1
|
Mostafa MI, Saad SA, Mohammed AE, Mohamed Saafan EM, El-Sayed AM. Role of lactoferrin in the treatment of E. coli-induced bovine mastitis. Open Vet J 2025; 15:954-964. [PMID: 40201807 PMCID: PMC11974306 DOI: 10.5455/ovj.2025.v15.i2.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/07/2025] [Indexed: 04/10/2025] Open
Abstract
Background Bovine mastitis (BM) is a costly disease in the dairy industry. It is associated with reduced milk production and changes in milk composition and quality. Escherichia coli is the most important pathogen causing BM. Aim This study aimed to assess the efficacy of lactoferrin (LF) as an enhanced agent when combined with marbofloxacin for the treatment of E. coli BM. Methods Eighty lactating cattle and buffaloes, 40 each, aged 4-6 years suffering from BM underwent clinical examination. Milk samples were collected for bacteriological examination. The recovered E. coli isolates were subjected to serological, and polymerase chain reaction (PCR) analysis. BM cases were allocated into two groups: group (A) was treated with marbofloxacin combined with LF, and group (B) was treated with marbofloxacin alone. Results Fifty E. coli isolates were recovered. Six serogroup were identified: O55, O103, O26, O11, O44, and O124. All isolates were sensitive to marbofloxacin, while there was resistance to gentamycin and ampicillin (26% each), cefquinome (14%), cefixime (10%), and SuLFamethoxazole and trimethoprim (4%). The molecular identification of E. coli strains revealed that the 16S rRNA gene was present in all identified E. coli strains (100%). All isolates resistant to antibiotics encoded BlaTEM, aadB, and Sul1, whereas the qnrS gene was not detected in any E. coli isolate. The broth dilution method did not detect growth when the marbofloxacin (6 μg/ml) was combined with LF (2 mg/ml). Group (A) showed significant improvements compared with group (B), with no recurrence rate. Conclusion LF can serve as a significant cotreatment agent for treating BM. As antibiotic resistance increases, LF-based drugs could play an important role in providing sustainable, effective alternatives for dairy animals.
Collapse
Affiliation(s)
- Mohamed Ibrahim Mostafa
- Department of Bacteriology, Animal Health Research Institute, Agriculture Research Center (ARC), Damanhur branch, Egypt
| | - Saber Ali Saad
- Department of Food Hygiene, Animal Health Research Institute, Agriculture Research Center (ARC), Damanhur branch, Egypt
| | - Asmaa Elsayed Mohammed
- Department of Bacteriology, Animal Health Research Institute, Agriculture Research Center (ARC), Sohag, Egypt
| | - Elsaid Mohamed Mohamed Saafan
- Department of Food Hygiene, Animal Health Research Institute, Agriculture Research Center (ARC), Mansoura branch, Egypt
| | - Amal Mohamed El-Sayed
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Aswan University, Egypt
| |
Collapse
|
2
|
Ghamari M, Jabalameli F, Afhami S, Halimi S, Emaneini M, Beigverdi R. Acinetobacter baumannii infection in critically ill patients with COVID-19 from Tehran, Iran: the prevalence, antimicrobial resistance patterns and molecular characteristics of isolates. Front Cell Infect Microbiol 2025; 14:1511122. [PMID: 39958989 PMCID: PMC11827423 DOI: 10.3389/fcimb.2024.1511122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/30/2024] [Indexed: 02/18/2025] Open
Abstract
Background The COVID-19 pandemic has led to the excessive use of antimicrobials in critically ill patients. Infections caused by Acinetobacter baumannii have increased significantly both regionally and globally during the COVID-19 pandemic, posing dramatic challenges for intensive care unit (ICU) patients. This study aimed to determine the prevalence, antimicrobial resistance patterns, presence of selected antimicrobial resistance genes, and genetic diversity of A. baumannii isolates obtained from COVID-19 cases admitted to the ICU at the University Hospital in Iran. Materials and methods This was a cross-sectional and single-center study comprising patients with A. baumannii infections admitted to the ICU with COVID-19 between April and November 2021. The demographic and clinical data of the patients were collected. Antimicrobial susceptibility testing was conducted based on Clinical Laboratory Standards Institute guidelines. This study used PCR and multiplex PCR to investigate antibiotic resistance genes (ARGs) and global clones (GC), respectively. Genetic diversity was investigated by repetitive element sequence-based PCR (REP-PCR). Results The prevalence of A. baumannii coinfection in COVID-19 cases was 8.1% (43/528). More than 90% (39/43) of A. baumannii isolates were resistant to cefepime, ampicillin-sulbactam, gentamicin, trimethoprim-sulfamethoxazole and amikacin. Furthermore, 44.2% (19/43) of isolates were resistant to colistin. There were 91% (39/43) isolates that were extensively drug-resistant (XDR). The most prevalence carbapenem resistance encoding genes were bla -OXA-23 65.1% (29/43) and bla NDM 41.8% (18/43). The most common aminoglycoside resistance genes were aac(6')-Ib 65.1% (28/43) and ant(2)-Ia 46.5% (20/43). Isolates from the prominent Global clone GCII comprised 83.7% (36/43) of total isolates. Genetic fingerprinting using REP-PCR revealed that 39 typeable A. baumannii isolates were categorized into 12 distinct genotypes, of which 72% (28/39) of isolates belonged to one genotype. Conclusion The high prevalence of XDR A. baumannii such as carbapenem and colistin-resistant strains, poses a significant concern for the treatment of COVID-19 patients, heightening the risk of therapeutic failure. The data demonstrate the dissemination of a single A. baumannii clone carrying multiple ARGs within our hospital. Regarding the limited therapeutic options, it is crucial to implement effective prevention and containment policies to curb the spread of these strains.
Collapse
Affiliation(s)
- Mahsa Ghamari
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Afhami
- Department of Infectious Diseases, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Afiff U, Hidayat R, Indrawati A, Sunartatie T, Hardiati A, Rotinsulu DA, Arifiantini RI, Naoremisa D, Mar’ah N, Safika S. Antibiotic resistance and virulence profile of Klebsiella pneumoniae isolated from wild Sumatran Orangutans ( Pongo abelii). J Adv Vet Anim Res 2024; 11:1066-1075. [PMID: 40013287 PMCID: PMC11855422 DOI: 10.5455/javar.2024.k858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 02/28/2025] Open
Abstract
Objective Orangutans (Pongo abelii), as endemic primates of Indonesia, are characterized by a predominantly arboreal lifestyle. Klebsiella pneumoniae (K. pneumonia) and other Gram-negative bacteria are present in the Indigenous flora of many mammals, including orangutans. This study aimed to investigate the antibiotic resistance and virulence profile of K. pneumonia isolated from wild Sumatran orangutans. Materials and Methods This study investigated 10 fecal samples from wild Sumatran orangutans from the Gunung Leuser National Park, Aceh, Indonesia. Biochemical and molecular identification of K. pneumoniae using the RNA polymerase subunit b gene and detection of virulence-associated genes. In addition, molecular detection of antibiotic resistance genes was performed to characterize the resistance mechanisms in the isolates. Results K. pneumonia was detected in 6 out of 10 fecal samples from wild Sumatran orangutans. The virulence genes mrkD and entB were detected in all (100%) of the isolates, whereas wabG was identified in 83.33% of the strains. Antibiotic susceptibility testing against K. pneumoniae revealed that three isolates were susceptible to streptomycin (S) and nalidixic acid (NA), while all six isolates were susceptible to chloramphenicol and ciprofloxacin. One isolate demonstrated intermediate resistance to NA, while the remaining two exhibited intermediate resistance to S. Six isolates were resistant to ampicillin, tetracycline, and erythromycin, indicating multidrug resistance. Furthermore, antibiotic resistance genes were detected in the isolates with the following prevalence: bla TEM gene (six isolates; 100%), bla SHV (six isolates; 100%), bla CTX-M gene (four isolates; 66.67%), and tetA gene (four isolates; 66.67%). Conclusion This study revealed the virulence and resistance profile of K. pneumoniae bacterium isolated from wild Sumatran orangutans, which is essential for formulating effective conservation and healthcare strategies.
Collapse
Affiliation(s)
- Usamah Afiff
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Rahmat Hidayat
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Agustin Indrawati
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Titiek Sunartatie
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Aprilia Hardiati
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Dordia Anindita Rotinsulu
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Raden Iis Arifiantini
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Deandarla Naoremisa
- Student of School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Nurhashunatil Mar’ah
- Faculty of Vocation, Study Program of Veterinary Paramadics, Hasanuddin University, Makassar, Indonesia
| | - Safika Safika
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
4
|
Tapia-Cornejo AS, Ramírez-Castillo FY, Guerrero-Barrera AL, Guillen-Padilla DE, Arreola-Guerra JM, González-Gámez M, Avelar-González FJ, Loera-Muro A, Hernández-Cuellar E, Ramos-Medellín CL, Adame-Álvarez C, García-Romo R, Galindo-Guerrero F, Moreno-Flores AC. Occurrence of Plasmid-Mediated Quinolone Resistance and Carbapenemase-Encoding Genes in Pseudomonas aeruginosa Isolates from Nosocomial Patients in Aguascalientes, Mexico. Pathogens 2024; 13:992. [PMID: 39599545 PMCID: PMC11597332 DOI: 10.3390/pathogens13110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Pseudomonas aeruginosa is a leading cause of healthcare-associated infections, which are related to substantial morbidity and mortality. The incidence of Plasmid-Mediated Quinolone Resistance (PMQR) determinants has been previously reported in this bacterium. However, there is limited information regarding the presence of PMQR and carbapenemase-encoding genes simultaneously. This study aims to analyze the prevalence of these determinants on P. aeruginosa strain isolated from clinical patients in the State of Aguascalientes, Mexico. Fifty-two P. aeruginosa isolates from nosocomial patients were collected from Centenario Hospital Miguel Hidalgo. This is a retrospective observational study conducted at a single center. Antibiotic susceptibility was tested using the Vitek-2 system. Only carbapenem-resistant isolates were included in this study. Carbapenemase-encoding genes and PMQR determinants were screened by polymerase chain reaction (PCR). Resistance rates of 100% were found on tigecycline and ceftriaxone. Of the 52 isolates, 34.6% were positive for the qnr genes, 46.2% for the oqxA gene, and 25% for the aac-(6')-lb gene. The most frequent carbapenemase genes found in the samples were blaOXA-51 (42.3%), blaOXA-1 (15.4%), and blaVIM (15.4%). blaOXA-51 co-carrying oqxA was detected in 21.1% of the isolates, blaOXA-51 co-carrying aac-(6')-lb in 11.5%, blaVIM co-carrying aac-(6')-lb in 3.8%, and blaKPC co-carrying oqxA in 5.8%. Systematic surveillance to detect carbapenemase-encoding genes and PMQR determinants, and rational prescription using the last-line drugs could help in preventing the dissemination of multidrug-resistant determinants.
Collapse
Affiliation(s)
- Ana S. Tapia-Cornejo
- Departamento de Medicina Interna, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico;
| | - Flor Y. Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (F.Y.R.-C.); (D.E.G.-P.); (E.H.-C.); (F.G.-G.); (A.C.M.-F.)
| | - Alma L. Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (F.Y.R.-C.); (D.E.G.-P.); (E.H.-C.); (F.G.-G.); (A.C.M.-F.)
| | - Diana E. Guillen-Padilla
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (F.Y.R.-C.); (D.E.G.-P.); (E.H.-C.); (F.G.-G.); (A.C.M.-F.)
| | - José M. Arreola-Guerra
- Departamento de Nefrología, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico;
| | - Mario González-Gámez
- Departamento de Infectología, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico;
| | - Francisco J. Avelar-González
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico;
| | - Abraham Loera-Muro
- CONAHCYT, Centro de Investigaciones Biológicas del Noreste (CIBNOR), La Paz 23205, Mexico;
| | - Eduardo Hernández-Cuellar
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (F.Y.R.-C.); (D.E.G.-P.); (E.H.-C.); (F.G.-G.); (A.C.M.-F.)
| | - Carmen L. Ramos-Medellín
- Laboratorio Clínico, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico; (C.L.R.-M.); (C.A.-Á.); (R.G.-R.)
| | - Cesar Adame-Álvarez
- Laboratorio Clínico, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico; (C.L.R.-M.); (C.A.-Á.); (R.G.-R.)
| | - Ricardo García-Romo
- Laboratorio Clínico, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico; (C.L.R.-M.); (C.A.-Á.); (R.G.-R.)
| | - Fabiola Galindo-Guerrero
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (F.Y.R.-C.); (D.E.G.-P.); (E.H.-C.); (F.G.-G.); (A.C.M.-F.)
| | - Adriana C. Moreno-Flores
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (F.Y.R.-C.); (D.E.G.-P.); (E.H.-C.); (F.G.-G.); (A.C.M.-F.)
| |
Collapse
|
5
|
Kamatham S, Seeralan M, Sekar U, Kuppusamy S. Antimicrobial resistance profiling of bacteria isolated from wastewater and samples of pharmaceutical industries in South India. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 125:105670. [PMID: 39303927 DOI: 10.1016/j.meegid.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The study was aimed to determine the phenotypic and genotypic antimicrobial resistance in the isolated bacteria from the influent (25), effluent (15), surface and ground water samples (15) surrounding the pharmaceutical industries located in south India. From 55 samples, 48 isolates of 10 different bacteria were obtained. The identified bacterial isolates were viz. Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter aerogenes, Corynebacterium sp., Acinetobacter sp., Aeromonas punctata, Ralstonia picketti, Staphylococcus aureus, Stenotrophomonas maltophillia, and Citrobacter freundii. The phenotypic profile of resistance through antibiotic susceptibility test was carried out against sixteen different antibiotics. Standard PCR technique was used for the detection of 12 resistance genes encoding carbapenems, quinoline, aminoglycoside, β-lactam belonging blaOXA-58,blaOXA-22,qnrA, qnrB, aac(6)-Ib-cr, aac (3)-XI, mec A, qepA, aadB, blaVIM, blaOXA-48 and blaNDM. Pseudomonas aeruginosa (1: TN/I/2020) showed presence of 3 resistance genes. qnrB (489 bp) gene was present in maximum of 7 isolates while blaVIM (196 bp) gene was present in 6 isolates. The resistance genes blaNDM (621 bp) was present in three different isolates; aac (X):6)-lb-cr (482 bp), qepA (495 bp), aadB (500 bp), blaOXA-58 (843 bp) resistant genes were present in two different isolates each among the bacterial isolates obtained in this study. In phenotypic resistance profiling by AST method, out of 16 antibiotics tested, 14 showed resistance. Similarly, in genotypic resistance profiling, among 12 resistance genes tested, a maximum of three resistance genes were noticed in Pseudomonas aeruginosa. There were positive and negative correlations observed between phenotypic and genotypic resistance among different antibiotics and their resistance genes indicating the variations in the resistance gene expression.
