1
|
Sattler J, Noster J, Stelzer Y, Spille M, Schäfer S, Xanthopoulou K, Sommer J, Jantsch J, Peter S, Göttig S, Gatermann SG, Hamprecht A. OXA-48-like carbapenemases in Proteus mirabilis - novel genetic environments and a challenge for detection. Emerg Microbes Infect 2024; 13:2353310. [PMID: 38712879 PMCID: PMC11123474 DOI: 10.1080/22221751.2024.2353310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/05/2024] [Indexed: 05/08/2024]
Abstract
OXA-48-like enzymes represent the most frequently detected carbapenemases in Enterobacterales in Western Europe, North Africa and the Middle East. In contrast to other species, the presence of OXA-48-like in Proteus mirabilis leads to an unusually susceptible phenotype with low MICs for carbapenems and piperacillin-tazobactam, which is easily missed in the diagnostic laboratory. So far, there is little data available on the genetic environments of the corresponding genes, blaOXA-48-like, in P. mirabilis. In this study susceptibility phenotypes and genomic data of 13 OXA-48-like-producing P. mirabilis were investigated (OXA-48, n = 9; OXA-181, n = 3; OXA-162, n = 1). Ten isolates were susceptible to meropenem and ertapenem and three isolates were susceptible to piperacillin-tazobactam. The gene blaOXA-48 was chromosomally located in 7/9 isolates. Thereof, in three isolates blaOXA-48 was inserted into a P. mirabilis genomic island. Of the three isolates harbouring blaOXA-181 one was located on an IncX3 plasmid and two were located on a novel MOBF plasmid, pOXA-P12, within the new transposon Tn7713. In 5/6 isolates with plasmidic location of blaOXA-48-like, the plasmids could conjugate to E. coli recipients in vitro. Vice versa, blaOXA-48-carrying plasmids could conjugate from other Enterobacterales into a P. mirabilis recipient. These data show a high diversity of blaOXA-48-like genetic environments compared to other Enterobacterales, where genetic environments are quite homogenous. Given the difficult-to-detect phenotype of OXA-48-like-producing P. mirabilis and the location of blaOXA-48-like on mobile genetic elements, it is likely that OXA-48-like-producing P. mirabilis can disseminate, escape most surveillance systems, and contribute to a hidden spread of OXA-48-like.
Collapse
Affiliation(s)
- Janko Sattler
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- German Centre for Infection Research (DZIF)
| | - Janina Noster
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Yvonne Stelzer
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Martina Spille
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Sina Schäfer
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF)
| | - Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF)
| | - Julian Sommer
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF)
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF)
| | - Stephan Göttig
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Sören G. Gatermann
- National Reference Laboratory for Multidrug-Resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | - Axel Hamprecht
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- German Centre for Infection Research (DZIF)
| |
Collapse
|
2
|
Asempa TE, Kois AK, Gill CM, Nicolau DP. Phenotypes, genotypes and breakpoints: an assessment of β-lactam/β-lactamase inhibitor combinations against OXA-48. J Antimicrob Chemother 2023; 78:636-645. [PMID: 36626311 DOI: 10.1093/jac/dkac425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/21/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Two of the three recently approved β-lactam agent (BL)/β-lactamase inhibitor (BLI) combinations have higher CLSI susceptibility breakpoints (ceftazidime/avibactam 8 mg/L; meropenem/vaborbactam 4 mg/L) compared with the BL alone (ceftazidime 4 mg/L; meropenem 1 mg/L). This can lead to a therapeutic grey area on susceptibility reports depending on resistance mechanism. For instance, a meropenem-resistant OXA-48 isolate (MIC 4 mg/L) may appear as meropenem/vaborbactam-susceptible (MIC 4 mg/L) despite vaborbactam's lack of OXA-48 inhibitory activity. METHODS OXA-48-positive (n = 51) and OXA-48-negative (KPC, n = 5; Klebsiella pneumoniae wild-type, n = 1) Enterobacterales were utilized. Susceptibility tests (broth microdilution) were conducted with ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam, as well as their respective BL partner. Antimicrobial activity of all six agents was evaluated in the murine neutropenic thigh model using clinically relevant exposures. Efficacy was assessed as the change in bacterial growth at 24 h, compared with 0 h controls. RESULTS On average, the three BL/BLI agents resulted in robust bacteria killing among OXA-48-negative isolates. Among OXA-48-positive isolates, poor in vivo activity with imipenem/relebactam was concordant with its resistant phenotypic profile. Variable meropenem/vaborbactam activity was observed among isolates with a 'susceptible' MIC of 4 mg/L. Only 30% (7/23) of isolates at meropenem/vaborbactam MICs of 2 and 4 mg/L met the ≥1-log bacterial reduction threshold predictive of clinical efficacy in serious infections. In contrast, ceftazidime/avibactam resulted in marked bacterial density reduction across the range of MICs, and 96% (49/51) of isolates exceeded the ≥1-log bacterial reduction threshold. CONCLUSIONS Data demonstrate that current imipenem/relebactam and ceftazidime/avibactam CLSI breakpoints are appropriate. Data also suggest that higher meropenem/vaborbactam breakpoints relative to meropenem can translate to potentially poor clinical outcomes in patients infected with OXA-48-harbouring isolates.
Collapse
Affiliation(s)
- Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Abigail K Kois
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
3
|
Asempa TE, Kois AK, Gill CM, Nicolau DP. Phenotypes, genotypes and breakpoints: an assessment of β-lactam/ β-lactamase inhibitor combinations against OXA-48. J Antimicrob Chemother 2022; 77:2622-2631. [PMID: 35325165 DOI: 10.1093/jac/dkac074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/10/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Two out of the three recently approved β-lactam (BL)/β-lactamase inhibitors (BLIs) have higher CLSI susceptibility breakpoints (ceftazidime/avibactam 8 mg/L; meropenem/vaborbactam 4 mg/L) compared with the BL alone (ceftazidime 4 mg/L; meropenem 1 mg/L). This can lead to a therapeutic grey area on susceptibility reports depending on resistance mechanism. For instance, a meropenem-resistant OXA-48 isolate (MIC 4 mg/L) may appear as meropenem/vaborbactam-susceptible (MIC 4 mg/L) despite vaborbactam's lack of OXA-48 inhibitory activity. METHODS OXA-48-positive (n = 51) and OXA-48-negative (KPC, n = 5; Klebsiella pneumoniae WT, n = 1) Enterobacterales were utilized. Susceptibility tests (broth microdilution) were conducted with ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam, as well as their respective BL partner. Antimicrobial activity of all six agents was evaluated in the murine neutropenic thigh model using clinically relevant exposures. Efficacy was assessed as the change in bacterial growth at 24 h, compared with 0 h controls. RESULTS On average, the three BL/BLI agents resulted in robust bacteria killing among OXA-48-negative isolates. Among OXA-48-positive isolates, poor in vivo activity with imipenem/relebactam was concordant with its resistant phenotypic profile. Variable meropenem/vaborbactam activity was observed among isolates with a 'susceptible' MIC of 4 mg/L. Only 30% (7/23) of isolates at meropenem/vaborbactam MICs of 2 and 4 mg/L met the ≥1 log bacterial reduction threshold predictive of clinical efficacy in serious infections. In contrast, ceftazidime/avibactam resulted in marked bacterial density reduction across the range of MICs and 73% (37/51) of isolates exceeded the ≥1 log bacterial reduction threshold. CONCLUSIONS Data demonstrate that current imipenem/relebactam and ceftazidime/avibactam CLSI breakpoints are appropriate. Data also suggest that higher meropenem/vaborbactam breakpoints relative to meropenem can translate to potentially poor clinical outcomes in patients infected with OXA-48-harbouring isolates.
Collapse
Affiliation(s)
- Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Abigail K Kois
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
4
|
OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother 2022; 66:e0021622. [PMID: 35856662 PMCID: PMC9380527 DOI: 10.1128/aac.00216-22] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Modern medicine is threatened by the rising tide of antimicrobial resistance, especially among Gram-negative bacteria, where resistance to β-lactams is most often mediated by β-lactamases. The penicillin and cephalosporin ascendancies were, in their turn, ended by the proliferation of TEM penicillinases and CTX-M extended-spectrum β-lactamases. These class A β-lactamases have long been considered the most important. For carbapenems, however, the threat is increasingly from the insidious rise of a class D carbapenemase, OXA-48, and its close relatives. Over the past 20 years, OXA-48 and "OXA-48-like" enzymes have proliferated to become the most prevalent enterobacterial carbapenemases across much of Europe, Northern Africa, and the Middle East. OXA-48-like enzymes are notoriously difficult to detect because they often cause only low-level in vitro resistance to carbapenems, meaning that the true burden is likely underestimated. Despite this, they are associated with carbapenem treatment failures. A highly conserved incompatibility complex IncL plasmid scaffold often carries blaOXA-48 and may carry other antimicrobial resistance genes, leaving limited treatment options. High conjugation efficiency means that this plasmid is sometimes carried by multiple Enterobacterales in a single patient. Producers evade most β-lactam-β-lactamase inhibitor combinations, though promising agents have recently been licensed, notably ceftazidime-avibactam and cefiderocol. The molecular machinery enabling global spread, current treatment options, and the development pipeline of potential new therapies for Enterobacterales that produce OXA-48-like β-lactamases form the focus of this review.
