1
|
Meanwell NA. Sub-stoichiometric Modulation of Viral Targets-Potent Antiviral Agents That Exploit Target Vulnerability. ACS Med Chem Lett 2023; 14:1021-1030. [PMID: 37583823 PMCID: PMC10424314 DOI: 10.1021/acsmedchemlett.3c00279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
The modulation of oligomeric viral targets at sub-stoichiometric ratios of drug to target has been advocated for its efficacy and potency, but there are only a limited number of documented examples. In this Viewpoint, we summarize the invention of the HIV-1 maturation inhibitor fipravirimat and discuss the emerging details around the mode of action of this class of drug that reflects inhibition of a protein composed of 1,300-1,600 monomers that interact in a cooperative fashion. Similarly, the HCV NS5A inhibitor daclatasvir has been shown to act in a highly sub-stoichiometric fashion, inhibiting viral replication at concentrations that are ∼23,500 lower than that of the protein target.
Collapse
|
2
|
Saponins of Selected Triterpenoids as Potential Therapeutic Agents: A Review. Pharmaceuticals (Basel) 2023; 16:ph16030386. [PMID: 36986485 PMCID: PMC10055990 DOI: 10.3390/ph16030386] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Saponins represent important natural derivatives of plant triterpenoids that are secondary plant metabolites. Saponins, also named glycoconjugates, are available both as natural and synthetic products. This review is focused on saponins of the oleanane, ursane, and lupane types of triterpenoids that include several plant triterpenoids displaying various important pharmacological effects. Additional convenient structural modifications of naturally-occurring plant products often result in enhancing the pharmacological effects of the parent natural structures. This is an important objective for all semisynthetic modifications of the reviewed plant products, and it is included in this review paper as well. The period covered by this review (2019–2022) is relatively short, mainly due to the existence of previously published review papers in recent years.
Collapse
|
3
|
Smith RA, Raugi DN, Nixon RS, Song J, Seydi M, Gottlieb GS. Intrinsic resistance of HIV-2 and SIV to the maturation inhibitor GSK2838232. PLoS One 2023; 18:e0280568. [PMID: 36652466 PMCID: PMC9847912 DOI: 10.1371/journal.pone.0280568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
GSK2838232 (GSK232) is a novel maturation inhibitor that blocks the proteolytic cleavage of HIV-1 Gag at the junction of capsid and spacer peptide 1 (CA/SP1), rendering newly-formed virions non-infectious. To our knowledge, GSK232 has not been tested against HIV-2, and there are limited data regarding the susceptibility of HIV-2 to other HIV-1 maturation inhibitors. To assess the potential utility of GSK232 as an option for HIV-2 treatment, we determined the activity of the compound against a panel of HIV-1, HIV-2, and SIV isolates in culture. GSK232 was highly active against HIV-1 isolates from group M subtypes A, B, C, D, F, and group O, with IC50 values ranging from 0.25-0.92 nM in spreading (multi-cycle) assays and 1.5-2.8 nM in a single cycle of infection. In contrast, HIV-2 isolates from groups A, B, and CRF01_AB, and SIV isolates SIVmac239, SIVmac251, and SIVagm.sab-2, were highly resistant to GSK232. To determine the role of CA/SP1 in the observed phenotypes, we constructed a mutant of HIV-2ROD9 in which the sequence of CA/SP1 was modified to match the corresponding sequence found in HIV-1. The resulting variant was fully susceptible to GSK232 in the single-cycle assay (IC50 = 1.8 nM). Collectively, our data indicate that the HIV-2 and SIV isolates tested in our study are intrinsically resistant to GSK232, and that the determinants of resistance map to CA/SP1. The molecular mechanism(s) responsible for the differential susceptibility of HIV-1 and HIV-2/SIV to GSK232 require further investigation.
Collapse
Affiliation(s)
- Robert A. Smith
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Dana N. Raugi
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Robert S. Nixon
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Jennifer Song
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Moussa Seydi
- Service des Maladies Infectieuses et Tropicales, CHNU de Fann, Dakar, Senegal
| | - Geoffrey S. Gottlieb
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | | |
Collapse
|
4
|
Hartz RA, Xu L, Sit SY, Chen J, Venables BL, Lin Z, Zhang S, Li Z, Parker D, Simmons TS, Jenkins S, Hanumegowda UM, Dicker I, Krystal M, Meanwell NA, Regueiro-Ren A. Synthesis, Structure-Activity Relationships, and In Vivo Evaluation of Novel C-17 Amine Derivatives Based on GSK3640254 as HIV-1 Maturation Inhibitors with Broad Spectrum Activity. J Med Chem 2022; 65:15935-15966. [PMID: 36441509 DOI: 10.1021/acs.jmedchem.2c01618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An investigation of the structure-activity relationships of a series of HIV-1 maturation inhibitors (MIs) based on GSK3640254 (4) was conducted by incorporating novel C-17 amine substituents to reduce the overall basicity of the resultant analogues. We found that replacement of the distal amine on the C-17 sidechain present in 4 with a tertiary alcohol in combination with either a heterocyclic ring system or a cyclohexyl ring substituted with polar groups provided potent wild-type HIV-1 MIs that also retained excellent potency against a T332S/V362I/prR41G variant, a laboratory strain that served as a surrogate to assess HIV-1 polymorphic virus coverage. Compound 26 exhibited broad-spectrum HIV-1 activity against an expanded panel of clinically relevant Gag polymorphic viruses and had the most desirable overall profile in this series of compounds. In pharmacokinetic studies, 26 had low clearance and exhibited 24 and 31% oral bioavailability in rats and dogs, respectively.
Collapse
Affiliation(s)
- Richard A Hartz
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Li Xu
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sing-Yuen Sit
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jie Chen
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Brian L Venables
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zeyu Lin
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sharon Zhang
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zhufang Li
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dawn Parker
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Tara S Simmons
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Susan Jenkins
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Umesh M Hanumegowda
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ira Dicker
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Alicia Regueiro-Ren
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| |
Collapse
|
5
|
Regueiro-Ren A, Sit SY, Chen Y, Chen J, Swidorski JJ, Liu Z, Venables BL, Sin N, Hartz RA, Protack T, Lin Z, Zhang S, Li Z, Wu DR, Li P, Kempson J, Hou X, Gupta A, Rampulla R, Mathur A, Park H, Sarjeant A, Benitex Y, Rahematpura S, Parker D, Phillips T, Haskell R, Jenkins S, Santone KS, Cockett M, Hanumegowda U, Dicker I, Meanwell NA, Krystal M. The Discovery of GSK3640254, a Next-Generation Inhibitor of HIV-1 Maturation. J Med Chem 2022; 65:11927-11948. [PMID: 36044257 DOI: 10.1021/acs.jmedchem.2c00879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the para-substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CH2F moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties. The approach to the design of GSK3640254, the development of a synthetic route and its preclinical profile are discussed. GSK3640254 is currently in phase IIb clinical trials after demonstrating a dose-related reduction in HIV-1 viral load over 7-10 days of dosing to HIV-1-infected subjects.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Sing-Yuen Sit
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Yan Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jie Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jacob J Swidorski
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zheng Liu
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Brian L Venables
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ny Sin
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Richard A Hartz
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Tricia Protack
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zeyu Lin
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sharon Zhang
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zhufang Li
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Peng Li
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - James Kempson
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Xiaoping Hou
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Anuradha Gupta
- Department of Discovery Synthesis; Bristol Myers Squibb Research and Early Development, Bangalore 560099, India
| | - Richard Rampulla
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Arvind Mathur
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Hyunsoo Park
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Amy Sarjeant
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Yulia Benitex
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sandhya Rahematpura
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dawn Parker
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Thomas Phillips
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Roy Haskell
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Kenneth S Santone
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Mark Cockett
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Umesh Hanumegowda
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ira Dicker
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| |
Collapse
|
6
|
Dicker I, Jeffrey JL, Protack T, Lin Z, Cockett M, Chen Y, Sit SY, Gartland M, Meanwell NA, Regueiro-Ren A, Drexler D, Cantone J, McAuliffe B, Krystal M. GSK3640254 Is a Novel HIV-1 Maturation Inhibitor with an Optimized Virology Profile. Antimicrob Agents Chemother 2022; 66:e0187621. [PMID: 34780263 PMCID: PMC8765437 DOI: 10.1128/aac.01876-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
HIV-1 maturation inhibitors (MIs) offer a novel mechanism of action and potential for use in HIV-1 treatment. Prior MIs displayed clinical efficacy but were associated with the emergence of resistance and some gastrointestinal tolerability events. Treatment with the potentially safer next-generation MI GSK3640254 (GSK'254) resulted in up to a 2-log10 viral load reduction in a phase IIa proof-of-concept study. In vitro experiments have defined the antiviral and resistance profiles for GSK'254. The compound displayed strong antiviral activity against a library of subtype B and C chimeric viruses containing Gag polymorphisms and site-directed mutants previously shown to affect potency of earlier-generation MIs, with a mean protein-binding adjusted 90% effective concentration (EC90) of 33 nM. Furthermore, GSK'254 exhibited robust antiviral activity against a panel of HIV-1 clinical isolates, with a mean EC50 of 9 nM. Mechanistic studies established that bound GSK'254 dissociated on average 7.1-fold more slowly from wild-type Gag virus-like particles (VLPs) than a previous-generation MI. In resistance studies, the previously identified A364V Gag region mutation was selected under MI pressure in cell culture and during the phase IIa clinical study. As expected, GSK'254 inhibited cleavage of p25 in a range of polymorphic HIV-1 Gag VLPs. Virus-like particles containing the A364V mutation exhibited a p25 cleavage rate 9.3 times higher than wild-type particles, providing a possible mechanism for MI resistance. The findings demonstrate that GSK'254 potently inhibits a broad range of HIV-1 strains expressing Gag polymorphisms.
Collapse
Affiliation(s)
- Ira Dicker
- ViiV Healthcare, Branford, Connecticut, USA
| | | | | | - Zeyu Lin
- Bristol Myers Squibb, Wallingford, Connecticut, USA
| | | | - Yan Chen
- Bristol Myers Squibb, Wallingford, Connecticut, USA
| | | | - Martin Gartland
- ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Targeting the Virus Capsid as a Tool to Fight RNA Viruses. Viruses 2022; 14:v14020174. [PMID: 35215767 PMCID: PMC8879806 DOI: 10.3390/v14020174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/10/2022] Open
Abstract
Several strategies have been developed to fight viral infections, not only in humans but also in animals and plants. Some of them are based on the development of efficient vaccines, to target the virus by developed antibodies, others focus on finding antiviral compounds with activities that inhibit selected virus replication steps. Currently, there is an increasing number of antiviral drugs on the market; however, some have unpleasant side effects, are toxic to cells, or the viruses quickly develop resistance to them. As the current situation shows, the combination of multiple antiviral strategies or the combination of the use of various compounds within one strategy is very important. The most desirable are combinations of drugs that inhibit different steps in the virus life cycle. This is an important issue especially for RNA viruses, which replicate their genomes using error-prone RNA polymerases and rapidly develop mutants resistant to applied antiviral compounds. Here, we focus on compounds targeting viral structural capsid proteins, thereby inhibiting virus assembly or disassembly, virus binding to cellular receptors, or acting by inhibiting other virus replication mechanisms. This review is an update of existing papers on a similar topic, by focusing on the most recent advances in the rapidly evolving research of compounds targeting capsid proteins of RNA viruses.
