1
|
Piotrowski M, Alekseeva I, Arnet U, Yücel E. Insights into the Rising Threat of Carbapenem-Resistant Enterobacterales and Pseudomonas aeruginosa Epidemic Infections in Eastern Europe: A Systematic Literature Review. Antibiotics (Basel) 2024; 13:978. [PMID: 39452244 PMCID: PMC11505456 DOI: 10.3390/antibiotics13100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Antimicrobial resistance is a major global public health challenge, particularly with the rise of carbapenem-resistant Enterobacterales (CRE) and Pseudomonas aeruginosa (CRPA). This study aimed to describe the characteristics of CRE and CRPA infections in Eastern Europe, focusing on Bulgaria, Croatia, Czechia, Greece, Hungary, Poland, Romania, Serbia, Slovakia, and Slovenia. METHODS Following MOOSE and PRISMA guidelines, a systematic literature review of articles published between 1 November 2017 and 1 November 2023 was conducted using the MEDLINE, Embase, Web of Science, CDSR, DARE, and CENTRAL databases. The search strategy used a combination of free text and subject headings to gather pertinent literature regarding the incidence and treatment patterns of CRE and CRPA infections. A total of 104 studies focusing on infections in both children and adults were included in this review. RESULTS This review revealed a significant prevalence of carbapenem-resistant Gram-negative isolates and underscored the effectiveness of imipenem/relebactam and ceftazidime/avibactam (CAZ/AVI) against Klebsiella pneumoniae carbapenemase-producing Enterobacterales and of ceftolozane/tazobactam, imipenem/relebactam and ceftazidime/avibactam against non-metallo-β-lactamase-producing CRPA strains. CONCLUSIONS This study highlights the urgent need for comprehensive measures to combat the escalating threat of CRE and CRPA infections in Eastern European countries. At the same time, it shows the activity of the standard of care and new antimicrobials against carbapenem-resistant Gram-negative pathogens in Eastern Europe. Clinical real-world data on the treatment of carbapenem-resistant infections in Eastern Europe are needed.
Collapse
Affiliation(s)
- Michal Piotrowski
- Proper Medical Writing Sp. z o.o., Panieńska 9/12, 03-704 Warsaw, Poland;
| | - Irina Alekseeva
- Merck Sharp & Dohme, Dubai Healthcare City, Bldg #39, Dubai 2096, United Arab Emirates;
| | - Urs Arnet
- MSD Innovation GmbH, The Circle 66, 8058 Zurich, Switzerland;
| | - Emre Yücel
- Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
2
|
Guo H, Luo J, Chen S, Yu T, Mu X, Chen F, Lu X, He J, Zheng Y, Bao C, Wang P, Yin Z, Li B. Replicon-Based Typing About IncG Plasmids and Molecular Characterization of Five IncG Plasmids Carrying Carbapenem Resistance Gene bla KPC-2. Infect Drug Resist 2024; 17:2987-2999. [PMID: 39045111 PMCID: PMC11265224 DOI: 10.2147/idr.s461039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/29/2024] [Indexed: 07/25/2024] Open
Abstract
Purpose To investigate the genetic diversity of IncG plasmids, we have proposed a typing scheme based on replicon repA and performed comparative genomic analysis of five IncG plasmids from China. Methods p30860-KPC, p116965-KPC, pA1705-KPC, pA1706-KPC and pNY5520-KPC total in five IncG plasmids from clinical isolates of Pseudomonas and Enterobacteriaceae, respectively, were fully sequenced and were compared with the previously collected reference plasmid p10265-KPC. Results Based on phylogeny, IncG-type plasmids are divided into IncG-I to IncG-VIII, the five plasmids belong to IncG-VIII. A detailed sequence comparison was then presented that the IncG plasmid involved accessory region I (Tn5563a/b/c/d/e), accessory region II (ISpa19), and accessory region III (bla KPC-2-region). Expect for the pNY5520-KPC, the rest of the plasmids had the same backbone structure as the reference one. Within the plasmids, insertion sequences Tn5563d and Tn5563e were identified, a novel unknown insertion region was found in Tn5563b/c/d/e. In addition, Tn6376b and Tn6376c were newly designated in the study. Conclusion The data presented here including a typing scheme and detailed genetic comparison which provide an insight into the diversification and evolution history of IncG plasmids.
