1
|
Cao L, Van de Walle D, Hirmz H, Wynendaele E, Dewettinck K, Parakhonskiy BV, Skirtach AG. Food-based biomaterials: pH-responsive alginate/gellan gum/carboxymethyl cellulose hydrogel beads for lactoferrin delivery. BIOMATERIALS ADVANCES 2024; 165:213999. [PMID: 39213959 DOI: 10.1016/j.bioadv.2024.213999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/15/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The present study utilizes a combination of sodium alginate (Alg), gellan gum (GG), and sodium carboxymethyl cellulose (CMC) to fabricate a ternary composite hydrogel system to encapsulate and release lactoferrin (LF). Rheological properties as well as extensive microscopy and spectroscopy characterization are performed on these materials demonstrating that the physical properties of the resultant hydrogels, such as particle size, water content, gray value, and shrinkage rate were related to the concentration of Alg. In addition, most of these hydrogels were found to have reticulated shells and inner laminar structures assembled based on hydrogen bonding and electrostatic forces. Furthermore, the encapsulation efficiency of LF in hydrogels ranged from 78.3 ± 0.3 to 83.5 ± 0.2 %. Notably, a small amount of encapsulated LF was released from the hydrogel beads in an acid environment (up to 2.2 ± 0.3 % in 2 h), while a controlled release manner was found to take place in an alkaline environment. This phenomenon indicated the potential of these hydrogels as promising matrices for bioactive compound loading and adsorption. The release mechanism varied from Alg concentration suggesting the tunable and versatile properties of this ternary composite hydrogel system. Our findings identify the potential of Alg-GG-CMC hydrogel as a delivery system suitable for various applications in the food industry.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Davy Van de Walle
- Food Structure and Function Laboratory, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Hannah Hirmz
- Drug Quality & Registration, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality & Registration, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Koen Dewettinck
- Food Structure and Function Laboratory, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Ferreira RLPS, Nova BGV, Carmo MS, Abreu AG. Mechanisms of action of Lactobacillus spp. in the treatment of oral candidiasis. BRAZ J BIOL 2024; 84:e282609. [PMID: 39319927 DOI: 10.1590/1519-6984.282609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/16/2024] [Indexed: 09/26/2024] Open
Abstract
Candida albicans is often associated with oral candidiasis, and drug-resistance profiles have contributed to an increase in morbidity and mortality. It is known that Lactobacillus spp. acts by competing for adhesion to the epithelium, absorption of nutrients and modulation of the human microbiota. Therefore, they are important to assist in the host's microbiological balance and reduce the growth of Candida spp. Until now, there have been no reports in the literature of reviews correlating to the use of Lactobacillus spp. in the treatment of oral candidiasis. Thus, this review aims to highlight the mechanisms of action of Lactobacillus spp. and methods that can be used in the treatment of oral candidiasis. This is a study carried out through the databases PubMed Central and Scientific Electronic Library Online, using the following keywords: Oral Candidiasis and Lactobacillus. Original articles about oral candidiasis were included, with both in vitro and in vivo analyses, and published from 2012 to 2022. Lactobacillus rhamnosus was the most common microorganism used in the experiments against Candida, acting mainly in the reduction of biofilm, filamentation, and competing for adhesion sites of Candida spp. Among in vivo studies, most researchers used immunosuppressed mouse modelsof Candida infection. The studies showed that Lactobacillus has a great potential as a probiotic, acting mainly in the prevention and treatment of mucosal diseases. Thus, the use of Lactobacillus may be a good strategy for the treatment of oral candidiasis.
