, Serrato-Arroyo S, Guerrero A, Huijben S. Assessing fitness costs in malaria parasites: a comprehensive review and implications for drug resistance management. Malar J 2025; 24:65. [PMID: 40025552 PMCID: PMC11871665 DOI: 10.1186/s12936-025-05286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
Artemisinin-based combination therapy (ACT) remains a broadly effective anti-malarial drug combination, but the emergence of resistance is threatening its effectiveness. Limiting the spread of these drug-resistant parasites and delaying the emergence of resistance in new areas are of high priority. Understanding the evolution of resistance relies on discerning the fitness costs and benefits associated with resistance mutations. If the cost associated with resistance in an untreated host is sufficiently large relative to the benefit of resistance in a treated host, then the spread of resistance can be mitigated by ensuring sufficient hosts free from that active pharmaceutical ingredient. There is no straightforward way to measure these fitness costs, and each approach that has been used has its limitations. Here, the evidence of fitness costs as measured using field data, animal models, and in vitro models is reviewed for three of the main current or past first-line treatments for malaria: chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artemisinin derivatives (ART). Despite the difficulties of assessing fitness costs, there is a good amount of evidence of fitness costs in drug-resistant Plasmodium falciparum parasites. The most persuasive evidence comes from resistance reversal observed following the cessation of the use of chloroquine. Comparable evidence cannot be obtained for SP- and ART-resistant parasites, due to the absence of complete cessation of these drugs in the field. Data from in vitro and animal models are variable. While fitness costs are often observed, their presence is not universal across all resistant strains. The extent and nature of these fitness costs can vary greatly depending on the specific genetic factors involved and the ecological context in which the parasites evolve. As a result, it is essential to avoid making broad generalizations about the prevalence or impact of fitness costs in drug-resistant malaria parasites. Focusing on fitness costs as a vulnerability in resistant parasites can guide their evolutionary trajectory towards minimizing their fitness. By accurately predicting these costs, efforts to extend the effectiveness of anti-malarials can be enhanced, limiting resistance evolution and advancing malaria control and elimination goals.
Collapse
Affiliation(s)
- Xyonane Segovia
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Sergio Serrato-Arroyo
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ashley Guerrero
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Computational and Modeling Sciences Center, Simon A. Levin Mathematical, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Li Q, Vetter L, Veith Y, Christ E, Végvári Á, Sahin C, Ribacke U, Wahlgren M, Ankarklev J, Larsson O, Chun-Leung Chan S. tRNA regulation and amino acid usage bias reflect a coordinated metabolic adaptation in Plasmodium falciparum. iScience 2024; 27:111167. [PMID: 39524331 PMCID: PMC11544085 DOI: 10.1016/j.isci.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
An adaptive feature of malaria-causing parasites is the digestion of host hemoglobin (HB) to acquire amino acids (AAs). Here, we describe a link between nutrient availability and translation dependent regulation of gene expression as an adaptive strategy. We show that tRNA expression in Plasmodium falciparum does not match the decoding need expected for optimal translation. A subset of tRNAs decoding AAs that are insufficiently provided by HB are lowly expressed, wherein the abundance of a protein-coding transcript is negatively correlated with the decoding requirement of these tRNAs. Proliferation-related genes have evolved a high requirement of these tRNAs, thereby proliferation can be modulated by repressing protein synthesis of these genes during nutrient stress. We conclude that the parasite modulates translation elongation by maintaining a discordant tRNA profile to exploit variations in AA-composition among genes as an adaptation strategy. This study exemplifies metabolic adaptation as an important driving force for protein evolution.