Collapse
Affiliation(s)
- Huiqian Guo
- Department of Clinical Laboratory, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, People’s Republic of China
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Jing Luo
- Department of Clinical Laboratory, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, People’s Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Suming Chen
- Department of Clinical Laboratory, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Ting Yu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Xiaofei Mu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Xiuhui Lu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Jiaqi He
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Yali Zheng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Chunmei Bao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Boan Li
- Department of Clinical Laboratory, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, People’s Republic of China
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| |
Collapse
|
3
|
Cai M, Song K, Wang R, Wang S, Chen H, Wang H. Tracking intra-species and inter-genus transmission of KPC through global plasmids mining. Cell Rep 2024; 43:114351. [PMID: 38923465 DOI: 10.1016/j.celrep.2024.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) poses a major public health risk. Understanding its transmission dynamics requires examining the epidemiological features of related plasmids. Our study compiled 15,660 blaKPC-positive isolates globally over the past two decades. We found extensive diversity in the genetic background of KPC, with 23 Tn4401-related and 341 non-Tn4401 variants across 163 plasmid types in 14 genera. Intra-K. pneumoniae and cross-genus KPC transmission patterns varied across four distinct periods. In the initial periods, plasmids with narrow host ranges gradually established a survival advantage. In later periods, broad-host-range plasmids became crucial for cross-genera transmission. In total, 61 intra-K. pneumoniae and 66 cross-genus transmission units have been detected. Furthermore, phylogenetic reconstruction dated the origin of KPC transmission back to 1991 and revealed frequent exchanges across countries. Our research highlights the frequent and transient spread events of KPC mediated by plasmids across multiple genera and offers theoretical support for high-risk plasmid monitoring.
Collapse
Affiliation(s)
- Meng Cai
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Kaiwen Song
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China.
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
4
|
Bonnin RA, Creton E, Perrin A, Girlich D, Emeraud C, Jousset AB, Duque M, Jacquemin A, Hopkins K, Bogaerts P, Glupczynski Y, Pfennigwerth N, Gniadkowski M, Hendrickx APA, van der Zwaluw K, Apfalter P, Hartl R, Studentova V, Hrabak J, Larrouy-Maumus G, Rocha EPC, Naas T, Dortet L. Spread of carbapenemase-producing Morganella spp from 2013 to 2021: a comparative genomic study. THE LANCET. MICROBE 2024; 5:e547-e558. [PMID: 38677305 DOI: 10.1016/s2666-5247(23)00407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 04/29/2024]
Abstract
BACKGROUND Morganella spp are opportunistic pathogens involved in various infections. Intrinsic resistance to multiple antibiotics (including colistin) combined with the emergence of carbapenemase producers reduces the number of active antimicrobials. The aim of this study was to characterise genetic features related to the spread of carbapenem-resistant Morganella spp. METHODS This comparative genomic study included extensively drug-resistant Morganella spp isolates collected between Jan 1, 2013, and March 1, 2021, by the French National Reference Center (NRC; n=68) and European antimicrobial resistance reference centres in seven European countries (n=104), as well as one isolate from Canada, two reference strains from the Pasteur Institute collection (Paris, France), and two colistin-susceptible isolates from Bicêtre Hospital (Kremlin-Bicêtre, France). The isolates were characterised by whole-genome sequencing, antimicrobial susceptibility testing, and biochemical tests. Complete genomes from GenBank (n=103) were also included for genomic analysis, including phylogeny and determination of core genomes and resistomes. Genetic distance between different species or subspecies was performed using average nucleotide identity (ANI). Intrinsic resistance mechanisms to polymyxins were investigated by combining genetic analysis with mass spectrometry on lipid A. FINDINGS Distance analysis by ANI of 275 isolates identified three groups: Morganella psychrotolerans, Morganella morganii subspecies sibonii, and M morganii subspecies morganii, and a core genome maximum likelihood phylogenetic tree showed that the M morganii isolates can be separated into four subpopulations. On the basis of these findings and of phenotypic divergences between isolates, we propose a modified taxonomy for the Morganella genus including four species, Morganella psychrotolerans, Morganella sibonii, Morganella morganii, and a new species represented by a unique environmental isolate. We propose that M morganii include two subspecies: M morganii subspecies morganii (the most prevalent) and M morganii subspecies intermedius. This modified taxonomy was supported by a difference in intrinsic resistance to tetracycline and conservation of metabolic pathways such as trehalose assimilation, both only present in M sibonii. Carbapenemase producers were mostly identified among five high-risk clones of M morganii subspecies morganii. The most prevalent carbapenemase corresponded to NDM-1, followed by KPC-2, and OXA-48. A cefepime-zidebactam combination was the most potent antimicrobial against the 172 extensively drug-resistant Morganella spp isolates in our collection from different European countries, which includes metallo-β-lactamase producers. Lipid A analysis showed that the intrinsic resistance to colistin was associated with the presence of L-ARA4N on lipid A. INTERPRETATION This global characterisation of, to our knowledge, the widest collection of extensively drug-resistant Morganella spp highlights the need to clarify the taxonomy and decipher intrinsic resistance mechanisms, and paves the way for further genomic comparisons. FUNDING None.