Collapse
Affiliation(s)
- R L P S Ferreira
- Universidade Ceuma - UniCEUMA, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
- Universidade Federal do Maranhão - UFMA, Programa de Pós-graduação em Ciências da Saúde, São Luís, MA, Brasil
| | - B G V Nova
- Universidade Ceuma - UniCEUMA, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
| | - M S Carmo
- Universidade Ceuma - UniCEUMA, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
| | - A G Abreu
- Universidade Ceuma - UniCEUMA, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
- Universidade Federal do Maranhão - UFMA, Programa de Pós-graduação em Ciências da Saúde, São Luís, MA, Brasil
| |
Collapse
|
3
|
Yuan Y, Jiang X, Li W, Chang C, Wu J. A protectant for Lactobacillus rhamnosus based on whey protein isolate and isomalt: Stress resistance and underlying mechanisms. Int J Biol Macromol 2024; 280:135712. [PMID: 39288859 DOI: 10.1016/j.ijbiomac.2024.135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
Probiotics are exposed to a variety of abiotic and biotic stresses during food fermentation and production, such as acidity, heat, osmolality, and oxidation, which affect their metabolic activity and efficiency. Therefore, it is essential to develop new protective agents to maintain the activity and stability of probiotics. This study introduces a new protectant, spray-dried whey protein isolate (WPI) and isomaltose (ISO). We evaluated the effects of four WPI-ISO ratios (1:0, 2:1, 1:1, 1:2) on the physical properties, including moisture content, water activity (aw), wettability, and glass transition temperature. In addition, we evaluated the environmental tolerance of Lactobacillus rhamnosus to different WPI-ISO ratios under thermal, storage, and simulated gastrointestinal conditions. The results showed that the moisture content (< 7 %) and water activity (< 0.3) of the protectant and probiotic powders met storage stability requirements. The moisture content, water activity, wettability index (WI), and glass transition temperature decreased significantly with the addition of isomalt, thereby improving the pressure resistance of L. rhamnosus through the synergistic effect of WPI and ISO. The WPI-ISO protectant not only improved the environmental tolerance and wettability of probiotics by reducing the moisture content and water activity but also significantly improved the survival rate of L. rhamnosus under various stress conditions such as high temperature and gastrointestinal environment. L. rhamnosus maintains good activity with a viable bacterial count of over 9 lg CFU/g after 90 days of storage, demonstrating effective protection against the environment stress. This study provides a promising new strategy to improve the stability of probiotics in the food industry.
Collapse
Affiliation(s)
- Yanghua Yuan
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanbing Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Chang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Hubei, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Jine Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Hubei, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
4
|
Allkja J, Roudbary M, Alves AMV, Černáková L, Rodrigues CF. Biomaterials with antifungal strategies to fight oral infections. Crit Rev Biotechnol 2024; 44:1151-1163. [PMID: 37587010 DOI: 10.1080/07388551.2023.2236784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
Oral fungal infections pose a threat to human health and increase the economic burden of oral diseases by prolonging and complicating treatment. A cost-effective strategy is to try to prevent these infections from happening in the first place. With this purpose, biomaterials with antifungal properties are a crucial element to overcome fungal infections in the oral cavity. In this review, we go through different kinds of biomaterials and coatings that can be used to functionalize them. We also review their potential as a therapeutic approach in addition to prophylaxis, by going through traditional and alternative antifungal compounds, e.g., essential oils, that could be incorporated in them, to enhance their efficacy against fungal pathogens. We aim to highlight the potential of these technologies and propose questions that need to be addressed in prospective research. Finally, we intend to concatenate the key aspects and technologies on the use of biomaterials in oral health, to create an easy to find summary of the current state-of-the-art for researchers in the field.
Collapse
Affiliation(s)
- Jontana Allkja
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Oral Sciences Research Group, Glasgow Dental School, University of Glasgow, Glasgow, UK
| | - Maryam Roudbary
- Sydney Infectious Disease Institute, University of Sydney, Sydney, Australia
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Anelise Maria Vasconcelos Alves
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Célia Fortuna Rodrigues
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- 1H-TOXRUN - One Health Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário - CESPU, Gandra PRD, Portugal
| |
Collapse
|
5
|