Collapse
|
5
|
Contemporary Treatment of Resistant Gram-Negative Infections in Pediatric Patients. Infect Dis Clin North Am 2022; 36:147-171. [DOI: 10.1016/j.idc.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Moguet C, Gonzalez C, Sallustrau A, Gelhaye S, Naas T, Simon S, Volland H. Detection of expanded-spectrum cephalosporin hydrolysis by lateral flow immunoassay. Microb Biotechnol 2022; 15:603-612. [PMID: 34342151 PMCID: PMC8867991 DOI: 10.1111/1751-7915.13892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/01/2022] Open
Abstract
Early detection of expanded-spectrum cephalosporin (ESC) resistance is essential not only for an effective therapy but also for the prompt implementation of infection control measures to prevent dissemination in the hospital. We have developed and validated a lateral flow immunoassay (LFIA), called LFIA-CTX test, for the detection of ESC (cefotaxime) hydrolytic activity based on structural discrimination between the intact antibiotic and its hydrolysed product. A single bacterial colony was suspended in an extraction buffer containing cefotaxime. After a 30-min incubation, the solution is loaded on the LFIA for reading within 10 min. A total of 348 well-characterized Gram-negative isolates were tested. Among them, the 38 isolates that did not express any cefotaxime-hydrolysing β-lactamase gave negative results. Of the 310 isolates expressing at least one cefotaxime-hydrolysing β-lactamase, all were tested positive, except three OXA-48-like producers, which were repeatedly detected negative. Therefore, the sensitivity was 99.1% and the specificity was 100%. The LFIA-CTX test is efficient, fast, low-cost and easy to implement in the workflow of a routine microbiology laboratory.
Collapse
Affiliation(s)
- Christian Moguet
- Département Médicaments et Technologies pour la Santé (DMTS)SPIUniversité Paris‐SaclayCEA, INRAEGif‐sur‐Yvette91191France
| | - Camille Gonzalez
- Bacteriology‐Hygiene UnitAPHP, Hôpital BicêtreLe Kremlin‐BicêtreFrance
| | - Antoine Sallustrau
- Département Médicaments et Technologies pour la Santé (DMTS)SCBMUniversité Paris‐SaclayCEA, INRAEGif‐sur‐Yvette91191France
| | - Stéphanie Gelhaye
- Département Médicaments et Technologies pour la Santé (DMTS)SPIUniversité Paris‐SaclayCEA, INRAEGif‐sur‐Yvette91191France
| | - Thierry Naas
- Bacteriology‐Hygiene UnitAPHP, Hôpital BicêtreLe Kremlin‐BicêtreFrance
- Team ResistUMR1184Université Paris‐Saclay – INSERM – CEALabEx LermitLe Kremlin‐BicêtreFrance
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase‐producing EnterobacteralesLe Kremlin‐BicêtreFrance
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la Santé (DMTS)SPIUniversité Paris‐SaclayCEA, INRAEGif‐sur‐Yvette91191France
| | - Hervé Volland
- Département Médicaments et Technologies pour la Santé (DMTS)SPIUniversité Paris‐SaclayCEA, INRAEGif‐sur‐Yvette91191France
| |
Collapse
|
7
|
Singkham-in U, Muhummudaree N, Chatsuwan T. In Vitro Synergism of Azithromycin Combination with Antibiotics against OXA-48-Producing Klebsiella pneumoniae Clinical Isolates. Antibiotics (Basel) 2021; 10:1551. [PMID: 34943763 PMCID: PMC8698995 DOI: 10.3390/antibiotics10121551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae has globally emerged as an urgent threat leading to the limitation for treatment. K. pneumoniae carrying blaOXA-48, which plays a broad magnitude of carbapenem susceptibility, is widely concerned. This study aimed to characterize related carbapenem resistance mechanisms and forage for new antibiotic combinations to combat blaOXA-48-carrying K. pneumoniae. Among nine isolates, there were two major clones and a singleton identified by ERIC-PCR. Most isolates were resistant to ertapenem (MIC range: 2->256 mg/L), but two isolates were susceptible to imipenem and meropenem (MIC range: 0.5-1 mg/L). All blaOXA-48-carrying plasmids conferred carbapenem resistance in Escherichia coli transformants. Two ertapenem-susceptible isolates carried both outer membrane proteins (OMPs), OmpK35 and OmpK36. Lack of at least an OMP was present in imipenem-resistant isolates. We evaluated the in vitro activity of an overlooked antibiotic, azithromycin, in combination with other antibiotics. Remarkably, azithromycin exhibited synergism with colistin and fosfomycin by 88.89% and 77.78%, respectively. Bacterial regrowth occurred after exposure to colistin or azithromycin alone. Interestingly, most isolates were killed, reaching synergism by this combination. In conclusion, the combination of azithromycin and colistin may be an alternative strategy in dealing with blaOXA-48-carrying K. pneumoniae infection during a recent shortage of newly effective antibiotic development.
Collapse
Affiliation(s)
- Uthaibhorn Singkham-in
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Netchanok Muhummudaree
- Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Gill CM, Asempa TE, Nicolau DP. Efficacy of human-simulated exposures of meropenem/vaborbactam and meropenem against OXA-48 β-lactamase-producing Enterobacterales in the neutropenic murine thigh infection model. J Antimicrob Chemother 2021; 76:184-188. [PMID: 33103202 DOI: 10.1093/jac/dkaa344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/05/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Despite vaborbactam lacking inhibitory activity against OXA-48, approximately a third of OXA-48-harbouring Enterobacterales test susceptible to meropenem/vaborbactam due to its higher breakpoint than meropenem alone. The present study evaluated the efficacy of human-simulated exposures of meropenem/vaborbactam against OXA-48-harbouring Enterobacterales in the neutropenic murine thigh model. METHODS Twenty-six isolates [OXA-48 (n = 24) and KPC (n = 2)] were evaluated. MICs were conducted in triplicate per CLSI. Mice received human-simulated regimens of meropenem/vaborbactam, meropenem or vehicle for 24 h. Mice were inoculated with ∼1 × 107 cfu/mL in each thigh 2 h prior to dosing and both thighs were harvested at 24 h. Efficacy was assessed using mean log10 cfu/thigh at 24 h and the achievement of 1 log10 reduction relative to 0 h control as an established surrogate marker predictive of success for serious infections. RESULTS Meropenem/vaborbactam MICs ranged from 1 to 64 mg/L. The mean inoculum at 0 h was 5.77 ± 0.26 compared with 8.26 ± 1.53 for controls at 24 h. As anticipated for KPCs, meropenem/vaborbactam resulted in enhanced mean ± SD change in bacterial density (-1.10 ± 0.26), compared with meropenem (1.45 ± 0.88). Vaborbactam did not enhance mean ± SD change against OXA-48 isolates compared with meropenem (-0.44 ± 1.29 and -0.43 ± 1.36, respectively). For OXA-48-harbouring isolates with meropenem/vaborbactam MICs ≥16 (n = 5), 8 (n = 5), 4 (n = 9) and ≤2 (n = 5) mg/L, 0%, 0%, 44% and 60% of isolates achieved the target reduction ≥1 log10 with either agent, respectively. CONCLUSIONS These data highlight that meropenem/vaborbactam and meropenem humanized exposures in vivo resulted in similar, albeit poor, activity against OXA-48-producing Enterobacterales despite susceptible MICs per EUCAST and CLSI interpretation. As a result, caution is warranted when treating meropenem/vaborbactam-susceptible Enterobacterales without a genotypic profile.