Collapse
|
8
|
Margot N, Vanderveen L, Naik V, Ram R, Parvangada PC, Martin R, Rhee M, Callebaut C. Phenotypic resistance to lenacapavir and monotherapy efficacy in a proof-of-concept clinical study. J Antimicrob Chemother 2022; 77:989-995. [PMID: 35028668 DOI: 10.1093/jac/dkab503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Lenacapavir in vitro resistance selections identified seven mutations in HIV-1 capsid protein (CA) associated with reduced susceptibility. OBJECTIVES To analyse lenacapavir activity against lenacapavir-associated resistance mutations in multiple assays. We also report Day 10 resistance analyses conducted in a Phase 1b study of lenacapavir (Study 4072) in people with HIV (PWH). METHODS Mutations were inserted in a proviral DNA clone by site-directed mutagenesis, and viruses (n = 12) were generated by transfection. Sequences were used to generate single-cycle (SC) test vectors that were evaluated in a Gag-Pro assay, and replicative viruses were tested in a multicycle (MC) MT-2 assay to determine lenacapavir susceptibility. Study 4072 was a Phase 1b, double-blinded, placebo-controlled, dose-ranging, randomized study of lenacapavir in untreated PWH. Participants received a single dose of lenacapavir (up to 750 mg) or placebo (10 day monotherapy). CA resistance was characterized using genotypic and/or phenotypic assays. RESULTS Lenacapavir susceptibility in the SC assay showed an inverse relationship between replication capacity and resistance. In Study 4072, all 29 participants receiving lenacapavir showed a robust virological response with no rebound. At baseline, no participant had resistance mutations to lenacapavir, and all had WT susceptibility to lenacapavir. Post-monotherapy analyses revealed the emergence of CA mutation Q67H at Day 10 in two participants. CONCLUSIONS In vitro assays confirmed that increased resistance to lenacapavir was associated with decreased replication capacity of mutant viruses. In the clinical study no pre-existing lenacapavir resistance was detected. Emergence of Q67H occurred at exposures below the dose used in current Phase 2/3 studies. These results support development of lenacapavir as an antiretroviral agent.
Collapse
Affiliation(s)
- Nicolas Margot
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404, USA
| | | | - Vidula Naik
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404, USA
| | - Renee Ram
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404, USA
| | - P C Parvangada
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404, USA
| | - Ross Martin
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404, USA
| | - Martin Rhee
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404, USA
| | | |
Collapse
|
9
|
Pak AJ, Purdy MD, Yeager M, Voth GA. Preservation of HIV-1 Gag Helical Bundle Symmetry by Bevirimat Is Central to Maturation Inhibition. J Am Chem Soc 2021; 143:19137-19148. [PMID: 34739240 DOI: 10.1021/jacs.1c08922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The assembly and maturation of human immunodeficiency virus type 1 (HIV-1) require proteolytic cleavage of the Gag polyprotein. The rate-limiting step resides at the junction between the capsid protein CA and spacer peptide 1, which assembles as a six-helix bundle (6HB). Bevirimat (BVM), the first-in-class maturation inhibitor drug, targets the 6HB and impedes proteolytic cleavage, yet the molecular mechanisms of its activity, and relatedly, the escape mechanisms of mutant viruses, remain unclear. Here, we employed extensive molecular dynamics (MD) simulations and free energy calculations to quantitatively investigate molecular structure-activity relationships, comparing wild-type and mutant viruses in the presence and absence of BVM and inositol hexakisphosphate (IP6), an assembly cofactor. Our analysis shows that the efficacy of BVM is directly correlated with preservation of 6-fold symmetry in the 6HB, which exists as an ensemble of structural states. We identified two primary escape mechanisms, and both lead to loss of symmetry, thereby facilitating helix uncoiling to aid access of protease. Our findings also highlight specific interactions that can be targeted for improved inhibitor activity and support the use of MD simulations for future inhibitor design.
Collapse
Affiliation(s)
- Alexander J Pak
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Michael D Purdy
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.,Center for Membrane Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.,Department of Medicine, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Saito A, Yamashita M. HIV-1 capsid variability: viral exploitation and evasion of capsid-binding molecules. Retrovirology 2021; 18:32. [PMID: 34702294 PMCID: PMC8549334 DOI: 10.1186/s12977-021-00577-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 capsid, a conical shell encasing viral nucleoprotein complexes, is involved in multiple post-entry processes during viral replication. Many host factors can directly bind to the HIV-1 capsid protein (CA) and either promote or prevent HIV-1 infection. The viral capsid is currently being explored as a novel target for therapeutic interventions. In the past few decades, significant progress has been made in our understanding of the capsid–host interactions and mechanisms of action of capsid-targeting antivirals. At the same time, a large number of different viral capsids, which derive from many HIV-1 mutants, naturally occurring variants, or diverse lentiviruses, have been characterized for their interactions with capsid-binding molecules in great detail utilizing various experimental techniques. This review provides an overview of how sequence variation in CA influences phenotypic properties of HIV-1. We will focus on sequence differences that alter capsid–host interactions and give a brief account of drug resistant mutations in CA and their mutational effects on viral phenotypes. Increased knowledge of the sequence-function relationship of CA helps us deepen our understanding of the adaptive potential of the viral capsid.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Masahiro Yamashita
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
11
|
Kodr D, Stanková J, Rumlová M, Džubák P, Řehulka J, Zimmermann T, Křížová I, Gurská S, Hajdúch M, Drašar PB, Jurášek M. Betulinic Acid Decorated with Polar Groups and Blue Emitting BODIPY Dye: Synthesis, Cytotoxicity, Cell-Cycle Analysis and Anti-HIV Profiling. Biomedicines 2021; 9:biomedicines9091104. [PMID: 34572290 PMCID: PMC8472287 DOI: 10.3390/biomedicines9091104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 01/23/2023] Open
Abstract
Betulinic acid (BA) is a potent triterpene, which has shown promising potential in cancer and HIV-1 treatment. Here, we report a synthesis and biological evaluation of 17 new compounds, including BODIPY labelled analogues derived from BA. The analogues terminated by amino moiety showed increased cytotoxicity (e.g., BA had on CCRF-CEM IC50 > 50 μM, amine 3 IC50 0.21 and amine 14 IC50 0.29). The cell-cycle arrest was evaluated and did not show general features for all the tested compounds. A fluorescence microscopy study of six derivatives revealed that only 4 and 6 were detected in living cells. These compounds were colocalized with the endoplasmic reticulum and mitochondria, indicating possible targets in these organelles. The study of anti-HIV-1 activity showed that 8, 10, 16, 17 and 18 have had IC50i > 10 μM. Only completely processed p24 CA was identified in the viruses formed in the presence of compounds 4 and 12. In the cases of 2, 8, 9, 10, 16, 17 and 18, we identified not fully processed p24 CA and p25 CA-SP1 protein. This observation suggests a similar mechanism of inhibition as described for bevirimat.
Collapse
Affiliation(s)
- David Kodr
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (D.K.); (T.Z.); (P.B.D.)
| | - Jarmila Stanková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (M.R.); (I.K.)
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Jiří Řehulka
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Tomáš Zimmermann
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (D.K.); (T.Z.); (P.B.D.)
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (M.R.); (I.K.)
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Pavel B. Drašar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (D.K.); (T.Z.); (P.B.D.)
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (D.K.); (T.Z.); (P.B.D.)
- Correspondence:
| |
Collapse
|
12
|
Marcelin AG, Charpentier C, Jary A, Perrier M, Margot N, Callebaut C, Calvez V, Descamps D. Frequency of capsid substitutions associated with GS-6207 in vitro resistance in HIV-1 from antiretroviral-naive and -experienced patients. J Antimicrob Chemother 2021; 75:1588-1590. [PMID: 32154864 DOI: 10.1093/jac/dkaa060] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND GS-6207 is a first-in-class HIV capsid inhibitor, targeting several functions of the HIV capsid in the viral cycle, including viral particle assembly, capsid formation and nuclear entry. GS-6207 has demonstrated picomolar potency in vitro, activity confirmed by high potency in a Phase 1 clinical study, with a long-acting antiretroviral profile with potential dosing every 6 months. In vitro resistance selections previously conducted with increasing doses of GS-6207 have identified capsid variants with reduced susceptibility to GS-6207. OBJECTIVES To study the prevalence of capsid mutations associated with in vitro resistance to GS-6207 in people living with HIV (PLWH). METHODS Plasma samples from ART-naive or -experienced PLWH, including PI-experienced people, were sequenced and analysed for the presence of capsid variants identified during in vitro resistance selection: L56I, M66I, Q67H, K70N, N74D, N74S and T107N. RESULTS Among the samples from the 1500 patients studied, none of the seven GS-6207 resistance mutations identified during in vitro selection experiments was detected, regardless of HIV subtype or PLWH treatment history. CONCLUSIONS Out of the seven HIV capsid substitutions previously selected in vitro and shown to confer phenotypic resistance to GS-6207, none of these seven mutations was observed in this large dataset, suggesting that neither PLWH with previous PI failure nor PLWH with emergence of PI resistance mutations are anticipated to impact GS-6207 activity in these diverse HIV-infected populations.