Mahdizade Ari M, Mirkalantari S, Darban-Sarokhalil D, Darbandi A, Razavi S, Talebi M. Investigating the antimicrobial and anti-inflammatory effects of Lactobacillus and Bifidobacterium spp. on cariogenic and periodontitis pathogens. Front Microbiol 2024; 15:1383959. [PMID: 38881669 PMCID: PMC11177620 DOI: 10.3389/fmicb.2024.1383959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background The use of probiotics is emerging as an innovative approach to managing oral health issues and mediating the immune system. The current study assessed the in vitro impacts of non-orally isolated probiotics on periodontitis and tooth decay pathogens. Methods Briefly, the persistence of probiotics in exposure to oral cavity enzymes, hydrogen peroxide, and saliva samples was examined. It was also investigated the biofilm formation and aggregation ability of probiotics, the adherence of probiotics in human gingival fibroblast cell (HGFC) lines and molar teeth samples, and the potential of probiotics to co-aggregate with oral pathogens. Additionally, the current study evaluated the effects of live probiotics on virulence gene expression, biofilm production of main oral pathogens, and changes in inflammation markers. Results The probiotics remained alive when exposed to enzymes in the oral cavity, hydrogen peroxide, and saliva at baseline, 1, 3, and 5 h after incubation at 37°C (p-value <0.05). Probiotics demonstrated to produce biofilm and aggregation, as well as adherence to HGFCs and maxillary molars (p-value >0.05). They showed significant co-aggregation with oral pathogens, which were recorded as 65.57% for B. bifidum 1001 with S. mutans, 50.06% for B. bifidum 1005 with P. gingivalis, 35.6% for L. plantarum 156 with F. nucleatum, and 18.7% for B. longum 1044 with A. actinomycetemcomitans after 8 h of incubation. A balance between pro-inflammatory and anti-inflammatory cytokines, along with inhibition of biofilm formation and changes in virulence gene transcripts, were observed. However, most of these changes were not statistically significant (p-value >0.05). Conclusion This study demonstrated the direct link between adhesiveness, aggregation, and biofilm formation with probiotic antibacterial activity. In addition to the careful selection of suitable probiotic strains, the concentration and origin of probiotic isolates should be considered.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Nezamdoost-Sani N, Khaledabad MA, Amiri S, Phimolsiripol Y, Mousavi Khaneghah A. A comprehensive review on the utilization of biopolymer hydrogels to encapsulate and protect probiotics in foods. Int J Biol Macromol 2024; 254:127907. [PMID: 37935287 DOI: 10.1016/j.ijbiomac.2023.127907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Probiotics must survive in foods and passage through the human mouth, stomach, and small intestine to reach the colon in a viable state and exhibit their beneficial health effects. Probiotic viability can be improved by encapsulating them inside hydrogel-based delivery systems. These systems typically comprise a 3D network of cross-linked polymers that retain large amounts of water within their pores. This study discussed the stability of probiotics and morphology of hydrogel beads after encapsulation, encapsulation efficiency, utilization of natural polymers, and encapsulation mechanisms. Examples of the application of these hydrogel-based delivery systems are then given. These studies show that encapsulation of probiotics in hydrogels can improve their viability, provide favorable conditions in the food matrix, and control their release for efficient colonization in the large intestine. Finally, we highlight areas where future research is required, such as the large-scale production of encapsulated probiotics and the in vivo testing of their efficacy using animal and human studies.
Collapse
Affiliation(s)
- Narmin Nezamdoost-Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | | | - Amin Mousavi Khaneghah
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Fruit and Vegetable Product Technology, Warsaw, Poland.
| |
Collapse
|
7
|
Emadzadeh B, Naji-Tabasi S, Bostan A, Ghorani B. An insight into Iranian natural hydrocolloids: Applications and challenges in health-promoting foods. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
9
|
Amiri S, Nezamdoost-Sani N, Mostashari P, McClements DJ, Marszałek K, Mousavi Khaneghah A. Effect of the molecular structure and mechanical properties of plant-based hydrogels in food systems to deliver probiotics: an updated review. Crit Rev Food Sci Nutr 2022; 64:2130-2156. [PMID: 36121429 DOI: 10.1080/10408398.2022.2121260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Probiotic products' economic value and market popularity have grown over time as more people discover their health advantages and adopt healthier lifestyles. There is a significant societal and cultural interest in these products known as foods or medicines. Products containing probiotics that claim to provide health advantages must maintain a "minimum therapeutic" level (107-106 CFU/g) of bacteria during their entire shelf lives. Since probiotic bacteria are susceptible to degradation and reduction by physical and chemical conditions (including acidity, natural antimicrobial agents, nutrient contents, redox potential, temperature, water activity, the existence of other bacteria, and sensitivity to metabolites), the most challenging problem for a food manufacturer is ensuring probiotic cells' survival and stability enhancement throughout the manufacturing stage. Currently, the use of plant-based hydrogels for improved and targeted probiotic delivery has gained substantial attention as a potential approach to overcoming the mentioned restrictions. To achieve the best possible results from hydrogels, whether used as a coating for encapsulated probiotics (with the goal of stomach protection) or as carriers for direct encapsulation of live microorganisms should be applied kind of procedures that ensure high bacterial survival during hydrogels application. This paper summarizes polysaccharides, proteins, and lipid-based hydrogels as carriers of encapsulated probiotics in delivery systems, reviews their structures, analyzes their advantages and disadvantages, studies their mechanical characteristics, and draws comparisons between them. The discussion then turns to how the criterion affects encapsulation, applications, and future possibilities.