Collapse
Affiliation(s)
- Sravani Kamatham
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, (DU), Porur, Chennai 600116, India
| | - Manoharan Seeralan
- Vaccine Research Centre - Bacterial Vaccine, Centre for Animal Health Studies, TANUVAS, Madhavaram, Chennai 600051, India
| | - Uma Sekar
- Department of Microbiology, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research, (DU), Porur, Chennai 600116, India
| | - Sujatha Kuppusamy
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, (DU), Porur, Chennai 600116, India; Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, (DU), Porur, Chennai 600116, India.
| |
Collapse
|
6
|
Dančová N, Gregová G, Szabóová T. Assessment of Bacterial Contamination and Antimicrobial Resistance of Escherichia coli Isolates from Slovak Dairy Farms. Animals (Basel) 2024; 14:3095. [PMID: 39518818 PMCID: PMC11545098 DOI: 10.3390/ani14213095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The conditions in livestock housing are suitable for the survival of airborne microorganisms, mainly due to high temperatures, humidity, and the presence of organic material. The total count of airborne bacteria concentrations in cattle farms ranged from 3.01 log10 CFU/mL to 6.90 log10 CFU/mL; for coliform bacteria, they were from 2.18 log10 CFU/mL to 3.34 log10 CFU/mL; and for molds, they ranged from 3.00 log10 CFU/mL to 4.57 log10 CFU/mL. Bacteria resistant to antimicrobial substances and resistance genes can be spread on animal farms. Antimicrobial resistance in ubiquitous Escherichia coli isolated from cattle feces was investigated. Minimum inhibitory concentration (MIC) testing was utilized to identify phenotypic resistance profiles, and the PCR method was employed to detect the presence of resistant genes. A higher percentage of resistance was found to amikacin (65%), tetracycline (61%), streptomycin (56%), ampicillin (55%), and nalidixic acid (45%). Multidrug resistance was determined in up to 64.3% of the isolates studied. The most widespread resistance genes were blaTEM (85.7%), sul2 (66.7%), tetB (52.38%), and sul1 (47.6%). We found that 4.8% of the E. coli isolates had the blaCMY gene. We found that, despite phenotypic resistance, E. coli isolates do not necessarily carry genes conferring resistance to that particular antimicrobial agent.
Collapse
Affiliation(s)
| | | | - Tatiana Szabóová
- Department of Public Veterinary Medicine and Animal Welfare, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (N.D.); (G.G.)
| |
Collapse
|
7
|
Hoseinzadeh M, Sedighi M, Yahyapour Y, Javanian M, Beiranvand M, Mohammadi M, Zarei S, Pournajaf A, Ebrahimzadeh Namvar A. Prevalence of plasmid-mediated quinolone resistance genes in extended-spectrum beta-lactamase producing Klebsiella pneumoniae isolates in northern Iran. Heliyon 2024; 10:e37534. [PMID: 39315185 PMCID: PMC11417531 DOI: 10.1016/j.heliyon.2024.e37534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Plasmid-mediated quinolone resistance (PMQR) in extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae (K. pneumoniae) contributes to treatment failures, extended hospital stays, and increased mortality percentages. We aimed to determine the prevalence of PMQR genes in ESBL-producing K. pneumoniae isolates from clinical samples in Babol, North of Iran region. This is the first study in this region to investigate this specific association. A total of 95 K. pneumoniae isolates were obtained from hospitalized patients with various clinical infections during March 2022 to February 2023. Disk diffusion and Combination disk method were performed to identification of antimicrobial resistance profiles and ESBL-producing strains. The presence of ESBL and PMQR genes among K. pneumoniae isolates was assessed using polymerase chain reaction (PCR) method. Of the isolates, 68 (71.57 %) were considered as ESBL-producers. The bla TEM, bla SHV and bla CTX-M genes were detected in 74.73 %, 57.89 %, and 41.05 % of K. pneumoniae isolates, respectively. Among the PMQR encoding genes, the highest and lowest frequency was associated to qepA (67.3 %) and qnrA (4.2 %), respectively. The frequency of qnrA, qnrB, qnrS, acc (6')-Ib-cr, qepA, oqxA, and oqxB genes in 26 MDR-Kp isolates was 11.53 % (n; 3), 69.23 % (n; 18), 65.38 % (n; 17), 73.07 % (n; 19), 80.76 % (n; 21), 84.61 % (n; 22), and 76.92 % (n; 20), respectively. Our result revealed of the 68 ESBL gene-positive isolates, 60 (88.23 %) were positive for the PMQR gene. The co-occurrence of these genes within resistant isolates suggests potential linkage on mobile genetic elements such as plasmids. These findings highlight the significant burden of PMQR determinants in ESBL-producing K. pneumoniae and underscore the urgent need for effective control measures. Implementing robust antimicrobial stewardship programs and strengthening drug-resistance surveillance and control protocols are crucial to prevent the spread of resistant isolates.
Collapse
Affiliation(s)
- Maedeh Hoseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mansour Sedighi
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yousef Yahyapour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Beiranvand
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL, USA
| | - Mohsen Mohammadi
- Non-Communicable Pediatric Disease Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sepide Zarei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Abazar Pournajaf
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Amirmorteza Ebrahimzadeh Namvar
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
8
|
Ballesteros-Monrreal MG, Mendez-Pfeiffer P, Ortíz B, Bolado-Martínez E, Álvarez-Ainza ML, Enciso-Martínez Y, Arenas-Hernández MMP, Diaz-Murrieta B, Barrios-Villa E, Valencia D. Uropathogenic E. coli and Hybrid Pathotypes in Mexican Women with Urinary Tract Infections: A Comprehensive Molecular and Phenotypic Overview. Curr Issues Mol Biol 2024; 46:5909-5928. [PMID: 38921024 PMCID: PMC11202577 DOI: 10.3390/cimb46060353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the main cause of urinary tract infections (UTIs) and carries virulence and resistance factors often found in mobilizable genetic elements, such as plasmids or pathogenicity islands (PAIs). UPEC is part of the extraintestinal pathogenic E. coli (ExPEC), but hybrid strains possessing both diarrheagenic E. coli (DEC) and ExPEC traits, termed "hypervirulent", present a significant health threat. This study assessed the prevalence of UPEC PAIs, ExPEC sequence types (ST), DEC genes, carbapenemase and extended-spectrum β-lactamase (ESBL) phenotypes, resistance genotypes, and plasmids in 40 clinical isolates of UPEC. Results showed that 72.5% of isolates had PAIs, mainly PAI IV536 (53%). ESBL phenotypes were found in 65% of β-lactam-resistant isolates, with 100% of carbapenem-resistant isolates producing carbapenemase. The predominant ESBL gene was blaCTX-M-2 (60%), and the most common resistance gene in fluoroquinolone and aminoglycoside-resistant isolates was aac(6')Ib (93%). Plasmids were present in 57% of isolates, and 70% belonged to the ST131 clonal group. Molecular markers for DEC pathotypes were detected in 20 isolates, with 60% classified as hybrid pathotypes. These findings indicate significant pathogenic potential and the presence of hybrid pathotypes in E. coli UTI clinical isolates in the Mexican population.
Collapse
Affiliation(s)
- Manuel G. Ballesteros-Monrreal
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca CP 83621, Sonora, Mexico; (M.G.B.-M.); (P.M.-P.); (Y.E.-M.); (B.D.-M.)
| | - Pablo Mendez-Pfeiffer
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca CP 83621, Sonora, Mexico; (M.G.B.-M.); (P.M.-P.); (Y.E.-M.); (B.D.-M.)
| | - Bryan Ortíz
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras;
| | - Enrique Bolado-Martínez
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo CP 83000, Sonora, Mexico; (E.B.-M.); (M.L.Á.-A.)
| | - Maritza Lizeth Álvarez-Ainza
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo CP 83000, Sonora, Mexico; (E.B.-M.); (M.L.Á.-A.)
| | - Yessica Enciso-Martínez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca CP 83621, Sonora, Mexico; (M.G.B.-M.); (P.M.-P.); (Y.E.-M.); (B.D.-M.)
| | - Margarita M. P. Arenas-Hernández
- Posgrado en Microbiología, Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla CP 72570, Pue, Mexico
| | - Betsaida Diaz-Murrieta
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca CP 83621, Sonora, Mexico; (M.G.B.-M.); (P.M.-P.); (Y.E.-M.); (B.D.-M.)
| | - Edwin Barrios-Villa
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca CP 83621, Sonora, Mexico; (M.G.B.-M.); (P.M.-P.); (Y.E.-M.); (B.D.-M.)
| | - Dora Valencia
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca CP 83621, Sonora, Mexico; (M.G.B.-M.); (P.M.-P.); (Y.E.-M.); (B.D.-M.)
| |
Collapse
|
9
|
Sompornpailin D, Pulgerd P, Sangsanont J, Thayanukul P, Punyapalakul P. Removal of antibiotics, bacterial toxicity, and occurrence of antibiotic resistance genes in secondary hospital effluents treated with granular activated carbon and the impact of preceding chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172095. [PMID: 38575011 DOI: 10.1016/j.scitotenv.2024.172095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
This comprehensive investigation highlighted the complex adsorption behaviors of antibiotics onto granular activated carbon (GAC), the effectiveness of this adsorption in reducing bacterial toxicity, and the reduction of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in hospital wastewater (HWW) effluents. Six GACs were characterized for their physicochemical properties, and their ability to adsorb six antibiotics in the background matrix of actual HWW was evaluated. Coconut shell-derived GAC (Co-U), which had the highest hydrophobicity and lowest content of oxygen-containing acidic functional groups, demonstrated the highest adsorption capacities for the tested antibiotics. Bacterial toxicity tests revealed that GACs could eliminate the bacterial toxicity from antibiotic intermediates present in chlorinated HWW. By contrast, the bacterial toxicity could not be removed by GACs in non-chlorinated HWW due to the greater presence of intermediate components identified by LC-MS/MS. The intraparticle diffusion coefficient of antibiotics adsorbed onto Co-U could be calculated by adsorption kinetics derived from the linear driving force model and the homogenous intraparticle diffusion model associated with the linear adsorption isotherms (0-150 μg/L). Meropenem and sulfamethoxazole exhibited the highest adsorption capacities in a single-solute solution compared to penicillin G, ampicillin, cetazidime, and ciprofloxacin. However, the greater adsorption capacities of meropenem and sulfamethoxazole disappeared in mixed-solute solutions, indicating the lowest adsorption competition. GAC can eliminate most ARGs while also promoting the growth of some ARB. Chlorination (free chlorine residues at 0.5 mg Cl2/L) did not significantly affect the overall composition of ARGs and ARB in HWW. However, the accumulation of ARGs and ARB on GAC in fixed bed columns was lower in chlorinated HWW than in non-chlorinated HWW due to an increase in the adsorption of intermediates.
Collapse
Affiliation(s)
- Dujduan Sompornpailin
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panisa Pulgerd
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Parinda Thayanukul
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand; Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom 73170, Thailand
| | - Patiparn Punyapalakul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok 10330, Thailand; Research unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
10
|
Gutiérrez J, González-Acuña D, Fuentes-Castillo D, Fierro K, Hernández C, Zapata L, Verdugo C. Antibiotic resistance in wildlife from Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170340. [PMID: 38278249 DOI: 10.1016/j.scitotenv.2024.170340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Although considered one of the most pristine ecosystems, Antarctica has been largely influenced by human activities during the last 50 years, affecting its unique biodiversity. One of the major global threats to health is the emergence of antibiotic-resistant bacteria that may be actively transferred to wildlife. We cultured and tested for antibiotic resistance in 137 cloacal and fresh fecal samples of several avian and marine mammal species from the Antarctic Peninsula, the most impacted area in Antarctica. Alarmingly, 80 % of the isolates showed antibiotic resistance, either phenotypically or genotypically. Most of the resistant bacteria, such as Enterobacteriaceae and Enterococcus species, are part of local gastrointestinal microbiota. Penguins and pinnipeds harbored a great diversity of antibiotic resistance and must be eligible as sentinels for future studies. These results show that antibiotic resistance has rapidly transferred to bacteria in Antarctic wildlife, which is a global matter of concern.
Collapse
Affiliation(s)
- Josefina Gutiérrez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Center of Surveillance and Evolution of Infectious Diseases, Universidad Austral de Chile, Valdivia, Chile
| | | | - Danny Fuentes-Castillo
- Departamento de Patología y Medicina Preventiva, Universidad de Concepción, Chillán, Chile
| | - Karina Fierro
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Hernández
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Loreto Zapata
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Verdugo
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Center of Surveillance and Evolution of Infectious Diseases, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
11
|
Iwodi C, Gberikon GM, Ogbonna IO, Agada EO. Multi-drug-resistant Escherichia coli in adult male patients with enlarged prostate attending general hospitals in Benue state. Braz J Microbiol 2024; 55:447-454. [PMID: 38308684 PMCID: PMC10920493 DOI: 10.1007/s42770-024-01260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024] Open
Abstract
The aim of this study was to investigate multi-drug-resistant (MDR) Escherichia coli in urine of adult male patients with enlarged prostate. Three hundred and sixty-eight samples of urine and blood were collected. Escherichia coli was isolated, purified, and identified and prostate-specific antigen (PSA) was determined. Multi-drug resistance test and specific drug resistance genes were assessed. Prevalence of Escherichia coli was high (38.5%) in patients with PSA of 60-79 ng ml-1 and 60% were MDR. The isolates showed highest resistance to tetracycline (53.3.0%) and least to cephalosporins (5%). They had intL and gyrA genes, which are integron, and quinolone resistance genes and sul1 and sul2 which are sulphonamide resistance-associated genes. Levofloxacin, ertapenem, and Augmentin (100% susceptibilities) were considered choice drugs for treatment of Escherichia coli infection in patients with elevated PSA.
Collapse
Affiliation(s)
- Cornelius Iwodi
- Department of Microbiology, College of Biological Sciences, Joseph Sarwuan Tarka University, Makurdi, Nigeria
| | - Grace M Gberikon
- Department of Microbiology, College of Biological Sciences, Joseph Sarwuan Tarka University, Makurdi, Nigeria
| | - Innocent Okonkwo Ogbonna
- Department of Microbiology, College of Biological Sciences, Joseph Sarwuan Tarka University, Makurdi, Nigeria.
| | - Emmanuel O Agada
- Department of Microbiology, Joseph Sarwuan Tarka University, Makurdi, Nigeria
| |
Collapse
|
12
|
Tran HM, Prathan R, Hein ST, Chuanchuen R. Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals. Antibiotics (Basel) 2024; 13:148. [PMID: 38391534 PMCID: PMC10885956 DOI: 10.3390/antibiotics13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Probiotics have been popularly used in livestock production as an alternative to antibiotics. This study aimed to investigate the microbiological quality and phenotypic and genotypic antimicrobial resistance of bacteria in probiotic products sold for food animals. A total of 45 probiotic products were examined for the number of viable cells, species, and antimicrobial susceptibility; the contamination of Escherichia coli and Salmonella; and the presence of 112 genes encoding resistance to clinically important antimicrobials and transferability of AMR determinants. The results showed that 29 of 45 products (64.4%) were incorrectly labeled in either number of viable cells or bacterial species. None of the tested products were contaminated with E. coli and Salmonella. A total of 33 out of 64 bacterial isolates (51.6%) exhibited resistance to at least one antimicrobial agent. Of the 45 products tested, 16 (35.5%) carried AMR genes. Almost all AMR genes detected in probiotic products were not correlated to the AMR phenotype of probiotic strains formulated in the products. Three streptomycin-resistant Lactobacillus isolates could horizontally transfer their AMR determinants. The findings demonstrated that the probiotic products could serve as reservoirs for the spread of AMR genes and may not yield benefits to animals as claimed. The need for the adequate quality control of probiotic products is highlighted.