Collapse
Affiliation(s)
- Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Laboratoire de Virologie, F75013 Paris, France
| | - Charlotte Charpentier
- Université de Paris, IAME, UMR1137, INSERM, Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Aude Jary
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Laboratoire de Virologie, F75013 Paris, France
| | - Marine Perrier
- Université de Paris, IAME, UMR1137, INSERM, Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | | | | | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Laboratoire de Virologie, F75013 Paris, France
| | - Diane Descamps
- Université de Paris, IAME, UMR1137, INSERM, Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| |
Collapse
|
13
|
Serna-Arbeláez MS, Florez-Sampedro L, Orozco LP, Ramírez K, Galeano E, Zapata W. Natural Products with Inhibitory Activity against Human Immunodeficiency Virus Type 1. Adv Virol 2021; 2021:5552088. [PMID: 34194504 PMCID: PMC8181102 DOI: 10.1155/2021/5552088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Infections caused by human immunodeficiency virus (HIV) are considered one of the main public health problems worldwide. Antiretroviral therapy (ART) is the current modality of treatment for HIV-1 infection. It comprises the combined use of several drugs and can decrease the viral load and increase the CD4+ T cell count in patients with HIV-1 infection, thereby proving to be an effective modality. This therapy significantly decreases the rate of morbidity and mortality owing to acquired immunodeficiency syndrome (AIDS) and prolongs and improves the quality of life of infected patients. However, nonadherence to ART may increase viral resistance to antiretroviral drugs and transmission of drug-resistant strains of HIV. Therefore, it is necessary to continue research for compounds with anti-HIV-1 activity, exhibiting a potential for the development of an alternative or complementary therapy to ART with low cost and fewer side effects. Natural products and their derivatives represent an excellent option owing to their therapeutic potential against HIV. Currently, the derivatives of natural products available as anti-HIV-1 agents include zidovudine, an arabinonucleoside derivative of the Caribbean marine sponge (Tectitethya crypta), which inhibits the reverse transcriptase of the virus. This was the first antiviral agent approved for treatment of HIV infection. Additionally, bevirimat (isolated from Syzygium claviflorum) and calanolide A (isolated from Calophyllum sp.) are inhibitors of viral maturation and reverse transcription process, respectively. In the present review, we aimed to describe the wide repertoire of natural compounds exhibiting anti-HIV-1 activity that can be considered for designing new therapeutic strategies to curb the HIV pandemic.
Collapse
Affiliation(s)
- Maria S. Serna-Arbeláez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo de Investigacion en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Laura Florez-Sampedro
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Lina P. Orozco
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Katherin Ramírez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Elkin Galeano
- Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Wildeman Zapata
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
14
|
Swidorski JJ, Jenkins S, Hanumegowda U, Parker DD, Beno BR, Protack T, Ng A, Gupta A, Shanmugam Y, Dicker IB, Krystal M, Meanwell NA, Regueiro-Ren A. Design and exploration of C-3 benzoic acid bioisosteres and alkyl replacements in the context of GSK3532795 (BMS-955176) that exhibit broad spectrum HIV-1 maturation inhibition. Bioorg Med Chem Lett 2021; 36:127823. [PMID: 33508465 DOI: 10.1016/j.bmcl.2021.127823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
GSK3532795 (formerly BMS-955176) is a second-generation HIV-1 maturation inhibitor that has shown broad spectrum antiviral activity and preclinical PK predictive of once-daily dosing in humans. Although efficacy was confirmed in clinical trials, the observation of gastrointestinal intolerability and the emergence of drug resistant virus in a Phase 2b clinical study led to the discontinuation of GSK3532795. As part of the effort to further map the maturation inhibitor pharmacophore and provide additional structural options, the evaluation of alternates to the C-3 phenyl substituent in this chemotype was pursued. A cyclohexene carboxylic acid provided exceptional inhibition of wild-type, V370A and ΔV370 mutant viruses in addition to a suitable PK profile following oral dosing to rats. In addition, a novel spiro[3.3]hept-5-ene was designed to extend the carboxylic acid further from the triterpenoid core while reducing side chain flexibility compared to the other alkyl substituents. This modification was shown to closely emulate the C-3 benzoic acid moiety of GSK3532795 from both a potency and PK perspective, providing a non-traditional, sp3-rich bioisostere of benzene. Herein, we detail additional modifications to the C-3 position of the triterpenoid core that offer effective replacements for the benzoic acid of GSK3532795 and capture the interplay between these new C-3 elements and C-17 modifications that contribute to enhanced polymorph coverage.
Collapse
Affiliation(s)
- Jacob J Swidorski
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA.
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Umesh Hanumegowda
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Dawn D Parker
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Brett R Beno
- Department of Computer-Assisted Drug Design, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Tricia Protack
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Alicia Ng
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Anuradha Gupta
- Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Yoganand Shanmugam
- Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Ira B Dicker
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Alicia Regueiro-Ren
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| |
Collapse
|
15
|
Absence of Lenacapavir (GS-6207) Phenotypic Resistance in HIV Gag Cleavage Site Mutants and in Isolates with Resistance to Existing Drug Classes. Antimicrob Agents Chemother 2021; 65:AAC.02057-20. [PMID: 33288639 DOI: 10.1128/aac.02057-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/27/2020] [Indexed: 11/20/2022] Open
Abstract
Lenacapavir (LEN; GS-6207) is a potent first-in-class inhibitor of HIV-1 capsid with long-acting properties and the potential for subcutaneous dosing every 3 months or longer. In the clinic, a single subcutaneous LEN injection (20 mg to 750 mg) in people with HIV (PWH) induced a strong antiviral response, with a >2.3 mean log10 decrease in HIV-1 RNA at day 10. HIV-1 Gag mutations near protease (PR) cleavage sites have emerged with the use of protease inhibitors (PIs). Here, we have characterized the activity of LEN in mutants with Gag cleavage site mutations (GCSMs) and mutants resistant to other drug classes. HIV mutations were inserted into the pXXLAI clone, and the resulting mutants (n = 70) were evaluated using a 5-day antiviral assay. LEN EC50 fold change versus the wild type ranged from 0.4 to 1.9 in these mutants, similar to that for the control drug. In contrast, reduced susceptibility to PIs and maturation inhibitors (MIs) was observed. Testing of isolates with resistance against the 4 main classes of drugs (n = 40) indicated wild-type susceptibility to LEN (fold change ranging from 0.3 to 1.1), while reduced susceptibility was observed for control drugs. HIV GCSMs did not impact the activity of LEN, while some conferred resistance to MIs and PIs. Similarly, LEN activity was not affected by naturally occurring variations in HIV Gag, in contrast to the reduced susceptibility observed for MIs. Finally, the activity of LEN was not affected by the presence of resistance mutations to the 4 main antiretroviral (ARV) drug classes. These data support the evaluation of LEN in PWH with multiclass resistance.
Collapse
|
16
|
Li H, Sun J, Xiao S, Zhang L, Zhou D. Triterpenoid-Mediated Inhibition of Virus-Host Interaction: Is Now the Time for Discovering Viral Entry/Release Inhibitors from Nature? J Med Chem 2020; 63:15371-15388. [PMID: 33201699 DOI: 10.1021/acs.jmedchem.0c01348] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fatal infectious diseases caused by HIV-1, influenza A virus, Ebola virus, and currently pandemic coronavirus highlight the great need for the discovery of antiviral agents in mechanisms different from current viral replication-targeted approaches. Given the critical role of virus-host interactions in the viral life cycle, the development of entry or shedding inhibitors may expand the current repertoire of antiviral agents; the combination of antireplication inhibitors and entry or shedding inhibitors would create a multifaceted drug cocktail with a tandem antiviral mechanism. Therefore, we provide critical information about triterpenoids as potential antiviral agents targeting entry and release, focusing specifically on the emerging aspect of triterpenoid-mediated inhibition of a variety of virus-host membrane fusion mechanisms via a trimer-of-hairpin motif. These properties of triterpenoids supply their host an evolutionary advantage for chemical defense and may protect against an increasingly diverse array of viruses infecting mammals, providing a direction for antiviral drug discovery.
Collapse
Affiliation(s)
- Haiwei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jiaqi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
17
|
Kleinpeter AB, Freed EO. HIV-1 Maturation: Lessons Learned from Inhibitors. Viruses 2020; 12:E940. [PMID: 32858867 PMCID: PMC7552077 DOI: 10.3390/v12090940] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Since the emergence of HIV and AIDS in the early 1980s, the development of safe and effective therapies has accompanied a massive increase in our understanding of the fundamental processes that drive HIV biology. As basic HIV research has informed the development of novel therapies, HIV inhibitors have been used as probes for investigating basic mechanisms of HIV-1 replication, transmission, and pathogenesis. This positive feedback cycle has led to the development of highly effective combination antiretroviral therapy (cART), which has helped stall the progression to AIDS, prolong lives, and reduce transmission of the virus. However, to combat the growing rates of virologic failure and toxicity associated with long-term therapy, it is important to diversify our repertoire of HIV-1 treatments by identifying compounds that block additional steps not targeted by current drugs. Most of the available therapeutics disrupt early events in the replication cycle, with the exception of the protease (PR) inhibitors, which act at the virus maturation step. HIV-1 maturation consists of a series of biochemical changes that facilitate the conversion of an immature, noninfectious particle to a mature infectious virion. These changes include proteolytic processing of the Gag polyprotein by the viral protease (PR), structural rearrangement of the capsid (CA) protein, and assembly of individual CA monomers into hexamers and pentamers that ultimately form the capsid. Here, we review the development and therapeutic potential of maturation inhibitors (MIs), an experimental class of anti-HIV-1 compounds with mechanisms of action distinct from those of the PR inhibitors. We emphasize the key insights into HIV-1 biology and structure that the study of MIs has provided. We will focus on three distinct groups of inhibitors that block HIV-1 maturation: (1) compounds that block the processing of the CA-spacer peptide 1 (SP1) cleavage intermediate, the original class of compounds to which the term MI was applied; (2) CA-binding inhibitors that disrupt capsid condensation; and (3) allosteric integrase inhibitors (ALLINIs) that block the packaging of the viral RNA genome into the condensing capsid during maturation. Although these three classes of compounds have distinct structures and mechanisms of action, they share the ability to block the formation of the condensed conical capsid, thereby blocking particle infectivity.
Collapse
Affiliation(s)
| | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| |
Collapse
|
18
|
Wu HF, Morris-Natschke SL, Xu XD, Yang MH, Cheng YY, Yu SS, Lee KH. Recent advances in natural anti-HIV triterpenoids and analogs. Med Res Rev 2020; 40:2339-2385. [PMID: 32666531 DOI: 10.1002/med.21708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022]
Abstract
The human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) epidemic is one of the world's most serious health challenges. Although combination antiretroviral therapy provides effective viral suppression, current medicines used against HIV cannot completely eradicate the infectious disease and often have associated toxicities and severe side effects in addition to causing drug resistance. Therefore, the continued development of new antiviral agents with diverse structures and novel mechanisms of action remains a vital need for the management of HIV/AIDS. Natural products are an important source of drug discovery, and certain triterpenes and their analogs have demonstrated potential as pharmaceutical precursors for the treatment of HIV. Over the past decade, natural triterpenoids and analogs have been extensively studied to find new anti-HIV drugs. This review discusses the anti-HIV triterpenoids and analogs reported during the period of 2009-2019. The article includes not only a comprehensive review of the recent anti-HIV agent development from the perspective of medicinal chemistry, but also discusses structure-activity relationship analyses of the described triterpenoids.