Collapse
Affiliation(s)
- Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Narmin Nezamdoost-Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Parisa Mostashari
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
| |
Collapse
|
10
|
Dev MJ, Warke RG, Warke GM, Mahajan GB, Patil TA, Singhal RS. Advances in fermentative production, purification, characterization and applications of gellan gum. BIORESOURCE TECHNOLOGY 2022; 359:127498. [PMID: 35724911 DOI: 10.1016/j.biortech.2022.127498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Multiple microbial exopolysaccharides have been reported in recent decade with their structural and functional features. Gellan gum (GG) is among these emerging biopolymers with versatile properties. Low production yield, high downstream cost, and abundant market demand have made GG a high cost material. Hence, an understanding on the various possibilities to develop cost-effective gellan gum bioprocess is desirable. This review focuses on details of upstream and downstream process of GG from an industrial perspective. It emphasizes on GG producing Sphingomonas spp., updates on biosynthesis, strain and media engineering, kinetic modeling, bioreactor design and scale-up considerations. Details of the downstream operations with possible modifications to make it cost-effective and environmentally sustainable have been discussed. The updated regulatory criteria for GG as a food ingredient and analytical tools required to validate the same have been briefly discussed. Derivatives of GG and their applications in various industrial segments have also been highlighted.
Collapse
Affiliation(s)
- Manoj J Dev
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Rahul G Warke
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Gangadhar M Warke
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Girish B Mahajan
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Tanuja A Patil
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
11
|
Higa B, Cintra BS, Álvarez CM, Ribeiro AB, Ferreira JC, Tavares DC, Enriquez V, Martinez LR, Pires RH. Ozonated oil is effective at killing Candida species and Streptococcus mutans biofilm-derived cells under aerobic and microaerobic conditions. Med Mycol 2022; 60:myac055. [PMID: 35869980 PMCID: PMC9359064 DOI: 10.1093/mmy/myac055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 07/25/2023] Open
Abstract
This study explores the growth of bacterial, fungal, and interkingdom biofilms under aerobiosis or microaerobic conditions and the effect of ozonated sunflower oil on these biofilms. Candida species and Streptococcus mutans were used to study this interaction due to their importance in oral health and disease as these microorganisms display a synergistic relationship that manifests in the onset of caries and tooth decay. Biofilms were developed in a 96-well microtiter plate at 37ºC for 24 h, under aerobiosis or microaerobic conditions, and treated with ozonated oil for 5 to 120 min. All the microorganisms formed biofilms in both oxygenation conditions. Scanning electron microscopy was used to visualize biofilm morphology. Rodent experiments were performed to verify the oil-related toxicity and its efficacy in oral candidiasis. The growth of all Candida species was increased when co-cultured with S. mutans, whilst the growth of bacterium was greater only when co-cultured with C. krusei and C. orthopsilosis under aerobiosis and microaerobic conditions, respectively. Regardless of the oxygenation condition, ozonated oil significantly reduced the viability of all the tested biofilms and infected mice, showing remarkable microbicidal activity as corroborated with confocal microscopy and minimal toxicity. Thus, ozonated oil therapy can be explored as a strategy to control diseases associated with these biofilms especially in the oral cavity. LAY SUMMARY We demonstrated that ozonated sunflower oil is effective at killing the biofilms formed by Candida species, by the bacterium Streptococcus mutans, or by both micoorganisms that can interact in the oral cavity, making it a potential therapeutic option for the treatment of these infections.
