1
|
Gan BH, Bonvin E, Paschoud T, Personne H, Reusser J, Cai X, Rauscher R, Köhler T, van Delden C, Polacek N, Reymond JL. Stereorandomized Oncocins with Preserved Ribosome Binding and Antibacterial Activity. J Med Chem 2024; 67:19448-19459. [PMID: 39445394 PMCID: PMC11571207 DOI: 10.1021/acs.jmedchem.4c01768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
We recently showed that solid-phase peptide synthesis using racemic amino acids yields stereorandomized peptides comprising all possible diastereomers as homogeneous, single-mass products that can be purified by HPLC and that stereorandomization modulates activity, toxicity, and stability of membrane-disruptive cyclic and linear antimicrobial peptides (AMPs) and dendrimers. Here, we tested if stereorandomization might be compatible with target binding peptides with the example of the proline-rich AMP oncocin, which inhibits the bacterial ribosome. Stereorandomization of up to nine C-terminal residues preserved ribosome binding and antibacterial effects including activities against drug-resistant bacteria and protected against serum degradation. Surprisingly, fully stereorandomized oncocin was as active as L-oncocin in dilute growth media stimulating peptide uptake, although it did not bind the ribosome, indicative of an alternative mechanism of action. These experiments show that stereorandomization can be compatible with target binding peptides and can help understand their mechanism of action.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Etienne Bonvin
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Thierry Paschoud
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Hippolyte Personne
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jérémie Reusser
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Xingguang Cai
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Robert Rauscher
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Thilo Köhler
- Department
of Microbiology and Molecular Medicine, University of Geneva, Service
of Infectious Diseases, University Hospital
of Geneva, 1211 Geneva, Switzerland
| | - Christian van Delden
- Department
of Microbiology and Molecular Medicine, University of Geneva, Service
of Infectious Diseases, University Hospital
of Geneva, 1211 Geneva, Switzerland
| | - Norbert Polacek
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Best W, Ferrell M, Boris A, Heydarian N, Panlilio H, Rice CV. Acquisition of Resistance to PEGylated Branched Polyethylenimine Increases Pseudomonas Aeruginosa Susceptibility to Aminoglycosides. ChemMedChem 2024; 19:e202300689. [PMID: 38806411 PMCID: PMC11368615 DOI: 10.1002/cmdc.202300689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
PEGylated branched polyethylenimine (PEG-BPEI) has antibacterial and antibiofilm properties. Exposure to PEG-BPEI through serial passage leads to resistant P. aeruginosa strains. The minimum inhibitory concentration (MIC) of 600 Da BPEI and PEGylated 600 Da BPEI (PEG-BPEI) in the wild-type PAO1 strain is 16 μg/ml while, after 15 serial passages, the MIC increased to 1024 μg/mL. An additional 15 rounds of serial passage in the absence of BPEI or PEG-BPEI did not change the 1024 μg/mL MIC. Gentamicin, Neomycin, and Tobramycin, cationic antibiotics that inhibit protein synthesis, have a 16-32 fold reduction of MIC values in PEG350-BPEI resistant strains, suggesting increased permeation. The influx of these antibiotics occurs using a self-mediated uptake mechanism, suggesting changes to the outer membrane Data show that resistance causes changes in genes related to outer membrane lipopolysaccharide (LPS) assembly. Mutations were noted in the gene coding for the polymerase Wzy that participates in the assembly of the O-antigen region. Other mutations were noted with wbpE and wbpI of the Wbp pathway responsible for the enzymatic synthesis of ManNAc(3NAc)A in the LPS of P. aeruginosa. These changes suggest that an altered gene product could lead to PEG-BPEI resistance. Nevertheless, the increased susceptibility to aminoglycosides could prevent the emergence of PEG-BPEI resistant bacterial populations.
Collapse
Affiliation(s)
- William Best
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Maya Ferrell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Andrew Boris
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| |
Collapse
|
3
|
Jordan O, Gan BH, Alwan S, Perron K, Sublet E, Ducret V, Ye H, Borchard G, Reymond JL, Patrulea V. Highly Potent Cationic Chitosan Derivatives Coupled to Antimicrobial Peptide Dendrimers to Combat Pseudomonas aeruginosa. Adv Healthc Mater 2024; 13:e2304118. [PMID: 38412457 DOI: 10.1002/adhm.202304118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 02/29/2024]
Abstract
The burden of bacterial wound infections has considerably increased due to antibiotic resistance to most of the currently available antimicrobial drugs. Herein, for the first time, a chemical coupling of two cationic N-aryl (pyridyl and aminocinnamyl) chitosan derivatives to antimicrobial peptide dendrimers (AMPDs) of different generations (first, second, and third) via thioether-haloacetyl reaction is reported. The new chitosan-AMPD conjugates show high selectivity by killing Pseudomonas aeruginosa and very low toxicity toward mammalian cells, as well as extremely low hemolysis to red blood cells. Electron microscopy reveals that the new chitosan derivatives coupled to AMPD destroy both the inner and outer membranes of Gram-negative P. aeruginosa. Moreover, chitosan-AMPD conjugates show synergetic effects within extremely low concentrations. The new chitosan-AMPD conjugates can be used as potent antimicrobial therapeutic agents, to eradicate pathogens such as those present in acute and chronic infected wounds.