Collapse
Affiliation(s)
- Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
9
|
Livermore DM, Nicolau DP, Hopkins KL, Meunier D. Carbapenem-Resistant Enterobacterales, Carbapenem Resistant Organisms, Carbapenemase-Producing Enterobacterales, and Carbapenemase-Producing Organisms: Terminology Past its "Sell-By Date" in an Era of New Antibiotics and Regional Carbapenemase Epidemiology. Clin Infect Dis 2021; 71:1776-1782. [PMID: 32025698 DOI: 10.1093/cid/ciaa122] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022] Open
Abstract
Carbapenem resistance in Gram-negative bacteria is a public health concern. Consequently, numerous government and agency reports discuss carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant organisms (CROs). Unfortunately, these terms are fuzzy. Do they include (1) Proteeae with inherent imipenem resistance; (2) porin-deficient Enterobacterales resistant to ertapenem but not other carbapenems; (3) Enterobacterales with OXA-48-like enzymes that remain "carbapenem susceptible" at breakpoint; and (4) Pseudomonas aeruginosa that merely lack porin OprD? Counting CPE or CPOs is better but still insufficient, because different carbapenemases have differing treatment implications, particularly for new β-lactam/β-lactamase inhibitor combinations. At the least, it is essential for authors, journals, and regulatory agencies to specify the carbapenemases meant. The future may demand even greater precision, for mutations can alter hydrolytic activity, and the ability to confer resistance, within carbapenemase families.
Collapse
Affiliation(s)
- David M Livermore
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | - Danièle Meunier
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
10
|
Mushtaq S, Garello P, Vickers A, Woodford N, Livermore DM. Cefepime/tazobactam compared with other tazobactam combinations against problem Gram-negative bacteria. Int J Antimicrob Agents 2021; 57:106318. [PMID: 33716176 DOI: 10.1016/j.ijantimicag.2021.106318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/10/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Piperacillin/tazobactam has long been a broad-spectrum 'workhorse' antibiotic; however, it is compromised by resistance. One response is to re-partner tazobactam with cefepime, which is easier to protect, being less β-lactamase labile, and to use a high-dose and prolonged infusion. On this basis, Wockhardt are developing cefepime/tazobactam (WCK 4282) as a 2+2 g q8h combination with a 90-min infusion. METHODS The activity of cc cefepime/tazobactam was assessed, with other tazobactam combinations as comparators, against 1632 Enterobacterales, 745 Pseudomonas aeruginosa and 450 other non-fermenters, as submitted to the UK National Reference Laboratory. These were categorised by carbapenemase-gene detection and interpretive reading of phenotypes, with MICs determined by British Society for Antimicrobial Chemotherapy agar dilution. RESULTS Although higher breakpoints may be justifiable, based on the pharmacodynamics, the results were reviewed against current cefepime criteria. On this basis, cefepime/tazobactam was broadly active against Enterobacterales with AmpC enzymes and extended-spectrum β-lactamases (ESBLs), even when they had ertapenem resistance, suggesting porin loss. At 8+8 mg/L, activity extended to > 90% of Enterobacterales with OXA-48 and KPC carbapenemases, although the MICs for KPC producers belonging to the international Klebsiella pneumoniae ST258 lineage were higher; metallo-β-lactamase producers remained resistant. Cefepime/tazobactam was less active than ceftolozane/tazobactam against Pseudomonas aeruginosa with AmpC de-repression or high-level efflux but achieved wider antipseudomonal coverage than piperacillin/tazobactam. Activity against other non-fermenters was species-specific. CONCLUSION Overall, cefepime/tazobactam had a spectrum exceeding those of piperacillin/tazobactam and ceftolozane/tazobactam and resembling or exceeding that of carbapenems. Used as a 'new-combination of old-agents' it has genuine potential to be 'carbapenem-sparing'.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - Paolo Garello
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - Anna Vickers
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK
| | - David M Livermore
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, UK; Norwich Medical School, University of East Anglia, Norwich, UK.
| |
Collapse
|
11
|
Amiri A, Faridbod F, Zoughi S. An optical nanosensor fabricated by carbon dots embedded in silica molecularly imprinted polymer for sensitive detection of ceftazidime antibiotic. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Gupta V, Singh M, Datta P, Goel A, Singh S, Prasad K, Chander J. Detection of various beta-Lactamases in Escherichia coli and Klebsiella sp.: A study from Tertiary Care Centre of North India. Indian J Med Microbiol 2020; 38:390-396. [PMID: 33154252 DOI: 10.4103/ijmm.ijmm_20_253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective The emergence of carbapenem-resistant Escherichia coli and Klebsiella species is a global threat. We aimed to compare two phenotypic methods and evaluate the genotypic method for the detection of beta-lactamases produced by E. coli and Klebsiella spp. Materials and Methods One hundred and twenty-six E. coli and Klebsiella isolates were examined for phenotypic production of beta-lactamases by using disc diffusion, combined disc test (CDT) and modified carbapenem inactivation method (mCIM). All strains were also studied for the presence of various genes by polymerase chain reaction. Results Out of 126 isolates, 96% of the isolates were extended-spectrum β-lactamase (ESBL) producers based on the presence of various ESBL genes. CDT method showed higher number of total (89%) carbapenemases in comparison to mCIM (81%). Among carbapenemases none of the isolates were Klebsiella pneumoniae carbapenemase producer by CDT, while 69% isolates were metallo-beta-lactamase (MBL) producers. Another method, mCIM/ethylene diamine tetraacetic acid mCIM showed 100% agreement for MBL detection. As regards, AmpC and class D carbapenemases; 0.04% and 16% positivity was detected, respectively, based on CDT method. Molecular analysis revealed 91% of the isolates harbouring carbapenemase genes. blaNDMwas the most common gene detected followed byblaOXA-48. Nine of the blaNDM-positive isolates also possessed blaOXA-48gene. Conclusion Our finding shows high percentages of ESBL and carbapenemases in E. coli and Klebsiella spp. Among phenotypic methods, CDT seems to be a better choice as prevalence of carbapenemases shows lots of variation in our country. For Class B enzymes, both CDT and mCIM/eCIM can be used in the routine laboratories.
Collapse
Affiliation(s)
- Varsha Gupta
- Department of Microbiology, Government Medical College and Hospital, Chandigarh, India
| | - Meenakshi Singh
- Department of Microbiology, Government Medical College and Hospital, Chandigarh, India
| | - Priya Datta
- Department of Microbiology, Government Medical College and Hospital; Department of Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anku Goel
- Department of Microbiology, Government Medical College and Hospital, Chandigarh, India
| | - Sanjay Singh
- Department of Microbiology, Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Kashinath Prasad
- Department of Microbiology, Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Jagdish Chander
- Department of Microbiology, Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
13
|
Erdem F, Abulaila A, Aktas Z, Oncul O. In vitro evaluation of double carbapenem and colistin combinations against OXA-48, NDM carbapenemase-producing colistin-resistant Klebsiella pneumoniae strains. Antimicrob Resist Infect Control 2020; 9:70. [PMID: 32430058 PMCID: PMC7238654 DOI: 10.1186/s13756-020-00727-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Treatment of pandrug-resistant isolates often necessitates combination therapy. Checkerboard synergy and time-killing assay tests were performed to evaluate the benefits of a triple combination with meropenem, ertapenem, and colistin against 10 colistin-resistant K. pneumoniae clinical isolates harboring different β-lactamases. (blaOXA-48, blaNDM). MATERIALS AND METHODS In this study, ertapenem and meropenem (ERT/MEM), meropenem and colistin (MEM/COL), ertapenem, meropenem and colistin (ERT/MEM/COL) combinations were tested using checkerboard techniques and time-kill assays of each antibiotic alone and in combination against 10 colistin-resistant clinical K. pneumoniae isolates. An analysis of K. pneumoniae isolate B6 using a scanning electron microscope revealed morphologic changes in the cell surface after treatment with each antibiotic both alone and in combination. The whole genome of K. pneumoniae KPNB1 was sequenced using an Ion Torrent PGM sequencer. RESULTS According to the checkboard results, synergistic combinations were observed with ertapenem/meropenem (5/10 isolates), meropenem/colistin (7/10) and ertapenem/meropenem/colistin (9/10); no antagonism was observed for all combinations. For the time-kill assay results; synergism and bactericidal effects were observed with meropenem/colistin (10/10) and with ertapenem/meropenem/colistin (10/10) combinations, and an indifference effect was observed with the ertapenem and meropenem (10/10) combination. Strain number 1 was found 100% identical to Klebsiella pneumoniae subsp. pneumoniae HS11286 according to the outcomes of complete genome sequence analysis, and the strain carried the genes blaOXA-181, blaCTXM-15, blaNDM, arr-3, aac (6')-Ib-cr, rmtF, and catB1. CONCLUSION Using double carbapenem antibiotics with colistin could be a potential alternative to treat colistin and carbapenem-resistant K. pneumoniae. The present study is the first Turkish report of OXA-181-type carbapenemase causing colistin resistance.