Collapse
Affiliation(s)
- Rémy A Bonnin
- Team Resist UMR1184 Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance-Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France.
| | - Elodie Creton
- Team Resist UMR1184 Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance-Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Amandine Perrin
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Delphine Girlich
- Team Resist UMR1184 Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France
| | - Cecile Emeraud
- Team Resist UMR1184 Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance-Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Agnès B Jousset
- Team Resist UMR1184 Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance-Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Mathilde Duque
- Team Resist UMR1184 Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Aymeric Jacquemin
- Team Resist UMR1184 Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France
| | - Katie Hopkins
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, London, UK; Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Pierre Bogaerts
- National Reference Laboratory for Monitoring of Antimicrobial Resistance in Gram-Negative Bacteria, CHU Dinant-Godinne, UCL Namur, Yvoir, Belgium
| | - Youri Glupczynski
- National Reference Laboratory for Monitoring of Antimicrobial Resistance in Gram-Negative Bacteria, CHU Dinant-Godinne, UCL Namur, Yvoir, Belgium
| | - Niels Pfennigwerth
- German National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Antoni P A Hendrickx
- Laboratory for Infectious Diseases and Screening, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Kim van der Zwaluw
- Laboratory for Infectious Diseases and Screening, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Petra Apfalter
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Rainer Hartl
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Vendula Studentova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jaroslav Hrabak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Thierry Naas
- Team Resist UMR1184 Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance-Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- Team Resist UMR1184 Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance-Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
5
|
blaKPC-2-Encoding IncP-6 Plasmids in Citrobacter freundii and Klebsiella variicola Strains from Hospital Sewage in Japan. Appl Environ Microbiol 2022; 88:e0001922. [PMID: 35380451 DOI: 10.1128/aem.00019-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) producers are an emerging threat to global health, and the hospital water environment is considered an important reservoir of these life-threatening bacteria. We characterized plasmids of KPC-2-producing Citrobacter freundii and Klebsiella variicola isolates recovered from hospital sewage in Japan. Antimicrobial susceptibility testing, whole-genome sequencing analysis, bacterial conjugation, and transformation experiments were performed for both KPC-2 producers. The blaKPC-2 gene was located on the Tn3 transposon-related region from an IncP-6 replicon plasmid that could not be transferred via conjugation. Compared to the blaKPC-2-encoding plasmid of the C. freundii isolate, alignment analysis of plasmids with blaKPC-2 showed that the blaKPC-2-encoding plasmid of the K. variicola isolate was a novel IncP-6/IncF-like hybrid plasmid containing a 75,218-bp insertion sequence composed of IncF-like plasmid conjugative transfer proteins. Carbapenem-resistant transformants harboring blaKPC-2 were obtained for both isolates. However, no IncF-like insertion region was found in the K. variicola donor plasmid of the transformant, suggesting that this IncF-like region is not readily functional for plasmid conjugative transfer and is maintained depending on the host cells. The findings on the KPC-2 producers and novel genetic content emphasize the key role of hospital sewage as a potential reservoir of pathogens and its linked dissemination of blaKPC-2 through the hospital water environment. Our results indicate that continuous monitoring for environmental emergence of antimicrobial-resistant bacteria might be needed to control the spread of these infectious bacteria. Moreover, it will help elucidate both the evolution and transmission pathways of these bacteria harboring antimicrobial resistance. IMPORTANCE Antimicrobial resistance is a significant problem for global health, and the hospital environment has been recognized as a reservoir of antimicrobial resistance. Here, we provide insight into the genomic features of blaKPC-2-harboring isolates of Citrobacter freundii and Klebsiella variicola obtained from hospital sewage in Japan. The findings of carbapenem-resistant bacteria containing this novel genetic context emphasize that hospital sewage could act as a potential reservoir of pathogens and cause the subsequent spread of blaKPC-2 via horizontal gene transfer in the hospital water environment. This indicates that serial monitoring for environmental bacteria possessing antimicrobial resistance may help us control the spread of infection and also lead to elucidating the evolution and transmission pathways of these bacteria.
Collapse
|
6
|
Xiang G, Lan K, Cai Y, Liao K, Zhao M, Tao J, Ma Y, Zeng J, Zhang W, Wu Z, Yu X, Liu Y, Lu Y, Xu C, Chen L, Tang YW, Chen C, Jia W, Huang B. Clinical Molecular and Genomic Epidemiology of Morganella morganii in China. Front Microbiol 2021; 12:744291. [PMID: 34650543 PMCID: PMC8507844 DOI: 10.3389/fmicb.2021.744291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Ongoing acquisition of antimicrobial resistance genes has made Morganella morganii a new clinical treatment challenge. Understanding the molecular epidemiology of M. morganii will contribute to clinical treatment and prevention. Methods: We undertook a 6-year clinical molecular epidemiological investigation of M. morganii from three tertiary hospitals in China since 2014. Antimicrobial susceptibility testing was performed using a VITEK-2 system. All isolates were screened for β-lactam and plasmid-mediated quinolone resistance genes by PCR. Isolates carrying carbapenem-resistant genes were subjected to whole-genome sequencing (WGS). The variation and evolution of these mobile genetic elements (MGEs) were then systematically analyzed. Results: Among all M. morganii isolates (n = 335), forty (11.9%) were recognized as multidrug resistant strains. qnrD1, aac(6′)-Ib-cr, blaTEM–104, and blaCTX–M–162 were the top four most prevalent resistance genes. Notably, phylogenomic and population structure analysis suggested clade 1 (rhierBAPS SC3 and SC5) associated with multiple resistance genes seemed to be widely spread. WGS showed a blaOXA–181-carrying IncX3 plasmid and a Proteus genomic island 2 variant carrying blaCTX–M–3, aac(6′)-Ib-cr coexisted in the same multidrug resistant strain zy_m28. Additionally, a blaIMP–1-carrying IncP-1β type plasmid was found in the strain nx_m63. Conclusion: This study indicates a clade of M. morganii is prone to acquire resistance genes, and multidrug resistant M. morganii are increasing by harboring a variety of MGEs including two newly discovered ones in the species. We should be vigilant that M. morganii may bring more extensive and challenging antimicrobial resistance issue.