Collapse
Affiliation(s)
- Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, Geneva, 1211, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, Geneva, 1211, Switzerland
| | - Bee Ha Gan
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, 3012, Switzerland
| | - Sari Alwan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, Geneva, 1211, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, Geneva, 1211, Switzerland
| | - Karl Perron
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, Geneva, 1211, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, Geneva, 1211, Switzerland
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 1211, Switzerland
| | - Emmanuelle Sublet
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, Geneva, 1211, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, Geneva, 1211, Switzerland
| | - Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 1211, Switzerland
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, Oxford, UK
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, Geneva, 1211, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, Geneva, 1211, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, 3012, Switzerland
| | - Viorica Patrulea
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, Geneva, 1211, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, Geneva, 1211, Switzerland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, Oxford, UK
| |
Collapse
|
4
|
Aboelsoued D, Toaleb NI, Ibrahim S, Ibrahim S. In vitro and ex vivo protoscolicidal effect of poly(amidoamine) nanoemulsion against Echinococcus granulosus. Sci Rep 2024; 14:11957. [PMID: 38796499 PMCID: PMC11127951 DOI: 10.1038/s41598-024-62015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024] Open
Abstract
Hydatidosis causes a serious health hazard to humans and animals leading to significant economic and veterinary and public health concern worldwide. The present study aimed to evaluate the in vitro and ex vivo protoscolicidal effects of synthesized poly(amidoamine), PAMAM, nanoemulsion. In this study, PAMAM was characterized through dynamic light scattering technique to investigate the particle size and zeta potential of nanoemulsified polymer. For the in vitro and ex vivo assays, we used eosin dye exclusion test and scanning electron microscope (SEM) to evaluate the effects of the prepared and characterized PAMAM nanoemulsion against protoscoleces from Echinococcus granulosus sensu lato G6 (GenBank: OQ443068.1) isolated from livers of naturally infected camels. Various concentrations (0.5, 1, 1.5 and 2 mg/mL) of PAMAM nanoemulsion at different exposure times (5, 10, 20 and 30 min) were tested against protoscolices. Our findings showed that PAMAM nanoemulsion had considerable concentration- and time-dependent protoscolicidal effect at both in vitro and ex vivo experiments. Regarding in vitro assay, PAMAM nanoemulsion had a potent protoscolicidal effect when compared with the control group with a highest protoscolicidal activity observed at the concentration of 2 mg/mL at all exposure times, such that 100% of protoscolices were killed after 20 min of exposure. Also, the mortality of protoscolices was 100% after 30 min of exposure to 1 and 1.5 mg/mL of PAMAM nanoemulsion, in vitro. Concerning ex vivo assay PAMAM nanoemulsion recorded the highest mortality rates at the concentration of 2 mg/mL (55, 99.4 and 100% at 10, 20, 30 min, respectively). Ultrastructure examination of examined protoscolices after 20 min of exposure to PAMAM nanoemulsion showed a complete loss of rostellar hooks, disruption of suckers with disorganization of hooks with partial or complete loss of them, and damage of protoscolices tegument with loss of their integrity in the form of holes and contraction of the soma region were observed in 1.5 and 2 mg/mL of PAMAM, in vitro and ex vivo, showing more damage in the in vitro conditions. It can be concluded that PAMAM nanoemulsion is a promising protoscolicidal agent offering a high protoscolicidal effect at a short exposure time. Further in vivo studies and preclinical animal trials are required to evaluate its efficacy and clinical applications against hydatid cysts.
Collapse
Affiliation(s)
- Dina Aboelsoued
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Nagwa I Toaleb
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Sally Ibrahim
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, El Buhouth Street, Dokki, Giza, Egypt
| | - Saber Ibrahim
- Packaging Materials Department, National Research Centre, Dokki, Giza, 12622, Egypt
- Nanomaterials Investigation Lab., Central Laboratory Network, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
5
|
Paul S, Verma S, Chen YC. Peptide Dendrimer-Based Antibacterial Agents: Synthesis and Applications. ACS Infect Dis 2024; 10:1034-1055. [PMID: 38428037 PMCID: PMC11019562 DOI: 10.1021/acsinfecdis.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Pathogenic bacteria cause the deaths of millions of people every year. With the development of antibiotics, hundreds and thousands of people's lives have been saved. Nevertheless, bacteria can develop resistance to antibiotics, rendering them insensitive to antibiotics over time. Peptides containing specific amino acids can be used as antibacterial agents; however, they can be easily degraded by proteases in vivo. To address these issues, branched peptide dendrimers are now being considered as good antibacterial agents due to their high efficacy, resistance to protease degradation, and low cytotoxicity. The ease with which peptide dendrimers can be synthesized and modified makes them accessible for use in various biological and nonbiological fields. That is, peptide dendrimers hold a promising future as antibacterial agents with prolonged efficacy without bacterial resistance development. Their in vivo stability and multivalence allow them to effectively target multi-drug-resistant strains and prevent biofilm formation. Thus, it is interesting to have an overview of the development and applications of peptide dendrimers in antibacterial research, including the possibility of employing machine learning approaches for the design of AMPs and dendrimers. This review summarizes the synthesis and applications of peptide dendrimers as antibacterial agents. The challenges and perspectives of using peptide dendrimers as the antibacterial agents are also discussed.