Collapse
Affiliation(s)
- Qian Li
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Leonie Vetter
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ylva Veith
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elena Christ
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chun-Leung Chan
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Behrens HM, Schmidt S, Henshall IG, López-Barona P, Peigney D, Sabitzki R, May J, Maïga-Ascofaré O, Spielmann T. Impact of different mutations on Kelch13 protein levels, ART resistance, and fitness cost in Plasmodium falciparum parasites. mBio 2024; 15:e0198123. [PMID: 38700363 PMCID: PMC11237660 DOI: 10.1128/mbio.01981-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Reduced susceptibility to ART, the first-line treatment against malaria, is common in South East Asia (SEA). It is associated with point mutations, mostly in kelch13 (k13) but also in other genes, like ubp1. K13 and its compartment neighbors (KICs), including UBP1, are involved in endocytosis of host cell cytosol. We tested 135 mutations in KICs but none conferred ART resistance. Double mutations of k13C580Y with k13R539T or k13C580Y with ubp1R3138H, did also not increase resistance. In contrast, k13C580Y parasites subjected to consecutive RSAs did, but the k13 sequence was not altered. Using isogenic parasites with different k13 mutations, we found correlations between K13 protein amount, resistance, and fitness cost. Titration of K13 and KIC7 indicated that the cellular levels of these proteins determined resistance through the rate of endocytosis. While fitness cost of k13 mutations correlated with ART resistance, ubp1R3138H caused a disproportionately higher fitness cost. IMPORTANCE Parasites with lowered sensitivity to artemisinin-based drugs are becoming widespread. However, even in these "resistant" parasites not all parasites survive treatment. We found that the proportion of surviving parasites correlates with the fitness cost of resistance-inducing mutations which might indicate that the growth disadvantages prevents resistance levels where all parasites survive treatment. We also found that combining two common resistance mutations did not increase resistance levels. However, selection through repeated ART-exposure did, even-though the known resistance genes, including k13, were not further altered, suggesting other causes of increased resistance. We also observed a disproportionally high fitness cost of a resistance mutation in resistance gene ubp1. Such high fitness costs may explain why mutations in ubp1 and other genes functioning in the same pathway as k13 are rare. This highlights that k13 mutations are unique in their ability to cause resistance at a comparably low fitness cost.
Collapse
Affiliation(s)
- Hannah M. Behrens
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sabine Schmidt
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Isabelle G. Henshall
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Patricia López-Barona
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Domitille Peigney
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ricarda Sabitzki
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jürgen May
- Infectious Disease Epidemiology Department, Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
| | - Oumou Maïga-Ascofaré
- Infectious Disease Epidemiology Department, Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
| | - Tobias Spielmann
- Malaria Cell Biology, Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
4
|
Lopez JG, Hein Y, Erez A. Grow now, pay later: When should a bacterium go into debt? Proc Natl Acad Sci U S A 2024; 121:e2314900121. [PMID: 38588417 PMCID: PMC11032434 DOI: 10.1073/pnas.2314900121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/03/2024] [Indexed: 04/10/2024] Open
Abstract
Microbes grow in a wide variety of environments and must balance growth and stress resistance. Despite the prevalence of such trade-offs, understanding of their role in nonsteady environments is limited. In this study, we introduce a mathematical model of "growth debt," where microbes grow rapidly initially, paying later with slower growth or heightened mortality. We first compare our model to a classical chemostat experiment, validating our proposed dynamics and quantifying Escherichia coli's stress resistance dynamics. Extending the chemostat theory to include serial-dilution cultures, we derive phase diagrams for the persistence of "debtor" microbes. We find that debtors cannot coexist with nondebtors if "payment" is increased mortality but can coexist if it lowers enzyme affinity. Surprisingly, weak noise considerably extends the persistence of resistance elements, pertinent for antibiotic resistance management. Our microbial debt theory, broadly applicable across many environments, bridges the gap between chemostat and serial dilution systems.