Collapse
Affiliation(s)
- Fatma Erdem
- Department of Medical Microbiology, Adana City Trainning and Research Hospital, Dr. Mithat Ozsan Boulevard. 4522-1 Yuregir/Adana, Adana, Turkey.
| | - Ayham Abulaila
- Department of Medical Microbiology, Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Zerrin Aktas
- Department of Medical Microbiology, Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Oral Oncul
- Department of Infection Disease and Clinical Microbiology, Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| |
Collapse
|
14
|
Alnimr AM, Alamri AM. Antimicrobial activity of cephalosporin-beta-lactamase inhibitor combinations against drug-susceptible and drug-resistant Pseudomonas aeruginosa strains. J Taibah Univ Med Sci 2020; 15:203-210. [PMID: 32647515 PMCID: PMC7335999 DOI: 10.1016/j.jtumed.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 12/03/2022] Open
Abstract
Objectives We conducted this study to test the susceptibility of P. aeruginosa to the routinely used drugs and to the two recently available antimicrobial agents, ceftazidime-avibactam and ceftolozane-tazobactam. Methods We isolated the non-replicate strains of P. aeruginosa from inpatients between December 2018 and April 2019. The VITEK® MS system was used for phenotypic identification and VITEK 2 for initial antimicrobial susceptibility testing. We supplemented these tests with determination of the minimum inhibitory concentration (MIC) of four antimicrobials; imipenem, meropenem, ceftazidime-avibactam and ceftolozane-tazobactam. The standards of the Clinical and Laboratory Standards Institute were followed. Results A total of 67 strains of P. aeruginosa, including 38 multidrug-resistant strains, were obtained from various specimens. Susceptibility to various tested aminoglycosides and fluoroquinolones was maintained in 49.3–56.7% and 40.0–43.3% of the total isolates. Amongst β-lactams, the strains were susceptible to the following agents in an ascending order: ceftazidime (32.8%), cefepime (37.3%), imipenem (36.0%), piperacillin-tazobactam (39.0%), meropenem (44.8%), ceftazidime-avibactam (61.2%) and ceftolozane-tazobactam (62.7%). The susceptibility rates of the multidrug-resistant strains to both ceftazidime-avibactam and ceftolozane-tazobactam were less than 35%. High levels of resistance to the new agents (MIC > 256 ug/ml) were detected in 21 and 22 isolates. Conclusion Our study shows limitation in the empirical use of ceftazidime-avibactam and ceftolozane-tazobactam as therapeutics in serious infections. Moreover, our data highlights the need for prompt antimicrobial susceptibility testing to guide their clinical usage.
Collapse
Affiliation(s)
- Amani M Alnimr
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, KSA
| | - Aisha M Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences Imam Abdulrahman Bin Faisal University, KSA
| |
Collapse
|
15
|
Reyes S, Nicolau DP. Precision medicine for the diagnosis and treatment of carbapenem-resistant Enterobacterales: time to think from a different perspective. Expert Rev Anti Infect Ther 2020; 18:721-740. [PMID: 32368940 DOI: 10.1080/14787210.2020.1760844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Carbapenem-resistant Enterobacterales (CRE) represent a global public health problem. Precision medicine (PM) is a multicomponent medical approach that should be used to individualize the management of patients infected with CRE. AREAS COVERED Here, we differentiate carbapenem-producing CRE (CP-CRE) from non-CP-CRE and the importance of this distinction in clinical practice. The current phenotypic CRE-case definition and its implications are also discussed. Additionally, we summarize data regarding phenotypic and molecular diagnostic tools and available antibiotics. In order to review the most relevant data, a comprehensive literature search of peer-reviewed articles in PubMed and abstracts presented at high-impact conferences was performed. EXPERT OPINION PM in CRE infections entails a multi-step process that includes applying the current phenotypic definition, utilization of the right phenotypic or molecular testing methods, and thorough evaluation of risk factors, source of infection, and comorbidities. A powerful armamentarium is available to treat CRE infections, including recently approved agents. Randomized controlled trials targeting specific pathogens instead of site of infections may be appropriate to fill in the current gaps. In light of the diverse enzymology behind CP-CRE, PM should be employed to provide the best therapy based on the underlying resistance mechanism.
Collapse
Affiliation(s)
- Sergio Reyes
- Center for Anti-Infective Research and Development, Hartford Hospital , Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital , Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital , Hartford, CT, USA
| |
Collapse
|
16
|
Palmieri M, D'Andrea MM, Pelegrin AC, Mirande C, Brkic S, Cirkovic I, Goossens H, Rossolini GM, van Belkum A. Genomic Epidemiology of Carbapenem- and Colistin-Resistant Klebsiella pneumoniae Isolates From Serbia: Predominance of ST101 Strains Carrying a Novel OXA-48 Plasmid. Front Microbiol 2020; 11:294. [PMID: 32153554 PMCID: PMC7047997 DOI: 10.3389/fmicb.2020.00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Klebsiella pneumoniae is a major cause of severe healthcare-associated infections and often shows MDR phenotypes. Carbapenem resistance is frequent, and colistin represents a key molecule to treat infections caused by such isolates. Here we evaluated the antimicrobial resistance (AMR) mechanisms and the genomic epidemiology of clinical K. pneumoniae isolates from Serbia. Consecutive non-replicate K. pneumoniae clinical isolates (n = 2,298) were collected from seven hospitals located in five Serbian cities and tested for carbapenem resistance by disk diffusion. Isolates resistant to at least one carbapenem (n = 426) were further tested for colistin resistance with Etest or Vitek2. Broth microdilution (BMD) was performed to confirm the colistin resistance phenotype, and colistin-resistant isolates (N = 45, 10.6%) were characterized by Vitek2 and whole genome sequencing. Three different clonal groups (CGs) were observed: CG101 (ST101, N = 38), CG258 (ST437, N = 4; ST340, N = 1; ST258, N = 1) and CG17 (ST336, N = 1). mcr genes, encoding for acquired colistin resistance, were not observed, while all the genomes presented mutations previously associated with colistin resistance. In particular, all strains had a mutated MgrB, with MgrBC28S being the prevalent mutation and associated with ST101. Isolates belonging to ST101 harbored the carbapenemase OXA-48, which is generally encoded by an IncL/M plasmid that was no detected in our isolates. MinION sequencing was performed on a representative ST101 strain, and the obtained long reads were assembled together with the Illumina high quality reads to decipher the bla OXA- 48 genetic background. The bla OXA- 48 gene was located in a novel IncFIA-IncR hybrid plasmid, also containing the extended spectrum β-lactamase-encoding gene bla CTX-M-15 and several other AMR genes. Non-ST101 isolates presented different MgrB alterations (C28S, C28Y, K2∗, K3∗, Q30∗, adenine deletion leading to frameshift and premature termination, IS5-mediated inactivation) and expressed different carbapenemases: OXA-48 (ST437 and ST336), NDM-1 (ST437 and ST340) and KPC-2 (ST258). Our study reports the clonal expansion of the newly emerging ST101 clone in Serbia. This high-risk clone appears adept at acquiring resistance, and efforts should be made to contain the spread of such clone.
Collapse
Affiliation(s)
- Mattia Palmieri
- bioMérieux, Data Analytics Unit, La Balme-les-Grottes, France
| | - Marco Maria D'Andrea
- Department of Biology, University of "Tor Vergata", Rome, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | | | - Snezana Brkic
- Institute for Laboratory Diagnostics Konzilijum, Belgrade, Serbia
| | - Ivana Cirkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Gian Maria Rossolini
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alex van Belkum
- bioMérieux, Data Analytics Unit, La Balme-les-Grottes, France
| |
Collapse
|
17
|
Tselepis L, Langley GW, Aboklaish AF, Widlake E, Jackson DE, Walsh TR, Schofield CJ, Brem J, Tyrrell JM. In vitro efficacy of imipenem-relebactam and cefepime-AAI101 against a global collection of ESBL-positive and carbapenemase-producing Enterobacteriaceae. Int J Antimicrob Agents 2020; 56:105925. [PMID: 32084512 DOI: 10.1016/j.ijantimicag.2020.105925] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/03/2020] [Accepted: 02/11/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To evaluate the potential clinical in vitro efficacy of novel β-lactam/β-lactamase-inhibitor combinations - including imipenem-relebactam (IPM-REL) and cefepime-AAI101 (enmetazobactam) (FEP-AAI) - against contemporary multidrug-resistant (MDR) Enterobacteriaceae. METHODS Agar-based MIC screening against MDR Enterobacteriaceae (n = 264) was used to evaluate the in vitro efficacy of IPM-REL and FEP-AAI, to compare the results with established combinations, and to investigate alternative β-lactam partners for relebactam (REL) and enmetazobactam (AAI). The inhibition activities of REL, AAI and the comparators avibactam (AVI) and tazobactam, against isolated recombinant β-lactamases covering representatives from all four Ambler classes of β-lactamases, were tested using a fluorescence-based assay. RESULTS Using recombinant proteins, all four inhibitors were highly active against the tested class A serine β-lactamases (SBLs). REL and AVI showed moderate activity against the Class C AmpC from Pseudomonas aeruginosa and the Class D OXA-10/-48 SBLs, but outperformed tazobactam and AAI. All tested inhibitors lacked activity against Class B metallo-β-lactamases (MBLs). In the presence of REL and IPM, but not AAI, susceptibility increased against Klebsiella pnuemoniae carbapenemase (KPC)-positive and OXA-48-positive isolates. Both aztreonam-AVI and ceftolozane-tazobactam were more effective than IPM-REL. In all the tested combinations, AAI was a more effective inhibitor of class A β-lactamases (ESBLs) than the established inhibitors. CONCLUSION The results lead to the proposal of alternative combination therapies involving REL and AAI to potentiate the use of β-lactams against clinical Gram-negative isolates expressing a variety of lactamases. They highlight the potential of novel combinations for combating strains not covered by existing therapies.