Collapse
Affiliation(s)
- Suchita Paul
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sandeep Verma
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
- Gangwal
School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Yu-Chie Chen
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
6
|
Bezrodnyi VV, Mikhtaniuk SE, Shavykin OV, Sheveleva NN, Markelov DA, Neelov IM. A Molecular Dynamics Simulation of Complexes of Fullerenes and Lysine-Based Peptide Dendrimers with and without Glycine Spacers. Int J Mol Sci 2024; 25:691. [PMID: 38255765 PMCID: PMC10815860 DOI: 10.3390/ijms25020691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The development of new nanocontainers for hydrophobic drugs is one of the most important tasks of drug delivery. Dendrimers with hydrophobic interiors and soluble terminal groups have already been used as drug carriers. However, the most convenient candidates for this purpose are peptide dendrimers since their interiors could be modified by hydrophobic amino acid residues with a greater affinity for the transported molecules. The goal of this work is to perform the first molecular dynamics study of the complex formation of fullerenes C60 and C70 with Lys-2Gly, Lys G2, and Lys G3 peptide dendrimers in water. We carried out such simulations for six different systems and demonstrated that both fullerenes penetrate all these dendrimers and form stable complexes with them. The density and hydrophobicity inside the complex are greater than in dendrimers without fullerene, especially for complexes with Lys-2Gly dendrimers. It makes the internal regions of complexes less accessible to water and counterions and increases electrostatic and zeta potential compared to single dendrimers. The results for complexes based on Lys G2 and Lys G3 dendrimers are similar but less pronounced. Thus, all considered peptide dendrimers and especially the Lys-2Gly dendrimer could be used as nanocontainers for the delivery of fullerenes.
Collapse
Affiliation(s)
- Valeriy V. Bezrodnyi
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
| | - Sofia E. Mikhtaniuk
- Center of Chemical Engineering (CCE), St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
| | - Oleg V. Shavykin
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
- Center of Chemical Engineering (CCE), St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
- Department of Mathematics, Tver State University, Sadoviy Per., 35, 170102 Tver, Russia
| | - Nadezhda N. Sheveleva
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
| | - Denis A. Markelov
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
| | - Igor M. Neelov
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
- Center of Chemical Engineering (CCE), St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
- Institute of Macromolecular Compounds RAS, Bolshoi Prospect 31, 199004 St. Petersburg, Russia
| |
Collapse
|
7
|
Gómez-Casanova N, Martín-Serrano Ortiz Á, Heredero-Bermejo I, Sánchez-Nieves J, Luis Copa-Patiño J, Javier de la Mata F. Potential anti-adhesion activity of novel carbosilane zwitterionic dendrimers against eukaryotic and prokaryotic pathogenic microorganisms. Eur J Pharm Biopharm 2023; 191:158-165. [PMID: 37536578 DOI: 10.1016/j.ejpb.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The development of biofilms on different surfaces continues to be a major public health problem. The antimicrobial resistance and the difficulty of finding drugs capable of combating these established biofilms generates the urgent need to find compounds that prevent cells from settling and establishing of these complex communities of microorganisms. Zwitterionic modification of nanomaterials allows the formation of a hydration layer, and this highly hydrophilic surface provides antifouling properties as well as a good biocompatibility by preventing non-specific interactions. Thus, they are appropriate candidates to prevent microbial adhesion to different surfaces and, in consequence, avoid biofilm formation. For this reason, we have incorporated zwitterionic moieties in multivalent systems, as are carbosilane dendrimers. Characterization of these systems was performed using nuclear magnetic resonance and mass spectrometry. It has been analysed if the new molecules have capacity to inhibit the biofilm formation in Candida albicans, Staphylococcus aureus and Pseudomonas aeruginosa. The results showed that they were more effective against S. aureus, observing a biofilm reduction of 81.5% treating with 32 mg/L of G2SiZWsf dendrimer and by 72.5% using 32 mg/L of the G3SiZWsf dendrimer. Finally, the absence of cytotoxicity was verified by haemolysis and cytotoxicity studies in human cells lines.
Collapse
Affiliation(s)
- Natalia Gómez-Casanova
- University of Alcalá, Department of Biomedicine and Biotechnology, Faculty of Pharmacy, Madrid, Spain
| | - Ángela Martín-Serrano Ortiz
- University of Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain
| | - Irene Heredero-Bermejo
- University of Alcalá, Department of Biomedicine and Biotechnology, Faculty of Pharmacy, Madrid, Spain
| | - Javier Sánchez-Nieves
- University of Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Institute "Ramón y Cajal" for Health Research (IRYCIS), Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - José Luis Copa-Patiño
- University of Alcalá, Department of Biomedicine and Biotechnology, Faculty of Pharmacy, Madrid, Spain.
| | - F Javier de la Mata
- University of Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Institute "Ramón y Cajal" for Health Research (IRYCIS), Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
8
|
Sheveleva NN, Tarasenko II, Vovk MA, Mikhailova ME, Neelov IM, Markelov DA. NMR Studies of Two Lysine Based Dendrimers with Insertion of Similar Histidine-Arginine and Arginine-Histidine Spacers Having Different Properties for Application in Drug Delivery. Int J Mol Sci 2023; 24:ijms24020949. [PMID: 36674466 PMCID: PMC9866564 DOI: 10.3390/ijms24020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
In this paper we study two lysine-based peptide dendrimers with Lys-His-Arg and Lys-Arg-His repeating units and terminal lysine groups. Combination of His and Arg properties in a dendrimer could be important for biomedical applications, especially for prevention of dendrimer aggregation and for penetration of dendrimers through various cell membranes. We describe the synthesis of these dendrimers and the confirmation of their structure using 1D and 2D Nuclear Magnetic Resonance (NMR) spectroscopy. NMR spectroscopy and relaxation are used to study the structural and dynamic properties of these macromolecules and to compare them with properties of previously studied dendrimers with Lys-2Arg and Lys-2His repeating units. Our results demonstrate that both Lys-His-Arg and Lys-Arg-His dendrimers have pH sensitive conformation and dynamics. However, properties of Lys-His-Arg at normal pH are more similar to those of the more hydrophobic Lys-2His dendrimer, which has tendency towards aggregation, while the Lys-Arg-His dendrimer is more hydrophilic. Thus, the conformation with the same amino acid composition of Lys-His-Arg is more pH sensitive than Lys-Arg-His, while the presence of Arg groups undoubtedly increases its hydrophilicity compared to Lys-2His. Hence, the Lys-His-Arg dendrimer could be a more suitable (in comparison with Lys-2His and Lys-Arg-His) candidate as a pH sensitive nanocontainer for drug delivery.