Collapse
Affiliation(s)
- Barbara Higa
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo 14.404-600, Brazil
| | - Bianca Souza Cintra
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo 14.404-600, Brazil
- Postgraduate Program in Animal Science, Universidade de Franca, Franca, São Paulo 14.404-600, Brazil
| | - Carmen Magaly Álvarez
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo 14.404-600, Brazil
- Faculty of Veterinary Medicine and Zootechnics, Universidad Agraria del Ecuador, Guayaquil 090101, Ecuador
| | | | - Jair Camargo Ferreira
- Postgraduate Program in Animal Science, Universidade de Franca, Franca, São Paulo 14.404-600, Brazil
| | | | - Vanessa Enriquez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | - Luis R Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
- Emerging Pathogens Institute, Center for Immunology and Transplantation, and Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida 32610, USA
| | - Regina Helena Pires
- To whom correspondence should be addressed. Dr. Regina Helena Pires, Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, 201 Dr. Armando Salles Oliveira Ave, Franca, SP, 14.404-600, Brazil. Tel.: +55-16-3711-8945; E-mail:
| |
Collapse
|
12
|
Molecular Mapping of Antifungal Mechanisms Accessing Biomaterials and New Agents to Target Oral Candidiasis. Int J Mol Sci 2022; 23:ijms23147520. [PMID: 35886869 PMCID: PMC9320712 DOI: 10.3390/ijms23147520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Oral candidiasis has a high rate of development, especially in immunocompromised patients. Immunosuppressive and cytotoxic therapies in hospitalized HIV and cancer patients are known to induce the poor management of adverse reactions, where local and systemic candidiasis become highly resistant to conventional antifungal therapy. The development of oral candidiasis is triggered by several mechanisms that determine oral epithelium imbalances, resulting in poor local defense and a delayed immune system response. As a result, pathogenic fungi colonies disseminate and form resistant biofilms, promoting serious challenges in initiating a proper therapeutic protocol. Hence, this study of the literature aimed to discuss possibilities and new trends through antifungal therapy for buccal drug administration. A large number of studies explored the antifungal activity of new agents or synergic components that may enhance the effect of classic drugs. It was of significant interest to find connections between smart biomaterials and their activity, to find molecular responses and mechanisms that can conquer the multidrug resistance of fungi strains, and to transpose them into a molecular map. Overall, attention is focused on the nanocolloids domain, nanoparticles, nanocomposite synthesis, and the design of polymeric platforms to satisfy sustained antifungal activity and high biocompatibility with the oral mucosa.
Collapse
|
13
|
Muninathan C, Poompozhilan M, Guruchandran S, Viswanath Kalyan AJ, Ganesan ND. Novel freeze-drying matrix for enhancing viability of probiotic supplemented milkshake during simulated in vitro digestion. Prep Biochem Biotechnol 2021; 52:903-912. [PMID: 34873974 DOI: 10.1080/10826068.2021.2004549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Probiotics are recognized as essential components to improve health and regulate immune functions. Despite several probiotic formulations, the anticipation for non-fermented probiotic foods is noticeable. The objective of the study was to investigate and develop a stable freeze-dried synbiotic formula that can serve the purpose of a probiotic enricher as well as a thickener in an instant milk-based beverage. The freeze-dried synbiotic formula was assessed for the protective effect of whey protein-polysaccharides for retaining high cell viability during freeze-drying and subsequent storage. Highest survival rates were obtained for WP-15%I (85.90%), WP-15%P (85.43%), and WP-0.6%X (80.23%) combinations. During storage at 4 °C for 75 d, a lower specific rate of cell inactivation was found for WP-0.4%X (-0.0184 day-1), WP-5%P (-0.0197 day-1) and WP-5%I (-0.023 day-1). Subsequent ingestion of synbiotic portions in the gastro-intestinal digestion simulator was studied in two ways to enumerate the retaining cell viability and understanding the importance of co-ingested food. Synbiotic portions reconstituted in milk showed higher probiotic survival through gastrointestinal digestion than water demonstrating the significance of supporting food matrix for improving the survival and efficiency of probiotics.