Collapse
Affiliation(s)
- Lucas Tselepis
- Department of Medical Microbiology & Infectious Disease, Institute of Infection & Immunity, UHW Main Building, Heath Park, Cardiff, United Kingdom
| | - Gareth W Langley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; Charles River Laboratories, Chesterford Research Park, Saffron Walden, United Kingdom
| | - Ali F Aboklaish
- Department of Medical Microbiology & Infectious Disease, Institute of Infection & Immunity, UHW Main Building, Heath Park, Cardiff, United Kingdom
| | - Emma Widlake
- Department of Medical Microbiology & Infectious Disease, Institute of Infection & Immunity, UHW Main Building, Heath Park, Cardiff, United Kingdom
| | - Dana E Jackson
- Department of Medical Microbiology & Infectious Disease, Institute of Infection & Immunity, UHW Main Building, Heath Park, Cardiff, United Kingdom
| | - Timothy R Walsh
- Department of Medical Microbiology & Infectious Disease, Institute of Infection & Immunity, UHW Main Building, Heath Park, Cardiff, United Kingdom
| | - Chris J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom.
| | - Jonathan M Tyrrell
- Department of Medical Microbiology & Infectious Disease, Institute of Infection & Immunity, UHW Main Building, Heath Park, Cardiff, United Kingdom; School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, United Kingdom.
| |
Collapse
|
18
|
Kidd JM, Livermore DM, Nicolau DP. The difficulties of identifying and treating Enterobacterales with OXA-48-like carbapenemases. Clin Microbiol Infect 2019; 26:401-403. [PMID: 31899334 DOI: 10.1016/j.cmi.2019.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 10/25/2022]
Affiliation(s)
- J M Kidd
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, CT, USA
| | - D M Livermore
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - D P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, CT, USA.
| |
Collapse
|
19
|
High-Level Carbapenem Resistance in OXA-232-Producing Raoultella ornithinolytica Triggered by Ertapenem Therapy. Antimicrob Agents Chemother 2019; 64:AAC.01335-19. [PMID: 31636064 DOI: 10.1128/aac.01335-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022] Open
Abstract
OXA-232 is an OXA-48-group class D β-lactamase that hydrolyzes expanded-spectrum cephalosporins and carbapenems at low levels. Clinical strains producing OXA-232 are sometimes susceptible to carbapenems, making it difficult to identify them in the clinical microbiology laboratory. We describe the development of carbapenem resistance in sequential clinical isolates of Raoultella ornithinolytica carrying bla OXA-232 in a hospitalized patient, where the ertapenem MIC increased from 0.5 μg/ml to 512 μg/ml and the meropenem MIC increased from 0.125 μg/ml to 32 μg/ml during the course of ertapenem therapy. Whole-genome sequencing (WGS) analysis identified loss-of-function mutations in ompC and ompF in carbapenem-resistant isolates that were not present in the initial carbapenem-susceptible isolate. Complementation of a carbapenem-resistant isolate with an intact ompF gene resulted in 16- to 32-fold reductions in carbapenem MICs, whereas complementation with intact ompC resulted in a 2-fold reduction in carbapenem MICs. Additionally, bla OXA-232 expression increased 2.9-fold in a carbapenem-resistant isolate. Rapid development of high-level carbapenem resistance in initially carbapenem-susceptible OXA-232-producing R. ornithinolytica under selective pressure from carbapenem therapy highlights the diagnostic challenges in detecting Enterobacteriaceae strains producing this inefficient carbapenemase.
Collapse
|
20
|
Analysis of the Degradation of Broad-Spectrum Cephalosporins by OXA-48-Producing Enterobacteriaceae Using MALDI-TOF MS. Microorganisms 2019; 7:microorganisms7120614. [PMID: 31779101 PMCID: PMC6956260 DOI: 10.3390/microorganisms7120614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022] Open
Abstract
The objective of the study was to evaluate the activity of OXA-48 against different broad-spectrum cephalosporins and to identify the reaction products by MALDI-TOF MS. The action of OXA-48 on cefotaxime, ceftazidime, and ceftriaxone was assessed by this method, using an Escherichia coli J53 transconjugant carrying only the ~62 Kb IncL plasmid containing the blaOXA-48 gene, and the same strain without any plasmid was included as a negative control. In addition, a collection of 17 clinical OXA-48-producing Enterobacteriaceae, which were susceptible to broad-spectrum cephalosporins, was evaluated. MALDI-TOF MS-based analysis of the E. coli transconjugant carrying the blaOXA-48-harboring plasmid, and also the clinical isolates, showed degradation of cefotaxime into two inactive compounds-decarboxylated and deacetylated cefotaxime (~370 Da) and deacetyl cefotaxime (~414 Da), both with the hydrolyzed beta-lactam ring. Reaction products were not obtained when the experiment was performed with ceftriaxone or ceftazidime. From a clinical point of view, our study supports the idea that the efficacy of cefotaxime against OXA-48-producing Enterobacteriaceae is doubtful, in contrast to ceftazidime and ceftriaxone which could be valid choices for treating infections caused by these bacteria. However, further clinical studies confirming this hypothesis are required.
Collapse
|
21
|
Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, Wilson APR. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J Antimicrob Chemother 2019. [PMID: 29514274 DOI: 10.1093/jac/dky027] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Working Party makes more than 100 tabulated recommendations in antimicrobial prescribing for the treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria (GNB) and suggest further research, and algorithms for hospital and community antimicrobial usage in urinary infection. The international definition of MDR is complex, unsatisfactory and hinders the setting and monitoring of improvement programmes. We give a new definition of multiresistance. The background information on the mechanisms, global spread and UK prevalence of antibiotic prescribing and resistance has been systematically reviewed. The treatment options available in hospitals using intravenous antibiotics and in primary care using oral agents have been reviewed, ending with a consideration of antibiotic stewardship and recommendations. The guidance has been derived from current peer-reviewed publications and expert opinion with open consultation. Methods for systematic review were NICE compliant and in accordance with the SIGN 50 Handbook; critical appraisal was applied using AGREE II. Published guidelines were used as part of the evidence base and to support expert consensus. The guidance includes recommendations for stakeholders (including prescribers) and antibiotic-specific recommendations. The clinical efficacy of different agents is critically reviewed. We found there are very few good-quality comparative randomized clinical trials to support treatment regimens, particularly for licensed older agents. Susceptibility testing of MDR GNB causing infection to guide treatment needs critical enhancements. Meropenem- or imipenem-resistant Enterobacteriaceae should have their carbapenem MICs tested urgently, and any carbapenemase class should be identified: mandatory reporting of these isolates from all anatomical sites and specimens would improve risk assessments. Broth microdilution methods should be adopted for colistin susceptibility testing. Antimicrobial stewardship programmes should be instituted in all care settings, based on resistance rates and audit of compliance with guidelines, but should be augmented by improved surveillance of outcome in Gram-negative bacteraemia, and feedback to prescribers. Local and national surveillance of antibiotic use, resistance and outcomes should be supported and antibiotic prescribing guidelines should be informed by these data. The diagnosis and treatment of both presumptive and confirmed cases of infection by GNB should be improved. This guidance, with infection control to arrest increases in MDR, should be used to improve the outcome of infections with such strains. Anticipated users include medical, scientific, nursing, antimicrobial pharmacy and paramedical staff where they can be adapted for local use.