Collapse
Affiliation(s)
- Nadezhda N. Sheveleva
- Saint Petersburg State University, 7/9 Universitetskaya Nab, 199034 Saint Petersburg, Russia
| | - Irina I. Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., 199004 Saint Petersburg, Russia
| | - Mikhail A. Vovk
- Saint Petersburg State University, 7/9 Universitetskaya Nab, 199034 Saint Petersburg, Russia
| | - Mariya E. Mikhailova
- Saint Petersburg State University, 7/9 Universitetskaya Nab, 199034 Saint Petersburg, Russia
| | - Igor M. Neelov
- School of Computer Technologies and Control, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy Pr. 49, 197101 Saint Petersburg, Russia
| | - Denis A. Markelov
- Saint Petersburg State University, 7/9 Universitetskaya Nab, 199034 Saint Petersburg, Russia
- Correspondence:
| |
Collapse
|
9
|
Cai X, Orsi M, Capecchi A, Köhler T, van Delden C, Javor S, Reymond JL. An intrinsically disordered antimicrobial peptide dendrimer from stereorandomized virtual screening. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101161. [PMID: 36632208 PMCID: PMC9780108 DOI: 10.1016/j.xcrp.2022.101161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Membrane-disruptive amphiphilic antimicrobial peptides behave as intrinsically disordered proteins by being unordered in water and becoming α-helical in contact with biological membranes. We recently discovered that synthesizing the α-helical antimicrobial peptide dendrimer L-T25 ((KL)8(KKL)4(KLL)2 KKLL) using racemic amino acids to form stereorandomized sr-T25, an analytically pure mixture of all possible diastereoisomers of L-T25, preserved antibacterial activity but abolished hemolysis and cytotoxicity, pointing to an intrinsically disordered antibacterial conformation and an α-helical cytotoxic conformation. In this study, to identify non-toxic intrinsically disordered homochiral antimicrobial peptide dendrimers (AMPDs), we surveyed sixty-three sr-analogs of sr-T25 selected by virtual screening. One of the analogs, sr-X18 ((KL)8(KLK)4(KLL)2 KLLL), lost antibacterial activity as L-enantiomer and became hemolytic due to α-helical folding. By contrast, the L- and D-enantiomers of sr-X22 ((KL)8(KL)4(KKLL)2 KLKK) were equally antibacterial, non-hemolytic, and non-toxic, implying an intrinsically disordered bioactive conformation. Screening stereorandomized libraries may be generally useful to identify or optimize intrinsically disordered bioactive peptides.
Collapse
Affiliation(s)
- Xingguang Cai
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Markus Orsi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Alice Capecchi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, University of Geneva, Service of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Christian van Delden
- Department of Microbiology and Molecular Medicine, University of Geneva, Service of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Sacha Javor
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
10
|
Grace A, Sahu R, Owen DR, Dennis VA. Pseudomonas aeruginosa reference strains PAO1 and PA14: A genomic, phenotypic, and therapeutic review. Front Microbiol 2022; 13:1023523. [PMID: 36312971 PMCID: PMC9607943 DOI: 10.3389/fmicb.2022.1023523] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous, motile, gram-negative bacterium that has been recently identified as a multi-drug resistant pathogen in critical need of novel therapeutics. Of the approximately 5,000 strains, PAO1 and PA14 are common laboratory reference strains, modeling moderately and hyper-virulent phenotypes, respectively. PAO1 and PA14 have been instrumental in facilitating the discovery of novel drug targets, testing novel therapeutics, and supplying critical genomic information on the bacterium. While the two strains have contributed to a wide breadth of knowledge on the natural behaviors and therapeutic susceptibilities of P. aeruginosa, they have demonstrated significant deviations from observations in human infections. Many of these deviations are related to experimental inconsistencies in laboratory strain environment that complicate and, at times, terminate translation from laboratory results to clinical applications. This review aims to provide a comparative analysis of the two strains and potential methods to improve their clinical relevance.