Collapse
Affiliation(s)
- Hai-Feng Wu
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Beijing Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Xu-Dong Xu
- Beijing Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei-Hua Yang
- Beijing Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
19
|
Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature 2020; 584:614-618. [PMID: 32612233 DOI: 10.1038/s41586-020-2443-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
Oral antiretroviral agents provide life-saving treatments for millions of people living with HIV, and can prevent new infections via pre-exposure prophylaxis1-5. However, some people living with HIV who are heavily treatment-experienced have limited or no treatment options, owing to multidrug resistance6. In addition, suboptimal adherence to oral daily regimens can negatively affect the outcome of treatment-which contributes to virologic failure, resistance generation and viral transmission-as well as of pre-exposure prophylaxis, leading to new infections1,2,4,7-9. Long-acting agents from new antiretroviral classes can provide much-needed treatment options for people living with HIV who are heavily treatment-experienced, and additionally can improve adherence10. Here we describe GS-6207, a small molecule that disrupts the functions of HIV capsid protein and is amenable to long-acting therapy owing to its high potency, low in vivo systemic clearance and slow release kinetics from the subcutaneous injection site. Drawing on X-ray crystallographic information, we designed GS-6207 to bind tightly at a conserved interface between capsid protein monomers, where it interferes with capsid-protein-mediated interactions between proteins that are essential for multiple phases of the viral replication cycle. GS-6207 exhibits antiviral activity at picomolar concentrations against all subtypes of HIV-1 that we tested, and shows high synergy and no cross-resistance with approved antiretroviral drugs. In phase-1 clinical studies, monotherapy with a single subcutaneous dose of GS-6207 (450 mg) resulted in a mean log10-transformed reduction of plasma viral load of 2.2 after 9 days, and showed sustained plasma exposure at antivirally active concentrations for more than 6 months. These results provide clinical validation for therapies that target the functions of HIV capsid protein, and demonstrate the potential of GS-6207 as a long-acting agent to treat or prevent infection with HIV.
Collapse
|
20
|
Dicker I, Zhang S, Ray N, Beno BR, Regueiro-Ren A, Joshi S, Cockett M, Krystal M, Lataillade M. Resistance profile of the HIV-1 maturation inhibitor GSK3532795 in vitro and in a clinical study. PLoS One 2019; 14:e0224076. [PMID: 31622432 PMCID: PMC6797179 DOI: 10.1371/journal.pone.0224076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022] Open
Abstract
GSK3532795 (formerly BMS955176) is a second-generation maturation inhibitor (MI) that progressed through a Phase 2b study for treatment of HIV-1 infection. Resistance development to GSK3532795 was evaluated through in vitro methods and was correlated with information obtained in a Phase 2a proof-of-concept study in HIV-1 infected participants. Both low and high concentrations of GSK3532795 were used for selections in vitro, and reduced susceptibility to GSK3532795 mapped specifically to amino acids near the capsid/ spacer peptide 1 (SP1) junction, the cleavage of which is blocked by MIs. Two key substitutions, A364V or V362I, were selected, the latter requiring secondary substitutions to reduce susceptibility to GSK3532795. Three main types of secondary substitutions were observed, none of which reduced GSK3532795 susceptibility in isolation. The first type was in the capsid C-terminal domain and downstream SP1 region (including (Gag numbering) R286K, A326T, T332S/N, I333V and V370A/M). The second, was an R41G substitution in viral protease that occurred with V362I. The third was seen in the capsid N-terminal domain, within the cyclophilin A binding domain (V218A/M, H219Q and G221E). H219Q increased viral replication capacity and reduced susceptibility of poorly growing viruses. In the Phase 2a study, a subset of these substitutions was also observed at baseline and some were selected following GSK35323795 treatment in HIV-1-infected participants.
Collapse
Affiliation(s)
- Ira Dicker
- Department of HIV Discovery, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Sharon Zhang
- Department of HIV Discovery, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Neelanjana Ray
- Department of Early Development, Bristol-Myers Squibb Research and Development, Princeton, New Jersey, United States of America
| | - Brett R. Beno
- Department of Molecular Discovery Technologies, Bristol-Myers Squibb Research and Development, Wallingford, Connecticut, United States of America
| | - Alicia Regueiro-Ren
- Department of Chemistry Bristol-Myers Squibb Research and Development, Wallingford Connecticut, United States of America
| | - Samit Joshi
- Department of Early Development, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Mark Cockett
- Department of HIV Discovery, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Mark Krystal
- Department of HIV Discovery, ViiV Healthcare, Branford, Connecticut, United States of America
| | - Max Lataillade
- Department of Early Development, ViiV Healthcare, Branford, Connecticut, United States of America
| |
Collapse
|
21
|
Recent Achievements in Medicinal and Supramolecular Chemistry of Betulinic Acid and Its Derivatives ‡. Molecules 2019; 24:molecules24193546. [PMID: 31574991 PMCID: PMC6803882 DOI: 10.3390/molecules24193546] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 01/02/2023] Open
Abstract
The subject of this review article refers to the recent achievements in the investigation of pharmacological activity and supramolecular characteristics of betulinic acid and its diverse derivatives, with special focus on their cytotoxic effect, antitumor activity, and antiviral effect, and mostly covers a period 2015–2018. Literature sources published earlier are referred to in required coherences or from historical points of view. Relationships between pharmacological activity and supramolecular characteristics are included if such investigation has been done in the original literature sources. A wide practical applicability of betulinic acid and its derivatives demonstrated in the literature sources is also included in this review article. Several literature sources also focused on in silico calculation of physicochemical and ADME parameters of the developed compounds, and on a comparison between the experimental and calculated data.
Collapse
|
22
|
A highly potent long-acting small-molecule HIV-1 capsid inhibitor with efficacy in a humanized mouse model. Nat Med 2019; 25:1377-1384. [PMID: 31501601 DOI: 10.1038/s41591-019-0560-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
People living with HIV (PLWH) have expressed concern about the life-long burden and stigma associated with taking pills daily and can experience medication fatigue that might lead to suboptimal treatment adherence and the emergence of drug-resistant viral variants, thereby limiting future treatment options1-3. As such, there is strong interest in long-acting antiretroviral (ARV) agents that can be administered less frequently4. Herein, we report GS-CA1, a new archetypal small-molecule HIV capsid inhibitor with exceptional potency against HIV-2 and all major HIV-1 types, including viral variants resistant to the ARVs currently in clinical use. Mechanism-of-action studies indicate that GS-CA1 binds directly to the HIV-1 capsid and interferes with capsid-mediated nuclear import of viral DNA, HIV particle production and ordered capsid assembly. GS-CA1 selects in vitro for unfit GS-CA1-resistant capsid variants that remain fully susceptible to other classes of ARVs. Its high metabolic stability and low solubility enabled sustained drug release in mice following a single subcutaneous dosing. GS-CA1 showed high antiviral efficacy as a long-acting injectable monotherapy in a humanized mouse model of HIV-1 infection, outperforming long-acting rilpivirine. Collectively, these results demonstrate the potential of ultrapotent capsid inhibitors as new long-acting agents for the treatment of HIV-1 infection.
Collapse
|
23
|
Su CTT, Koh DWS, Gan SKE. Reviewing HIV-1 Gag Mutations in Protease Inhibitors Resistance: Insights for Possible Novel Gag Inhibitor Designs. Molecules 2019; 24:molecules24183243. [PMID: 31489889 PMCID: PMC6767625 DOI: 10.3390/molecules24183243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
HIV protease inhibitors against the viral protease are often hampered by drug resistance mutations in protease and in the viral substrate Gag. To overcome this drug resistance and inhibit viral maturation, targeting Gag alongside protease rather than targeting protease alone may be more efficient. In order to successfully inhibit Gag, understanding of its drug resistance mutations and the elicited structural changes on protease binding needs to be investigated. While mutations on Gag have already been mapped to protease inhibitor resistance, there remain many mutations, particularly the non-cleavage mutations, that are not characterized. Through structural studies to unravel how Gag mutations contributes to protease drug resistance synergistically, it is thus possible to glean insights to design novel Gag inhibitors. In this review, we discuss the structural role of both novel and previously reported Gag mutations in PI resistance, and how new Gag inhibitors can be designed.
Collapse
Affiliation(s)
- Chinh Tran-To Su
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - Darius Wen-Shuo Koh
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore.
- p53 Laboratory, A*STAR, Singapore 138648, Singapore.
| |
Collapse
|
24
|
Regueiro-Ren A, Dicker IB, Hanumegowda U, Meanwell NA. Second Generation Inhibitors of HIV-1 Maturation. ACS Med Chem Lett 2019; 10:287-294. [PMID: 30891128 DOI: 10.1021/acsmedchemlett.8b00656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
The strategy and tactics subtending the discovery and development of the second generation HIV-1 maturation inhibitor GSK-3532795/BMS-955176, a compound that exhibits a broader spectrum of antiviral effect in vitro and in clinical studies than the prototypical maturation inhibitor bevirimat, are described.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Department of Discovery Chemistry and Molecular Technologies Bristol-Myers Squibb Research and Development, 350 Carter Road, Room 126, Hopewell, New Jersey 08540, United States
| | - Ira B. Dicker
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Umesh Hanumegowda
- ViiV Healthcare, 36 East Industrial Road, Branford, Connecticut 06405, United States
| | - Nicholas A. Meanwell
- Department of Discovery Chemistry and Molecular Technologies Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
25
|
Insight into the mechanism of action of EP-39, a bevirimat derivative that inhibits HIV-1 maturation. Antiviral Res 2019; 164:162-175. [PMID: 30825471 DOI: 10.1016/j.antiviral.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/15/2022]
Abstract
Maturation of human immunodeficiency virus type 1 (HIV-1) particles is a key step for viral infectivity. This process can be blocked using maturation inhibitors (MIs) that affect the cleavage of the capsid-spacer peptide 1 (CA-SP1) junction. Here, we investigated the mechanisms underlying the activity of EP-39, a bevirimat (BVM) derivative with better hydrosolubility. To this aim, we selected in vitro EP-39- and BVM-resistant mutants. We found that EP-39-resistant viruses have four mutations within the CA domain (CA-A194T, CA-T200N, CA-V230I, and CA-V230A) and one in the first residue of SP1 (SP1-A1V). We also identified six mutations that confer BVM resistance (CA-A194T, CA-L231F, CA-L231M, SP1-A1V, SP1-S5N and SP1-V7A). To characterize the EP-39 and BVM-resistant mutants, we studied EP-39 effects on mutant virus replication and performed a biochemical analysis with both MIs. We observed common and distinct characteristics, suggesting that, although EP-39 and BVM share the same chemical skeleton, they could interact in a different way with the Gag polyprotein precursor (Pr55Gag). Using an in silico approach, we observed that EP-39 and BVM present different predicted positions on the hexameric crystal structure of the CACTD-SP1 Gag fragment. To clearly understand the relationship between assembly and maturation, we investigated the impact of all identified mutations on virus assembly by expressing Pr55Gag mutants. Finally, using NMR, we have shown that the interaction of EP-39 with a peptide carrying the SP1-A1V mutation (CA-SP1(A1V)-NC) is almost suppressed in comparison with the wild type peptide. These results suggest that EP-39 and BVM could interact differently with the Pr55Gag lattice and that the mutation of the first SP1 residue induces a loss of interaction between Pr55Gag and EP-39.