Collapse
Affiliation(s)
- Hoang My Tran
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rangsiya Prathan
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Si Thu Hein
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Gorecki A, Ostapczuk P, Dziewit L. Diversity of antibiotic resistance gene variants at subsequent stages of the wastewater treatment process revealed by a metagenomic analysis of PCR amplicons. Front Genet 2024; 14:1334646. [PMID: 38274111 PMCID: PMC10808613 DOI: 10.3389/fgene.2023.1334646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Wastewater treatment plants have been recognised as point sources of various antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) which are considered recently emerging biological contaminants. So far, culture-based and molecular-based methods have been successfully applied to monitor antimicrobial resistance (AMR) in WWTPs. However, the methods applied do not permit the comprehensive identification of the true diversity of ARGs. In this study we applied next-generation sequencing for a metagenomic analysis of PCR amplicons of ARGs from the subsequent stages of the analysed WWTP. The presence of 14 genes conferring resistance to different antibiotic families was screened by PCR. In the next step, three genes were selected for detailed analysis of changes of the profile of ARG variants along the process. A relative abundance of 79 variants was analysed. The highest diversity was revealed in the ermF gene, with 52 variants. The relative abundance of some variants changed along the purification process, and some ARG variants might be present in novel hosts for which they were currently unassigned. Additionally, we identified a pool of novel ARG variants present in the studied WWTP. Overall, the results obtained indicated that the applied method is sufficient for analysing ARG variant diversity.
Collapse
Affiliation(s)
- Adrian Gorecki
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Piotr Ostapczuk
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Perez-Bou L, Muñoz-Palazon B, Gonzalez-Lopez J, Gonzalez-Martinez A, Correa-Galeote D. Deciphering the Role of WWTPs in Cold Environments as Hotspots for the Dissemination of Antibiotic Resistance Genes. MICROBIAL ECOLOGY 2023; 87:14. [PMID: 38091083 DOI: 10.1007/s00248-023-02325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Cold environments are the most widespread extreme habitats in the world. However, the role of wastewater treatment plants (WWTPs) in the cryosphere as hotspots in antibiotic resistance dissemination has not been well established. Hence, a snapshot of the resistomes of WWTPs in cold environments, below 5 °C, was provided to elucidate their role in disseminating antibiotic resistance genes (ARGs) to the receiving waterbodies. The resistomes of two natural environments from the cold biosphere were also determined. Quantitative PCR analysis of the aadA, aadB, ampC, blaSHV, blaTEM, dfrA1, ermB, fosA, mecA, qnrS, and tetA(A) genes indicated strong prevalences of these genetic determinants in the selected environments, except for the mecA gene, which was not found in any of the samples. Notably, high abundances of the aadA, ermB, and tetA(A) genes were found in the influents and activated sludge, highlighting that WWTPs of the cryosphere are critical hotspots for disseminating ARGs, potentially worsening the resistance of bacteria to some of the most commonly prescribed antibiotics. Besides, the samples from non-disturbed cold environments had large quantities of ARGs, although their ARG profiles were highly dissimilar. Hence, the high prevalences of ARGs lend support to the fact that antibiotic resistance is a common issue worldwide, including environmentally fragile cold ecosystems.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Havana, Cuba
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
| | - Barbara Muñoz-Palazon
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Alejandro Gonzalez-Martinez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - David Correa-Galeote
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain.
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| |
Collapse
|
15
|
Mawardi M, Indrawati A, Lusiastuti AM, Wibawan IWT. Antibiotic resistance gene-free probiont administration to tilapia for growth performance and Streptococcus agalactiae resistance. Vet World 2023; 16:2504-2514. [PMID: 38328352 PMCID: PMC10844778 DOI: 10.14202/vetworld.2023.2504-2514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 02/09/2024] Open
Abstract
Background and Aim The rapid development of aquaculture as a major food sector is accompanied by challenges, including diseases that affect tilapia farming worldwide. One such infectious disease caused by Streptococcus agalactiae poses a serious threat to tilapia populations. Probiotics have emerged as a potentially safe preventive measure against S. agalactiae infection. However, antimicrobial resistance from antibiotic-resistant bacteria remains a concern because it can lead to the spread of resistant bacteria and serve as a reservoir of antibiotic-resistant genes in fishes and the surrounding environment. This study aimed to identify candidate probiotic bacteria capable of promoting tilapia growth, providing resistance to S. agalactiae infection, devoid of potential pathogenicity, and free from antibiotic resistance genes. Subsequently, the performance of these probiotic candidates in tilapia was evaluated. Materials and Methods Lactococcus garvieae, Priestia megaterium, Bacterium spp., Bacillus megaterium, Bacillus subtilis, and Bacillus pumilus were examined to assess their antibacterial properties, hemolytic patterns, and antibiotic resistance genes. We used the specific primers tetA, tetB, tetD, tetE, tetO, tetQ, ermB, and qnrS that were used for antibiotic resistance gene detection. In vivo probiotic efficacy was evaluated by administering probiotic candidates in tilapia feed at a concentration of 1 × 106 colonies/mL/50 g of feed over a 60-day maintenance period. Resistance to S. agalactiae infection was observed for 14 days after the challenge test. Results Lactococcus garvieae, P. megaterium, and Bacterium spp. were identified as promising probiotic candidates among the bacterial isolates. On the other hand, B. megaterium, B. subtilis, and B. pumilus carried resistance genes and exhibited a β hemolytic pattern, rendering them unsuitable as probiotic candidates. The selected probiotic candidates (L. garvieae, P. megaterium, and Bacterium spp.) demonstrated the potential to enhance tilapia growth, exhibited no pathogenic tendencies, and were free from antibiotic resistance genes. Supplementation with L. garvieae and Bacterium spp. enhanced tilapia resistance to S. agalactiae infection, whereas P. megaterium supplementation showed an insignificant survival rate compared with controls after the challenge test period. Conclusion Probiotics, particularly L. garvieae, P. megaterium, and Bacterium spp., enhance growth and resistance against S. agalactiae infection, without harboring antibiotic resistance genes. Selecting probiotic candidates based on antibiotic resistance genes is essential to ensure the safety of fish, the environment, and human health.
Collapse
Affiliation(s)
- Mira Mawardi
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, Jawa Barat, 16680 Indonesia
- Government of Indonesia Ministry of Marine Affairs and Fisheries, Main Center for Freshwater Aquaculture - Ministry of Marine Affairs and Fisheries, Jl. Selabintana No. 37, Selabatu, Kec. Cikole, Kota Sukabumi, Jawa Barat 43114, Indonesia
| | - Agustin Indrawati
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, Jawa Barat, 16680 Indonesia
| | - Angela Mariana Lusiastuti
- Research Center for Veterinary Sciences. National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | - I Wayan Teguh Wibawan
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, Jawa Barat, 16680 Indonesia
| |
Collapse
|
16
|
Roshani M, Taheri M, Goodarzi A, Yosefimashouf R, Shokoohizadeh L. Evaluation of antibiotic resistance, toxin-antitoxin systems, virulence factors, biofilm-forming strength and genetic linkage of Escherichia coli strains isolated from bloodstream infections of leukemia patients. BMC Microbiol 2023; 23:327. [PMID: 37925405 PMCID: PMC10625236 DOI: 10.1186/s12866-023-03081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND One of the most common complications in patients with febrile neutropenia, lymphoma, leukemia, and multiple myeloma is a bloodstream infection (BSI). OBJECTIVE This study aimed to evaluate the antibiotic resistance patterns, virulence factors, biofilm-forming strength, and genetic linkage of Escherichia coli strains isolated from bloodstream infections (BSIs) of leukemia patients. METHODS The study conducted in Iran from June 2021 to December 2022, isolated 67 E. coli strains from leukemia patients' bloodstream infections in hospitals in two different areas. Several techniques including disk diffusion and broth microdilution were used to identify patterns of antibiotic resistance, microtiter plate assay to measure biofilm formation, and PCR to evaluate the prevalence of different genes such as virulence factors, toxin-antitoxin systems, resistance to β-lactams and fluoroquinolone antibiotics of E. coli strains. Additionally, the genetic linkage of the isolates was analyzed using the Enterobacterial Repeat Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) method. RESULTS The results showed that higher frequency of BSI caused by E. coli in man than female patients, and patients with acute leukemia had a higher frequency of BSI. Ampicillin and Amoxicillin-clavulanic acid showed the highest resistance, while Imipenem was identified as a suitable antibiotic for treating BSIs by E. coli. Multidrug-resistant (MDR) phenotypes were present in 22% of the isolates, while 53% of the isolates were ESBL-producing with the blaCTX-M gene as the most frequent β-lactamase gene. The fluoroquinolone resistance genes qnrB and qnrS were present in 50% and 28% of the isolates, respectively. More than 80% of the isolates showed the ability to form biofilms. The traT gene was more frequent than other virulence genes. The toxin-antitoxin system genes (mazF, ccdAB, and relB) showed a comparable frequency. The genetic diversity was detected in E. coli isolates. CONCLUSION Our results demonstrate that highly diverse, resistant and pathogenic E. coli clones are circulating among leukemia patients in Iranian hospitals. More attention should be paid to the treatment and management of E. coli bloodstream infections in patients with leukemia.
Collapse
Affiliation(s)
- Mahdaneh Roshani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Goodarzi
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rassoul Yosefimashouf
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Shokoohizadeh
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
17
|
Nayak S, Aanice D, Andria D, Pai A, Maiti B. Polymerase chain reaction-based typing methods and protein profiling analysis of Acinetobacter baumannii isolated from environmental and clinical sources from South India. Can J Microbiol 2023; 69:449-462. [PMID: 37364377 DOI: 10.1139/cjm-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Acinetobacter baumannii is an opportunistic pathogen known for causing hospital-acquired infections. The natural habitat includes soil, water, sewage, and drains, but it is also detected in infected individuals' blood, pus, and respiratory pathways. Due to its resilient nature, it is known to be a causative agent for outbreaks. Therefore, it is crucial to understand the genetic similarity between clinical and environmental isolates. The study aimed to find the genetic relationships between clinical and environmental isolates using PCR-based typing methods such as enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), random amplified polymorphic DNA (RAPD), and repetitive extragenic palindromic sequence-based PCR (Rep-PCR). Additionally, outer membrane protein (OMP) and whole cell protein (WCP) profiles were also used. The PCR-based methods, ERIC-PCR and Rep-PCR, showed decreased genetic similarity between clinical and environmental isolates (66% and 58%, respectively). However, RAPD showed relatively higher genetic similarity (91%). The OMP and WCP profiles showed varied banding patterns between the clinical and environmental isolates in the 29-43 kDa region. The PCR-based methods proved to be a reliable and reproducible technique. The OMP and WCP profiles, though not as discriminatory as the molecular typing methods, could help identify the most and least commonly occurring protein bands and thus help in typing clinical and environmental A. baumannii isolates.
Collapse
Affiliation(s)
- Srajana Nayak
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| | - D'Almeida Aanice
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| | - Dsouza Andria
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| | - Archana Pai
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| |
Collapse
|
18
|
Azzariti S, Mead A, Toutain PL, Bond R, Pelligand L. Time-Kill Analysis of Canine Skin Pathogens: A Comparison of Pradofloxacin and Marbofloxacin. Antibiotics (Basel) 2023; 12:1548. [PMID: 37887249 PMCID: PMC10603860 DOI: 10.3390/antibiotics12101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Time-kill curves (TKCs) are more informative compared with the use of minimum inhibitory concentration (MIC) as they allow the capture of bacterial growth and the development of drug killing rates over time, which allows to compute key pharmacodynamic (PD) parameters. Our study aimed, using a semi-mechanistic mathematical model, to estimate the best pharmacokinetic/pharmacodynamic (PK/PD) indices (ƒAUC/MIC or %ƒT > MIC) for the prediction of clinical efficacy of veterinary FQs in Staphylococcus pseudintermedius, Staphylococcus aureus, and Escherichia coli collected from canine pyoderma cases with a focus on the comparison between marbofloxacin and pradofloxacin. Eight TCKs for each bacterial species (4 susceptible and 4 resistant) were analysed in duplicate. The best PK/PD index was ƒAUC24h/MIC in both staphylococci and E. coli. For staphylococci, values of 25-40 h were necessary to achieve a bactericidal effect, whereas the calculated values (25-35 h) for E. coli were lower than those predicting a positive clinical outcome (100-120 h) in murine models. Pradofloxacin showed a higher potency (lower EC50) in comparison with marbofloxacin. However, no difference in terms of a maximal possible pharmacological killing rate (Emax) was observed. Taking into account in vivo exposure at the recommended dosage regimen (3 and 2 mg/kg for pradofloxacin and marbofloxacin, respectively), the overall killing rates (Kdrug) computed were also similar in most instances.
Collapse
Affiliation(s)
- Stefano Azzariti
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (S.A.); (A.M.); (P.-L.T.)
| | - Andrew Mead
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (S.A.); (A.M.); (P.-L.T.)
| | - Pierre-Louis Toutain
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (S.A.); (A.M.); (P.-L.T.)
- INTHERES, Université de Toulouse, INRAE, Ecole Nationale Vétérinaire de Toulouse, 23 chemin des Capelles-BP 87614, CEDEX 03, 31076 Toulouse, France
| | - Ross Bond
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK;
| | - Ludovic Pelligand
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (S.A.); (A.M.); (P.-L.T.)
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK;
| |
Collapse
|
19
|
Soltan Dallal MM, Zeynali Kelishomi F, Nikkhahi F, Zahraei Salehi T, Fardsanei F, Peymani A. Biofilm formation, antimicrobial resistance genes, and genetic diversity of Salmonella enterica subspecies enterica serotype Enteritidis isolated from food and animal sources in Iran. J Glob Antimicrob Resist 2023; 34:240-246. [PMID: 37567468 DOI: 10.1016/j.jgar.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
OBJECTIVES Salmonella enterica serovar Entritidis is an important pathogen in foodborne diseases and causes gastroenteritis. Several studies have investigated the genetic diversity of the strains of this bacterium. However, our knowledge of the discriminatory power of the molecular methods is limited. METHODS In total, 34 strains of S. enteritidis were isolated from food related to animals. Antibiotic resistance of the strains, antibiotic resistance genes, and biofilm formation capacity of the strains were evaluated. For the genetic analysis of the strains, PFGE was performed using AvrII restriction enzyme. RESULTS Among the tested antibiotics, cefuroxime, nalidixic acid, and ciprofloxacin showed the highest resistance rates (79.4%, 47%, and 44.2%, respectively). Only three antibiotic-resistance genes were identified in these strains (blaTEM: 67.6%, tetA: 9%, and sul2: 3%). In total, 91% of the strains were biofilm producers. Clustering of strains using AvrII for 26 samples with the same XbaI PFGE profile showed that these strains were in one clone and had high homogeneity. CONCLUSIONS In conclusion, it is better to use a combination of several typing methods for typing strains that are genetically very close so that the results are reliable.