Collapse
Affiliation(s)
- Amber Grace
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | | | - Vida A. Dennis
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
- *Correspondence: Vida A. Dennis,
| |
Collapse
|
11
|
Gao J, Hu X, Xu C, Guo M, Li S, Yang F, Pan X, Zhou F, Jin Y, Bai F, Cheng Z, Wu Z, Chen S, Huang X, Wu W. Neutrophil-mediated delivery of the combination of colistin and azithromycin for the treatment of bacterial infection. iScience 2022; 25:105035. [PMID: 36117992 PMCID: PMC9474925 DOI: 10.1016/j.isci.2022.105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Novel treatment strategies are in urgent need to deal with the rapid development of antibiotic-resistant superbugs. Combination therapies and targeted drug delivery have been exploited to promote treatment efficacies. In this study, we loaded neutrophils with azithromycin and colistin to combine the advantages of antibiotic combinations, targeted delivery, and immunomodulatory effect of azithromycin to treat infections caused by Gram-negative pathogens. Delivery of colistin into neutrophils was mediated by fusogenic liposome, while azithromycin was directly taken up by neutrophils. Neutrophils loaded with the drugs maintained the abilitity to generate reactive oxygen species and migrate. In vitro assays demonstrated enhanced bactericidal activity against multidrug-resistant pathogens and reduced inflammatory cytokine production by the drug-loaded neutrophils. A single intravenous administration of the drug-loaded neutrophils effectively protected mice from Pseudomonas aeruginosa infection in an acute pneumonia model. This study provides a potential effective therapeutic approach for the treatment of bacterial infections. Neutrophils are loaded with colistin and azithromycin in vitro The loaded drugs enhance the bactericidal effect and reduce the inflammatory response Drug-loaded neutrophils conferred effective protection against bacterial infection
Collapse
Affiliation(s)
- Jiacong Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xueyan Hu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingming Guo
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouyi Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fangyu Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhenzhou Wu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuiping Chen
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Del Genio V, Bellavita R, Falanga A, Hervé-Aubert K, Chourpa I, Galdiero S. Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics 2022; 14:1235. [PMID: 35745807 PMCID: PMC9230615 DOI: 10.3390/pharmaceutics14061235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Biomedical research devotes a huge effort to the development of efficient non-viral nanovectors (NV) to improve the effectiveness of standard therapies. NVs should be stable, sustainable and biocompatible and enable controlled and targeted delivery of drugs. With the aim to foster the advancements of such devices, this review reports some recent results applicable to treat two types of pathologies, cancer and microbial infections, aiming to provide guidance in the overall design of personalized nanomedicines and highlight the key role played by peptides in this field. Additionally, future challenges and potential perspectives are illustrated, in the hope of accelerating the translational advances of nanomedicine.
Collapse
Affiliation(s)
- Valentina Del Genio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Via Università 100, 80055 Naples, Italy;
| | - Katel Hervé-Aubert
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| |
Collapse
|
13
|
Ledger EVK, Sabnis A, Edwards AM. Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001136. [PMID: 35118938 PMCID: PMC8941995 DOI: 10.1099/mic.0.001136] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
The polymyxin and lipopeptide classes of antibiotics are membrane-targeting drugs of last resort used to treat infections caused by multi-drug-resistant pathogens. Despite similar structures, these two antibiotic classes have distinct modes of action and clinical uses. The polymyxins target lipopolysaccharide in the membranes of most Gram-negative species and are often used to treat infections caused by carbapenem-resistant species such as Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa. By contrast, the lipopeptide daptomycin requires membrane phosphatidylglycerol for activity and is only used to treat infections caused by drug-resistant Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. However, despite having distinct targets, both antibiotic classes cause membrane disruption, are potently bactericidal in vitro and share similarities in resistance mechanisms. Furthermore, there are concerns about the efficacy of these antibiotics, and there is increasing interest in using both polymyxins and daptomycin in combination therapies to improve patient outcomes. In this review article, we will explore what is known about these distinct but structurally similar classes of antibiotics, discuss recent advances in the field and highlight remaining gaps in our knowledge.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK
| | - Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK
| |
Collapse
|
14
|
Wang X, Shukla SK, Gupta V. Recent advances in dendrimer-based nanocarriers. MULTIFUNCTIONAL NANOCARRIERS 2022:27-51. [DOI: 10.1016/b978-0-323-85041-4.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Zhu D, Chen F, Chen YC, Peng H, Wang KJ. The Long-Term Effect of a Nine Amino-Acid Antimicrobial Peptide AS-hepc3 (48-56) Against Pseudomonas aeruginosa With No Detectable Resistance. Front Cell Infect Microbiol 2021; 11:752637. [PMID: 34676176 PMCID: PMC8523948 DOI: 10.3389/fcimb.2021.752637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) pathogens has become a global public health crisis. Among them, MDR Pseudomonas aeruginosa is the main cause of nosocomial infections and deaths. Antimicrobial peptides (AMPs) are considered as competitive drug candidates to address this threat. In the study, we characterized two AMPs (AS-hepc3(41-71) and AS-hepc3(48-56)) that had potent activity against 5 new clinical isolates of MDR P. aeruginosa. Both AMPs destroyed the integrity of the cell membrane, induced leakage of intracellular components, and ultimately led to cell death. A long-term comparative study on the bacterial resistance treated with AS-hepc3(41-71), AS-hepc3(48-56) and 12 commonly used antibiotics showed that P. aeruginosa quickly developed resistance to the nine antibiotics tested (including aztreonam, ceftazidime, cefepime, imipenem, meropenem, ciprofloxacin, levofloxacin, gentamicin, and piperacillin) as early as 12 days after 150 days of successive culture generations. The initial effective concentration of 9 antibiotics against P. aeruginosa was greatly increased to a different high level at 150 days, however, both AS-hepc3(41-71) and AS-hepc3(48-56) maintained their initial MIC unchangeable through 150 days, indicating that P. aeruginosa did not produce any significant resistance to both AMPs. Furthermore, AS-hepc3(48-56) did not show any toxic effect on mammalian cells in vitro and mice in vivo. AS-hepc3(48-56) had a therapeutic effect on MDR P. aeruginosa infection using a mouse lung infection model and could effectively increase the survival rate of mice by inhibiting bacterial proliferation and attenuating lung inflammation. Taken together, the short peptide AS-hepc3(48-56) would be a promising agent for clinical treatment of MDR P. aeruginosa infections.