Collapse
|
14
|
de Barros PP, Rossoni RD, Garcia MT, Kaminski VDL, Loures FV, Fuchs BB, Mylonakis E, Junqueira JC. The Anti-Biofilm Efficacy of Caffeic Acid Phenethyl Ester (CAPE) In Vitro and a Murine Model of Oral Candidiasis. Front Cell Infect Microbiol 2021; 11:700305. [PMID: 34408988 PMCID: PMC8366685 DOI: 10.3389/fcimb.2021.700305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is the main fungal species associated with the development of oral candidiasis. Currently, therapeutic options for these infections are limited by the adverse effects of antifungal drugs and by the emergence of drug resistant strains. Thus, the development of new antifungal agents is needed for the prevention and treatment of oral Candida infections. Caffeic acid phenethyl ester (CAPE) is a natural compound from propolis polyphenolic groups that exhibits many pharmacological properties. In this study, we investigated whether CAPE can have antifungal and immunomodulatory effects on oral candidiasis. Preliminary tests to assess the antifungal activity of CAPE were performed using the Minimum Inhibitory Concentration (MIC) assay that demonstrated inhibition in a range from 16 to 32 μg/mL, confirming its antifungal activity on several C. albicans strains isolated from the oral cavity. Subsequently, we analyzed Candida spp biofilms formed in vitro, in which CAPE treatment at 5 x MIC caused a reduction of 68.5% in the total biomass and ~2.60 Log in the viable cell count (CFU/mL) in relation to the untreated biofilm (p<0.0001). Next, RNA was extracted from untreated and CAPE-treated biofilms and analyzed by real-time qPCR. A series of genes analyzed (ALS1, ECE1, EPA1, HWP1, YWP1, BCR1, BGR1, CPH1, EFG1, NDT80, ROB1, TEC1, UME6, SAP2, SAP5, PBL2, and LIP9) were downregulated by CAPE compared to the untreated control group (p<0.0001). In in vivo studies using Galleria mellonella, the treatment with CAPE prolonged survival of larvae infected by C. albicans by 44.5% (p < 0.05) and accompanied by a 2.07-fold increase in the number of hemocytes. Flow cytometry revealed the most prominent increases were in types P2 and P3 hemocytes, granular cells, which phagocytize pathogens. In addition, CAPE treatment decreased the fungal load in the hemolymph and stimulated the expression of antifungal peptide genes such as galiomicin and gallerimycin. The antifungal and immunomodulatory activities observed in G. mellonella were extended to a murine model of oral candidiasis, in which CAPE decreased the levels of C. albicans colonization (~2 log CFU/mL) in relation to the untreated control group. In addition, CAPE treatment significantly reduced pseudomembranous lesions, invasion of hyphae on epithelium surfaces, tissue damage and inflammatory infiltrate (p < 0.05). CAPE was also able to increase the expression of β-defensin 3 compared to the infected and untreated group by 3.91-fold (p < 0.0001). Taken together, these results show that CAPE has both antifungal and immunomodulatory effects, making it a promising natural antifungal agent for the treatment and prevention of candidiasis and shows impact to oral candidiasis.
Collapse
Affiliation(s)
- Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil.,Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte (UFRN), Caico, Brazil
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Valéria de Lima Kaminski
- Applied Immunology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| | - Flávio Vieira Loures
- Applied Immunology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| |
Collapse
|
15
|
Ito R, Mine Y, Yumisashi Y, Yoshioka R, Hamaoka M, Taji T, Murayama T, Nikawa H. In Vivo Efficacy of Lacticaseibacillus rhamnosus L8020 in a Mouse Model of Oral Candidiasis. J Fungi (Basel) 2021; 7:jof7050322. [PMID: 33919079 PMCID: PMC8143095 DOI: 10.3390/jof7050322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Oral candidiasis presents with multiple clinical manifestations. Among known pathogenic Candida species, Candida albicans is the most virulent and acts as the main causative fungus of oral candidiasis. Novel treatment modalities are needed because of emergent drug resistance and frequent candidiasis recurrence. Here, we evaluated the ability of Lacticaseibacillus rhamnosus L8020, isolated from healthy and caries-free volunteers, to prevent against the onset of oral candidiasis in a mouse model. Mice were infected with C. albicans, in the presence or absence of L. rhamnosus L8020. The mice were treated with antibiotics and corticosteroid to disrupt the oral microbiota and induce immunosuppression. We demonstrated that oral consumption of L. rhamnosus L8020 by C. albicans-infected mice abolished the pseudomembranous region of the mouse tongue; it also suppressed changes in the expression levels of pattern recognition receptor and chemokine genes. Our results suggest that L. rhamnosus L8020 has protective or therapeutic potential against oral candidiasis, which supports the potential use of this probiotic strain for oral health management.