Collapse
Affiliation(s)
- Guoxiu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Translational Medicine Research Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kai Lan
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yimei Cai
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mei Zhao
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jia Tao
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yi Ma
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianming Zeng
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Weizheng Zhang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Zhongwen Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuegao Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuyang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Lu
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Caixia Xu
- Translational Medicine Research Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Yi-Wei Tang
- Medical and Scientific Affairs, Cepheid, Sunnyvale, CA, United States
| | - Cha Chen
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Wei Jia
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Ghiglione B, Haim MS, Penzotti P, Brunetti F, D Amico González G, Di Conza J, Figueroa-Espinosa R, Nuñez L, Razzolini MTP, Fuga B, Esposito F, Vander Horden M, Lincopan N, Gutkind G, Power P, Dropa M. Characterization of Emerging Pathogens Carrying bla KPC-2 Gene in IncP-6 Plasmids Isolated From Urban Sewage in Argentina. Front Cell Infect Microbiol 2021; 11:722536. [PMID: 34504809 PMCID: PMC8421773 DOI: 10.3389/fcimb.2021.722536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Untreated wastewater is a reservoir for multidrug-resistant bacteria, but its role in the spread of antibiotic resistance in the human population remains poorly investigated. In this study, we isolated a KPC-2-producing ST2787 Klebsiella quasipneumoniae subsp. quasipneumoniae (WW14A), recovered from raw sewage at a wastewater treatment plant in Argentina in 2018 and determined its complete genome sequence. Strain WW14A was resistant to all β-lactams, ciprofloxacin and amikacin. A core genome phylogenetic analysis indicated that WW14A was closely related to a GES-5-producing Taiwanese strain isolated from hospital wastewater in 2015 and it was clearly distinct from strains isolated recently in Argentina and Brazil. Interestingly, blaKPC-2 was harbored by a recently described IncP-6 broad-spectrum plasmid which was sporadically reported worldwide and had never been reported before in Argentina. We investigated the presence of the IncP-6 replicon in isolates obtained from the same sampling and found a novel non-typable/IncP-6 hybrid plasmid in a newly assigned ST1407 Enterobacter asburiae (WW19C) also harboring blaKPC-2. Nanopore sequencing and hybrid assembly of strains WW14A and WW19C revealed that both IncP-6 plasmids shared 72% of coverage (~20 kb), with 99.99% of sequence similarity and each one also presented uniquely combined regions that were derived from other plasmids recently reported in different countries of South America, Asia, and Europe. The region harboring the carbapenem resistance gene (~11 kb) in both plasmids contained a Tn3 transposon disrupted by a Tn3-ISApu-flanked element and the core sequence was composed by ΔISKpn6/blaKPC-2/ΔblaTEM-1/ISKpn27. Both strains also carried genes conferring resistance to heavy metals (e.g., arsenic, mercury, lead, cadmium, copper), pesticides (e.g., glyphosate), disinfectants, and several virulence-related genes, posing a potential pathogenic risk in the case of infections. This is the first study documenting blaKPC-2 associated with IncP-6 plasmids in K. quasipneumoniae and Enterobacter cloacae complex from wastewater in Argentina and highlights the circulation of IncP-6 plasmids as potential reservoirs of blaKPC-2 in the environment.