Collapse
Affiliation(s)
- Peter M Hawkey
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | | | - Cliodna A M McNulty
- Microbiology Department, Gloucestershire Royal Hospital, Great Western Road, Gloucester GL1 3NN, UK
| | - David A Enoch
- Public Health England, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - A Peter R Wilson
- Department of Microbiology and Virology, University College London Hospitals, London, UK
| |
Collapse
|
22
|
Escolà-Vergé L, Larrosa N, Los-Arcos I, Viñado B, González-López JJ, Pigrau C, Almirante B, Len O. Infections by OXA-48-like-producing Klebsiella pneumoniae non-co-producing extended-spectrum beta-lactamase: Can they be successfully treated with cephalosporins? J Glob Antimicrob Resist 2019; 19:28-31. [PMID: 30825700 DOI: 10.1016/j.jgar.2019.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND OXA-48 is an Ambler class D β-lactamase that hydrolyses penicillin and imipenem but has poor hydrolytic activity against cephalosporins. However, very few clinical experiences of treating extended-spectrum β-lactamase (ESBL)-negative OXA-48 producers with cephalosporins have been published. OBJECTIVES The aim of this study was to report clinical experience of infections due to ESBL-negative OXA-48-producing Klebsiella pneumoniae (K. pneumoniae) treated with cephalosporins. PATIENTS AND METHODS A retrospective study was conducted at Vall d'Hebron University Hospital, in Barcelona (Spain). It reviewed all microbiological isolates of OXA-48-producers that did not co-produce ESBL from May 2014 to May 2017, and included only clinical strains of patients treated with a cephalosporin for ≥72h. RESULTS From the 75 isolations of OXA-48 producers, there were 17 isolations of ESBL-negative OXA-48-producing K. pneumoniae. Three patients were treated with cephalosporins with successful outcomes: a pneumonia in a neutropenic patient treated with cefepime and amikacin; an acute focal nephritis of a renal graft treated with ceftriaxone; and an intrabdominal post-surgical infection treated with cefepime in combination with tigecycline at the beginning, and ciprofloxacin afterwards. CONCLUSIONS Cephalosporins could be an alternative treatment in selected patients with ESBL-negative OXA-48-producing K. pneumoniae infections, especially to avoid carbapenem use. However, it remains unknown if they should be given in combination.
Collapse
Affiliation(s)
- Laura Escolà-Vergé
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0003), Instituto de Salud Carlos III, Madrid, Spain.
| | - Nieves Larrosa
- Microbiology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Ibai Los-Arcos
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Belen Viñado
- Microbiology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan José González-López
- Microbiology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Carles Pigrau
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Benito Almirante
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Len
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0003), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Rapid detection of beta-lactamase production including carbapenemase by thin layer chromatography. J Microbiol Methods 2018; 156:15-19. [PMID: 30468751 DOI: 10.1016/j.mimet.2018.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To develop a rapid and simple method that can identify the presence of β-lactamases in clinical isolates and samples, and determine their activity on different types of β-lactam antibiotics, including carbapenems, within one hour. METHODS In this study, we describe a thin layer chromatography-based method for rapid detection of β-lactamases including carbapenemases. The method relies on the examination of changes in the migration rate of β-lactams in chromatography, due to degradation by β-lactamase enzymes. A total of 44 isolates, 29 carbapenemase-producers and 15 non-carbapenemase-producers, were screened by this method. RESULTS The method has proven to be able to distinguish β-lactamases as carbapenemase or non-carbapenemase producing strains with high sensitivity in one hour. CONCLUSIONS The method developed, provides information about the production of β-lactamases by bacteria and β-lactam drugs inactivated by these enzymes, including carbapenems. This new method may play an important role in guiding antimicrobial treatment, especially in critically ill patients infected bacteria producing β-lactamases.
Collapse
|
24
|
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) contribute significantly to the global public health threat of antimicrobial resistance. OXA-48 and its variants are unique carbapenemases with low-level hydrolytic activity toward carbapenems but no intrinsic activity against expanded-spectrum cephalosporins. bla OXA-48 is typically located on a plasmid but may also be integrated chromosomally, and this gene has progressively disseminated throughout Europe and the Middle East. Despite the inability of OXA-48-like carbapenemases to hydrolyze expanded-spectrum cephalosporins, pooled isolates demonstrate high variable resistance to ceftazidime and cefepime, likely representing high rates of extended-spectrum beta-lactamase (ESBL) coproduction. In vitro data from pooled studies suggest that avibactam is the most potent beta-lactamase inhibitor when combined with ceftazidime, cefepime, aztreonam, meropenem, or imipenem. Resistance to novel avibactam combinations such as imipenem-avibactam or aztreonam-avibactam has not yet been reported in OXA-48 producers, although only a few clinical isolates have been tested. Although combination therapy is thought to improve the chances of clinical cure and survival in CPE infection, successful outcomes were seen in ∼70% of patients with infections caused by OXA-48-producing Enterobacteriaceae treated with ceftazidime-avibactam monotherapy. A carbapenem in combination with either amikacin or colistin has achieved treatment success in a few case reports. Uncertainty remains regarding the best treatment options and strategies for managing these infections. Newly available antibiotics such as ceftazidime-avibactam show promise; however, recent reports of resistance are concerning. Newer choices of antimicrobial agents will likely be required to combat this problem.
Collapse
|
25
|
Galani I, Nafplioti K, Chatzikonstantinou M, Souli M. In vitro evaluation of double-carbapenem combinations against OXA-48-producing Klebsiella pneumoniae isolates using time-kill studies. J Med Microbiol 2018; 67:662-668. [PMID: 29561258 DOI: 10.1099/jmm.0.000725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose. The aim of this study was to evaluate the in vitro activity of double-carbapenem combinations against OXA-48-producing Klebsiella pneumoniae clinical isolates.Methodology. Double combinations of ertapenem, meropenem and imipenem were evaluated for synergy and bactericidal activity using the time-kill methodology. All antibiotics were tested at 10 mg l-1 and at a sub-inhibitory concentration of 0.5× minimum inhibitory concentration (MIC) for isolates with a carbapenem MIC≤8 mg l-1. Synergy was defined as a ≥2log10 colony-forming units (c.f.u.) ml-1 decrease of viable colonies at 24 h compared to the most active carbapenem alone.Results. Ten distinct K. pneumoniae clinical isolates were tested. All carried bla OXA-48 and bla CTX-M-15, and exhibited an MIC range of 64-128, 4-32 and 1-32 mg l-1 for ertapenem, meropenem and imipenem, respectively. Out of 48 isolate-combinations, synergy was observed in 9 (18.8 %) and cidal activity was observed in 13 (27.1 %). In vitro synergistic activity was noted for 5 out of 29 (17.2 %) ertapenem-, 6 out of 29 (20.7 %) meropenem- and 7 out of 38 (18.4 %) imipenem-containing combinations. No combination exhibited antagonism. Bactericidal activity was observed in 7 (24.1 %) ertapenem-, 8 (27.6 %) meropenem- and 11 (28.9 %) imipenem-containing combinations. Among the sub-inhibitory concentration combinations, three (15 %) ertapenem-, four (20 %) meropenem- and three (15 %) imipenem-containing ones showed synergistic interaction.Conclusion. Dual combinations of carbapenems, including those containing sub-inhibitory concentrations of antibiotics, were synergistic against multidrug-resistant (MDR) and extensively drug-resistant (XDR) K. pneumoniae isolates harbouring bla OXA-48.
Collapse
Affiliation(s)
- Irene Galani
- Infectious Diseases Laboratory, Fourth Department of Internal Medicine, University General Hospital 'Attikon', Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Nafplioti
- Infectious Diseases Laboratory, Fourth Department of Internal Medicine, University General Hospital 'Attikon', Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianthi Chatzikonstantinou
- Infectious Diseases Laboratory, Fourth Department of Internal Medicine, University General Hospital 'Attikon', Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Souli
- Infectious Diseases Laboratory, Fourth Department of Internal Medicine, University General Hospital 'Attikon', Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
26
|
Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin Microbiol Rev 2018; 31:31/2/e00079-17. [PMID: 29444952 DOI: 10.1128/cmr.00079-17] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Therapy of invasive infections due to multidrug-resistant Enterobacteriaceae (MDR-E) is challenging, and some of the few active drugs are not available in many countries. For extended-spectrum β-lactamase and AmpC producers, carbapenems are the drugs of choice, but alternatives are needed because the rate of carbapenem resistance is rising. Potential active drugs include classic and newer β-lactam-β-lactamase inhibitor combinations, cephamycins, temocillin, aminoglycosides, tigecycline, fosfomycin, and, rarely, fluoroquinolones or trimethoprim-sulfamethoxazole. These drugs might be considered in some specific situations. AmpC producers are resistant to cephamycins, but cefepime is an option. In the case of carbapenemase-producing Enterobacteriaceae (CPE), only some "second-line" drugs, such as polymyxins, tigecycline, aminoglycosides, and fosfomycin, may be active; double carbapenems can also be considered in specific situations. Combination therapy is associated with better outcomes for high-risk patients, such as those in septic shock or with pneumonia. Ceftazidime-avibactam was recently approved and is active against KPC and OXA-48 producers; the available experience is scarce but promising, although development of resistance is a concern. New drugs active against some CPE isolates are in different stages of development, including meropenem-vaborbactam, imipenem-relebactam, plazomicin, cefiderocol, eravacycline, and aztreonam-avibactam. Overall, therapy of MDR-E infection must be individualized according to the susceptibility profile, type, and severity of infection and the features of the patient.