Collapse
|
26
|
MicroED structures of HIV-1 Gag CTD-SP1 reveal binding interactions with the maturation inhibitor bevirimat. Proc Natl Acad Sci U S A 2018; 115:13258-13263. [PMID: 30530702 DOI: 10.1073/pnas.1806806115] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HIV-1 protease (PR) cleavage of the Gag polyprotein triggers the assembly of mature, infectious particles. Final cleavage of Gag occurs at the junction helix between the capsid protein CA and the SP1 spacer peptide. Here we used MicroED to delineate the binding interactions of the maturation inhibitor bevirimat (BVM) using very thin frozen-hydrated, 3D microcrystals of a CTD-SP1 Gag construct with and without bound BVM. The 2.9-Å MicroED structure revealed that a single BVM molecule stabilizes the six-helix bundle via both electrostatic interactions with the dimethylsuccinyl moiety and hydrophobic interactions with the pentacyclic triterpenoid ring. These results provide insight into the mechanism of action of BVM and related maturation inhibitors that will inform further drug discovery efforts. This study also demonstrates the capabilities of MicroED for structure-based drug design.
Collapse
|
27
|
Morales-Ramirez J, Bogner JR, Molina JM, Lombaard J, Dicker IB, Stock DA, DeGrosky M, Gartland M, Pene Dumitrescu T, Min S, Llamoso C, Joshi SR, Lataillade M. Safety, efficacy, and dose response of the maturation inhibitor GSK3532795 (formerly known as BMS-955176) plus tenofovir/emtricitabine once daily in treatment-naive HIV-1-infected adults: Week 24 primary analysis from a randomized Phase IIb trial. PLoS One 2018; 13:e0205368. [PMID: 30352054 PMCID: PMC6198970 DOI: 10.1371/journal.pone.0205368] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/16/2018] [Indexed: 11/18/2022] Open
Abstract
GSK3532795 (formerly known as BMS-955176) is a second-generation maturation inhibitor targeting a specific Gag cleavage site between capsid p24 and spacer peptide 1 of HIV-1. Study 205891 (previously AI468038) investigated the efficacy, safety, and dose response of GSK3532795 in treatment-naive, HIV-1-infected participants. Study 205891 (NCT02415595) was a Phase IIb, randomized, active-controlled, double-blind, international trial. Participants were randomized 1:1:1:1 to one of three GSK3532795 arms at doses 60 mg, 120 mg or 180 mg once daily (QD), or to efavirenz (EFV) at 600 mg QD, each in combination with tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) (300/200 mg QD). Primary endpoint was proportion of participants with plasma HIV-1 RNA <40 copies/mL at Week 24. Between May 2015 and May 2016, 206 participants received treatment. At Week 24, 76–83% participants receiving GSK3532795 and 77% receiving EFV achieved HIV-1 RNA <40 copies/mL. Fifteen participants receiving GSK3532795 and one receiving EFV met resistance testing criteria; 10/15 receiving GSK3532795 had emergent substitutions at reverse transcriptase positions M184, and one at position K65, while the participant receiving EFV did not have any nucleoside reverse transcriptase inhibitor (NRTI)/non-NRTI mutations. EFV, relative to GSK3532795, had more serious adverse events (9% versus 5%) and adverse events leading to discontinuation (17% versus 5%). However, 3–4-fold higher rates of gastrointestinal adverse events were observed with GSK3532795 relative to EFV. GSK3532795 combined with TDF/FTC is efficacious with 24 weeks of therapy. However, GSK3532795 showed a higher rate of gastrointestinal intolerability and treatment-emergent resistance to the NRTI backbone relative to EFV. Trial registration: ClinicalTrials.gov NCT02415595.
Collapse
Affiliation(s)
| | | | | | | | - Ira B. Dicker
- ViiV Healthcare, Branford, Connecticut, United States of America
| | - David A. Stock
- Bristol-Myers Squibb, Wallingford, Connecticut, United States of America
| | | | - Margaret Gartland
- ViiV Healthcare, Research Triangle Park, North Carolina, United States of America
| | | | - Sherene Min
- ViiV Healthcare, Research Triangle Park, North Carolina, United States of America
| | - Cyril Llamoso
- ViiV Healthcare, Branford, Connecticut, United States of America
| | - Samit R. Joshi
- ViiV Healthcare, Branford, Connecticut, United States of America
| | - Max Lataillade
- ViiV Healthcare, Branford, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
28
|
Regueiro-Ren A, Swidorski JJ, Liu Z, Chen Y, Sin N, Sit SY, Chen J, Venables BL, Zhu J, Nowicka-Sans B, Protack T, Lin Z, Terry B, Samanta H, Zhang S, Li Z, Easter J, Beno BR, Arora V, Huang XS, Rahematpura S, Parker DD, Haskell R, Santone KS, Cockett MI, Krystal M, Meanwell NA, Jenkins S, Hanumegowda U, Dicker IB. Design, Synthesis, and SAR of C-3 Benzoic Acid, C-17 Triterpenoid Derivatives. Identification of the HIV-1 Maturation Inhibitor 4-((1 R,3a S,5a R,5b R,7a R,11a S,11b R,13a R,13b R)-3a-((2-(1,1-Dioxidothiomorpholino)ethyl)amino)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-2,3,3a,4,5,5a,5b,6,7,7a,8,11,11a,11b,12,13,13a,13b-octadecahydro-1 H-cyclopenta[ a]chrysen-9-yl)benzoic Acid (GSK3532795, BMS-955176). J Med Chem 2018; 61:7289-7313. [PMID: 30067361 DOI: 10.1021/acs.jmedchem.8b00854] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GSK3532795, formerly known as BMS-955176 (1), is a potent, orally active, second-generation HIV-1 maturation inhibitor (MI) that advanced through phase IIb clinical trials. The careful design, selection, and evaluation of substituents appended to the C-3 and C-17 positions of the natural product betulinic acid (3) was critical in attaining a molecule with the desired virological and pharmacokinetic profile. Herein, we highlight the key insights made in the discovery program and detail the evolution of the structure-activity relationships (SARs) that led to the design of the specific C-17 amine moiety in 1. These modifications ultimately enabled the discovery of 1 as a second-generation MI that combines broad coverage of polymorphic viruses (EC50 <15 nM toward a panel of common polymorphisms representative of 96.5% HIV-1 subtype B virus) with a favorable pharmacokinetic profile in preclinical species.
Collapse
|
29
|
Chen Y, Sit SY, Chen J, Swidorski JJ, Liu Z, Sin N, Venables BL, Parker DD, Nowicka-Sans B, Lin Z, Li Z, Terry BJ, Protack T, Rahematpura S, Hanumegowda U, Jenkins S, Krystal M, Dicker ID, Meanwell NA, Regueiro-Ren A. The design, synthesis and structure-activity relationships associated with C28 amine-based betulinic acid derivatives as inhibitors of HIV-1 maturation. Bioorg Med Chem Lett 2018; 28:1550-1557. [DOI: 10.1016/j.bmcl.2018.03.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/17/2018] [Accepted: 03/23/2018] [Indexed: 01/22/2023]
|
30
|
The Second-Generation Maturation Inhibitor GSK3532795 Maintains Potent Activity Toward HIV Protease Inhibitor-Resistant Clinical Isolates. J Acquir Immune Defic Syndr 2017; 75:52-60. [PMID: 28234686 PMCID: PMC5389583 DOI: 10.1097/qai.0000000000001304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is Available in the Text. Background: Protease inhibitor (PI)-resistant HIV-1 isolates with primary substitutions in protease (PR) and secondary substitutions in Gag could potentially exhibit cross-resistance to maturation inhibitors. We evaluated the second-generation maturation inhibitor, GSK3532795, for activity toward clinical isolates with genotypic and phenotypic characteristics associated with PI resistance (longitudinal). Methods: Longitudinal clinical isolates from 15 PI-treated patients and 7 highly PI-resistant (nonlongitudinal) viruses containing major and minor PI resistance-associated mutations were evaluated for GSK3532795 sensitivity. Phenotypic sensitivity was determined using the PhenoSense Gag/PR assay (Monogram Biosciences) or in-house single- and multiple-cycle assays. Changes from baseline [CFB; ratio of post- to pre-treatment FC-IC50 (fold-change in IC50 versus wild-type virus)] <3 were considered to be within the no-effect level. Results: All nonlongitudinal viruses tested were sensitive to GSK3532795 (FC-IC50 range 0.16–0.68). Among longitudinal isolates, all post-PI treatment samples had major PI resistance-associated mutations in PR and 17/21 had PI resistance-associated changes in Gag. Nineteen of the 21 post-PI treatment samples had GSK3532795 CFB <3. Median (range) CFB was 0.83 (0.05–27.4) [Monogram (11 patients)] and 1.5 (1.0–2.2) [single-cycle (4 patients)]. The 2 post-PI treatment samples showing GSK3532795 CFB >3 (Monogram) were retested using single- and multiple-cycle assays. Neither sample had meaningful sensitivity changes in the multiple-cycle assay. Gag changes were not associated with an increased GSK3532795 CFB. Conclusions: GSK3532795 maintained antiviral activity against PI-resistant isolates with emergent PR and/or Gag mutations. This finding supports continued development of GSK3532795 in treatment-experienced patients with or without previous PI therapy.
Collapse
|
31
|
Insights into the activity of maturation inhibitor PF-46396 on HIV-1 clade C. Sci Rep 2017; 7:43711. [PMID: 28252110 PMCID: PMC5333120 DOI: 10.1038/srep43711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/26/2017] [Indexed: 12/03/2022] Open
Abstract
HIV maturation inhibitors are an emerging class of anti-retroviral compounds that inhibit the viral protease-mediated cleavage of the Gag, CA-SP1 (capsid-spacer peptide 1) peptide to mature CA. The first-in-class maturation inhibitor bevirimat (BVM) displayed potent activity against HIV-1 clade B but was ineffective against other HIV-1 clades including clade C. Another pyridone-based maturation inhibitor, PF-46396 displayed potent activity against HIV-1 clade B. In this study, we aimed at determining the activity of PF-46396 against HIV-1 clade C. We employed various biochemical and virological assays to demonstrate that PF-46396 is effective against HIV-1 clade C. We observed a dose dependent accumulation of CA-SP1 intermediate in presence of the compound. We carried out mutagenesis in the CA- SP1 region of HIV-1 clade C Gag and observed that the mutations conferred resistance against the compound. Many mutations inhibited Gag processing thereby reducing virus release in the absence of the compound. However, presence of PF-46396 rescued these defects and enhanced virus release, replication capacity and infectivity of HIV-1 clade C. These results put together identify PF-46396 as a broadly active maturation inhibitor against HIV-1 clade B and C and help in rational designing of novel analogs with reduced toxicity and increased efficacy for its potential use in clinics.