Collapse
Affiliation(s)
- Depeng Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yan-Chao Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Capecchi A, Cai X, Personne H, Köhler T, van Delden C, Reymond JL. Machine learning designs non-hemolytic antimicrobial peptides. Chem Sci 2021; 12:9221-9232. [PMID: 34349895 PMCID: PMC8285431 DOI: 10.1039/d1sc01713f] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/05/2021] [Indexed: 12/28/2022] Open
Abstract
Machine learning (ML) consists of the recognition of patterns from training data and offers the opportunity to exploit large structure-activity databases for drug design. In the area of peptide drugs, ML is mostly being tested to design antimicrobial peptides (AMPs), a class of biomolecules potentially useful to fight multidrug-resistant bacteria. ML models have successfully identified membrane disruptive amphiphilic AMPs, however mostly without addressing the associated toxicity to human red blood cells. Here we trained recurrent neural networks (RNN) with data from DBAASP (Database of Antimicrobial Activity and Structure of Peptides) to design short non-hemolytic AMPs. Synthesis and testing of 28 generated peptides, each at least 5 mutations away from training data, allowed us to identify eight new non-hemolytic AMPs against Pseudomonas aeruginosa, Acinetobacter baumannii, and methicillin-resistant Staphylococcus aureus (MRSA). These results show that machine learning (ML) can be used to design new non-hemolytic AMPs.
Collapse
Affiliation(s)
- Alice Capecchi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Xingguang Cai
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Hippolyte Personne
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, University of Geneva Switzerland
- Service of Infectious Diseases, University Hospital of Geneva Geneva Switzerland
| | - Christian van Delden
- Department of Microbiology and Molecular Medicine, University of Geneva Switzerland
- Service of Infectious Diseases, University Hospital of Geneva Geneva Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
17
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
18
|
Jafari P, Luscher A, Siriwardena T, Michetti M, Que YA, Rahme LG, Reymond JL, Raffoul W, Van Delden C, Applegate LA, Köhler T. Antimicrobial Peptide Dendrimers and Quorum-Sensing Inhibitors in Formulating Next-Generation Anti-Infection Cell Therapy Dressings for Burns. Molecules 2021; 26:molecules26133839. [PMID: 34202446 PMCID: PMC8270311 DOI: 10.3390/molecules26133839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance infections are the main cause of failure in the pro-regenerative cell-mediated therapy of burn wounds. The collagen-based matrices for delivery of cells could be potential substrates to support bacterial growth and subsequent lysis of the collagen leading to a cell therapy loss. In this article, we report the development of a new generation of cell therapy formulations with the capacity to resist infections through the bactericidal effect of antimicrobial peptide dendrimers and the anti-virulence effect of anti-quorum sensing MvfR (PqsR) system compounds, which are incorporated into their formulation. Anti-quorum sensing compounds limit the pathogenicity and antibiotic tolerance of pathogenic bacteria involved in the burn wound infections, by inhibiting their virulence pathways. For the first time, we report a biological cell therapy dressing incorporating live progenitor cells, antimicrobial peptide dendrimers, and anti-MvfR compounds, which exhibit bactericidal and anti-virulence properties without compromising the viability of the progenitor cells.
Collapse
Affiliation(s)
- Paris Jafari
- Regenerative Therapy Unit (UTR), Department of Musculoskeletal Medicine DAL, Lausanne University Hospital, 1011 Lausanne, Switzerland; (P.J.); (M.M.)
- Service of Plastic, Reconstructive & Hand Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland;
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandre Luscher
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland; (A.L.); (C.V.D.)
| | - Thissa Siriwardena
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (T.S.); (J.-L.R.)
| | - Murielle Michetti
- Regenerative Therapy Unit (UTR), Department of Musculoskeletal Medicine DAL, Lausanne University Hospital, 1011 Lausanne, Switzerland; (P.J.); (M.M.)
- Service of Plastic, Reconstructive & Hand Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland;
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Laurence G. Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA;
- Shriners Hospitals for Children Boston, Boston, MA 02114, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (T.S.); (J.-L.R.)
| | - Wassim Raffoul
- Service of Plastic, Reconstructive & Hand Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland;
| | - Christian Van Delden
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland; (A.L.); (C.V.D.)
- Division on Infectious Disease and Transplantation, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit (UTR), Department of Musculoskeletal Medicine DAL, Lausanne University Hospital, 1011 Lausanne, Switzerland; (P.J.); (M.M.)
- Service of Plastic, Reconstructive & Hand Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland;
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215028, China
- Correspondence: (L.A.A.); (T.K.); Tel.: +41-21-314-3510 (L.A.A.); +41-22-379-5571 (T.K.)
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland; (A.L.); (C.V.D.)
- Division on Infectious Disease and Transplantation, University Hospital of Geneva, 1205 Geneva, Switzerland
- Correspondence: (L.A.A.); (T.K.); Tel.: +41-21-314-3510 (L.A.A.); +41-22-379-5571 (T.K.)
| |
Collapse
|
19
|
Cai X, Javor S, Gan BH, Köhler T, Reymond JL. The antibacterial activity of peptide dendrimers and polymyxin B increases sharply above pH 7.4. Chem Commun (Camb) 2021; 57:5654-5657. [PMID: 33972964 PMCID: PMC8186529 DOI: 10.1039/d1cc01838h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022]
Abstract
pH-activity profiling reveals that antimicrobial peptide dendrimers (AMPDs) kill Klebsiella pneumoniae and Methicillin-resistant Staphylococcus aureus (MRSA) at pH = 8.0, against which they are inactive at pH = 7.4, due to stronger electrostatic binding to bacterial cells at higher pH. A similar effect occurs with polymyxin B and might be general for polycationic antimicrobials.