Collapse
Affiliation(s)
- Jaime G. Lopez
- Department of Bioengineering, Stanford University, Stanford, CA94305
- Racah Institute of Physics, The Hebrew University, Jerusalem9190401, Israel
- Department of Applied Physics, Stanford University, Stanford, CA94305
| | - Yaïr Hein
- Institute for Theoretical Physics, Utrecht University, Utrecht3584 CC, Netherlands
| | - Amir Erez
- Racah Institute of Physics, The Hebrew University, Jerusalem9190401, Israel
| |
Collapse
|
5
|
Henshall IG, Spielmann T. Critical interdependencies between Plasmodium nutrient flux and drugs. Trends Parasitol 2023; 39:936-944. [PMID: 37716852 PMCID: PMC10580322 DOI: 10.1016/j.pt.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Nutrient import and waste efflux are critical dependencies for intracellular Plasmodium falciparum parasites. Nutrient transport proteins are often lineage specific and can provide unique targets for antimalarial drug development. P. falciparum nutrient transport pathways can be a double-edged sword for the parasite, not only mediating the import of nutrients and excretion of waste products but also providing an access route for drugs. Here we briefly summarise the nutrient acquisition pathways of intracellular P. falciparum blood-stage parasites and then highlight how these pathways influence many aspects relevant to antimalarial drugs, resulting in complex and often underappreciated interdependencies.
Collapse
Affiliation(s)
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
6
|
Fierro MA, Hussain T, Campin LJ, Beck JR. Knock-sideways by inducible ER retrieval enables a unique approach for studying Plasmodium-secreted proteins. Proc Natl Acad Sci U S A 2023; 120:e2308676120. [PMID: 37552754 PMCID: PMC10433460 DOI: 10.1073/pnas.2308676120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Malaria parasites uniquely depend on protein secretion for their obligate intracellular lifestyle but approaches for dissecting Plasmodium-secreted protein functions are limited. We report knockER, a unique DiCre-mediated knock-sideways approach to sequester secreted proteins in the ER by inducible fusion with a KDEL ER-retrieval sequence. We show conditional ER sequestration of diverse proteins is not generally toxic, enabling loss-of-function studies. We employed knockER in multiple Plasmodium species to interrogate the trafficking, topology, and function of an assortment of proteins that traverse the secretory pathway to diverse compartments including the apicoplast (ClpB1), rhoptries (RON6), dense granules, and parasitophorous vacuole (EXP2, PTEX150, HSP101). Taking advantage of the unique ability to redistribute secreted proteins from their terminal destination to the ER, we reveal that vacuolar levels of the PTEX translocon component HSP101 but not PTEX150 are maintained in excess of what is required to sustain effector protein export into the erythrocyte. Intriguingly, vacuole depletion of HSP101 hypersensitized parasites to a destabilization tag that inhibits HSP101-PTEX complex formation but not to translational knockdown of the entire HSP101 pool, illustrating how redistribution of a target protein by knockER can be used to query function in a compartment-specific manner. Collectively, our results establish knockER as a unique tool for dissecting secreted protein function with subcompartmental resolution that should be widely amenable to genetically tractable eukaryotes.
Collapse
Affiliation(s)
- Manuel A. Fierro
- Department of Biomedical Sciences, Iowa State University, Ames, IA50011
| | - Tahir Hussain
- Department of Biomedical Sciences, Iowa State University, Ames, IA50011
| | - Liam J. Campin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
| | - Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, IA50011
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
| |
Collapse
|
7
|
Ghosh S, Kundu R, Chandana M, Das R, Anand A, Beura S, Bobde RC, Jain V, Prabhu SR, Behera PK, Mohanty AK, Chakrapani M, Satyamoorthy K, Suryawanshi AR, Dixit A, Padmanaban G, Nagaraj VA. Distinct evolution of type I glutamine synthetase in Plasmodium and its species-specific requirement. Nat Commun 2023; 14:4216. [PMID: 37452051 PMCID: PMC10349072 DOI: 10.1038/s41467-023-39670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Malaria parasite lacks canonical pathways for amino acid biosynthesis and depends primarily on hemoglobin degradation and extracellular resources for amino acids. Interestingly, a putative gene for glutamine synthetase (GS) is retained despite glutamine being an abundant amino acid in human and mosquito hosts. Here we show Plasmodium GS has evolved as a unique type I enzyme with distinct structural and regulatory properties to adapt to the asexual niche. Methionine sulfoximine (MSO) and phosphinothricin (PPT) inhibit parasite GS activity. GS is localized to the parasite cytosol and abundantly expressed in all the life cycle stages. Parasite GS displays species-specific requirement in Plasmodium falciparum (Pf) having asparagine-rich proteome. Targeting PfGS affects asparagine levels and inhibits protein synthesis through eIF2α phosphorylation leading to parasite death. Exposure of artemisinin-resistant Pf parasites to MSO and PPT inhibits the emergence of viable parasites upon artemisinin treatment.