Collapse
|
32
|
Thenin-Houssier S, Valente ST. HIV-1 Capsid Inhibitors as Antiretroviral Agents. Curr HIV Res 2016; 14:270-82. [PMID: 26957201 DOI: 10.2174/1570162x14999160224103555] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/12/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The infectious human immunodeficiency virus (HIV) particle is characterized by a conical capsid that encloses the viral RNA genome. The capsid is essential for HIV-1 replication and plays crucial roles in both early and late stages of the viral life cycle. Early on, upon fusion of the viral and cellular membranes, the viral capsid is released into the host cell cytoplasm and dissociates in a process known as uncoating, tightly associated with the reverse transcription of the viral genome. During the late stages of viral replication, the Gag polyprotein, precursor of the capsid protein, assemble at the plasma membrane to form immature non-infectious viral particles. After a maturation step by the viral protease, the capsid assembles to form a fullerene-like conical shape characteristic of the mature infectious particle. Mutations affecting the uncoating process, or capsid assembly and maturation, have been shown to hamper viral infectivity. The key role of capsid in viral replication and the absence of approved drugs against this protein have promoted the development of antiretrovirals. Screening based on the inhibition of capsid assembly and virtual screening for molecules binding to the capsid have successfully identified a number of potential small molecule compounds. Unfortunately, none of these molecules is currently used in the clinic. CONCLUSION Here we review the discovery and the mechanism of action of the small molecules and peptides identified as capsid inhibitors, and discuss their therapeutic potential.
Collapse
Affiliation(s)
| | - Susana T Valente
- Department Immunology and Microbial Sciences, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA.
| |
Collapse
|
33
|
Lin Z, Cantone J, Lu H, Nowicka-Sans B, Protack T, Yuan T, Yang H, Liu Z, Drexler D, Regueiro-Ren A, Meanwell NA, Cockett M, Krystal M, Lataillade M, Dicker IB. Mechanistic Studies and Modeling Reveal the Origin of Differential Inhibition of Gag Polymorphic Viruses by HIV-1 Maturation Inhibitors. PLoS Pathog 2016; 12:e1005990. [PMID: 27893830 PMCID: PMC5125710 DOI: 10.1371/journal.ppat.1005990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 10/11/2016] [Indexed: 12/27/2022] Open
Abstract
HIV-1 maturation inhibitors (MIs) disrupt the final step in the HIV-1 protease-mediated cleavage of the Gag polyprotein between capsid p24 capsid (CA) and spacer peptide 1 (SP1), leading to the production of infectious virus. BMS-955176 is a second generation MI with improved antiviral activity toward polymorphic Gag variants compared to a first generation MI bevirimat (BVM). The underlying mechanistic reasons for the differences in polymorphic coverage were studied using antiviral assays, an LC/MS assay that quantitatively characterizes CA/SP1 cleavage kinetics of virus like particles (VLPs) and a radiolabel binding assay to determine VLP/MI affinities and dissociation kinetics. Antiviral assay data indicates that BVM does not achieve 100% inhibition of certain polymorphs, even at saturating concentrations. This results in the breakthrough of infectious virus (partial antagonism) regardless of BVM concentration. Reduced maximal percent inhibition (MPI) values for BVM correlated with elevated EC50 values, while rates of HIV-1 protease cleavage at CA/SP1 correlated inversely with the ability of BVM to inhibit HIV-1 Gag polymorphic viruses: genotypes with more rapid CA/SP1 cleavage kinetics were less sensitive to BVM. In vitro inhibition of wild type VLP CA/SP1 cleavage by BVM was not maintained at longer cleavage times. BMS-955176 exhibited greatly improved MPI against polymorphic Gag viruses, binds to Gag polymorphs with higher affinity/longer dissociation half-lives and exhibits greater time-independent inhibition of CA/SP1 cleavage compared to BVM. Virological (MPI) and biochemical (CA/SP1 cleavage rates, MI-specific Gag affinities) data were used to create an integrated semi-quantitative model that quantifies CA/SP1 cleavage rates as a function of both MI and Gag polymorph. The model outputs are in accord with in vitro antiviral observations and correlate with observed in vivo MI efficacies. Overall, these findings may be useful to further understand antiviral profiles and clinical responses of MIs at a basic level, potentially facilitating further improvements to MI potency and coverage.
Collapse
Affiliation(s)
- Zeyu Lin
- Departments of Virology, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut, United States of America
| | - Joseph Cantone
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut, United States of America
| | - Hao Lu
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut, United States of America
| | - Beata Nowicka-Sans
- Departments of Virology, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut, United States of America
| | - Tricia Protack
- Departments of Virology, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut, United States of America
| | - Tian Yuan
- Discovery Chemistry Platforms, Princeton, New Jersey, United States of America
| | - Hong Yang
- Discovery Chemistry Platforms, Princeton, New Jersey, United States of America
| | - Zheng Liu
- Discovery Chemistry, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut, United States of America
| | - Dieter Drexler
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut, United States of America
| | - Alicia Regueiro-Ren
- Discovery Chemistry, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut, United States of America
| | - Nicholas A. Meanwell
- Discovery Chemistry, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut, United States of America
| | - Mark Cockett
- Departments of Virology, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut, United States of America
| | - Mark Krystal
- Departments of Virology, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut, United States of America
| | - Max Lataillade
- Global Clinical Development, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut, United States of America
| | - Ira B. Dicker
- Departments of Virology, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut, United States of America
- * E-mail: ,
| |
Collapse
|
34
|
Zhao Y, Gu Q, Morris-Natschke SL, Chen CH, Lee KH. Incorporation of Privileged Structures into Bevirimat Can Improve Activity against Wild-Type and Bevirimat-Resistant HIV-1. J Med Chem 2016; 59:9262-9268. [PMID: 27676157 DOI: 10.1021/acs.jmedchem.6b00461] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two "privileged fragments", caffeic acid and piperazine, were integrated into bevirimat producing new derivatives with improved activity against HIV-1/NL4-3 and NL4-3/V370A carrying the most prevalent bevirimat-resistant polymorphism. The activity of one of these, 18c, was increased by 3-fold against NL4-3 and 51-fold against NL4-3/V370A. Moreover, 18c is a maturation inhibitor with improved metabolic stability. Our study suggested that integration of privileged motifs into promising natural product skeletons is an effective strategy for discovering potent derivatives.
Collapse
Affiliation(s)
- Yu Zhao
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599-7568, United States
| | - Qiong Gu
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599-7568, United States.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599-7568, United States
| | - Chin-Ho Chen
- Surgical Oncology Research Facility, Duke University Medical Center , Box 2926, Durham, North Carolina 27710, United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599-7568, United States.,Chinese Medicine Research and Development Center, China Medical University and Hospital , 404 Taichung, Taiwan
| |
Collapse
|
35
|
Structure-Activity Relationships of the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PF-46396. J Virol 2016; 90:8181-97. [PMID: 27384665 PMCID: PMC5008107 DOI: 10.1128/jvi.01075-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
HIV-1 maturation inhibitors are a novel class of antiretroviral compounds that consist of two structurally distinct chemical classes: betulinic acid derivatives and the pyridone-based compound PF-46396. It is currently believed that both classes act by similar modes of action to generate aberrant noninfectious particles via inhibition of CA-SP1 cleavage during Gag proteolytic processing. In this study, we utilized a series of novel analogues with decreasing similarity to PF-46396 to determine the chemical groups within PF-46396 that contribute to antiviral activity, Gag binding, and the relationship between these essential properties. A spectrum of antiviral activity (active, intermediate, and inactive) was observed across the analogue series with respect to CA-SP1 cleavage and HIV-1 (NL4-3) replication kinetics in Jurkat T cells. We demonstrate that selected inactive analogues are incorporated into wild-type (WT) immature particles and that one inactive analogue is capable of interfering with PF-46396 inhibition of CA-SP1 cleavage. Mutations that confer PF-46396 resistance can impose a defective phenotype on HIV-1 that can be rescued in a compound-dependent manner. Some inactive analogues retained the capacity to rescue PF-46396-dependent mutants (SP1-A3V, SP1-A3T, and CA-P157S), implying that they can also interact with mutant Gag. The structure-activity relationships observed in this study demonstrate that (i) the tert-butyl group is essential for antiviral activity but is not an absolute requirement for Gag binding, (ii) the trifluoromethyl group is optimal but not essential for antiviral activity, and (iii) the 2-aminoindan group is important for antiviral activity and Gag binding but is not essential, as its replacement is tolerated. IMPORTANCE Combinations of antiretroviral drugs successfully treat HIV/AIDS patients; however, drug resistance problems make the development of new mechanistic drug classes an ongoing priority. HIV-1 maturation inhibitors are novel as they target the Gag protein, specifically by inhibiting CA-SP1 proteolytic cleavage. The lack of high-resolution structural information of the CA-SP1 target in Gag has hindered our understanding of the inhibitor-binding pocket and maturation inhibitor mode of action. Therefore, we utilized analogues of the maturation inhibitor PF-46396 as chemical tools to determine the chemical components of PF-46396 that contribute to antiviral activity and Gag binding and the relationship between these essential properties. This is the first study to report structure-activity relationships of the maturation inhibitor PF-46396. PF-46396 is chemically distinct from betulinic acid-derived maturation inhibitors; therefore, our data provide a foundation of knowledge that will aid our understanding of how structurally distinct maturation inhibitors act by similar modes of action.
Collapse
|
36
|
Schur FKM, Obr M, Hagen WJH, Wan W, Jakobi AJ, Kirkpatrick JM, Sachse C, Kräusslich HG, Briggs JAG. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 2016; 353:506-8. [PMID: 27417497 DOI: 10.1126/science.aaf9620] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/29/2016] [Indexed: 12/28/2022]
Abstract
Immature HIV-1 assembles at and buds from the plasma membrane before proteolytic cleavage of the viral Gag polyprotein induces structural maturation. Maturation can be blocked by maturation inhibitors (MIs), thereby abolishing infectivity. The CA (capsid) and SP1 (spacer peptide 1) region of Gag is the key regulator of assembly and maturation and is the target of MIs. We applied optimized cryo-electron tomography and subtomogram averaging to resolve this region within assembled immature HIV-1 particles at 3.9 angstrom resolution and built an atomic model. The structure reveals a network of intra- and intermolecular interactions mediating immature HIV-1 assembly. The proteolytic cleavage site between CA and SP1 is inaccessible to protease. We suggest that MIs prevent CA-SP1 cleavage by stabilizing the structure, and MI resistance develops by destabilizing CA-SP1.