Collapse
Affiliation(s)
- Barbara Ghiglione
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Sol Haim
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pedro Penzotti
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Florencia Brunetti
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela D Amico González
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - José Di Conza
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Roque Figueroa-Espinosa
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lidia Nuñez
- Facultad de Farmacia y Bioquímica, Cátedra de Salud Pública e Higiene Ambiental, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Tereza Pepe Razzolini
- Departamento de Saúde Ambiental, Laboratório de Microbiologia Ambiental e Resistência Antimicrobiana - MicroRes, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Maximiliano Vander Horden
- Ingeniería - Gerencia Técnica, Dirección de Saneamiento, Agua y Saneamientos Argentinos S.A. (AySA), Buenos Aires, Argentina
| | - Nilton Lincopan
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriel Gutkind
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Power
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Milena Dropa
- Departamento de Saúde Ambiental, Laboratório de Microbiologia Ambiental e Resistência Antimicrobiana - MicroRes, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Minnullina L, Kostennikova Z, Evtugin V, Akosah Y, Sharipova M, Mardanova A. Diversity in the swimming motility and flagellar regulon structure of uropathogenic Morganella morganii strains. Int Microbiol 2021; 25:111-122. [PMID: 34363151 DOI: 10.1007/s10123-021-00197-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
In current times, the opportunistic pathogen Morganella morganii is increasingly becoming a cause of urinary tract infections. The condition has been further complicated by the multiple drug resistance of most isolates. Swimming motility plays an important role in the development of urinary tract infections, allowing bacteria to colonize the upper urinary tract. We determined the differences between the growth, swimming motility, and biofilm formation of two M. morganii strains MM 1 and MM 190 isolated from the urine of patients who had community-acquired urinary tract infections. MM 190 showed a lower growth rate but better-formed biofilms in comparison to MM 1. In addition, MM 190 possessed autoaggregation abilities. It was found that a high temperature (37 °C) inhibits the flagellation of strains and makes MM 190 less motile. At the same time, the MM 1 strain maintained its rate of motility at this temperature. We demonstrated that urea at a concentration of 1.5% suppresses the growth and swimming motility of both strains. Genome analysis showed that MM 1 has a 17.7-kb-long insertion in flagellar regulon between fliE and glycosyltransferase genes, which was not identified in corresponding loci of MM 190 and 9 other M. morganii strains with whole genomes. Both strains carry two genes encoding flagellin, which may indicate flagellar antigen phase variation. However, the fliC2 genes have only 91% identity to each other and exhibit some variability in the regulatory region. We assume that all these differences influence the swimming motility of the strains.
Collapse
Affiliation(s)
- Leyla Minnullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia.
| | - Zarina Kostennikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Vladimir Evtugin
- Interdisciplinary Center for Analytical Microscopy, Kazan (Volga region) Federal University, Kazan, Russia
| | - Yaw Akosah
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Margarita Sharipova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Ayslu Mardanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| |
Collapse
|
9
|
Kraftova L, Finianos M, Studentova V, Chudejova K, Jakubu V, Zemlickova H, Papagiannitsis CC, Bitar I, Hrabak J. Evidence of an epidemic spread of KPC-producing Enterobacterales in Czech hospitals. Sci Rep 2021; 11:15732. [PMID: 34344951 PMCID: PMC8333104 DOI: 10.1038/s41598-021-95285-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study is to describe the ongoing spread of the KPC-producing strains, which is evolving to an epidemic in Czech hospitals. During the period of 2018-2019, a total of 108 KPC-producing Enterobacterales were recovered from 20 hospitals. Analysis of long-read sequencing data revealed the presence of several types of blaKPC-carrying plasmids; 19 out of 25 blaKPC-carrying plasmids could be assigned to R (n = 12), N (n = 5), C (n = 1) and P6 (n = 1) incompatibility (Inc) groups. Five of the remaining blaKPC-carrying plasmids were multireplicon, while one plasmid couldn't be typed. Additionally, phylogenetic analysis confirmed the spread of blaKPC-carrying plasmids among different clones of diverse Enterobacterales species. Our findings demonstrated that the increased prevalence of KPC-producing isolates was due to plasmids spreading among different species. In some districts, the local dissemination of IncR and IncN plasmids was observed. Additionally, the ongoing evolution of blaKPC-carrying plasmids, through genetic rearrangements, favours the preservation and further dissemination of these mobile genetic elements. Therefore, the situation should be monitored, and immediate infection control should be implemented in hospitals reporting KPC-producing strains.
Collapse
Affiliation(s)
- Lucie Kraftova
- Department of Microbiology, Faculty of Medicine, and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Marc Finianos
- Department of Microbiology, Faculty of Medicine, and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Vendula Studentova
- Department of Microbiology, Faculty of Medicine, and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Katerina Chudejova
- Department of Microbiology, Faculty of Medicine, and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Vladislav Jakubu
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Pilsen, Czech Republic
- Department of Microbiology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady and National Institute of Public Health, Prague, Czech Republic
| | - Helena Zemlickova
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Pilsen, Czech Republic
- Department of Microbiology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady and National Institute of Public Health, Prague, Czech Republic
| | | | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic.
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic.