Collapse
Affiliation(s)
- Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Rajib Kundu
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Subhashree Beura
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Ruchir Chandrakant Bobde
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Vishal Jain
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Sowmya Ramakant Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Akshaya Kumar Mohanty
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Ispat General Hospital, Sector 19, Rourkela, 769005, Odisha, India
| | - Mahabala Chakrapani
- Department of Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Anshuman Dixit
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Govindarajan Padmanaban
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | |
Collapse
|
8
|
Brown AC, Warthan MD, Aryal A, Liu S, Guler JL. Nutrient Limitation Mimics Artemisinin Tolerance in Malaria. mBio 2023:e0070523. [PMID: 37097173 DOI: 10.1128/mbio.00705-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Mounting evidence demonstrates that nutritional environment can alter pathogen drug sensitivity. While the rich media used for in vitro culture contains supraphysiological nutrient concentrations, pathogens encounter a relatively restrictive environment in vivo. We assessed the effect of nutrient limitation on the protozoan parasite that causes malaria and demonstrated that short-term growth under physiologically relevant mild nutrient stress (or "metabolic priming") triggers increased tolerance of a potent antimalarial drug. We observed beneficial effects using both short-term survival assays and longer-term proliferation studies, where metabolic priming increases parasite survival to a level previously defined as resistant (>1% survival). We performed these assessments by either decreasing single nutrients that have distinct roles in metabolism or using a media formulation that simulates the human plasma environment. We determined that priming-induced tolerance was restricted to parasites that had newly invaded the host red blood cell, but the effect was not dependent on genetic background. The molecular mechanisms of this intrinsic effect mimic aspects of genetic tolerance, including translational repression and protein export. This finding suggests that regardless of the impact on survival rates, environmental stress could stimulate changes that ultimately directly contribute to drug tolerance. Because metabolic stress is likely to occur more frequently in vivo compared to the stable in vitro environment, priming-induced drug tolerance has ramifications for how in vitro results translate to in vivo studies. Improving our understanding of how pathogens adjust their metabolism to impact survival of current and future drugs is an important avenue of research to slow the evolution of resistance. IMPORTANCE There is a dire need for effective treatments against microbial pathogens. Yet, the continuing emergence of drug resistance necessitates a deeper knowledge of how pathogens respond to treatments. We have long appreciated the contribution of genetic evolution to drug resistance, but transient metabolic changes that arise in response to environmental factors are less recognized. Here, we demonstrate that short-term growth of malaria parasites in a nutrient-limiting environment triggers cellular changes that lead to better survival of drug treatment. We found that these strategies are similar to those employed by drug-tolerant parasites, which suggests that starvation "primes" parasites to survive and potentially evolve resistance. Since the environment of the human host is relatively nutrient restrictive compared to growth conditions in standard laboratory culture, this discovery highlights the important connections among nutrient levels, protective cellular pathways, and resistance evolution.
Collapse
Affiliation(s)
- Audrey C Brown
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Michelle D Warthan
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Anush Aryal
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Shiwei Liu
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jennifer L Guler
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|