Collapse
Affiliation(s)
- Rei Ito
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.I.); (Y.Y.); (M.H.); (T.T.); (H.N.)
| | - Yuichi Mine
- Department of Medical System Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.Y.); (T.M.)
- Correspondence: ; Tel.: +81-82-257-5446
| | - Yoshie Yumisashi
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.I.); (Y.Y.); (M.H.); (T.T.); (H.N.)
| | - Reina Yoshioka
- Department of Medical System Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.Y.); (T.M.)
| | - Misa Hamaoka
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.I.); (Y.Y.); (M.H.); (T.T.); (H.N.)
| | - Tsuyoshi Taji
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.I.); (Y.Y.); (M.H.); (T.T.); (H.N.)
| | - Takeshi Murayama
- Department of Medical System Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.Y.); (T.M.)
| | - Hiroki Nikawa
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.I.); (Y.Y.); (M.H.); (T.T.); (H.N.)
| |
Collapse
|
16
|
de Alvarenga JA, de Barros PP, de Camargo Ribeiro F, Rossoni RD, Garcia MT, Dos Santos Velloso M, Shukla S, Fuchs BB, Shukla A, Mylonakis E, Junqueira JC. Probiotic Effects of Lactobacillus paracasei 28.4 to Inhibit Streptococcus mutans in a Gellan-Based Formulation. Probiotics Antimicrob Proteins 2020; 13:506-517. [PMID: 32980974 DOI: 10.1007/s12602-020-09712-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2020] [Indexed: 12/21/2022]
Abstract
Streptococcus mutans is considered to be a major bacterium involved in dental caries, and the control of virulence mechanisms is fundamental to prevent disease. Probiotics present a promising preventive method; however, the use of probiotics requires its incorporation into delivery materials to facilitate oral colonization. Thus, we performed a comprehensive study examining preventive effects of Lactobacillus paracasei 28.4-enriched gellan hydrogel materials to inhibit S. mutans in planktonic and biofilm states, addressing its influence in the production of extracellular polysaccharides (EPS) and altered gene expression of several cariogenic virulence factors. L. paracasei 28.4, a strain isolated from the oral cavity of a caries-free individual, was incorporated in three gellan hydrogels (0.5%, 0.75%, and 1% w/v). The pretreatment with probiotic-gellan formulations provided a release of L. paracasei cells over 24 h that was sufficient to inhibit the planktonic growth of S. mutans, independent of the gellan concentrations and pH variations. This pretreatment also had inhibitory activity against S. mutans biofilms, exhibiting a reduction of 0.57 to 1.54 log10 in CFU/mL (p < 0.0001) and a decrease of 68.8 to 71.3% in total biomass (p < 0.0001) compared with the control group. These inhibitory effects were associated with the decreased production of EPS by 80% (p < 0.0001) and the downregulation of luxS, brpA, gbpB, and gtfB genes. The gellan formulation containing L. paracasei 28.4 exhibited probiotic effects for preventing S. mutans growth, biofilm formation, and production of cariogenic factors to suggest possible use in tooth decay prevention.