Collapse
Affiliation(s)
- Xingguang Cai
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Sacha Javor
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Bee Ha Gan
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
20
|
Cianciulli Sesso A, Lilić B, Amman F, Wolfinger MT, Sonnleitner E, Bläsi U. Gene Expression Profiling of Pseudomonas aeruginosa Upon Exposure to Colistin and Tobramycin. Front Microbiol 2021; 12:626715. [PMID: 33995291 PMCID: PMC8120321 DOI: 10.3389/fmicb.2021.626715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/31/2021] [Indexed: 11/22/2022] Open
Abstract
Pseudomonas aeruginosa (Pae) is notorious for its high-level resistance toward clinically used antibiotics. In fact, Pae has rendered most antimicrobials ineffective, leaving polymyxins and aminoglycosides as last resort antibiotics. Although several resistance mechanisms of Pae are known toward these drugs, a profounder knowledge of hitherto unidentified factors and pathways appears crucial to develop novel strategies to increase their efficacy. Here, we have performed for the first time transcriptome analyses and ribosome profiling in parallel with strain PA14 grown in synthetic cystic fibrosis medium upon exposure to polymyxin E (colistin) and tobramycin. This approach did not only confirm known mechanisms involved in colistin and tobramycin susceptibility but revealed also as yet unknown functions/pathways. Colistin treatment resulted primarily in an anti-oxidative stress response and in the de-regulation of the MexT and AlgU regulons, whereas exposure to tobramycin led predominantly to a rewiring of the expression of multiple amino acid catabolic genes, lower tricarboxylic acid (TCA) cycle genes, type II and VI secretion system genes and genes involved in bacterial motility and attachment, which could potentially lead to a decrease in drug uptake. Moreover, we report that the adverse effects of tobramycin on translation are countered with enhanced expression of genes involved in stalled ribosome rescue, tRNA methylation and type II toxin-antitoxin (TA) systems.
Collapse
Affiliation(s)
- Anastasia Cianciulli Sesso
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Branislav Lilić
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Fabian Amman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Michael T. Wolfinger
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Chen S, Huang S, Li Y, Zhou C. Recent Advances in Epsilon-Poly-L-Lysine and L-Lysine-Based Dendrimer Synthesis, Modification, and Biomedical Applications. Front Chem 2021; 9:659304. [PMID: 33869146 PMCID: PMC8044885 DOI: 10.3389/fchem.2021.659304] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
With the advantages in biocompatibility, antimicrobial ability, and comparative facile synthesis technology, poly-L-lysine (PLL) has received considerable attention in recent years. Different arrangement forms and structures of the backbone endow lysine-based polymers with versatile applications, especially for ε-poly-L-lysine (EPL) and lysine-based dendrimer (LBD) compounds. This review summarized the advanced development of the synthesis and modification strategies of EPL and LBD, focus on the modification of bio-synthesis and artificial synthesis, respectively. Meanwhile, biomedical fields, where EPL and LBD are mainly utilized, such as agents, adjuvants, or carriers to anti-pathogen or used in tumor or gene therapies, are also introduced. With the deeper of knowledge of pharmacodynamics and pharmacokinetics of the drug system, the design and synthesis of these drugs can be further optimized. Furthermore, the performances of combination with other advanced methodologies and technologies demonstrated that challenges, such as scale production and high expenses, will not hinder the prospective future of lysine-based polymers.
Collapse
Affiliation(s)
| | | | - Yan Li
- School of Material Science and Engineering, Tongji University, Shanghai, China
| | - Chuncai Zhou
- School of Material Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Folliero V, Zannella C, Chianese A, Stelitano D, Ambrosino A, De Filippis A, Galdiero M, Franci G, Galdiero M. Application of Dendrimers for Treating Parasitic Diseases. Pharmaceutics 2021; 13:343. [PMID: 33808016 PMCID: PMC7998910 DOI: 10.3390/pharmaceutics13030343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 01/02/2023] Open
Abstract
Despite advances in medical knowledge, parasitic diseases remain a significant global health burden and their pharmacological treatment is often hampered by drug toxicity. Therefore, drug delivery systems may provide useful advantages when used in combination with conventional therapeutic compounds. Dendrimers are three-dimensional polymeric structures, characterized by a central core, branches and terminal functional groups. These nanostructures are known for their defined structure, great water solubility, biocompatibility and high encapsulation ability against a wide range of molecules. Furthermore, the high ratio between terminal groups and molecular volume render them a hopeful vector for drug delivery. These nanostructures offer several advantages compared to conventional drugs for the treatment of parasitic infection. Dendrimers deliver drugs to target sites with reduced dosage, solving side effects that occur with accepted marketed drugs. In recent years, extensive progress has been made towards the use of dendrimers for therapeutic, prophylactic and diagnostic purposes for the management of parasitic infections. The present review highlights the potential of several dendrimers in the management of parasitic diseases.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Anna De Filippis
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| |
Collapse
|
23
|
Siriwardena T, Gan BH, Köhler T, van Delden C, Javor S, Reymond JL. Stereorandomization as a Method to Probe Peptide Bioactivity. ACS CENTRAL SCIENCE 2021; 7:126-134. [PMID: 33532575 PMCID: PMC7845017 DOI: 10.1021/acscentsci.0c01135] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 06/01/2023]
Abstract
Solid-phase peptide synthesis (SPPS) is usually performed with optically pure building blocks to prepare peptides as single enantiomers. Herein we report that SPPS using racemic amino acids provides stereorandomized (sr) peptides, containing up to billions of different stereoisomers, as well-defined single HPLC peaks, single mass products with high yield, which can be used to investigate peptide bioactivity. To exemplify our method, we show that stereorandomization abolishes the membrane-disruptive effect of α-helical amphiphilic antimicrobial peptides but preserves their antibiofilm effect, implying different mechanisms involving folded versus disordered conformations. For antimicrobial peptide dendrimers by contrast, stereorandomization preserves antibacterial, membrane-disruptive, and antibiofilm effects but reduces hemolysis and cytotoxicity, thereby increasing their therapeutic index. Finally, we identify partially stereorandomized analogues of the last resort cyclic peptide antibiotic polymyxin B with preserved antibacterial activity but lacking membrane-disruptive and lipopolysaccharide-neutralizing activity, pointing to the existence of additional targets.