Collapse
|
27
|
Pina-Vaz C, Silva AP, Faria-Ramos I, Teixeira-Santos R, Moura D, Vieira TF, Sousa SF, Costa-de-Oliveira S, Cantón R, Rodrigues AG. A Flow Cytometric and Computational Approaches to Carbapenems Affinity to the Different Types of Carbapenemases. Front Microbiol 2016; 7:1259. [PMID: 27555844 PMCID: PMC4977277 DOI: 10.3389/fmicb.2016.01259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/29/2016] [Indexed: 11/13/2022] Open
Abstract
The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computational analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-β-lactamases -VIM and OXA-48-like enzymes) were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem, or doripenem and killing kinetic curves performed with and without reinforcements of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3), a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incubation. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for carbapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable.
Collapse
Affiliation(s)
- Cidália Pina-Vaz
- Department of Microbiology, Faculty of Medicine, University of Porto, PortoPortugal; CINTESIS - Center for Research in Health Technologies and Information Systems, PortoPortugal; Department of Microbiology, São João Hospitalar Center, PortoPortugal
| | - Ana P Silva
- Department of Microbiology, Faculty of Medicine, University of Porto, PortoPortugal; CINTESIS - Center for Research in Health Technologies and Information Systems, PortoPortugal
| | - Isabel Faria-Ramos
- Department of Microbiology, Faculty of Medicine, University of Porto, PortoPortugal; CINTESIS - Center for Research in Health Technologies and Information Systems, PortoPortugal
| | - Rita Teixeira-Santos
- Department of Microbiology, Faculty of Medicine, University of Porto, Porto Portugal
| | - Daniel Moura
- Department of Pharmacology and Therapeutic, Faculty of Medicine, University of Porto, Porto Portugal
| | - Tatiana F Vieira
- UCIBIO, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto Portugal
| | - Sérgio F Sousa
- UCIBIO, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto Portugal
| | - Sofia Costa-de-Oliveira
- Department of Microbiology, Faculty of Medicine, University of Porto, PortoPortugal; CINTESIS - Center for Research in Health Technologies and Information Systems, PortoPortugal
| | - Rafael Cantón
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid Spain
| | - Acácio G Rodrigues
- Department of Microbiology, Faculty of Medicine, University of Porto, PortoPortugal; CINTESIS - Center for Research in Health Technologies and Information Systems, PortoPortugal
| |
Collapse
|
28
|
In vivo efficacy of humanized high dose meropenem and comparators against Pseudomonas aeruginosa isolates producing verona integron-encoded metallo-β-lactamase (VIM). Heliyon 2016; 2:e00121. [PMID: 27441293 PMCID: PMC4946293 DOI: 10.1016/j.heliyon.2016.e00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 01/04/2023] Open
Abstract
Introduction We aimed to describe the in vivo efficacy of meropenem, in addition to cefepime and levofloxacin as comparators against VIM-producing Pseudomonas aeruginosa and compare the findings to our previous observations with Enterobacteriaceae. Methods Eight clinical P. aeruginosa isolates with meropenem MICs from 4 to 512 mg/L were studied in a murine neutropenic thigh infection model. Animals were treated with doses of the antibiotics to simulate the human exposure of meropenem 2 g q8 h 30-min infusion, cefepime 2 g q8 h 30-min infusion and levofloxacin 500 mg q24 h. After 24 hours, the animals were euthanized and efficacy was calculated as the change in thigh bacterial density (log10 CFU) relative to the starting inoculum (0 h). Results As expected, levofloxacin was ineffective against all isolates due to their resistant phenotype (8 to>64 mg/L). Cefepime also showed minimal activity against all isolates consistent with its failure to achieve pharmacodynamic target exposures due to high MICs of 32 to>512 mg/L. In the presence of low MICs (4 to 16 mg/L), the fT> MIC of meropenem was sufficiently high to result in CFU reductions. However, conflicting activity was noted for isolates with MICs = 128 mg/L that possessed the same enzymatic profile, suggesting that other mechanisms of resistance are responsible for driving CFU outcomes. No activity was noted for organisms with a meropenem MIC = 512 mg/L. Conclusion Unlike previous observations with MBL-producing Enterobacteriaceae that showed discordance between in vitro resistance and in vivo efficacy in the murine infection model, we found that the efficacy of humanized cefepime and meropenem was generally concordant with the phenotypic profile of VIM-producing P. aeruginosa.
Collapse
|
29
|
Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol 2016; 7:895. [PMID: 27379038 PMCID: PMC4904035 DOI: 10.3389/fmicb.2016.00895] [Citation(s) in RCA: 456] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023] Open
Abstract
The emergence of carbapenem-resistant Gram-negative pathogens poses a serious threat to public health worldwide. In particular, the increasing prevalence of carbapenem-resistant Klebsiella pneumoniae is a major source of concern. K. pneumoniae carbapenemases (KPCs) and carbapenemases of the oxacillinase-48 (OXA-48) type have been reported worldwide. New Delhi metallo-β-lactamase (NDM) carbapenemases were originally identified in Sweden in 2008 and have spread worldwide rapidly. In this review, we summarize the epidemiology of K. pneumoniae producing three carbapenemases (KPCs, NDMs, and OXA-48-like). Although the prevalence of each resistant strain varies geographically, K. pneumoniae producing KPCs, NDMs, and OXA-48-like carbapenemases have become rapidly disseminated. In addition, we used recently published molecular and genetic studies to analyze the mechanisms by which these three carbapenemases, and major K. pneumoniae clones, such as ST258 and ST11, have become globally prevalent. Because carbapenemase-producing K. pneumoniae are often resistant to most β-lactam antibiotics and many other non-β-lactam molecules, the therapeutic options available to treat infection with these strains are limited to colistin, polymyxin B, fosfomycin, tigecycline, and selected aminoglycosides. Although, combination therapy has been recommended for the treatment of severe carbapenemase-producing K. pneumoniae infections, the clinical evidence for this strategy is currently limited, and more accurate randomized controlled trials will be required to establish the most effective treatment regimen. Moreover, because rapid and accurate identification of the carbapenemase type found in K. pneumoniae may be difficult to achieve through phenotypic antibiotic susceptibility tests, novel molecular detection techniques are currently being developed.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Young Bae Kim
- Division of STEM, North Shore Community College, Danvers MA, USA
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
30
|
Perez F, El Chakhtoura NG, Papp-Wallace K, Wilson BM, Bonomo RA. Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae: can we apply "precision medicine" to antimicrobial chemotherapy? Expert Opin Pharmacother 2016; 17:761-81. [PMID: 26799840 PMCID: PMC4970584 DOI: 10.1517/14656566.2016.1145658] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION For the past three decades, carbapenems played a central role in our antibiotic armamentarium, trusted to effectively treat infections caused by drug-resistant bacteria. The utility of this class of antibiotics has been compromised by the emergence of resistance especially among Enterobacteriaceae. AREAS COVERED We review the current mainstays of pharmacotherapy against infections caused by carbapenem-resistant Enterobacteriaceae (CRE) including tigecycline, aminoglycosides, and rediscovered 'old' antibiotics such as fosfomycin and polymyxins, and discuss their efficacy and potential toxicity. We also summarize the contemporary clinical experience treating CRE infections with antibiotic combination therapy. Finally, we discuss ceftazidime/avibactam and imipenem/relebactam, containing a new generation of beta-lactamase inhibitors, which may offer alternatives to treat CRE infections. We critically evaluate the published literature, identify relevant clinical trials and review documents submitted to the United States Food and Drug Administration. EXPERT OPINION Defining the molecular mechanisms of resistance and applying insights about pharmacodynamic and pharmacokinetic properties of antibiotics, in order to maximize the impact of old and new therapeutic approaches should be the new paradigm in treating infections caused by CRE. A concerted effort is needed to carry out high-quality clinical trials that: i) establish the superiority of combination therapy vs. monotherapy; ii) confirm the role of novel beta-lactam/beta-lactamase inhibitor combinations as therapy against KPC- and OXA-48 producing Enterobacteriaceae; and, iii) evaluate new antibiotics active against CRE as they are introduced into the clinic.