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| |
Collapse
|
10
|
Characterization of an IncR Plasmid with Two Copies of IS CR-Linked qnrB6 from ST 968 Klebsiella pneumoniae. Int J Genomics 2020; 2020:3484328. [PMID: 33299848 PMCID: PMC7707992 DOI: 10.1155/2020/3484328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022] Open
Abstract
To characterize the molecular structure of IncR plasmid-related sequences, comparative genomic analysis was conducted using 261 IncR plasmid backbone-related sequences. Among the sequences, 257 were IncR plasmids including the multidrug-resistance IncR plasmid pR50-74 from Klebsiella pneumoniae strain R50 of this work, and the other four were from bacterial chromosomes. The IncR plasmids were derived from different bacterial genera or species, mainly Klebsiella pneumoniae (70.82%, 182/257), Escherichia coli (11.28%, 29/257), Enterobacter cloacae (7.00%, 18/257), and Citrobacter freundii (3.50%, 9/257). The bacterial chromosomes carrying IncR plasmid backbone sequences were derived from Proteus mirabilis AOUC-001 and Klebsiella pneumoniae KPN1344, among others. The IncR backbone sequence of P. mirabilis AOUC-001 chromosome shows the highest identity with that of pR50-74. Complex class 1 integrons carrying various copies of ISCR1-sdr-qnrB6-△qacE/sul1 (ISCR1-linked qnrB6 unit) were identified in IncR plasmids. In addition to two consecutive copies of qnrB6-qacE-sul1, the other resistance genes encoded on pR50-74 are all related to mobile genetic elements, such as IS1006, IS26, and the class 1 integron. This study provides a clear understanding of the mobility and plasticity of the IncR plasmid backbone sequence and emphasizes the important role of ISCR in the recruitment of multicopy resistance genes.
Collapse
|
11
|
Dynamics of bla KPC-2 Dissemination from Non-CG258 Klebsiella pneumoniae to Other Enterobacterales via IncN Plasmids in an Area of High Endemicity. Antimicrob Agents Chemother 2020; 64:AAC.01743-20. [PMID: 32958711 DOI: 10.1128/aac.01743-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) pose a significant threat to global public health. The most important mechanism for carbapenem resistance is the production of carbapenemases. Klebsiella pneumoniae carbapenemase (KPC) represents one of the main carbapenemases worldwide. Complex mechanisms of bla KPC dissemination have been reported in Colombia, a country with a high endemicity of carbapenem resistance. Here, we characterized the dynamics of dissemination of bla KPC gene among CRE infecting and colonizing patients in three hospitals localized in a highly endemic area of Colombia (2013 and 2015). We identified the genomic characteristics of KPC-producing Enterobacterales recovered from patients infected/colonized and reconstructed the dynamics of dissemination of bla KPC-2 using both short and long read sequencing. We found that spread of bla KPC-2 among Enterobacterales in the participating hospitals was due to intra- and interspecies horizontal gene transfer (HGT) mediated by promiscuous plasmids associated with transposable elements that was originated from a multispecies outbreak of KPC-producing Enterobacterales in a neonatal intensive care unit. The plasmids were detected in isolates recovered in other units within the same hospital and nearby hospitals. The gene "epidemic" was driven by IncN-pST15-type plasmids carrying a novel Tn4401b structure and non-Tn4401 elements (NTEKPC) in Klebsiella spp., Escherichia coli, Enterobacter spp., and Citrobacter spp. Of note, mcr-9 was found to coexist with bla KPC-2 in species of the Enterobacter cloacae complex. Our findings suggest that the main mechanism for dissemination of bla KPC-2 is HGT mediated by highly transferable plasmids among species of Enterobacterales in infected/colonized patients, presenting a major challenge for public health interventions in developing countries such as Colombia.
Collapse
|
12
|
Furlan JPR, Savazzi EA, Stehling EG. Widespread high-risk clones of multidrug-resistant extended-spectrum β-lactamase-producing Escherichia coli B2-ST131 and F-ST648 in public aquatic environments. Int J Antimicrob Agents 2020; 56:106040. [PMID: 32479889 DOI: 10.1016/j.ijantimicag.2020.106040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/19/2020] [Accepted: 05/21/2020] [Indexed: 01/18/2023]
Abstract
Aquatic environments are considered a reservoir for the dissemination of multidrug-resistant (MDR) bacteria, principally Escherichia coli, with the consequent spread of acquired antimicrobial resistance genes (ARGs). Widespread high-risk clones of MDR E. coli are responsible for human infections worldwide. This study aimed to characterise, through whole-genome sequencing (WGS), isolates of MDR E. coli harbouring ARGs obtained from public aquatic environments in Brazil. MDR E. coli isolates were obtained from rivers, streams and lakes that presented different Water Quality Index records and were submitted to WGS. The resistome, mobilome and virulome showed a great diversity of ARGs, plasmids and virulence genes, respectively. In addition, mutations in the quinolone resistance-determining regions of GyrA, ParC and ParE as well as several metal resistance genes (MRGs) and antibacterial biocide resistance genes (ABGs) were detected. Typing and subtyping of MDR E. coli revealed different lineages, with two belonging to widespread high-risk clones (i.e. B2-ST131-fimH30 and F-ST648-fimH27), which are grouped by core genome multilocus sequence typing (cgMLST) in clusters with E. coli lineages obtained from different sources distributed worldwide. MDR bacteria carrying MRGs and ABGs have emerged as a global human and environmental health problem. Detection of widespread high-risk clones calls for attention to the dissemination of fluoroquinolone-resistant QnrS1- and CTX-M-producing E. coli lineages associated with human infections in public aquatic environments.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café s/n, Monte Alegre, Ribeirão Preto - SP, 14040-903, Brazil
| | | | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café s/n, Monte Alegre, Ribeirão Preto - SP, 14040-903, Brazil.