Collapse
Affiliation(s)
- Mohammad Mehdi Soltan Dallal
- Division of Food Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Fardsanei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
20
|
Qamar MU, Ejaz H, Mohsin M, Hadjadj L, Karadeniz A, Rolain JM, Saleem Z, Diene SM. Co-existence of NDM-, aminoglycoside- and fluoroquinolone-resistant genes in carbapenem-resistant Escherichia coli clinical isolates from Pakistan. Future Microbiol 2023; 18:959-969. [PMID: 37656032 DOI: 10.2217/fmb-2023-0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Background: To determine the prevalence of antimicrobial-resistant genes in carbapenem-resistant Escherichia coli (CRECO). Methods: A total of 290 carbapenem-resistant bacteria were collected from tertiary care hospitals in Lahore (Pakistan). These isolates were confirmed by VITEK 2 and matrix-assisted laser desorption/ionization time of flight. The minimum inhibitory concentration was performed by VITEK 2. Sequence typing, resistant gene identification, DNA hybridization and replicate typing were also performed. Results: 33 out of 290 (11.3%) were CRECO and carried blaNDM; 69, 18 and 12% were NDM-1, NDM-5 and NDM-7, respectively, with 100% resistance to β-lactams and β-lactam inhibitors. ST405 and ST468 were mostly identified. NDM-ECO carried approximately 50-450 kb of plasmids and 16 (55%) were associated with IncA/C. Conclusion: NDM-1-producing E. coli are highly prevalent in clinical settings.
Collapse
Affiliation(s)
- Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Saudi Arabia
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Linda Hadjadj
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Pharmacie, Marseille, France
| | - Aylin Karadeniz
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Pharmacie, Marseille, France
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Pharmacie, Marseille, France
| | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Seydina M Diene
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Pharmacie, Marseille, France
| |
Collapse
|
21
|
Galarce N, Arriagada G, Sánchez F, Escobar B, Miranda M, Matus S, Vilches R, Varela C, Zelaya C, Peralta J, Paredes-Osses E, González-Rocha G, Lapierre L. Phenotypic and genotypic antimicrobial resistance in Escherichia coli strains isolated from household dogs in Chile. Front Vet Sci 2023; 10:1233127. [PMID: 37655259 PMCID: PMC10467275 DOI: 10.3389/fvets.2023.1233127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a major threat to animal and public health worldwide; consequently, several AMR surveillances programs have been implemented internationally in both human and veterinary medicine, including indicator bacteria such as Escherichia coli. However, companion animals are not typically included in these surveillance programs. Nevertheless, there have been reports of increasing levels of antimicrobial resistance in E. coli strains isolated from dogs worldwide. In Chile, there is limited information available on AMR in E. coli isolated from companion animals, which prevents the establishment of objective prevention and control measures. Methods For this reason, the aim of this study was to characterize the phenotypic and genotypic AMR of E. coli strains isolated from healthy household dogs in Chile. For this purpose, a multi-stage sampling was carried out in the Metropolitan Region of Chile, obtaining samples from 600 healthy dogs. These samples were processed using traditional bacteriology and molecular techniques to isolate E. coli strains. We assessed the minimal inhibitory concentration of 17 antimicrobials and conducted a search of six antimicrobial resistance genes, as well as class 1 and 2 integrons, in the isolated strains. Results Two-hundred and twenty-four strains of E. coli were recovered, and 96.9% (n = 217) showed resistance to at least one drug and only 3.1% (n = 7) were susceptible to all analyzed antimicrobials. Most strains were resistant to cefalexin (91.5%, n = 205, 1st-generation cephalosporin), followed by ampicillin (68.3%, n = 153) and cefpodoxime (31.3%, n = 70, 3rd-generation cephalosporin). Moreover, 24.1% (n = 54) tested positive for extended-spectrum-β-lactamases and 34.4% (n = 77) were multidrug resistant. As for the AMR genes, the most detected was qnrB (28.1%, n = 63), followed by blaCTX-M (22.3%, n = 50), and blaTEM-1 (19.6%, n = 44). Additionally, 16.1% (n = 36) harbored class 1 integrons. Our study shows that E. coli strains isolated from healthy household dogs exhibit resistance to several relevant drugs and also antimicrobial resistance genes considered critical for human health. These results can be used as a starting point for the prevention and control of antimicrobial resistance from companion animals. This background should be considered when formulating future resistance surveillance programs or control plans in which companion animals must be included.
Collapse
Affiliation(s)
- Nicolás Galarce
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Gabriel Arriagada
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando, Chile
| | - Fernando Sánchez
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santiago, Chile
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Mauricio Miranda
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sofía Matus
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Rocío Vilches
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Camila Varela
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Carlos Zelaya
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Josefa Peralta
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Esteban Paredes-Osses
- Departamento de Salud Ambiental, Instituto de Salud Pública de Chile, Santiago, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Providencia, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Lisette Lapierre
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Okafor JU, Nwodo UU. Molecular Characterization of Antibiotic Resistance Determinants in Klebsiella pneumoniae Isolates Recovered from Hospital Effluents in the Eastern Cape Province, South Africa. Antibiotics (Basel) 2023; 12:1139. [PMID: 37508235 PMCID: PMC10376002 DOI: 10.3390/antibiotics12071139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is an opportunistic bacteria responsible for many nosocomial and community-acquired infections. The emergence and spread of antibiotic resistances have resulted in widespread epidemics and endemic dissemination of multidrug-resistant pathogens. A total of 145 K. pneumoniae isolates were recovered from hospital wastewater effluents and subjected to antibiogram profiling. Furthermore, the antibiotic resistance determinants were assessed among phenotypic resistant isolates using polymerase chain reaction (PCR). The isolates showed a wide range of antibiotic resistance against 21 selected antibiotics under 11 classes, with the most susceptible shown against imipenem (94.5%) and the most resistant shown against ampicillin (86.2%). The isolates also showed susceptibility to piperacillin/tazobactam (89.0%), ertapenem (87.6%), norfloxacin (86.2%), cefoxitin (86.2%), meropenem (76.6%), doripenem (76.6%), gentamicin (76.6%), chloramphenicol (73.1%), nitrofurantoin (71.7%), ciprofloxacin (79.3%), amikacin (60.7%), and amoxicillin/clavulanic acid (70.4%). Conversely, resistance was also recorded against tetracycline (69%), doxycycline (56.6%), cefuroxime (46.2%), cefotaxime (48.3%), ceftazidime (41.4%). Out of the 32 resistance genes tested, 28 were confirmed, with [tetA (58.8%), tetD (47.89%), tetM (25.2%), tetB (5.9%)], [sul1 (68.4%), sul1I (66.6%)], and [aadA (62.3%), strA (26%), aac(3)-IIa(aacC2)a (14.4%)] genes having the highest occurrence. Strong significant associations exist among the resistance determinants screened. About 82.7% of the K. pneumoniae isolates were multidrug-resistant (MDR) with a multiple antibiotics resistance index (MARI) range of 0.24 to 1.0. A dual presence of the resistant genes among K. pneumoniae was also observed to occur more frequently than multiple presences. This study reveals a worrisome presence of multidrug-resistant K. pneumoniae isolates and resistance genes in hospital waste effluent, resulting in higher public health risks using untreated surface water for human consumption. As a result, adequate water treatment and monitoring initiatives designed to monitor antimicrobial resistance patterns in the aquatic ecosystem are required.
Collapse
Affiliation(s)
- Joan U Okafor
- Patho-Biocatalysis Group (PBG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Uchechukwu U Nwodo
- Patho-Biocatalysis Group (PBG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
23
|
Lu X, Zhai P, Liu Z, Deng L, Zhang T, Wu X, Ma D, Qiao Y, Bi W, Li R. Comparison of Antibiotic Resistance Profiles of Salmonella Isolates from Retail Meats in Nanchang, China, in Two Periods. Foodborne Pathog Dis 2023. [PMID: 37267285 DOI: 10.1089/fpd.2022.0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Salmonella is one of the most important foodborne pathogens. In this article, a total of 160 Salmonella isolates recovered from retail meats in June-July 2018 (before COVID-19 outbreak) and December 2020-April 2021 (after COVID-19 outbreak) in Nanchang, China, were characterized for serotyping, antimicrobial susceptibility, and specific resistance gene screening. The prevalence of Salmonella Typhimurium increased from 5.4% in 2018 to 19.1% in 2021, and Salmonella Enteritidis increased from 3.3% in 2018 to 8.8% in 2021. Compared with those in June-July 2018, Salmonella isolates in December 2020-April 2021 demonstrated a significant increase in resistance to 13 tested antibiotics except for doxycycline and nitrofurantoin (p < 0.05). The Salmonella isolates in December 2020-April 2021 showed a higher presence of plasmid-mediated quinolone resistance genes (qnrA, qnrB, and qnrS), and mutations in the quinolone resistance-determining region (gyrA Asp87Asn, gyrA Asp87Tyr, parC Thr57Ser, and parC Ser80Ile). Whole-genome sequencing was used to analyze four polymyxin B-resistant strains. Some common mutation sites in eptC and micA were found in the four strains. Based on the data in this article, it indicated that antibiotic resistance was facilitated and more gene mutations related to quinolone resistance were developed.
Collapse
Affiliation(s)
- Xiaoping Lu
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Pingping Zhai
- Food Inspection and Testing Institute, Jiangxi General Institute of Testing and Certification, Nanchang, China
| | - Zhonghua Liu
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Ling Deng
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Tongtong Zhang
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Xin Wu
- Food Inspection and Testing Institute, Jiangxi General Institute of Testing and Certification, Nanchang, China
| | - Da Ma
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yuwen Qiao
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Wanglai Bi
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Rui Li
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
24
|
Boss S, Stephan R, Horlbog JA, Magouras I, Colon VA, Lugsomya K, Stevens MJA, Nüesch-Inderbinen M. Serotypes, Antimicrobial Resistance Profiles, and Virulence Factors of Salmonella Isolates in Chinese Edible Frogs ( Hoplobatrachus rugulosus) Collected from Wet Markets in Hong Kong. Foods 2023; 12:foods12112245. [PMID: 37297489 DOI: 10.3390/foods12112245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Salmonella is an important agent of gastrointestinal disease in humans. While livestock, such as cattle, poultry, and pigs, are well-recognised animal reservoirs of Salmonella, there is a lack of data on Salmonella in edible frogs, even though frog meat is a popular food worldwide. In this study, 103 live edible Chinese frogs (Hoplobatrachus rugulosus) were collected from wet markets throughout Hong Kong. After euthanasia, faeces or cloacal swabs were examined for Salmonella. Overall, Salmonella spp. were isolated from 67 (65%, CI: 0.554-0.736) of the samples. The serotypes included S. Saintpaul (33%), S. Newport (24%), S. Bareilly (7%), S. Braenderup (4%), S. Hvittingfoss (4%), S. Stanley (10%), and S. Wandsworth (16%). Many isolates were phylogenetically related. A high number of genes encoding for resistance to clinically relevant antimicrobials, and a high number of virulence determinants, were identified. Antimicrobial susceptibility testing (AST) identified multidrug resistance (MDR) in 21% of the isolates. Resistance to ampicillin, ciprofloxacin, nalidixic acid, and tetracycline was common. These results demonstrate that a high percentage of live frogs sold for human consumption in wet markets are carriers of multidrug-resistant Salmonella. Public health recommendations for handling edible frogs should be considered, to mitigate the risk of Salmonella transmission to humans.
Collapse
Affiliation(s)
- Sara Boss
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Jule Anna Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Ioannis Magouras
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Violaine Albane Colon
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kittitat Lugsomya
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | | |
Collapse
|
25
|
Lai J, Mu H, Zhou B, He J, Cheng X, Gan Y, Zhao M, Xie M, Zhang Y, He Y, Yang Y, Wang J, Wang H, Ding H. BlaTEM-positive Salmonella enterica serovars Agona and Derby are prevalent among food-producing animals in Chongqing, China. Front Microbiol 2023; 14:1011719. [PMID: 37303807 PMCID: PMC10248161 DOI: 10.3389/fmicb.2023.1011719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Salmonella is one of the most important foodborne zoonotic pathogens, causing global morbidity and mortality in both humans and animals. Due to the extensive use of antimicrobials in food-producing animals, the antimicrobial resistance of Salmonella has attracted increasing attention globally. There have been many reports concerning the antimicrobial resistance of Salmonella from food-producing animals, meats and the environment. However, few studies on Salmonella from food-producing animals have been reported in Chongqing municipality, China. The aim of the present study was to determine the prevalence, serovar diversity, sequence types, and antimicrobial resistance of Salmonella isolated from livestock and poultry in Chongqing. Meanwhile, we also want to know the presence of β-lactamase genes, plasmid-mediated quinolone resistance (PMQR) genes and quinolone resistance-determining region (QRDR) mutations of Salmonella isolates. A total of 129 Salmonella strains were recovered from 2,500 fecal samples at 41 farms from pigs, goats, beef cattle, rabbits, chickens, and ducks. Fourteen serovars were identified, with S. Agona and S. Derby being the dominant serovars. The 129 isolates had high resistance to doxycycline (87.6%), ampicillin (80.6%), tetracycline (79.8%), trimethoprim (77.5%), florfenicol (76.7%) chloramphenicol (72.9%), and trimethoprim-sulfamethoxazole (71.3%), but were susceptible to cefepime. A total of 114 (88.4%) isolates showed multidrug resistant phenotypes. The prevalence of β-lactamase genes in Salmonella isolates was 89.9% (116/129), and among these isolates, 107 (82.9%) harbored blaTEM, followed by blaOXA (26, 20.2%), blaCTX-M (8, 6.2%), and blaCMY (3, 2.3%). In addition, qnrB, qnrD, qnrS, oqxA, oqxB, and aac(6')-Ib-cr were detected in 11, 2, 34, 34, 43, and 72 PMQR-producing isolates, respectively. Moreover, QRDR mutations were very common in PMQR-positive Salmonella isolates (97.2%, 70/72) with mutation(s) in parC or combinative mutations in gyrA and parC. More significantly, 32 extended spectrum beta-lactamase (ESBL)-producing isolates were identified, and 62.5% of them were found to harbor one to four PMQR genes. Furthermore, 11 sequence types were identified from the isolates, and most of ESBL-producing isolates were attributed to ST34 (15.6%) and ST40 (62.5%). The coexistence of PMQR genes with β-lactamase genes and the extensive mutations in QRDR present in Salmonella isolates from food-producing animals suggest a potential threat to public health. Reasonable utilization and strict control strategies for antimicrobials in animal husbandry and animal treatment are necessary to reduce the emergence and dissemination of drug-resistant Salmonella isolates.