Collapse
Affiliation(s)
- Federico Perez
- Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Department of Medicine, University Hospitals Case Medical Center
| | | | - Krisztina Papp-Wallace
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Department of Medicine, University Hospitals Case Medical Center
- Departments of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - Robert A. Bonomo
- Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
- Department of Medicine, University Hospitals Case Medical Center
- Departments of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- VISN-10 Geriatrics Research, Cleveland, Ohio
| |
Collapse
|
31
|
Monogue ML, Kuti JL, Nicolau DP. Optimizing Antibiotic Dosing Strategies for the Treatment of Gram-negative Infections in the Era of Resistance. Expert Rev Clin Pharmacol 2016; 9:459-76. [DOI: 10.1586/17512433.2016.1133286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Efficacy of humanized high-dose meropenem, cefepime, and levofloxacin against Enterobacteriaceae isolates producing Verona integron-encoded metallo-β-lactamase (VIM) in a murine thigh infection model. Antimicrob Agents Chemother 2015; 59:7145-7. [PMID: 26416855 DOI: 10.1128/aac.00794-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/25/2015] [Indexed: 11/20/2022] Open
Abstract
We aimed to describe the in vivo activity of humanized pharmacokinetic exposures of meropenem and comparators against Verona integron-encoded metallo-β-lactamase (MBL) (VIM)-producing Enterobacteriaceae in a murine model. Levofloxacin activity was predicted by its MIC, and cefepime activity displayed variability, whereas meropenem produced a >1 log CFU reduction against all isolates despite high MICs indicative of resistance. Our results suggest that despite in vitro resistance, high-dose meropenem may be a possible option against infections caused by Enterobacteriaceae producing MBL-type carbapenemases.
Collapse
|
33
|
Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrob Agents Chemother 2015; 59:5873-84. [PMID: 26169401 DOI: 10.1128/aac.01019-15] [Citation(s) in RCA: 548] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The management of infections due to Klebsiella pneumoniae has been complicated by the emergence of antimicrobial resistance, especially to carbapenems. Resistance to carbapenems in K. pneumoniae involves multiple mechanisms, including the production of carbapenemases (e.g., KPC, NDM, VIM, OXA-48-like), as well as alterations in outer membrane permeability mediated by the loss of porins and the upregulation of efflux systems. The latter two mechanisms are often combined with high levels of other types of β-lactamases (e.g., AmpC). K. pneumoniae sequence type 258 (ST258) emerged during the early to mid-2000s as an important human pathogen and has spread extensively throughout the world. ST258 comprises two distinct lineages, namely, clades I and II, and it seems that ST258 is a hybrid clone that was created by a large recombination event between ST11 and ST442. Incompatibility group F plasmids with blaKPC have contributed significantly to the success of ST258. The optimal treatment of infections due to carbapenemase-producing K. pneumoniae remains unknown. Some newer agents show promise for treating infections due to KPC producers; however, effective options for the treatment of NDM producers remain elusive.
Collapse
|
34
|
Jamal WY, Albert MJ, Khodakhast F, Poirel L, Rotimi VO. Emergence of New Sequence Type OXA-48 Carbapenemase-ProducingEnterobacteriaceaein Kuwait. Microb Drug Resist 2015; 21:329-34. [DOI: 10.1089/mdr.2014.0123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Wafaa Y. Jamal
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Microbiology Unit, Mubarak Al-Kabir Hospital, Jabriya, Kuwait
| | - M. John Albert
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Microbiology Unit, Mubarak Al-Kabir Hospital, Jabriya, Kuwait
| | - Fatima Khodakhast
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Microbiology Unit, Mubarak Al-Kabir Hospital, Jabriya, Kuwait
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
- INSERM U914, South-Paris Medical School, K.-Bicêtre, Paris, France
| | - Vincent O. Rotimi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Microbiology Unit, Mubarak Al-Kabir Hospital, Jabriya, Kuwait
| |
Collapse
|
35
|
Rodríguez-Baño J, Cisneros JM, Cobos-Trigueros N, Fresco G, Navarro-San Francisco C, Gudiol C, Horcajada JP, López-Cerero L, Martínez JA, Molina J, Montero M, Paño-Pardo JR, Pascual A, Peña C, Pintado V, Retamar P, Tomás M, Borges-Sa M, Garnacho-Montero J, Bou G. Diagnosis and antimicrobial treatment of invasive infections due to multidrug-resistant Enterobacteriaceae. Guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology. Enferm Infecc Microbiol Clin 2015; 33:337.e1-337.e21. [DOI: 10.1016/j.eimc.2014.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
36
|
Studentova V, Papagiannitsis CC, Izdebski R, Pfeifer Y, Chudackova E, Bergerova T, Gniadkowski M, Hrabak J. Detection of OXA-48-type carbapenemase-producing Enterobacteriaceae in diagnostic laboratories can be enhanced by addition of bicarbonates to cultivation media or reaction buffers. Folia Microbiol (Praha) 2015; 60:119-29. [PMID: 25261959 PMCID: PMC4328112 DOI: 10.1007/s12223-014-0349-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/15/2014] [Indexed: 01/29/2023]
Abstract
Carbapenemase-mediated resistance to carbapenems in Enterobacteriaceae has become the main challenge in the treatment and prevention of infections recently. The partially unnoticed spread of OXA-48-type carbapenemase producers is usually assigned to low minimum inhibitory concentrations (MICs) of carbapenems that OXA-48-producing isolates often display. Therefore, there is an urgent need of specific and sensitive methods for isolation and detection of OXA-48 producers in clinical microbiology diagnostics. The influence of bicarbonates on carbapenem MICs against carbapenemase-producing Enterobacteriaceae was tested. We also checked whether the addition of bicarbonates to liquid media supplemented with meropenem may facilitate the selective enrichment of various carbapenemase producers in cultures. Furthermore, the sensitivity of carbapenemase confirmation by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) and spectrophotometric hydrolysis assays upon the addition of NH4HCO3 was examined. The addition of NaHCO3 significantly increased MICs of ertapenem and meropenem for OXA-48 producers. Furthermore, liquid media supplemented with NaHCO3 and meropenem were reliable for the selective enrichment of carbapenemase producers. The presence of NH4HCO3 in buffers used in the spectrophotometric and MALDI-TOF MS carbapenemase detection increased the sensitivity of that assay. Our results demonstrate that bicarbonates in media or reaction buffers can enhance the sensitivity of screening methods and diagnostic tests for carbapenemase producers.
Collapse
Affiliation(s)
- Vendula Studentova
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Alej Svobody 80, 304 60 Plzen, Czech Republic
| | - Costas C. Papagiannitsis
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Alej Svobody 80, 304 60 Plzen, Czech Republic
| | | | - Yvonne Pfeifer
- Robert Koch Institute, Nosocomial Pathogens and Antibiotic Resistance, Wernigerode, Germany
| | - Eva Chudackova
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Alej Svobody 80, 304 60 Plzen, Czech Republic
| | - Tamara Bergerova
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Alej Svobody 80, 304 60 Plzen, Czech Republic
| | | | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Alej Svobody 80, 304 60 Plzen, Czech Republic
| |
Collapse
|
37
|
Cattoir V. Traitement des infections dues à entérobactéries productrices de carbapénèmases. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.antinf.2014.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect 2014; 20:862-72. [PMID: 24890393 DOI: 10.1111/1469-0691.12697] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) have spread worldwide, causing serious infections with increasing frequency. CPE are resistant to almost all available antibiotics, complicating therapy and limiting treatment options. Mortality rates associated with CPE infections are unacceptably high, indicating that the current therapeutic approaches are inadequate and must be revised. Here, we review 20 clinical studies (including those describing the largest cohorts of CPE-infected patients) that provided the necessary information regarding isolate and patient characteristics and treatment schemes, as well as a clear assessment of outcome. The data summarized here indicate that treatment with a single in vitro active agent resulted in mortality rates not significantly different from that observed in patients treated with no active therapy, whereas combination therapy with two or more in vitro active agents was superior to monotherapy, providing a clear survival benefit (mortality rate, 27.4% vs. 38.7%; p <0.001). The lowest mortality rate (18.8%) was observed in patients treated with carbapenem-containing combinations.
Collapse
Affiliation(s)
- L S Tzouvelekis
- Department of Microbiology, School of Medicine, University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|