| |
Collapse
|
13
|
Use of a cohorting-unit and systematic surveillance cultures to control a Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae outbreak. Infect Control Hosp Epidemiol 2019; 40:767-773. [PMID: 31084655 DOI: 10.1017/ice.2019.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Describe the epidemiological and molecular characteristics of an outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing organisms and the novel use of a cohorting unit for its control. DESIGN Observational study. SETTING A 566-room academic teaching facility in Milwaukee, Wisconsin. PATIENTS Solid-organ transplant recipients. METHODS Infection control bundles were used throughout the time of observation. All KPC cases were intermittently housed in a cohorting unit with dedicated nurses and nursing aids. The rooms used in the cohorting unit had anterooms where clean supplies and linens were placed. Spread of KPC-producing organisms was determined using rectal surveillance cultures on admission and weekly thereafter among all consecutive patients admitted to the involved units. KPC-positive strains underwent pulsed-field gel electrophoresis and whole-genome sequencing. RESULTS A total of 8 KPC cases (5 identified by surveillance) were identified from April 2016 to April 2017. After the index patient, 3 patients acquired KPC-producing organisms despite implementation of an infection control bundle. This prompted the use of a cohorting unit, which immediately halted transmission, and the single remaining KPC case was transferred out of the cohorting unit. However, additional KPC cases were identified within 2 months. Once the cohorting unit was reopened, no additional KPC cases occurred. The KPC-positive species identified during this outbreak included Klebsiella pneumoniae, Enterobacter cloacae complex, and Escherichia coli. blaKPC was identified on at least 2 plasmid backbones. CONCLUSIONS A complex KPC outbreak involving both clonal and plasmid-mediated dissemination was controlled using weekly surveillances and a cohorting unit.
Collapse
|
14
|
Papagiannitsis CC, Bitar I, Malli E, Tsilipounidaki K, Hrabak J, Petinaki E. IncC bla KPC-2-positive plasmid characterised from ST648 Escherichia coli. J Glob Antimicrob Resist 2019; 19:73-77. [PMID: 31077860 DOI: 10.1016/j.jgar.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES This study describes the characterisation of type 2 IncC plasmids pC-Ec20-KPC and pC-Ec2-KPC, carrying theblaKPC-2 gene, from two multiresistant Escherichia coli recovered in University Hospital of Larissa (Greece) in 2018. METHODS E. coli strains Ec-2Lar and Ec-20Lar were recovered from rectal swabs of two patients during monthly surveillance cultures. Transfer experiments by conjugation were carried out using rifampicin-resistant E. coli A15 laboratory strain as recipient. blaKPC-carrying plasmids were characterised by S1 profiling. Isolates were typed by MLST. Whole-genome sequencing was performed using the Sequel platform. RESULTS Both E. coli isolates, belonging to ST648, transferred blaKPC-2 to E. coli A15 by conjugation. Plasmid analysis revealed that the transconjugants harboured blaKPC-positive plasmids of different sizes. Analysis of plasmid sequences showed that in both isolates the blaKPC-2 gene was carried on a type 2 IncC plasmid (pC-Ec20-KPC and pC-Ec2-KPC, respectively). Both plasmids carried the ARI-B resistance island consisting of several resistance genes, intact and truncated copies of several mobile elements, and a 25 571-bp segment harbouring coding sequences for an iron transporter. The blaKPC-2 gene was part of transposon Tn4401a, which was bounded by 5-bp direct repeats (TCCTT) suggesting its transposition into the IncC plasmids. CONCLUSION To our knowledge, this is the first report on complete nucleotide sequences of type 2 IncC plasmids. These findings, which hypothesise the acquisition of KPC-2-encoding transposon Tn4401a by an IncC replicon, indicate the ongoing need for molecular surveillance studies of multidrug-resistant pathogens. In addition, they underline the increasing clinical importance of the IncC plasmid family.