Collapse
Affiliation(s)
- Jiacui Lai
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Hao Mu
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
- Institute of Veterinary Sciences and Pharmaceuticals, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Bingqian Zhou
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jiawei He
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiangning Cheng
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yujie Gan
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Meiyuan Zhao
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mengqi Xie
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yang Zhang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Ying He
- Agricultural Service Center, Sub-District of Rongchang, Chongqing, China
| | - Yujiao Yang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jian Wang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Haoju Wang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
26
|
Kariuki K, Diakhate MM, Musembi S, Tornberg-Belanger SN, Rwigi D, Mutuma T, Mutuku E, Tickell KD, Soge OO, Singa BO, Walson JL, Pavlinac PB, Kariuki S. Plasmid-mediated quinolone resistance genes detected in Ciprofloxacin non-susceptible Escherichia coli and Klebsiella isolated from children under five years at hospital discharge, Kenya. BMC Microbiol 2023; 23:129. [PMID: 37173674 PMCID: PMC10182689 DOI: 10.1186/s12866-023-02849-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The increasing spread of fluoroquinolone resistant enteric bacteria is a global public health concern. Children recently discharged from the hospital are at high risk of carriage of antimicrobial resistance (AMR) due to frequent exposure to antimicrobials during inpatient stays. This study aimed to determine the prevalence, correlates of ciprofloxacin (CIP) non-susceptibility, and distribution of plasmid-mediated quinolone resistance (PMQR) genes in Escherichia coli (E. coli) and Klebsiella spp isolated from children under five years being discharged from two Kenyan Hospitals. METHODS E. coli and Klebsiella spp were isolated from fecal samples from children discharged from hospital and subjected to antimicrobial susceptibility testing (AST) by disc diffusion and E-test. CIP non-susceptible isolates were screened for seven PMQR genes using multiplex polymerase chain reaction (PCR). Poisson regression was used to determine the association between the carriage of CIP non-susceptible isolates and patient characteristics. RESULTS Of the 280 CIP non-susceptible isolates: 188 E. coli and 92 Klebsiella spp isolates identified among 266 discharged children, 195 (68%) were CIP-non-susceptible with minimum inhibitory concentrations (MICs) of ≥ 1 µg/mL. Among these 195 isolates, 130 (67%) had high-level CIP MIC = ≥ 32 µg/mL). Over 80% of the isolates had at least one PMQR gene identified: aac(6')lb-cr (60%), qnrB (24%), oqxAB (22%), qnrS (16%), and qepA (6%), however, qnrA was not identified in any isolates tested. Co-carriage of qnrB with acc(6')-lb-cr was the most predominant accounting for 20% of all the isolates. Ceftriaxone use during hospital admission and the presence of extended spectrum beta-lactamase (ESBL) production were significantly associated with the carriage of CIP non-susceptible E. coli and Klebsiella spp. CONCLUSION CIP non-susceptibility is common among E. coli and Klebsiella spp isolated from hospital discharged children in Kenya. Carriage and co-carriage of PMQR, including the newly identified qepA gene, were frequently observed. These findings suggest that children leaving the hospital may serve as an important reservoir for transmission of resistant E. coli and Klebsiella spp to the community. Enhanced surveillance for AMR determinants is critical to inform interventions to control antimicrobial-resistant bacteria.
Collapse
Affiliation(s)
- Kevin Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya.
| | | | - Susan Musembi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | | | - Doreen Rwigi
- Centre for Microbiology Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Timothy Mutuma
- Centre for Microbiology Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Elizabeth Mutuku
- Centre for Microbiology Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Kirkby D Tickell
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Olusegun O Soge
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Benson O Singa
- Department of Global Health, University of Washington, Seattle, WA, USA
- Centre for Clinical Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Judd L Walson
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Pediatrics and Medicine (Allergy and Infectious Diseases), University of Washington, Seattle, WA, USA
| | - Patricia B Pavlinac
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| |
Collapse
|
27
|
Lee YJ, Jung HR, Yoon S, Lim SK, Lee YJ. Situational analysis on fluoroquinolones use and characterization of high-level ciprofloxacin-resistant Enterococcus faecalis by integrated broiler operations in South Korea. Front Vet Sci 2023; 10:1158721. [PMID: 37077954 PMCID: PMC10109442 DOI: 10.3389/fvets.2023.1158721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Fluoroquinolones are classified as "critically important antimicrobials for human medicine"; however, their extensive use in livestock poses a significant health risk to humans as it leads to the rapid spread of antimicrobial resistance. This study confirmed that 40.0%-71.4% of the farms in three of the five integrated broiler operations were administered ciprofloxacin (CIP). Moreover, preventive purposes (60.9%), veterinarian prescriptions (82.6%), drinking water route (100%), and 1 to 3 days (82.6%) of age were significantly highest (P < 0.05). 194 high-level ciprofloxacin-resistant (HLCR) Enterococcus faecalis (E. faecalis) were found in 65 of 74 farms, and of which, the prevalence of qnrA (63.9%), tetM (60.3%), ermB (64.9%), blaz (38.7%), and catA (34.0%) was significantly highest (P < 0.05). 154 (79.4%) isolates showed MDR, and the distribution of MDR was significantly differences among the operations (P < 0.05). All HLCR E. faecalis possessed double mutations in gyrA and parC, and S83I/S80I (90.7%) mutations were most commonly identified. Interestingly, the distribution of isolates with MICs ≥ 512 for both CIP and moxifloxacin was significantly higher in CIP-administered farms (56.5%) than in non-CIP-administered farms (41.4%) (P < 0.05). Also, the prevalence of strong or moderate biofilm formers in HLCR E. faecalis was significantly higher than that of weak and no biofilm formers (P < 0.05). HLCR E. faecalis were heavily distributed in the broiler farms in Korea; therefore, it is necessary to minimize the prevalence of resistant bacteria via structural management regulations such as cleaning and disinfection of farm environments.
Collapse
Affiliation(s)
- Yu Jin Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Hye-Ri Jung
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Sunghyun Yoon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
28
|
My TT, Thien LV, Manh VD, My BTP, Lan DTM, Binh DX, Duc VM. Antimicrobial resistance and molecular characterization of Escherichia coli isolated from bovine mastitis samples in Nghe An province, Vietnam. Vet World 2023; 16:743-751. [PMID: 37235152 PMCID: PMC10206968 DOI: 10.14202/vetworld.2023.743-751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 05/28/2023] Open
Abstract
Background and Aim Vietnam's dairy sector is in its early phase of large-scale farming development. Therefore, mastitis in cows is always a concern to farm owners. This study aimed to determine the antimicrobial susceptibility, resistance, and virulence-related genes of Escherichia coli isolated from bovine mastitis in Nghe An province of Vietnam. Materials and Methods Fifty E. coli strains were isolated from the clinical cases and subjected to this study. All isolates were tested for antimicrobial susceptibility by the disk-diffusion method, as described by the Clinical and Laboratory Standards Institute. Antimicrobial and virulence genes were confirmed by polymerase chain reaction with specific primers. Results All isolates were resistant to lincomycin and sulfamethoxazole and sensitive to gentamicin, while other antimicrobials showed resistance from 2% to 90%. Multidrug resistance was confirmed in 46% of isolates, and none of them were identified as extended-spectrum beta-lactamase producers. From fifty strains tested for antimicrobial and virulence genes, six isolates harbored tetA, 6 tetB, 13 sul1, 15 sul2, 2 Intimin (eae), 1 iutA, and 3 stx2. Conclusion Antimicrobial and multidrug resistances are the main virulence factors of E. coli isolated from bovine mastitis in Vietnam. The virulence genes encoding adhesion, siderophore, Shiga-toxin-producing, and antimicrobials resistant were first reported in Vietnam with low prevalence and contributed to the pathogenesis.
Collapse
Affiliation(s)
- Tran Trung My
- Department of Animal Science and Veterinary Medicine, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen University, Quyet Thang, Thai Nguyen City, Vietnam
- Department of Quality Assurance, TH Dairy Institute, Nghia Son, Nghia Dan, Nghe An, Vietnam
| | - Le Van Thien
- Department of Quality Assurance, TH Dairy Institute, Nghia Son, Nghia Dan, Nghe An, Vietnam
- Department of Veterinary Medicine, The Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi, Vietnam
| | - Vu Duy Manh
- TH Milk Food Joint Stock Company, Nghia Son, Nghia Dan, Nghe An, Vietnam
| | - Bui Thi Phuong My
- TH Milk Food Joint Stock Company, Nghia Son, Nghia Dan, Nghe An, Vietnam
| | - Dang Thi Mai Lan
- Department of Animal Science and Veterinary Medicine, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen University, Quyet Thang, Thai Nguyen City, Vietnam
| | - Dang Xuan Binh
- Department of Animal Science and Veterinary Medicine, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen University, Quyet Thang, Thai Nguyen City, Vietnam
| | - Vu Minh Duc
- Department of Agro-forestry Technology, College of Economics and Technology, Thai Nguyen University, Thinh Dan, Thai Nguyen City, Vietnam
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
29
|
Sherif AH, Kassab AS. Multidrug-resistant Aeromonas bacteria prevalence in Nile tilapia broodstock. BMC Microbiol 2023; 23:80. [PMID: 36959570 PMCID: PMC10037768 DOI: 10.1186/s12866-023-02827-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Aeromonas hydrophila is an opportunistic pathogen. Thus, it has received significant attention mainly in the fish sectors with high production scales. Nile tilapia broodstock confined in the environment of fish hatcheries can be stressed. Hence, they are vulnerable to A. hydrophila. RESULTS Sequencing of the gyr B gene revealed the presence of 18 different A. hydrophila strains (kdy 10,620-10,637), which were deposited in the NCBI under accession numbers ON745861-ON745878. The median lethal doses of the isolates ranged from 2.62 × 104 to 3.02 × 106 CFU/mL. Antibiotic resistant genes, sulfonamide (sul1) and tetracycline (tetA) were found in the eighteen isolates. Approximately 83.3% of A. hydrophila strains were sensitive to ciprofloxacin and florfenicol. Further, eight A. hydrophila strains had high MDR indices at 0.27-0.45. All isolates presented with hemolysin activity. However, only 72.22% of them had proteolytic activity, and only 61.11% could form biofilms. Bacterial isolates harbored different pattern virulence genes, the heat-stable cytotonic enterotoxin (ast), cytotoxic enterotoxin (act), and hemolysin (hly) genes were the most prevalent. Also, a trial to inhibit bacterial growth was conducted using titanium dioxide nanoparticles (TiO2 NPs) with three sizes (13, 32, and 123 nm). If A. hydrophila strains with a high MDR index were tested against TiO2 NPs (20 µg/mL) for 1, 12, and 24 h, those with a small size had a greater bactericidal action than large ones. Bacterial strains were inhibited at different percentages in response to TiO2 NP treatment. CONCLUSIONS Nile tilapia broodstock, mortality is associated with different A. hydrophila strains, which harbored virulent and MDR genes. Furthermore, TiO2 NPs had bactericidal activity, thereby resulting in a considerable reduction in bacterial load.
Collapse
Affiliation(s)
- Ahmed H Sherif
- Fish Disease Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Kafrelsheikh, Egypt.
| | - Amina S Kassab
- Fish Disease Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Kafrelsheikh, Egypt
| |
Collapse
|
30
|
Mendybayeva A, Abilova Z, Bulashev A, Rychshanova R. Prevalence and resistance to antibacterial agents in Salmonella enterica strains isolated from poultry products in Northern Kazakhstan. Vet World 2023; 16:657-667. [PMID: 37041849 PMCID: PMC10082744 DOI: 10.14202/vetworld.2023.657-667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/30/2023] Open
Abstract
Background and Aim: Salmonella is one of the main causative agents of foodborne infections. The source of the pathogen, in most cases, is poultry products. The intensification of poultry farming and the constant and uncontrolled use of antimicrobials has led to an increase in the level of antibiotic resistance, especially in developing countries. This study aimed to determine the level of sensitivity to antimicrobial agents in Salmonella enterica strains isolated from poultry products in Northern Kazakhstan, as well as to determine the genetic mechanisms of resistance and the presence of integrons.
Materials and Methods: In total, 398 samples of poultry products sold in Northern Kazakhstan were selected. Salmonella strains were isolated from product samples using microbiological methods. Salmonella was identified based on morphological, biochemical, and serological methods, as well as polymerase chain reaction (PCR). Sensitivity testing for antimicrobial agents was performed using the disk diffusion method. The detection of resistance genes was performed using PCR and gel electrophoresis.
Results: Out of 398 samples of poultry products, a total of 46 Salmonella isolates were obtained. Most of the isolates belong to the serovar Salmonella Enteritidis (80.4%). The assessment of sensitivity to antibacterial agents showed that Salmonella was mainly resistant to nalidixic acid (63%), furadonin (60.9%), ofloxacin (45.6%), and tetracycline (39.1%). In 64.3% of cases, Salmonella was resistant to three or more groups of antibacterial agents. Resistance genes such as tetA, tetB, blaTEM, aadA, sul3, and catII, as well as integrons of two classes (teg1 and teg2), were identified.
Conclusion: Poultry products contain antimicrobial-resistant strains of Salmonella, as well as genes encoding resistance mechanisms. The results emphasize the need for constant monitoring of not only pathogenic microorganisms but also their sensitivity to antimicrobial agents. The potential threat to human health requires a unified approach to the problem of antibiotic resistance from representatives of both public health and the agroindustrial complex.
Keywords: antibiotic resistance, food safety, poultry, resistance genes, Salmonella.