Collapse
Affiliation(s)
- Florian K M Schur
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany. Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Martin Obr
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany. Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - William Wan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Arjen J Jakobi
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany. Hamburg Unit c/o DESY (Deutsches Elektronen-Synchrotron), European Molecular Biology Laboratory, Notkestraße 85, 22607 Hamburg, Germany
| | - Joanna M Kirkpatrick
- Proteomics Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Carsten Sachse
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany. Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany. Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany.
| |
Collapse
|
37
|
Nowicka-Sans B, Protack T, Lin Z, Li Z, Zhang S, Sun Y, Samanta H, Terry B, Liu Z, Chen Y, Sin N, Sit SY, Swidorski JJ, Chen J, Venables BL, Healy M, Meanwell NA, Cockett M, Hanumegowda U, Regueiro-Ren A, Krystal M, Dicker IB. Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage. Antimicrob Agents Chemother 2016; 60:3956-69. [PMID: 27090171 PMCID: PMC4914680 DOI: 10.1128/aac.02560-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/03/2015] [Indexed: 12/26/2022] Open
Abstract
BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1 activity and a greatly improved preclinical profile compared to that of bevirimat.
Collapse
Affiliation(s)
- Beata Nowicka-Sans
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Tricia Protack
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Zeyu Lin
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Zhufang Li
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Sharon Zhang
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Yongnian Sun
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Himadri Samanta
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Brian Terry
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Zheng Liu
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Yan Chen
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Ny Sin
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Sing-Yuen Sit
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Jacob J Swidorski
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Jie Chen
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Brian L Venables
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Matthew Healy
- Bristol-Myers Squibb, Research and Development, Department of Genomics, Wallingford, Connecticut, USA
| | - Nicholas A Meanwell
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Mark Cockett
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Umesh Hanumegowda
- Bristol-Myers Squibb, Research and Development, Department of Preclinical Optimization, Wallingford, Connecticut, USA
| | - Alicia Regueiro-Ren
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Mark Krystal
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Ira B Dicker
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| |
Collapse
|
38
|
Regueiro-Ren A, Liu Z, Chen Y, Sin N, Sit SY, Swidorski JJ, Chen J, Venables BL, Zhu J, Nowicka-Sans B, Protack T, Lin Z, Terry B, Samanta H, Zhang S, Li Z, Beno BR, Huang XS, Rahematpura S, Parker DD, Haskell R, Jenkins S, Santone KS, Cockett MI, Krystal M, Meanwell NA, Hanumegowda U, Dicker IB. Discovery of BMS-955176, a Second Generation HIV-1 Maturation Inhibitor with Broad Spectrum Antiviral Activity. ACS Med Chem Lett 2016; 7:568-72. [PMID: 27326328 DOI: 10.1021/acsmedchemlett.6b00010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/20/2016] [Indexed: 12/23/2022] Open
Abstract
HIV-1 maturation inhibition (MI) has been clinically validated as an approach to the control of HIV-1 infection. However, identifying an MI with both broad polymorphic spectrum coverage and good oral exposure has been challenging. Herein, we describe the design, synthesis, and preclinical characterization of a potent, orally active, second generation HIV-1 MI, BMS-955176 (2), which is currently in Phase IIb clinical trials as part of a combination antiretroviral regimen.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Zheng Liu
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yan Chen
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ny Sin
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Sing-Yuen Sit
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jacob J. Swidorski
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jie Chen
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Brian L. Venables
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Juliang Zhu
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Beata Nowicka-Sans
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Tricia Protack
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Zeyu Lin
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Brian Terry
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Himadri Samanta
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Sharon Zhang
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Zhufang Li
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Brett R. Beno
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Xiaohua S. Huang
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Sandhya Rahematpura
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Dawn D. Parker
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Roy Haskell
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Susan Jenkins
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kenneth S. Santone
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Mark I. Cockett
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Mark Krystal
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Nicholas A. Meanwell
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Umesh Hanumegowda
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ira B. Dicker
- Departments of Discovery Chemistry, ‡Chemical Synthesis, §Virology, ∥Computer-Assisted
Drug Design, and ⊥Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
39
|
Swidorski JJ, Liu Z, Sit SY, Chen J, Chen Y, Sin N, Venables BL, Parker DD, Nowicka-Sans B, Terry BJ, Protack T, Rahematpura S, Hanumegowda U, Jenkins S, Krystal M, Dicker IB, Meanwell NA, Regueiro-Ren A. Inhibitors of HIV-1 maturation: Development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids. Bioorg Med Chem Lett 2016; 26:1925-30. [PMID: 26988305 DOI: 10.1016/j.bmcl.2016.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 12/27/2022]
Abstract
We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies.
Collapse
Affiliation(s)
- Jacob J Swidorski
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA.
| | - Zheng Liu
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Sing-Yuen Sit
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Jie Chen
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Yan Chen
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Ny Sin
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Brian L Venables
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Dawn D Parker
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Beata Nowicka-Sans
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Brian J Terry
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Tricia Protack
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Sandhya Rahematpura
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Umesh Hanumegowda
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Mark Krystal
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Ira B Dicker
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Alicia Regueiro-Ren
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| |
Collapse
|
40
|
Liu Z, Swidorski JJ, Nowicka-Sans B, Terry B, Protack T, Lin Z, Samanta H, Zhang S, Li Z, Parker DD, Rahematpura S, Jenkins S, Beno BR, Krystal M, Meanwell NA, Dicker IB, Regueiro-Ren A. C-3 benzoic acid derivatives of C-3 deoxybetulinic acid and deoxybetulin as HIV-1 maturation inhibitors. Bioorg Med Chem 2016; 24:1757-70. [PMID: 26968652 DOI: 10.1016/j.bmc.2016.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/21/2016] [Accepted: 03/01/2016] [Indexed: 11/28/2022]
Abstract
A series of C-3 phenyl- and heterocycle-substituted derivatives of C-3 deoxybetulinic acid and C-3 deoxybetulin was designed and synthesized as HIV-1 maturation inhibitors (MIs) and evaluated for their antiviral activity and cytotoxicity in cell culture. A 4-subsituted benzoic acid moiety was identified as an advantageous replacement for the 3'3'-dimethylsuccinate moiety present in previously disclosed MIs that illuminates new aspects of the topography of the pharmacophore. The new analogs exhibit excellent in vitro antiviral activity against wild-type (wt) virus and a lower serum shift when compared with the prototypical HIV-1 MI bevirimat (1, BVM), the first MI to be evaluated in clinical studies. Compound 9a exhibits comparable cell culture potency toward wt virus as 1 (WT EC50=16 nM for 9a compared to 10nM for 1). However, the potency of 9a is less affected by the presence of human serum, while the compound displays a similar pharmacokinetic profile in rats to 1. Hence 9a, the 4-benzoic acid derivative of deoxybetulinic acid, represents a new starting point from which to explore the design of a 2nd generation MI.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA.
| | - Jacob J Swidorski
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Beata Nowicka-Sans
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Brian Terry
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Tricia Protack
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Zeyu Lin
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Himadri Samanta
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Sharon Zhang
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Zhufang Li
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Dawn D Parker
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Sandhya Rahematpura
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Brett R Beno
- Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Mark Krystal
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Ira B Dicker
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Alicia Regueiro-Ren
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA.
| |
Collapse
|
41
|
Wang D, Lu W, Li F. Pharmacological intervention of HIV-1 maturation. Acta Pharm Sin B 2015; 5:493-9. [PMID: 26713265 PMCID: PMC4675807 DOI: 10.1016/j.apsb.2015.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/25/2015] [Indexed: 11/27/2022] Open
Abstract
Despite significant advances in antiretroviral therapy, increasing drug resistance and toxicities observed among many of the current approved human immunodeficiency virus (HIV) drugs indicate a need for discovery and development of potent and safe antivirals with a novel mechanism of action. Maturation inhibitors (MIs) represent one such new class of HIV therapies. MIs inhibit a late step in the HIV-1 Gag processing cascade, causing defective core condensation and the release of non-infectious virus particles from infected cells, thus blocking the spread of the infection to new cells. Clinical proof-of-concept for the MIs was established with betulinic acid derived bevirimat, the prototype HIV-1 MI. Despite the discontinuation of its further clinical development in 2010 due to a lack of uniform patient response caused by naturally occurring drug resistance Gag polymorphisms, several second-generation MIs with improved activity against viruses exhibiting Gag polymorphism mediated resistance have been recently discovered and are under clinical evaluation in HIV/AID patients. In this review, current understanding of HIV-1 MIs is described and recent progress made toward elucidating the mechanism of action, target identification and development of second-generation MIs is reviewed.
Collapse
Key Words
- BMS, Bristol-Myers Squibb
- Bevirimat
- CA, capsid
- GSK, GlaxoSmithKline
- Gag processing
- Gag-drug interaction
- HIV, human immunodeficiency virus
- HIV-1 maturation inhibitors
- MA, matrix
- MI, maturation inhibitor
- PI, protease inhibitor
- PR, protease
- SIV, Simian immunodeficiency virus
- SP1, spacer protein 1
Collapse
|
42
|
Characterization of HIV-1 Resistance to Tenofovir Alafenamide In Vitro. Antimicrob Agents Chemother 2015; 59:5917-24. [PMID: 26149983 DOI: 10.1128/aac.01151-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/29/2015] [Indexed: 01/05/2023] Open
Abstract
Tenofovir alafenamide (TAF) is an investigational prodrug of the HIV-1 nucleotide reverse transcriptase (RT) inhibitor (NtRTI) tenofovir (TFV), with improved potency and drug delivery properties over the current prodrug, tenofovir disoproxil fumarate (TDF). TAF is currently in phase 3 clinical studies for the treatment of HIV-1 infection, in combination with other antiretroviral agents. Phase 1 and 2 studies have shown that TAF was associated with increased peripheral blood mononuclear cell (PBMC) drug loading and increased suppression of HIV-1 replication compared to treatment with TDF. In this study, selection of in vitro resistance to both TAF and the parent compound, TFV, led to the emergence of HIV-1 with the K65R amino acid substitution in RT with 6.5-fold-reduced susceptibility to TAF. Although TAF is more potent than TFV in vitro, the antiviral susceptibilities to TAF and TFV of a large panel of nucleoside/nucleotide RT inhibitor (NRTI)-resistant mutants were highly correlated (R(2) = 0.97), indicating that the two compounds have virtually the same resistance profile when assessed as fold change from the wild type. TAF showed full antiviral activity in PBMCs against primary HIV-1 isolates with protease inhibitor, nonnucleoside RT inhibitor (NNRTI), or integrase strand transfer inhibitor resistance but reduced activity against isolates with extensive NRTI resistance amino acid substitutions. However, the increased cell loading of TFV with TAF versus TDF observed in vivo suggests that TAF may retain activity against TDF-resistant mutant viruses.