Collapse
Affiliation(s)
- Thissa
N. Siriwardena
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Bee-Ha Gan
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Thilo Köhler
- Department
of Microbiology and Molecular Medicine, University of Geneva, Service
of Infectious Diseases, University Hospital
of Geneva, 1211 Geneva, Switzerland
| | - Christian van Delden
- Department
of Microbiology and Molecular Medicine, University of Geneva, Service
of Infectious Diseases, University Hospital
of Geneva, 1211 Geneva, Switzerland
| | - Sacha Javor
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
24
|
Falanga A, Del Genio V, Galdiero S. Peptides and Dendrimers: How to Combat Viral and Bacterial Infections. Pharmaceutics 2021; 13:101. [PMID: 33466852 PMCID: PMC7830367 DOI: 10.3390/pharmaceutics13010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The alarming growth of antimicrobial resistance and recent viral pandemic events have enhanced the need for novel approaches through innovative agents that are mainly able to attach to the external layers of bacteria and viruses, causing permanent damage. Antimicrobial molecules are potent broad-spectrum agents with a high potential as novel therapeutics. In this context, antimicrobial peptides, cell penetrating peptides, and antiviral peptides play a major role, and have been suggested as promising solutions. Furthermore, dendrimers are to be considered as suitable macromolecules for the development of advanced nanosystems that are able to complement the typical properties of dendrimers with those of peptides. This review focuses on the description of nanoplatforms constructed with peptides and dendrimers, and their applications.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Via dell’Università 100, 80100 Portici, Italy
| | - Valentina Del Genio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
25
|
Smith RJ, Gorman C, Menegatti S. Synthesis, structure, and function of internally functionalized dendrimers. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ryan J. Smith
- Department of Chemistry North Carolina State University Raleigh North Carolina USA
| | - Christopher Gorman
- Department of Chemistry North Carolina State University Raleigh North Carolina USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
- Biomanufacturing Training and Education Center Raleigh North Carolina USA
| |
Collapse
|
26
|
Gan BH, Cai X, Javor S, Köhler T, Reymond JL. Synergistic Effect of Propidium Iodide and Small Molecule Antibiotics with the Antimicrobial Peptide Dendrimer G3KL against Gram-Negative Bacteria. Molecules 2020; 25:E5643. [PMID: 33266085 PMCID: PMC7730455 DOI: 10.3390/molecules25235643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
There is an urgent need to develop new antibiotics against multidrug-resistant bacteria. Many antimicrobial peptides (AMPs) are active against such bacteria and often act by destabilizing membranes, a mechanism that can also be used to permeabilize bacteria to other antibiotics, resulting in synergistic effects. We recently showed that G3KL, an AMP with a multibranched dendritic topology of the peptide chain, permeabilizes the inner and outer membranes of Gram-negative bacteria including multidrug-resistant strains, leading to efficient bacterial killing. Here, we show that permeabilization of the outer and inner membranes of Pseudomonas aeruginosa by G3KL, initially detected using the DNA-binding fluorogenic dye propidium iodide (PI), also leads to a synergistic effect between G3KL and PI in this bacterium. We also identify a synergistic effect between G3KL and six different antibiotics against the Gram-negative Klebsiella pneumoniae, against which G3KL is inactive.
Collapse
Affiliation(s)
- Bee-Ha Gan
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland; (B.-H.G.); (X.C.); (S.J.)
| | - Xingguang Cai
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland; (B.-H.G.); (X.C.); (S.J.)
| | - Sacha Javor
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland; (B.-H.G.); (X.C.); (S.J.)
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Service of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland; (B.-H.G.); (X.C.); (S.J.)
| |
Collapse
|
27
|
Ortega MÁ, Guzmán Merino A, Fraile-Martínez O, Recio-Ruiz J, Pekarek L, G. Guijarro L, García-Honduvilla N, Álvarez-Mon M, Buján J, García-Gallego S. Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases. Pharmaceutics 2020; 12:pharmaceutics12090874. [PMID: 32937793 PMCID: PMC7560085 DOI: 10.3390/pharmaceutics12090874] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are one of the main global public health risks, predominantly caused by viruses, bacteria, fungi, and parasites. The control of infections is founded on three main pillars: prevention, treatment, and diagnosis. However, the appearance of microbial resistance has challenged traditional strategies and demands new approaches. Dendrimers are a type of polymeric nanoparticles whose nanometric size, multivalency, biocompatibility, and structural perfection offer boundless possibilities in multiple biomedical applications. This review provides the reader a general overview about the uses of dendrimers and dendritic materials in the treatment, prevention, and diagnosis of highly prevalent infectious diseases, and their advantages compared to traditional approaches. Examples of dendrimers as antimicrobial agents per se, as nanocarriers of antimicrobial drugs, as well as their uses in gene transfection, in vaccines or as contrast agents in imaging assays are presented. Despite the need to address some challenges in order to be used in the clinic, dendritic materials appear as an innovative tool with a brilliant future ahead in the clinical management of infectious diseases and many other health issues.
Collapse
Affiliation(s)
- Miguel Ángel Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Alberto Guzmán Merino
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Judith Recio-Ruiz
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Luis G. Guijarro
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Networking Research Centre on Hepatic and Digestive Diseases (CIBER-EHD), 28029 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology and Medicine Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Sandra García-Gallego
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
- Correspondence:
| |
Collapse
|