Collapse
Affiliation(s)
- Janaína Araújo de Alvarenga
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Marisol Dos Santos Velloso
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Shashank Shukla
- School of Engineering, Brown University, Providence, RI, USA
| | - Beth Burgwyn Fuchs
- Rhode Island Hospital, Alpert Medical School & Brown University, Providence, RI, USA
| | - Anita Shukla
- School of Engineering, Brown University, Providence, RI, USA
| | - Eleftherios Mylonakis
- Rhode Island Hospital, Alpert Medical School & Brown University, Providence, RI, USA
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| |
Collapse
|
17
|
Rossoni RD, de Barros PP, Mendonça IDC, Medina RP, Silva DHS, Fuchs BB, Junqueira JC, Mylonakis E. The Postbiotic Activity of Lactobacillus paracasei 28.4 Against Candida auris. Front Cell Infect Microbiol 2020; 10:397. [PMID: 32850495 PMCID: PMC7417517 DOI: 10.3389/fcimb.2020.00397] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Candida auris has emerged as a medically important pathogen with considerable resistance to antifungal agents. The ability to produce biofilms is an important pathogenicity feature of this species that aids escape of host immune responses and antimicrobial agents. The objective of this study was to verify antifungal action using in vitro and in vivo models of the Lactobacillus paracasei 28.4 probiotic cells and postbiotic activity of crude extract (LPCE) and fraction 1 (LPF1), derived from L. paracasei 28.4 supernatant. Both live cells and cells free supernatant of L. paracasei 28.4 inhibited C. auris suggesting probiotic and postbiotic effects. The minimum inhibitory concentration (MIC) for LPCE was 15 mg/mL and ranges from 3.75 to 7.5 mg/mL for LPF1. Killing kinetics determined that after 24 h treatment with LPCE or LPF1 there was a complete reduction of viable C. auris cells compared to fluconazole, which decreased the initial inoculum by 1-logCFU during the same time period. LPCE and LPF1 significantly reduced the biomass (p = 0.0001) and the metabolic activity (p = 0.0001) of C. auris biofilm. There was also a total reduction (~108 CFU/mL) in viability of persister C. auris cells after treatment with postbiotic elements (p < 0.0001). In an in vivo study, injection of LPCE and LPF1 into G. mellonella larvae infected with C. auris prolonged survival of these insects compared to a control group (p < 0.05) and elicited immune responses by increasing the number of circulating hemocytes and gene expression of antimicrobial peptide galiomicin. We concluded that the L. paracasei 28.4 cells and postbiotic elements (LPCE and LPF1) have antifungal activity against planktonic cells, biofilms, and persister cells of C. auris. Postbiotic supplementation derived from L. paracasei 28.4 protected G. mellonella infected with C. auris and enhanced its immune status indicating a dual function in modulating a host immune response.
Collapse
Affiliation(s)
- Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil.,Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil.,Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Iatã do Carmo Mendonça
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Rebeca Previate Medina
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Dulce Helena Siqueira Silva
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
18
|
Dos Santos JD, Fugisaki LRDO, Medina RP, Scorzoni L, Alves MDS, de Barros PP, Ribeiro FC, Fuchs BB, Mylonakis E, Silva DHS, Junqueira JC. Streptococcus mutans Secreted Products Inhibit Candida albicans Induced Oral Candidiasis. Front Microbiol 2020; 11:1605. [PMID: 32760375 PMCID: PMC7374982 DOI: 10.3389/fmicb.2020.01605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
In the oral cavity, Candida species form mixed biofilms with Streptococcus mutans, a pathogenic bacterium that can secrete quorum sensing molecules with antifungal activity. In this study, we extracted and fractioned culture filtrate of S. mutans, seeking antifungal agents capable of inhibiting the biofilms, filamentation, and candidiasis by Candida albicans. Active S. mutans UA159 supernatant filtrate components were extracted via liquid-liquid partition and fractionated on a C-18 silica column to resolve S. mutans fraction 1 (SM-F1) and fraction 2 (SM-F2). We found anti-biofilm activity for both SM-F1 and SM-F2 in a dose dependent manner and fungal growth was reduced by 2.59 and 5.98 log for SM-F1 and SM-F2, respectively. The SM-F1 and SM-F2 fractions were also capable of reducing C. albicans filamentation, however statistically significant differences were only observed for the SM-F2 (p = 0.004). SM-F2 efficacy to inhibit C. albicans was confirmed by its capacity to downregulate filamentation genes CPH1, EFG1, HWP1, and UME6. Using Galleria mellonella as an invertebrate infection model, therapeutic treatment with SM-F2 prolonged larvae survival. Examination of the antifungal capacity was extended to a murine model of oral candidiasis that exhibited a reduction in C. albicans colonization (CFU/mL) in the oral cavity when treated with SM-F1 (2.46 log) and SM-F2 (2.34 log) compared to the control (3.25 log). Although both SM-F1 and SM-F2 fractions decreased candidiasis in mice, only SM-F2 exhibited significant quantitative differences compared to the non-treated group for macroscopic lesions, hyphae invasion, tissue lesions, and inflammatory infiltrate. Taken together, these results indicate that the SM-F2 fraction contains antifungal components, providing a promising resource in the discovery of new inhibitors for oral candidiasis.
Collapse
Affiliation(s)
- Jéssica Diane Dos Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Rebeca Previate Medina
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Mariana de Sá Alves
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Felipe Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Dulce Helena Siqueira Silva
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| |
Collapse
|