Collapse
|
43
|
Lee SK, Cheng N, Hull-Ryde E, Potempa M, Schiffer CA, Janzen W, Swanstrom R. A sensitive assay using a native protein substrate for screening HIV-1 maturation inhibitors targeting the protease cleavage site between the matrix and capsid. Biochemistry 2013; 52:4929-40. [PMID: 23763575 DOI: 10.1021/bi4005232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The matrix/capsid processing site in the HIV-1 Gag precursor is likely the most sensitive target to inhibit HIV-1 replication. We have previously shown that modest incomplete processing at the site leads to a complete loss of virion infectivity. In the study presented here, a sensitive assay based on fluorescence polarization that can monitor cleavage at the MA/CA site in the context of the folded protein substrate is described. The substrate, an MA/CA fusion protein, was labeled with the fluorescein-based FlAsH (fluorescein arsenical hairpin) reagent that binds to a tetracysteine motif (CCGPCC) that was introduced within the N-terminal domain of CA. By limiting the size of CA and increasing the size of MA (with an N-terminal GST fusion), we were able to measure significant differences in polarization values as a function of HIV-1 protease cleavage. The sensitivity of the assay was tested in the presence of increasing amounts of an HIV-1 protease inhibitor, which resulted in a gradual decrease in the fluorescence polarization values demonstrating that the assay is sensitive in discerning changes in protease processing. The high-throughput screening assay validation in 384-well plates showed that the assay is reproducible and robust with an average Z' value of 0.79 and average coefficient of variation values of <3%. The robustness and reproducibility of the assay were further validated using the LOPAC(1280) compound library, demonstrating that the assay provides a sensitive high-throughput screening platform that can be used with large compound libraries for identifying novel maturation inhibitors targeting the MA/CA site of the HIV-1 Gag polyprotein.
Collapse
Affiliation(s)
- Sook-Kyung Lee
- Department of Biochemistry and Biophysics and UNC Center for AIDS Research, ‡Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, §Department of Microbiology and Immunology, and ∥Cancer Genetics Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | |
Collapse
|
44
|
Coric P, Turcaud S, Souquet F, Briant L, Gay B, Royer J, Chazal N, Bouaziz S. Synthesis and biological evaluation of a new derivative of bevirimat that targets the Gag CA-SP1 cleavage site. Eur J Med Chem 2013; 62:453-65. [DOI: 10.1016/j.ejmech.2013.01.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/01/2022]
|
45
|
Dang Z, Ho P, Zhu L, Qian K, Lee KH, Huang L, Chen CH. New betulinic acid derivatives for bevirimat-resistant human immunodeficiency virus type-1. J Med Chem 2013; 56:2029-37. [PMID: 23379607 DOI: 10.1021/jm3016969] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bevirimat (1, BVM) is an anti-HIV agent that blocks HIV-1 replication by interfering with HIV-1 Gag-SP1 processing at a late stage of viral maturation. However, clinical trials of 1 have revealed a high baseline drug resistance that is attributed to naturally occurring polymorphisms in HIV-1 Gag. To overcome the drug resistance, 28 new derivatives of 1 were synthesized and tested against compound 1-resistant (BVM-R) HIV-1 variants. Among them, compound 6 exhibited much improved activity against several HIV-1 strains carrying BVM-R polymorphisms. Compound 6 was at least 20-fold more potent than 1 against the replication of NL4-3/V370A, which carries the most prevalent clinical BVM-R polymorphism in HIV-1 Gag-SP1. Thus, compound 6 merits further development as a potential anti-AIDS clinical trial candidate.
Collapse
Affiliation(s)
- Zhao Dang
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | | | | | | | | | | | | |
Collapse
|
46
|
Fun A, Wensing AMJ, Verheyen J, Nijhuis M. Human Immunodeficiency Virus Gag and protease: partners in resistance. Retrovirology 2012; 9:63. [PMID: 22867298 PMCID: PMC3422997 DOI: 10.1186/1742-4690-9-63] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) maturation plays an essential role in the viral life cycle by enabling the generation of mature infectious virus particles through proteolytic processing of the viral Gag and GagPol precursor proteins. An impaired polyprotein processing results in the production of non-infectious virus particles. Consequently, particle maturation is an excellent drug target as exemplified by inhibitors specifically targeting the viral protease (protease inhibitors; PIs) and the experimental class of maturation inhibitors that target the precursor Gag and GagPol polyproteins. Considering the different target sites of the two drug classes, direct cross-resistance may seem unlikely. However, coevolution of protease and its substrate Gag during PI exposure has been observed both in vivo and in vitro. This review addresses in detail all mutations in Gag that are selected under PI pressure. We evaluate how polymorphisms and mutations in Gag affect PI therapy, an aspect of PI resistance that is currently not included in standard genotypic PI resistance testing. In addition, we consider the consequences of Gag mutations for the development and positioning of future maturation inhibitors.
Collapse
Affiliation(s)
- Axel Fun
- Department of Virology, Medical Microbiology, University Medical Center Utrecht, HP G04,614, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | | | | | | |
Collapse
|
47
|
Protease-Mediated Maturation of HIV: Inhibitors of Protease and the Maturation Process. Mol Biol Int 2012; 2012:604261. [PMID: 22888428 PMCID: PMC3410323 DOI: 10.1155/2012/604261] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/30/2012] [Indexed: 12/04/2022] Open
Abstract
Protease-mediated maturation of HIV-1 virus particles is essential for virus infectivity. Maturation occurs concomitant with immature virus particle release and is mediated by the viral protease (PR), which sequentially cleaves the Gag and Gag-Pol polyproteins into mature protein domains. Maturation triggers a second assembly event that generates a condensed conical capsid core. The capsid core organizes the viral RNA genome and viral proteins to facilitate viral replication in the next round of infection. The fundamental role of proteolytic maturation in the generation of mature infectious particles has made it an attractive target for therapeutic intervention. Development of small molecules that target the PR active site has been highly successful and nine protease inhibitors (PIs) have been approved for clinical use. This paper provides an overview of their development and clinical use together with a discussion of problems associated with drug resistance. The second-half of the paper discusses a novel class of antiretroviral drug termed maturation inhibitors, which target cleavage sites in Gag not PR itself. The paper focuses on bevirimat (BVM) the first-in-class maturation inhibitor: its mechanism of action and the implications of naturally occurring polymorphisms that confer reduced susceptibility to BVM in phase II clinical trials.
Collapse
|
48
|
Dang Z, Qian K, Ho P, Zhu L, Lee KH, Huang L, Chen CH. Synthesis of betulinic acid derivatives as entry inhibitors against HIV-1 and bevirimat-resistant HIV-1 variants. Bioorg Med Chem Lett 2012; 22:5190-4. [PMID: 22818973 DOI: 10.1016/j.bmcl.2012.06.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 11/26/2022]
Abstract
Betulinic acid derivatives modified at the C28 position are HIV-1entry inhibitors such as compound A43D; however, modified at the C3 position instead of C28 give HIV-1 maturation inhibitor such as bevirimat. Bevirimat exhibited promising pharmacokinetic profiles in clinical trials, but its effectiveness was compromised by the high baseline drug resistance of HIV-1 variants with polymorphism in the putative drug binding site. In an effort to determine whether the viruses with bevirimat resistant polymorphism also altered their sensitivities to the betulinic acid derivatives that inhibit HIV-1 entry, a series of new betulinic acid entry inhibitors were synthesized and tested for their activities against HIV-1 NL4-3 and NL4-3 variants resistant to bevirimat. The results show that the bevirimat resistant viruses were approximately 5- to10-fold more sensitive to three new glutamine ester derivatives (13, 15 and 38) and A43D in an HIV-1 multi-cycle replication assay. In contrast, the wild type NL4-3 and the bevirimat resistant variants were equally sensitive to the HIV-1 RT inhibitor AZT. In addition, these three new compounds markedly improved microsomal stability compared to A43D.
Collapse
Affiliation(s)
- Zhao Dang
- Surgical Science, Department of Surgery, Box 2926, Duke University Medical Center, Durham, NC 27710-2926, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Nguyen AT, Feasley CL, Jackson KW, Nitz TJ, Salzwedel K, Air GM, Sakalian M. The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1 cleavage site in immature Gag particles. Retrovirology 2011; 8:101. [PMID: 22151792 PMCID: PMC3267693 DOI: 10.1186/1742-4690-8-101] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/07/2011] [Indexed: 12/31/2022] Open
Abstract
Background Bevirimat, the prototype Human Immunodeficiency Virus type 1 (HIV-1) maturation inhibitor, is highly potent in cell culture and efficacious in HIV-1 infected patients. In contrast to inhibitors that target the active site of the viral protease, bevirimat specifically inhibits a single cleavage event, the final processing step for the Gag precursor where p25 (CA-SP1) is cleaved to p24 (CA) and SP1. Results In this study, photoaffinity analogs of bevirimat and mass spectrometry were employed to map the binding site of bevirimat to Gag within immature virus-like particles. Bevirimat analogs were found to crosslink to sequences overlapping, or proximal to, the CA-SP1 cleavage site, consistent with previous biochemical data on the effect of bevirimat on Gag processing and with genetic data from resistance mutations, in a region predicted by NMR and mutational studies to have α-helical character. Unexpectedly, a second region of interaction was found within the Major Homology Region (MHR). Extensive prior genetic evidence suggests that the MHR is critical for virus assembly. Conclusions This is the first demonstration of a direct interaction between the maturation inhibitor, bevirimat, and its target, Gag. Information gained from this study sheds light on the mechanisms by which the virus develops resistance to this class of drug and may aid in the design of next-generation maturation inhibitors.
Collapse
Affiliation(s)
- Albert T Nguyen
- Department of Microbiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Fun A, van Maarseveen NM, Pokorná J, Maas RE, Schipper PJ, Konvalinka J, Nijhuis M. HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat. Retrovirology 2011; 8:70. [PMID: 21864346 PMCID: PMC3184055 DOI: 10.1186/1742-4690-8-70] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/24/2011] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself. Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance mutations on the development of maturation inhibitor resistance. RESULTS Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral replication did not appear to be a major factor during emergence of bevirimat resistance. In all in vitro selections, one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be explained by differences in CA/p2 cleavage processing by the different proteases. CONCLUSIONS These findings highlight the complicated interactions between the viral protease and its substrate. By providing a better understanding of these interactions, we aim to help guide the development of second generation maturation inhibitors.
Collapse
Affiliation(s)
- Axel Fun
- Department of Virology, Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|