Collapse
Affiliation(s)
- Anara Mendybayeva
- Research Institute of Applied Biotechnology, A. Baitursynov Kostanay Regional University, Kostanay, Kazakhstan
| | - Zulkyya Abilova
- Department of Veterinary Medicine, A. Baitursynov Kostanay Regional University, Kostanay, Kazakhstan
| | - Aitbay Bulashev
- Department of Microbiology and Biotechnology, S. Seifullin Kazakh Agrotechnical University, Astana, Kazakhstan
| | - Raushan Rychshanova
- Research Institute of Applied Biotechnology, A. Baitursynov Kostanay Regional University, Kostanay, Kazakhstan
- Corresponding author: Raushan Rychshanova, e-mail: Co-authors: AM: , ZA: , AB:
| |
Collapse
|
31
|
Tran MT, Vu DM, Vu MD, Bui MTP, Dang BX, Dang LTM, Le TV. Antimicrobial resistance and molecular characterization of Klebsiella species causing bovine mastitis in Nghe An province, Vietnam. J Adv Vet Anim Res 2023; 10:132-143. [PMID: 37155534 PMCID: PMC10122941 DOI: 10.5455/javar.2023.j662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 05/10/2023] Open
Abstract
Objectives This study aimed to determine the antibiotic-resistant profile and to identify molecular characterization of some virulence genes of Klebsiella spp. isolated from mastitis samples in Vietnam. Materials and Method A total of 468 samples from clinical mastitis cases were collected and submitted to the Laboratory. All samples were cultured, and Klebsiella spp. was identified through biochemical reactions and confirmed by Polymerase chain reaction (PCR). Antimicrobial resistance was tested by disk diffusion method, and virulence and resistance genes were tested by PCR. Results An antibiogram study showed that a high proportion of isolates are multidrug-resistant (94%). All isolates were resistant to lincomycin and sulfamethoxazole, followed by ampicillin (94%), sulphonamide (66%), amoxicillin (56%), streptomycin (52%), polymyxin B (28%), colistin sulfate (12%), tetracycline (6%), ciprofloxacin (4%), florfenicol (4%), enrofloxacin (4%), piperacillin (2%), trimethoprim (2%), nalidixic acid (2%), imipenem (2%), and sulfamethoxazole/trimethoprim (2%). In contrast, all isolates showed sensitivity to gentamicin and ceftiofur. The appearance of an efflux pump system, extended-spectrum beta-lactamase (ESBL), tetracycline, and sulphonamides-resistant genes was reconfirmed using different specific primers. Capsular serotype K1 and virulence genes magA, fimH, and entB, responsible for hypermucoviscosity production, adherence, and enterobactin production, were confirmed in isolates. Multidrug resistance and virulence potential in Klebsiella spp. are changing this mastitis pathogen into a superbug and making its management harder. Conclusions Klebsiella spp. associated with bovine mastitis in Nghe An province were mostly multidrug-resistant and carried virulence genes including fimH, entB, and antimicrobials resistant genes (bla SHV, acrAKp, tetA, etc.), but these isolates were not ESBL producers.
Collapse
Affiliation(s)
- My Trung Tran
- Thai Nguyen University of Agriculture and Forestry, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Duc Minh Vu
- College of Economics and Technology, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Manh Duy Vu
- TH Milk Food Joint Stock Company, Nghia Son, Nghia Dan, Vietnam
| | | | - Binh Xuan Dang
- Thai Nguyen University of Agriculture and Forestry, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Lan Thi Mai Dang
- Thai Nguyen University of Agriculture and Forestry, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Thien Van Le
- Vietnam National University of Agriculture, Ha Noi, Vietnam
| |
Collapse
|
32
|
Zheng R, Jiang Y, Yan C, Li Y, Song X, Zheng P. Intra-Abdominal Hypertension Contributes to the Development of Ventilator-Associated Pneumonia from Intestinal Bacteria. Infect Drug Resist 2023; 16:1913-1921. [PMID: 37025194 PMCID: PMC10072333 DOI: 10.2147/idr.s403714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Introduction Ventilator-associated pneumonia (VAP) is an ICU (intensive care unit)-acquired pulmonary parenchymal infection that is complicated by mechanical ventilation and is associated with high morbidity and mortality. Klebsiella pneumoniae (KPN) is known to asymptomatically colonize the gastrointestinal tract and may increase the incidence of corresponding VAP. Our study aims were to investigate the exact origin of the carbapenem-resistant Klebsiella pneumoniae (CRKP) causing VAP in our patient. Methods Various environmental samples, including the patient's anal swab, were collected in order to find the source of the bacteria. Minimum inhibitory concentrations (MICs) for antimicrobial agents were determined according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI); resistant genes were detected by using PCR and sequencing; clone relationships were analyzed by using multilocus-sequence typing (MLST) and pulsed field gel electrophoresis (PFGE). The IAP values were obtained via urinary catheter. Results One CRKP strain was detected in the patient's anal swab; this strain was confirmed with the same gene type as the strain isolated from the sputum. We found that the patient's intra-abdominal pressure (IAP) was 29.41, 27.06, 24.12, and 22.66 mmHg; the IAP was either equal to or above 12 mmHg, on the operation day and the following three days. Intra-abdominal hypertension (IAH) occurred during the patient's hospitalization and was considered to be caused by the surgical procedure. Meanwhile, we found that there was a correlation between IAH and the detection of CRKP in the sputum. The findings suggested that his VAP was caused by intestinal colonial KPN, and not from the environment. Discussion Our research illustrated that the ST11 KPC-2-producing strain colonized the intestinal tract and caused the development of VAP when the IAP was elevated. Routine screening for the intestinal carriage of CRKP, among patients in ICUs, can limit and prevent current and future outbreaks.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Yaxian Jiang
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Cheng Yan
- Medical School, Kunming University of Science and Technology, The First People’s Hospital of Yunnan, Kunming, People’s Republic of China
| | - Yikun Li
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xiaozhou Song
- Department of Infection Control, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
- Xiaozhou Song, Department of Infection Control, The First People’s Hospital of Yunnan Province, No. 157 of Jingbi Road, Kunming, People’s Republic of China, Tel +86 013888144965, Email
| | - Pengcheng Zheng
- Department of Pharmacy, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
- Correspondence: Pengcheng Zheng, Department of Pharmacy, The First People’s Hospital of Yunnan Province, No. 157 of Jingbi Road, Kunming, People’s Republic of China, Tel +86 013888116045, Email
| |
Collapse
|
33
|
Sriyapai T, Pulsrikarn C, Chansiri K, Sriyapai P. Molecular characterization of extended-spectrum cephalosporin and fluoroquinolone resistance genes in Salmonella and Shigella isolated from clinical specimens in Thailand. Heliyon 2022; 8:e12383. [PMID: 36619450 PMCID: PMC9813710 DOI: 10.1016/j.heliyon.2022.e12383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Antimicrobial resistance of Salmonella and Shigella has become a major clinical and public health problem. The incident of co-resistance to third generation cephalosporins and fluoroquinolone is a serious therapeutic issue in Thailand. The present study aimed to investigate the antimicrobial resistance and molecular character of clinical Shigella and Salmonella isolates. A total of 33 Salmonella and 53 Shigella cefotaxime-resistant isolates were collected from human clinical cases in Thailand during the period from 2011-2018. The antimicrobial susceptibility of Salmonella and Shigella was determined by the disk diffusion method, and extended-spectrum beta-lactamase (ESBL) production was characterized by the double-disk synergy test. Genotype characterization was performed by PCR and DNA sequencing. Thirty-two (97.0%) and fifty-two (98.1%) isolates of cefotaxime-resistant Salmonella and Shigella, respectively, were identified as ESBL producers. Shigella sonnei (4 isolates), Salmonella serovar 4,5,12:i:- (6 isolates), Salmonella serovar Agona (2 isolates) and Salmonella serovar Rissen (2 isolates) showed co-resistance to ciprofloxacin and cefotaxime or ceftriaxone. The combination of bla CTX-M-15 plus other ESBL and/or AmpC β-lactamase genes was the most dominant of the genotype patterns in ESBL-producing isolates. The plasmid harbouring the aac(6')-Ib-cr gene and mutations of gyrA (S83F, D87Y or D87G) and parC (T57S) genes was found in 2 ESBL-producing Salmonella isolates. Three Shigella sonnei isolates harboured mutations in gyrA (S83L, D87Y or D87G), and only one Shigella sonnei phase I isolate showed mutations in both gyrA (S83L and D87G) and parC (S80I) genes. Among these clinical Shigella sonnei isolates, qnrS determinants were identified. Production of ESBLs is an important mechanism for resistance to extended-spectrum cephalosporins in Salmonella and Shigella. The emergence of a decreased susceptibility to extended-spectrum cephalosporins and fluoroquinolone in ESBL-producing isolates has important clinical and therapeutic implications.
Collapse
Affiliation(s)
- Thayat Sriyapai
- Faculty of Environmental Culture and Ecotourism, Srinakharinwirot University, Bangkok, Thailand,Center of Excellence in Biosensors, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Chaiwat Pulsrikarn
- Salmonella and Shigella Center, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Kosum Chansiri
- Center of Excellence in Biosensors, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Pichapak Sriyapai
- Center of Excellence in Biosensors, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand,Department of Microbiology, Srinakharinwirot University, Bangkok, Thailand,Corresponding author.
| |
Collapse
|
34
|
Karshenas AE, Zahraei Salehi T, Adabi M, Asghari B, Yahyaraeyat R. Prevalence of main quinolones and carbapenems resistance genes in clinical and veterinary Escherichia coli strains. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:841-849. [PMID: 36721438 PMCID: PMC9867622 DOI: 10.18502/ijm.v14i6.11259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Objectives Antibiotics-resistant Escherichia coli strains are considered one of the most important causes of human and animal infections worldwide. The aim of current study was to detect common resistance (carbapenems and quinolones) genes by PCR. Materials and Methods A total of 100 E. coli strains isolated from human urinary tract infection and 20 isolated strains of aborted sheep embryos were collected. PCR was performed using specific primers to detect the resistance genes. Results Overall, among the quinolones resistance genes, qnrS resistance gene had the highest frequency (48%) and among carbapenem resistance genes, imp resistance gene had the highest frequency (45%). The frequency of resistance genes, IMP (28.45%), KPC (9.5%), VIM (9.15%), NDM (7.20%) were observed in clinical and veterinary strains, respectively. According to the results, 38.6% of E. coli strains had at least one from five genes of resistance to quinolones. The lowest frequency of resistance gene was related to qnrA, which was observed in only 29 (24.2%) strains. Conclusion Monitoring of carbapenem and quinolone resistance in pathogenic E. coli to humans and animals has an important value in revising treatment guidelines and the national public health, and plays an important role in preventing the spread of resistant strains.
Collapse
Affiliation(s)
- Ali Ehsan Karshenas
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Corresponding author: Taghi Zahraei Salehi, DVM, Ph.D, Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran. Tel: +98-21-61117052 Fax: +98-21-44865119
| | - Maryam Adabi
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Babak Asghari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran,Co-corresponding author: Babak Asghari, Ph.D, Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. Tel: +98-9125602565 Fax: +98-8138380130
| | - Ramak Yahyaraeyat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
35
|
Zhou Y, Ji X, Liang B, Jiang B, Li Y, Yuan T, Zhu L, Liu J, Guo X, Sun Y. Antimicrobial Resistance and Prevalence of Extended Spectrum β-Lactamase-Producing Escherichia coli from Dogs and Cats in Northeastern China from 2012 to 2021. Antibiotics (Basel) 2022; 11:1506. [PMID: 36358160 PMCID: PMC9686880 DOI: 10.3390/antibiotics11111506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
(1) Background: there has been a growing concern about pet-spread bacterial zoonosis in recent years. This study aimed to investigate the trend in drug-resistance of canine Escherichia coli isolates in northeast China between 2012-2021 and the differences in drug-resistance of E. coli of different origins in 2021. (2) Methods: E. coli were isolated from feces or anal swab samples from dogs and cats, and their antibiotic susceptibility profiles and phylogenetic grouping were identified. PCR was applied on the extended spectrum β-lactamase (ESBL) E. coli for antibiotic resistance genes. (3) Results: five hundred and fifty-four E. coli isolates were detected in 869 samples (63.75%). The multidrug resistance (MDR) rates of E. coli in pet dogs showed a decreasing trend, but working dogs showed the opposite trend. Resistance genes blaCTX-M and blaCTX-M+TEM were dominant among the ESBL producers (n = 219). The consistency between the resistance phenotypes and genes was high except for fluoroquinolone-resistant ESBL E. coli. All ESBL E. coli-carrying blaNDM were isolated from working dogs, and one of the strains carried mcr-1 and blaNDM-4. Phylogroup B2 was the dominant group in pet cats, and more than half of the isolates from companion cats were ESBL E. coli. (4) Conclusions: the measures taken to reduce resistance in China were beginning to bear fruit. Companion cats may be more susceptible to colonization by ESBL E. coli. The problem of resistant bacteria in working dogs and pet cats warrants concern.
Collapse
Affiliation(s)
- Yifan Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130021, China
| | - Xue Ji
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130021, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130021, China
| | - Bing Liang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130021, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130021, China
| | - Bowen Jiang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130021, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130021, China
| | - Yan Li
- Engineering Research Center of Glycoconjugates, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130021, China
| | - Tingyv Yuan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130021, China
| | - Lingwei Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130021, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130021, China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130021, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130021, China
| | - Xuejun Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130021, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130021, China
| | - Yang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130021, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130021, China
| |
Collapse
|
36
|
Miranda CD, Concha C, Godoy FA, Lee MR. Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance. Antibiotics (Basel) 2022; 11:1487. [PMID: 36358142 PMCID: PMC9687057 DOI: 10.3390/antibiotics11111487] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/27/2023] Open
Abstract
The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed.
Collapse
Affiliation(s)
- Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Félix A. Godoy
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| | - Matthew R. Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| |
Collapse
|
37
|
Orabi A, Armanious W, Radwan IA, Girh ZMSA, Hammad E, Diab MS, Elbestawy AR. Genetic Correlation of Virulent Salmonella Serovars (Extended Spectrum β-Lactamases) Isolated from Broiler Chickens and Human: A Public Health Concern. Pathogens 2022; 11:1196. [PMID: 36297253 PMCID: PMC9610193 DOI: 10.3390/pathogens11101196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 10/29/2023] Open
Abstract
This study aimed to detect the virulent Salmonella serovars (including ESBLs producing) isolated from broiler chickens and humans. Three hundred broilers and sixty human fecal samples were bacteriologically examined. Thirty (10%) and fourteen (23.4%) Salmonella isolates were recovered from broiler and human samples, respectively. The most predominant serovar was S. enteritidis and S. typhimurium. All Salmonella isolates were confirmed by conventional PCR-based invA and ompA genes. Multidrug resistant (MDR) isolates were screened for the detection of adrA and csgD biofilm-associated genes, which were found in all isolated serovars except one S. typhimurium and 2 S. infantis of chicken isolates that were devoid of the adrA gene. Moreover, MDR isolates were screened for detection of seven resistance genes including ESBLs and other classes of resistance genes. Chicken isolates harbored blaTEM, int1, blaCTX and qnrS genes as 100, 27.8, 11.1 and 11.1%, respectively, while all human isolates harbored blaTEM, int1 and int3 genes. The genetic correlations between virulent Salmonella serovars (including antimicrobial resistance) avian and human origins were compared. In conclusion, the high prevalence of virulent ESBL producing Salmonella serovars in broilers and humans with genetic correlations between them might be zoonotic and public health hazards.