Collapse
Affiliation(s)
| | - Ibrahim Bitar
- Biomedical Center, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Plzen, Czech Republic
| | - Ergina Malli
- Department of Microbiology, University Hospital of Larissa, Larissa, Greece
| | | | - Jaroslav Hrabak
- Biomedical Center, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Plzen, Czech Republic
| | - Efthimia Petinaki
- Department of Microbiology, University Hospital of Larissa, Larissa, Greece.
| |
Collapse
|
15
|
Characterization of Antimicrobial Resistance in Serratia spp. and Citrobacter spp. Isolates from Companion Animals in Japan: Nosocomial Dissemination of Extended-Spectrum Cephalosporin-Resistant Citrobacter freundii. Microorganisms 2019; 7:microorganisms7030064. [PMID: 30823419 PMCID: PMC6462910 DOI: 10.3390/microorganisms7030064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/28/2023] Open
Abstract
In many countries including Japan, the status of emerging antimicrobial resistance among Serratia spp. and Citrobacter spp. in companion animals remains unknown because these genera are rarely isolated from animals. In this study, 30 Serratia spp. and 23 Citrobacter spp. isolates from companion animals underwent susceptibility testing for 10 antimicrobials. Phenotypic and genetic approaches were used to identify the mechanisms of extended-spectrum cephalosporins (ESC). Subsequently, ESC-resistant Citrobacter spp. strains underwent multilocus sequence typing and pulsed-field gel electrophoresis (PFGE). A significantly higher rate (34.8%) of ESC resistance was observed in Citrobacter spp. isolates than in Serratia spp. isolates (0%). ESC resistance was detected in five C. freundii strains, two C. portucalensis strains, and one C. koseri strain. All of the ESC-resistant Citrobacter spp. strains harbored CMY-type and/or DHA-type AmpC β-lactamases. Three C. freundii strains harbored the CTX-M-3-type extended-spectrum β-lactamases. Notably, the three blaCTX-3-producing and two blaCMY-117-bearing C. freundii strains (obtained from different patients in one hospital) had the same sequence type (ST156 and ST18, respectively) and similar PFGE profiles. We believe that ESC-resistant Citrobacter spp. are important nosocomial pathogens in veterinary medicine. Therefore, infection control in animal hospitals is essential to prevent dissemination of these resistant pathogens.
Collapse
|
16
|
Schweizer C, Bischoff P, Bender J, Kola A, Gastmeier P, Hummel M, Klefisch FR, Schoenrath F, Frühauf A, Pfeifer Y. Plasmid-Mediated Transmission of KPC-2 Carbapenemase in Enterobacteriaceae in Critically Ill Patients. Front Microbiol 2019; 10:276. [PMID: 30837980 PMCID: PMC6390000 DOI: 10.3389/fmicb.2019.00276] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/01/2019] [Indexed: 11/25/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) cause health care-associated infections worldwide, and they are of severe concern due to limited treatment options. We report an outbreak of KPC-2-producing CRE that was caused by horizontal transmission of a promiscuous plasmid across different genera of bacteria and hospitals in Germany. Eleven isolates (8 Citrobacter freundii, 2 Klebsiella oxytoca, and 1 Escherichia coli) were obtained from seven critically ill patients during the six months of the outbreak in 2016. One patient developed a CRE infection while the other six patients were CRE-colonized. Three patients died in the course of the hospital stay. Six of the seven patients carried the same C. freundii clone; one K. oxytoca clone was found in two patients, and one patient carried E. coli and C. freundii. Molecular analysis confirmed the presence of a conjugative, blaKPC-2-carrying 70 kb-IncN plasmid in C. freundii and E. coli and an 80 kb-IncN plasmid in K. oxytoca. All transconjugants harbored either the 70 or 80 kb plasmid with blaKPC-2, embedded within transposon variant Tn4401g. Whole genome sequencing and downstream bioinformatics analyses of all plasmid sequences showed an almost perfect match when compared to a blaKPC-2-carrying plasmid of a large outbreak in another German hospital two years earlier. Differences in plasmid sizes and open reading frames point to the presence of inserted mobile genetic elements. There are few outbreak reports worldwide on the transmission of blaKPC-2-carrying plasmids across different bacterial genera. Our data suggest a regional and supraregional spread of blaKPC-2-carrying IncN-plasmids harboring the Tn4401g isoform in Germany.
Collapse
Affiliation(s)
- Christian Schweizer
- Department of Infection Control/Internal Medicine, Paulinenkrankenhaus, Berlin, Germany.,Department of Infection Control, German Heart Center Berlin, Berlin, Germany
| | - Peter Bischoff
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jennifer Bender
- Robert Koch Institute, FG13 Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Axel Kola
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Petra Gastmeier
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Manfred Hummel
- Department of Infection Control/Internal Medicine, Paulinenkrankenhaus, Berlin, Germany
| | - Frank-Rainer Klefisch
- Department of Infection Control/Internal Medicine, Paulinenkrankenhaus, Berlin, Germany
| | - Felix Schoenrath
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,Partner Site Berlin, DZHK: German Centre for Cardiovascular Research, Berlin, Germany
| | - Andre Frühauf
- Robert Koch Institute, FG13 Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Yvonne Pfeifer
- Robert Koch Institute, FG13 Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| |
Collapse
|