Collapse
Affiliation(s)
- Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wagih Armanious
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ismail A. Radwan
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Enas Hammad
- Agricultural Research Center (ARC), Animal Health Research Institute-Mansoura Provincial Lab (AHRI-Mansoura), Giza 12618, Egypt
| | - Mohamed S. Diab
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, New Valley University, El Kharga 72511, Egypt
| | - Ahmed R. Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
38
|
Cozma AP, Rimbu CM, Zendri F, Maciuca IE, Timofte D. Clonal Dissemination of Extended-Spectrum Cephalosporin-Resistant Enterobacterales between Dogs and Humans in Households and Animal Shelters of Romania. Antibiotics (Basel) 2022; 11:antibiotics11091242. [PMID: 36140020 PMCID: PMC9495119 DOI: 10.3390/antibiotics11091242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Faecal carriage of extended-spectrum cephalosporin-resistant (ESC-R) Enterobacterales in healthy pets is a concerning issue. This study aimed to determine the prevalence, genetic background, and potential for interspecies transmission of these bacteria between dogs and humans within the same household (HH) or shelter environment in Romania. Faecal samples (n = 263) collected from healthy dogs (n = 102), their owners (n = 32), as well as dogs (n = 110) and staff (n = 19) from dog shelters, were screened for ESC-R carriage. Clonal relatedness of canine and human Escherichia coli isolates was established using Fourier Transform Infrared Spectroscopy (FTIR), followed by Illumina WGS of selected isolates. The highest prevalence of ESC-R Enterobacterales faecal carriage was identified in staff working at dog shelters (78.9%), followed by dogs from households (44.11%), dog owners (43.7%), and dogs from shelters (27%). FTIR identified 15 clusters of closely related E. coli isolates, including dog and human isolates from the same environment. Co-carriage of ESC-R isolates in both the dog and owner was identified in 12 HHs (37.5%), with two HHs (6%) having both the owner and dog carrying isolates with identical FTIR spectra, phylogroup, resistance genes, and Inc plasmids. Major ExPEC lineages such as ST127, ST10, ST155, and ST88 were detected in human and dog isolates. Our study revealed a high prevalence of faecal ESC-R E. coli carriage in both dogs and humans from Romanian households and shelters, where bidirectional clonal transmission between humans and dogs is likely. Furthermore, we identified ESC-R Enterobacterales co-carriage in people and dogs sharing the same environment using FTIR, demonstrating its value in AMR surveillance for humans and animals.
Collapse
Affiliation(s)
- Andreea Paula Cozma
- Department of Exact Sciences, Faculty of Horticulture, University of Life Sciences, 700490 Iasi, Romania
| | - Cristina Mihaela Rimbu
- Department of Public Health, Faculty of Veterinary Medicine, University of Life Sciences, 700490 Iasi, Romania
| | - Flavia Zendri
- Institute of Infection, Veterinary and Ecological Sciences, Department of Veterinary Anatomy, Physiology and Pathology, Leahurst Campus, University of Liverpool, Neston CH64 7TE, UK
| | - Iuliana Elena Maciuca
- Institute of Infection, Veterinary and Ecological Sciences, Department of Veterinary Anatomy, Physiology and Pathology, Leahurst Campus, University of Liverpool, Neston CH64 7TE, UK
| | - Dorina Timofte
- Department of Public Health, Faculty of Veterinary Medicine, University of Life Sciences, 700490 Iasi, Romania
- Institute of Infection, Veterinary and Ecological Sciences, Department of Veterinary Anatomy, Physiology and Pathology, Leahurst Campus, University of Liverpool, Neston CH64 7TE, UK
- Correspondence:
| |
Collapse
|
39
|
Azzariti S, Bond R, Loeffler A, Zendri F, Timofte D, Chang YM, Pelligand L. Investigation of In Vitro Susceptibility and Resistance Mechanisms in Skin Pathogens: Perspectives for Fluoroquinolone Therapy in Canine Pyoderma. Antibiotics (Basel) 2022; 11:antibiotics11091204. [PMID: 36139982 PMCID: PMC9494949 DOI: 10.3390/antibiotics11091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Fluoroquinolones (FQ) are commonly used in dogs with bacterial skin infections. Their use as first choice, along with the increased incidence of FQ-resistance, represents a risk to animal and public health. Our study determined minimum inhibitory (MIC) and bactericidal (MBC) concentrations of five FQs in Staphylococcus aureus, Staphylococcus pseudintermedius, and Escherichia coli, together with FQ-resistance mechanisms. MICs, efflux pump (EP) overexpression and MBCs were measured in 249 skin infection isolates following CLSI guidelines (CLSI VET01-A4, CLSI M26-A). Chromosomal and plasmid-mediated resistance genes were investigated after DNA extraction and sequencing. FQ-resistance was detected in 10% of methicillin-susceptible (MS), 90% of methicillin-resistant (MR) staphylococci and in 36% of E. coli. Bactericidal effect was observed except in 50% of MRSA/P for ciprofloxacin and in 20% of MRSPs for enrofloxacin. Highest MICs were associated with double mutation in gyrA (Ser83Leu + Asp87Asn), efflux pumps and three PMQR genes in E. coli, and grlA (Ser80Phe + Glu84Lys) in S. aureus. EP overexpression was high among E. coli (96%), low in S. aureus (1%) and absent in S. pseudintermedius. Pradofloxacin and moxifloxacin showed low MICs with bactericidal effect. Since in vitro FQ resistance was associated with MR, FQ use should be prudently guided by susceptibility testing.
Collapse
Affiliation(s)
- Stefano Azzariti
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
| | - Ross Bond
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
| | - Anette Loeffler
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
| | - Flavia Zendri
- Institute of Infection, Veterinary and Ecological Sciences, Department of Veterinary Anatomy, Physiology and Pathology, Veterinary Microbiology Diagnostic, University of Liverpool Leahurst Campus, Neston CH64 7TE, UK
| | - Dorina Timofte
- Institute of Infection, Veterinary and Ecological Sciences, Department of Veterinary Anatomy, Physiology and Pathology, Veterinary Microbiology Diagnostic, University of Liverpool Leahurst Campus, Neston CH64 7TE, UK
| | - Yu-Mei Chang
- Research Support Office, Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Ludovic Pelligand
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
- Correspondence:
| |
Collapse
|
40
|
Sadat A, Ramadan H, Elkady MA, Hammad AM, Soliman MM, Aboelenin SM, Al-Harthi HF, Abugomaa A, Elbadawy M, Awad A. Phylotypic Profiling, Distribution of Pathogenicity Island Markers, and Antimicrobial Susceptibility of Escherichia coli Isolated from Retail Chicken Meat and Humans. Antibiotics (Basel) 2022; 11:antibiotics11091197. [PMID: 36139976 PMCID: PMC9495032 DOI: 10.3390/antibiotics11091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli (E.coli) found in retail chicken meat could be causing a wide range of infections in humans and constitute a potential risk. This study aimed to evaluate 60 E. coli isolates from retail chicken meat (n = 34) and human urinary tract infections (UTIs, n = 26) for phylogenetic diversity, presence of pathogenicity island (PAI) markers, antimicrobial susceptibility phenotypes, and antimicrobial resistance genes, and to evaluate their biofilm formation capacity. In that context, confirmed E.coli isolates were subjected to phylogrouping analysis using triplex PCR, antimicrobial susceptibility testing using the Kirby–Bauer disc diffusion method; PAI distribution was investigated by using two multiplex PCRs. Most of the chicken isolates (22/34, 64.7%) were identified as commensal E. coli (A and B1), while 12 isolates (35.3%) were classified as pathogenic virulent E. coli (B2 and D). Similarly, the commensal group dominated in human isolates. Overall, 23 PAIs were detected in the chicken isolates; among them, 39.1% (9/23) were assigned to group B1, 34.8% (8/23) to group A, 4.34% (1/23) to group B2, and 21.7% (5/23) to group D. However, 25 PAIs were identified from the human isolates. PAI IV536 was the most prevalent (55.9%, 69.2%) PAI detected in both sources. In total, 37 (61.7%) isolates of the chicken and human isolates were biofilm producers. Noticeably, 100% of E. coli isolates were resistant to penicillin and rifamycin. Markedly, all E. coli isolates displayed multiple antibiotic resistance (MAR) phenotypes, and the multiple antibiotic resistance index (MARI) among E. coli isolates ranged between 0.5 and 1. Several antibiotic resistance genes (ARGs) were identified by a PCR assay; the sul2 gene was the most prevalent (38/60, 63.3%) from both sources. Interestingly, a significant positive association (r = 0.31) between biofilm production and resistance to quinolones by the qnr gene was found by the correlation analysis. These findings were suggestive of the transmission of PAI markers and antibiotic resistance genes from poultry to humans or humans to humans through the food chain. To avoid the spread of virulent and multidrug-resistant E. coli, intensive surveillance of retail chicken meat markets is required.
Collapse
Affiliation(s)
- Asmaa Sadat
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A. Elkady
- Mansoura Veterinary Laboratory Branch, Microbiology Research Department, Animal Health Research Institute, Kafrelsheikh 33516, Egypt
| | - Amal Mahmoud Hammad
- Biochemistry Department, Faculty of Medicine Damietta, Al-Azhar University, Cairo 11651, Egypt
| | - Mohamed M. Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Salama M. Aboelenin
- Biology Department, Turabah University College, Taif University, Al Hawiyah 21995, Saudi Arabia
| | - Helal F. Al-Harthi
- Biology Department, Turabah University College, Taif University, Al Hawiyah 21995, Saudi Arabia
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Amal Awad
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +2-0102-127-6993
| |
Collapse
|
41
|
Goudarztalejerdi A, Yavari M, Nouri Kalourazi M, Borzouei F, Manouchehri Tabar A, Tolouei Gilani J. Antibiotic Resistance and Virulence Factor Gene Profile of Aeromonas hydrophila Isolated from Carp (Cyprinidae) Suspected with Hemorrhagic Septicemia in Gilan, Iran. Lett Appl Microbiol 2022; 75:1354-1365. [PMID: 35976044 DOI: 10.1111/lam.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022]
Abstract
The present study was conducted to determine the antibacterial resistance profile of Aeromonas hydrophila (n= 42) isolated from the 100 hemorrhagic septicemia-suspected carp in Gilan, Iran. The prevalence of class 1 and 2 integrons, antibiotic resistance genes (ARG), and virulence factor genes (VFG) among these isolates was investigated using PCR. Also, the possible association between the presence of VFGs and the antibiotic resistance profile of isolates was assessed. The majority of A. hydrophila isolates (83.33%) exhibited multi-drug resistance (MDR) profile, and all isolates were resistant to clindamycin, while all isolates were susceptible to amikacin. intI1 and intI2 gene was found in 26.2% and 4.8% isolates, respectively. This is the first report of the presence of the intI2 gene in A. hydrophila isolates in Iran. The blaTEM (40.5%) and tetA (33.3%) genes were found as the predominant ARGs. The most frequently detected VFGs were lip and ahh1(90.5%), while the examined isolates carrying at least three VFGs and the most prevalent VFGs profile was ast+, act+, alt+, ahhl+, aerA+, ahyB+, and lip+. The results of this study indicate a positive association between the presence of VFGs and antibiotic resistance, and most MDR A. hydrophila isolates showed high frequencies of VFGs.
Collapse
Affiliation(s)
- Ali Goudarztalejerdi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Morteza Yavari
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mahdi Nouri Kalourazi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Fatemeh Borzouei
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Arash Manouchehri Tabar
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Javad Tolouei Gilani
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
42
|
Um MM, Dupouy V, Arpaillange N, Bièche-Terrier C, Auvray F, Oswald E, Brugère H, Bibbal D. High Fecal Prevalence of mcr-Positive Escherichia coli in Veal Calves at Slaughter in France. Antibiotics (Basel) 2022; 11:antibiotics11081071. [PMID: 36009940 PMCID: PMC9405437 DOI: 10.3390/antibiotics11081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to determine the percentage of healthy veal calves carrying mcr-positive E. coli strains at the time of slaughter in France. Fecal samples were selectively screened for mcr-positive E. coli isolates using media supplemented with colistin. Screening for mcr genes was also carried out in E. coli isolates resistant to critically important antimicrobials used in human medicine recovered from the same fecal samples. Overall, 28 (16.5%) out of the 170 veal calves tested carried mcr-positive E. coli. As some calves carried several non-redundant mcr-positive strains, 41 mcr-positive E. coli were recovered. Thirty-one and seven strains were positive for mcr-1 and mcr-3 genes, respectively, while no strain was positive for the mcr-2 gene. Co-carriage of mcr-1 and mcr-3 was identified in three strains. All mcr-positive E. coli isolates, except one, were multidrug-resistant, with 56.1% being ciprofloxacin-resistant and 31.7% harboring blaCTX-M genes. All mcr-3-positive E. coli carried blaCTX-M genes, mainly blaCTX-M-55. This study highlights the high prevalence of mcr-positive E. coli strains in feces of veal calves at the time of slaughter. It also points out the multidrug (including ciprofloxacin) resistance of such strains and the co-occurrence of mcr-3 genes with blaCTX-M-55 genes.
Collapse
Affiliation(s)
- Maryse Michèle Um
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
| | - Véronique Dupouy
- Innovations Thérapeutiques et Résistances, Université de Toulouse, INRAE, ENVT, 31 000 Toulouse, France
| | - Nathalie Arpaillange
- Innovations Thérapeutiques et Résistances, Université de Toulouse, INRAE, ENVT, 31 000 Toulouse, France
| | | | - Frédéric Auvray
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
| | - Eric Oswald
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
- CHU de Toulouse, Hôpital Purpan, 31 000 Toulouse, France
| | - Hubert Brugère
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
| | - Delphine Bibbal
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
- Correspondence:
| |
Collapse
|
43
|
Multidrug-Resistant Enteropathogenic Escherichia coli Isolated from Diarrhoeic Calves, Milk, and Workers in Dairy Farms: A Potential Public Health Risk. Antibiotics (Basel) 2022; 11:antibiotics11080999. [PMID: 35892389 PMCID: PMC9332572 DOI: 10.3390/antibiotics11080999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a leading cause of diarrhoeagenic diseases in humans and cattle worldwide. The emergence of multidrug-resistant (MDR) EPEC from cattle sources is a public health concern. A total of 240 samples (75 diarrhoeic calves, 150 milk samples, and 15 workers) were examined for prevalence of EPEC in three dairy farms in Egypt. Antimicrobial resistance (AMR) traits were determined by antibiogram and polymerase chain reaction (PCR) detection of β-lactamase-encoding genes, plasmid-mediated quinolone resistance genes, and carbapenemase-encoding genes. The genetic relatedness of the isolates was assessed using repetitive extragenic palindromic sequence-based PCR (REP-PCR). EPEC isolates were detected in 22.7% (17/75) of diarrhoeic calves, 5.3% (8/150) of milk samples, and 20% (3/15) of worker samples. The detected serovars were O26 (5%), O111 (3.3%), O124 (1.6%), O126 (0.8%), and O55 (0.8%). AMR-EPEC (harbouring any AMR gene) was detected in 9.2% of samples. Among isolates, blaTEM was the most detected gene (39.3%), followed by blaSHV (32.1%) and blaCTX-M-1 (25%). The qnrA, qnrB, and qnrS genes were detected in 21.4%, 10.7%, and 7.1% of isolates, respectively. The blaVIM gene was detected in 14.3% of isolates. All EPEC (100%) isolates were MDR. High resistance rates were reported for ampicillin (100%), tetracycline (89.3%), cefazolin (71%), and ciprofloxacin (64.3%). Three O26 isolates and two O111 isolates showed the highest multiple-antibiotic resistance (MAR) indices (0.85–0.92); these isolates harboured blaSHV-12 and blaCTX-M-15 genes, respectively. REP-PCR genotyping showed high genetic diversity of EPEC, although isolates belonging to the same serotype or farm were clustered together. Two worker isolates (O111 and O26) showed high genetic similarity (80–95%) with diarrhoeic calf isolates of matched serotypes/farms. This may highlight potential inter-species transmission within the farm. This study highlights the potential high risk of cattle (especially diarrhoeic calves) as disseminators of MDR-EPEC and/or their AMR genes in the study area. Prohibition of non-prescribed use of antibiotics in dairy farms in Egypt is strongly warranted.
Collapse
|
44
|
Hassan ER, Alhatami AO, Abdulwahab HM, Schneider BS. Characterization of plasmid-mediated quinolone resistance genes and extended-spectrum beta-lactamases in non-typhoidal Salmonella enterica isolated from broiler chickens. Vet World 2022; 15:1515-1522. [PMID: 35993066 PMCID: PMC9375215 DOI: 10.14202/vetworld.2022.1515-1522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Antibiotic-resistant Salmonella is a public health concern. Fluoroquinolones and extended-spectrum beta-lactams are widely used for the treatment of Salmonella infections. This study focused on the detection of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum beta-lactamase (ESBL) genes among multidrug-resistant (MDR) Salmonella enterica isolated from broilers. Materials and Methods: A total of 40 non-typhoidal S. enterica isolates were collected from 28 broiler chicken farms in four Iraqi Governorates. These isolates were examined for their susceptibility to 10 antimicrobial agents by disk-diffusion method followed by polymerase chain reaction assay for the detection of PMQR determinants and ESBLs genes. Results: Salmonella strains revealed high levels of resistance to the following antibiotics: Nalidixic acid 100%, levofloxacin (LEV) 97.5%, amoxicillin-clavulanic acid 95.0%, tetracycline 92.5%, and nitrofurantoin 80.0%. Otherwise, all isolates were susceptible to cefotaxime and ceftriaxone. All isolates were MDR, with 15 different profiles observed. Among 38 amoxicillin/clavulanic acid-resistant Salmonella isolates, 20 (52.6%) had the blaTEM gene, while blaSHV, blaCTX-M, and blaOXA genes were not detected. Only 5 (12.8%) out of 39 LEV-resistant isolates were positive for qnrB, three of which had blaTEM. No qnrC or qnrD, qnrS, aac(6`)-Ib-cr, qunA, and oqxAB genes were found in any of the tested isolates. Conclusion: This study demonstrates that broiler chickens may be considered a potential source for spreading MDR non-typhoidal Salmonella and ESBL traits in poultry production. Therefore, it is important to continuously monitor ESBL and PMQR genes to avoid the spread of resistant strains in the food chain and impact public health.
Collapse
Affiliation(s)
- Esraa Razzaq Hassan
- Department of Microbiology, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq
| | - Abdullah O. Alhatami
- Department of Public Health, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq
| | | | | |
Collapse
|
45
|
Haeili M, Salehzeinali H, Mirzaei S, Pishnian Z, Ahmadi A. Molecular characterization of quinolone resistance and antimicrobial resistance profiles of Klebsiella pneumoniae and Escherichia coli isolated from human and broiler chickens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1382-1392. [PMID: 33615919 DOI: 10.1080/09603123.2021.1885632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
This study characterized quinolone (Q) resistance determinants in a series of Klebsiella pneumoniae (n = 26) and Escherichia coli (n = 19) isolates of human and animal origin. The presence of plasmid-mediated quinolone resistance (PMQR) and carabpenemase genes was examined by PCR. The quinolone resistance-determining regions (QRDRs) of gyrA and parC genes were sequenced. Thirty-three isolates had ciprofloxacin MIC≥8 mg/l. About 34.6% and 10.5% of K. pneumoniae and E. coli isolates were ESBL producers respectively. The PMQR genes were detected in 77% (n = 35) of isolates. The oqxAB was the most prevalent PMQR gene being identified in all K. pneumoniae isolates, followed by aac(6')-Ib-cr (34.6%), qnrS (23%) and qnrB (7.7%). The most frequently detected gene among E. coli isolates was qnrS (36.8%) followed by aac(6')-Ib-cr (10.5%) and qepA (5.2%). All Q resistant isolates harbored amino acid substitutions in both GyrA and ParC QRDRs. High prevalence of PMQR genes among food-producing animal isolates is an issue of great concern.
Collapse
Affiliation(s)
- Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hila Salehzeinali
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Somayyeh Mirzaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zeinab Pishnian
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amin Ahmadi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Merkevičienė L, Butrimaitė-Ambrozevičienė Č, Paškevičius G, Pikūnienė A, Virgailis M, Dailidavičienė J, Daukšienė A, Šiugždinienė R, Ruzauskas M. Serological Variety and Antimicrobial Resistance in Salmonella Isolated from Reptiles. BIOLOGY 2022; 11:biology11060836. [PMID: 35741357 PMCID: PMC9219617 DOI: 10.3390/biology11060836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Salmonella enterica is one of the best adapted bacterial pathogens causing infections in a wide variety of vertebrate species. The aim of this study was to investigate the prevalence of Salmonella in different reptile species and to evaluate their serological variety and patterns of antimicrobial resistance. In total, 97 samples from 25 wild and domesticated reptile species were investigated in Lithuania. Serological variety, as well as phenotypical and genotypical resistance to antimicrobials, were investigated. Fifty isolates of Salmonella were obtained from the ninety-seven tested samples (51.5%; 95% CI 41.2−61.2). A significantly higher prevalence of Salmonella was detected in domesticated individuals (61.3%; 95% CI 50.0−71.5) compared with wild ones (18.2%; 95% CI 7.3−38.5). All isolates belonged to a single species, Salmonella enterica. Results demonstrated that reptiles carry a large variety of Salmonella serovars. Thirty-four isolates (68%) of Salmonella were resistant to at least one antimicrobial drug. The most frequent resistance of the isolates was to streptomycin (26%), cefoxitin, gentamicin, tetracycline and chloramphenicol (16%). Genes encoding resistance to tetracyclines, aminoglycosides, sulphonamides and trimethoprim were detected. No integrons that are associated with horizontal gene transfer were found. Data obtained provided knowledge about the adaptation of Salmonella in reptiles. Healthy individuals, irrespective of their origin, often carry Salmonella, including multi-resistant strains. Due to its large serological diversity, zoonotic potential and antimicrobial resistance, Salmonella in reptiles poses a risk to other animals and humans.
Collapse
Affiliation(s)
- Lina Merkevičienė
- Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania; (L.M.); (J.D.); (A.D.)
| | - Česlova Butrimaitė-Ambrozevičienė
- Department of Bacteriological Investigations, National Food and Veterinary Risk Assessment Institute, J. Kairiūkščio g. 10, LT-08409 Vilniu, Lithuania;
| | - Gerardas Paškevičius
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania;
| | - Alma Pikūnienė
- Lithuanian Zoological Garden, Radvilėnų pl. 21, 50299 Kaunas, Lithuania;
| | - Marius Virgailis
- Microbiology and Virology Institute, Lithuanian University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania; (M.V.); (R.Š.)
| | - Jurgita Dailidavičienė
- Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania; (L.M.); (J.D.); (A.D.)
| | - Agila Daukšienė
- Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania; (L.M.); (J.D.); (A.D.)
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania
| | - Rita Šiugždinienė
- Microbiology and Virology Institute, Lithuanian University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania; (M.V.); (R.Š.)
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania; (L.M.); (J.D.); (A.D.)
- Microbiology and Virology Institute, Lithuanian University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania; (M.V.); (R.Š.)
- Correspondence: ; Tel.: +370-615-15240
| |
Collapse
|
47
|
Gelalcha BD, Ensermu DB, Agga GE, Vancuren M, Gillespie BE, D'Souza DH, Okafor CC, Kerro Dego O. Prevalence of Antimicrobial Resistant and Extended-Spectrum Beta-Lactamase-producing Escherichia coli in Dairy Cattle Farms in East Tennessee. Foodborne Pathog Dis 2022; 19:408-416. [PMID: 35451874 DOI: 10.1089/fpd.2021.0101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobials have been widely used in dairy farms to prevent and control dairy cattle diseases since 1960s. This led to the emergence of antimicrobial resistant bacteria (ARB) that, along with their antimicrobial resistance genes (ARGs), can spread from dairy farms to humans. Therefore, regular antimicrobial resistance (AMR) monitoring is important to implement proper mitigation measures. The objective of this study was to determine the prevalence of AMR and extended-spectrum beta-lactamases (ESBLs)-producing Escherichia coli in dairy cattle. A cross-sectional study was conducted in four dairy cattle farms (A-D) in East Tennessee. A total of 80 samples consisting of 20 samples each of bulk tank milk, feces, dairy cattle manure-amended soil, and prairie soil adjacent to the farms were collected and cultured for the isolation of E. coli. Tetracycline (TETr)-, third-generation cephalosporin (TGCr)- and nalidixic acid (NALr)-resistant E. coli (n = 88) were isolated and identified on agar media supplemented with TET, cefotaxime, and NAL, respectively. TGCr E. coli were tested for ESBLs and other coselected ARGs. TETr (74%, n = 88) was the most common, followed by TGCr (20%) and NALr (8%). Farms had significant (p < 0.001) differences: the highest prevalence of TGCr (55%) and TETr (100%) were observed in farm D, while all NALr isolates were from farm C. Over 83% of TGCr isolates (n = 18) harbored ESBL gene blaCTX-M. Majority (78%) of the E. coli isolates were multidrug-resistant (MDR), being positive for beta-lactams (blaCTX-M), TETs tet(A), tet(B), tet(M)), sulfonamides (sul2), aminoglycosides (strA), and phenicols (floR). This study indicated the widespread occurrence of MDR ESBLs-E. coli in dairy cattle farms. AMR surveillance of more dairy farms and identification of farm-level risk factors are important to mitigate the occurrence and spread of ARB of significant public health importance, such as ESBLs-E. coli.
Collapse
Affiliation(s)
- Benti D Gelalcha
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Desta B Ensermu
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, USA
| | - Molly Vancuren
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Barbara E Gillespie
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Doris H D'Souza
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Chika C Okafor
- Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| |
Collapse
|
48
|
Liu X, Li X, Yang AW, Tang B, Jian ZJ, Zhong YM, Li HL, Li YM, Yan Q, Liang XH, Liu WE. Community Fecal Carriage and Molecular Epidemiology of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Escherichia coli from Healthy Children in the Central South China. Infect Drug Resist 2022; 15:1601-1611. [PMID: 35418762 PMCID: PMC8995156 DOI: 10.2147/idr.s357090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/26/2022] [Indexed: 12/25/2022] Open
Affiliation(s)
- Xuan Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Xin Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - A-Wen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Bin Tang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Zi-Juan Jian
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yi-Ming Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Hong-Ling Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yan-Ming Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Xiang-Hui Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, People's Republic of China
| | - Wen-En Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, People's Republic of China
| |
Collapse
|
49
|
Jomehzadeh N, Saki M, Ahmadi K, Zandi G. The prevalence of plasmid-mediated quinolone resistance genes among Escherichia coli strains isolated from urinary tract infections in southwest Iran. Mol Biol Rep 2022; 49:3757-3763. [PMID: 35301647 DOI: 10.1007/s11033-022-07215-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The extensive and inappropriate use of quinolones, which are frequently used as an effective treatment for urinary tract infection (UTI) patients, has led to resistance to these antibiotics. This study was designed to determine the prevalence of quinolones resistance and the presence of plasmid-mediated quinolone resistance (PMQR) genes among extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates. METHODS One hundred and fourteen E. coli isolates were collected from patients' urine samples. The susceptibility of isolates to selected antibiotics was tested by the Kirby-Bauer disk diffusion method. ESBL-producing isolates were identified phenotypically using a combination disk test. Using specific primers, the frequency of aac (6')-Ib, qnrA, qnrB, qnrC, qnrD, qnrS, and qepA genes was investigated by polymerase chain reaction (PCR). RESULTS Among 26 ESBL-producing isolates, the highest resistance rate was observed toward nalidixic acid (80.8%) and ciprofloxacin (61.5%), respectively. Ninety-seven (85%) of all isolates harbored at least one PMQR gene, the most frequent one being aac(6')-Ib-cr variant (47.4%). Coexistence of aac(6')-Ib-cr variant and qnrB were the most broadly distributed genotype among quinolone resistance isolates. Notably, none of the isolates contained the qnrC, qnrD, and qepA genes. CONCLUSIONS Our results highlight the significant prevalence of PMQR genes in ESBL-producing E. coli isolates in this region. Also, the aac (6')-Ib-cr variant was the most frequent gene, particularly in ESBL positive isolates. A regular periodic monitoring program is needed to control and hinder the more spread of antibiotic resistance phenomenon and contributed genes among UTI-causing E. coli isolates.
Collapse
Affiliation(s)
- Nabi Jomehzadeh
- Department of Microbiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran.
| | - Morteza Saki
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Khadijeh Ahmadi
- Department of Microbiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Golshan Zandi
- Department of Microbiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
50
|
Jomehzadeh N, Ahmadi K, Bahmanshiri MA. Investigation of plasmid-mediated quinolone resistance genes among clinical isolates of Klebsiella pneumoniae in southwest Iran. J Clin Lab Anal 2022; 36:e24342. [PMID: 35293043 PMCID: PMC9279965 DOI: 10.1002/jcla.24342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/19/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
Background Extensive and inappropriate use of quinolones has led to growing resistance rates to these broad‐spectrum antibiotics. The present study purposed to investigate the prevalence of plasmid‐mediated quinolone resistance (PMQR) genes in Klebsiella pneumoniae clinical isolates. Method Ninety‐two non‐repetitive K. pneumoniae clinical isolates were confirmed by standard microbiological methods. Antibacterial susceptibility of isolates toward seven agents from the quinolone family was evaluated by the disc diffusion method. Ciprofloxacin minimum inhibitory concentrations (MICs) were determined using the standard agar dilution method. PCR amplification was used to detect the existence of PMQR genes in the studied isolates. Results In the present study, significant quinolones' resistance (40%) was observed in K. pneumoniae isolates, and most of the strains were resistant to nalidixic acid (94.6%) and ofloxacin (45.6%). MIC analysis showed 15 strains were resistant to 6–128 μg/ml of ciprofloxacin, and five were intermediately‐resistant. PMQR genes were detected in 88% of all isolates. Acc(6’)‐Ib‐cr was constituted half of the total PMQR genes detected among ciprofloxacin non‐susceptible isolates. Of 20 ciprofloxacin non‐susceptible isolates, 65% (n = 13) harbored multiple PMQR determinants, and 15 strains were determined as integron carriage. Conclusion The findings of this study indicated considerable resistance against quinolones, which could be correlated with the extensive and inappropriate use of this class of antibiotics as empirical treatment.
Collapse
Affiliation(s)
- Nabi Jomehzadeh
- Department of MicrobiologySchool of MedicineAbadan University of Medical SciencesAbadanIran
| | - Khadijeh Ahmadi
- Department of MicrobiologySchool of MedicineAbadan University of Medical SciencesAbadanIran
| | | |
Collapse
|