1
|
Hoste ACR, Smeralda W, Cugnet A, Brostaux Y, Deleu M, Garigliany M, Jacques P. The structure of lipopeptides impacts their antiviral activity and mode of action against SARS-CoV-2 in vitro. Appl Environ Microbiol 2024:e0103624. [PMID: 39445780 DOI: 10.1128/aem.01036-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
Microbial lipopeptides are synthesized by nonribosomal peptide synthetases and are composed of a hydrophobic fatty acid chain and a hydrophilic peptide moiety. These structurally diverse amphiphilic molecules can interact with biological membranes and possess various biological activities, including antiviral properties. This study aimed to evaluate the cytotoxicity and antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 15 diverse lipopeptides to understand their structure-activity relationships. Non-ionic lipopeptides were generally more cytotoxic than charged ones, with cationic lipopeptides being less cytotoxic than anionic and non-ionic variants. At 100 µg/mL, six lipopeptides reduced SARS-CoV-2 RNA to undetectable levels in infected Vero E6 cells, while six others achieved a 2.5- to 4.1-log reduction, and three had no significant effect. Surfactin, white line-inducing principle (WLIP), fengycin, and caspofungin emerged as the most promising anti-SARS-CoV-2 agents. Detailed analysis revealed that these four lipopeptides affected various stages of the viral life cycle involving the viral envelope. Surfactin and WLIP significantly reduced viral RNA levels in replication assays, comparable to neutralizing serum. Surfactin uniquely inhibited viral budding, while fengycin impacted viral binding after pre-infection treatment of the cells. Caspofungin demonstrated a lower antiviral effect compared to the others. Key structural traits of lipopeptides influencing their cytotoxic and antiviral activities were identified. Lipopeptides with a high number of amino acids, especially charged (preferentially anionic) amino acids, showed potent anti-SARS-CoV-2 activity. This research paves the way for designing new lipopeptides with low cytotoxicity and high antiviral efficacy, potentially leading to effective treatments. IMPORTANCE This study advances our understanding of how lipopeptides, which are molecules mostly produced by bacteria, with both fat and protein components, can be used to fight viruses like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). By analyzing 15 different lipopeptides, researchers identified key structural features that make some of these molecules particularly effective at reducing viral levels while being less harmful to cells. Specifically, lipopeptides with certain charged amino acids were found to have the strongest antiviral effects. This research lays the groundwork for developing new antiviral treatments that are both potent against viruses and safe for human cells, offering hope for better therapeutic options in the future.
Collapse
Affiliation(s)
- Alexis C R Hoste
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Veterinary Pathology, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Willy Smeralda
- LBMI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Aurélien Cugnet
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yves Brostaux
- Applied Statistics, Computer Science and Modelling laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Magali Deleu
- LBMI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mutien Garigliany
- Veterinary Pathology, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Philippe Jacques
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
2
|
Pormohammad A, Firrincieli A, Salazar-Alemán DA, Mohammadi M, Hansen D, Cappelletti M, Zannoni D, Zarei M, Turner RJ. Insights into the Synergistic Antibacterial Activity of Silver Nitrate with Potassium Tellurite against Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0062823. [PMID: 37409940 PMCID: PMC10433965 DOI: 10.1128/spectrum.00628-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
The constant, ever-increasing antibiotic resistance crisis leads to the announcement of "urgent, novel antibiotics needed" by the World Health Organization. Our previous works showed a promising synergistic antibacterial activity of silver nitrate with potassium tellurite out of thousands of other metal/metalloid-based antibacterial combinations. The silver-tellurite combined treatment not only is more effective than common antibiotics but also prevents bacterial recovery, decreases the risk of future resistance chance, and decreases the effective concentrations. We demonstrate that the silver-tellurite combination is effective against clinical isolates. Further, this study was conducted to address knowledge gaps in the available data on the antibacterial mechanism of both silver and tellurite, as well as to give insight into how the mixture provides synergism as a combination. Here, we defined the differentially expressed gene profile of Pseudomonas aeruginosa under silver, tellurite, and silver-tellurite combination stress using an RNA sequencing approach to examine the global transcriptional changes in the challenged cultures grown in simulated wound fluid. The study was complemented with metabolomics and biochemistry assays. Both metal ions mainly affected four cellular processes, including sulfur homeostasis, reactive oxygen species response, energy pathways, and the bacterial cell membrane (for silver). Using a Caenorhabditis elegans animal model we showed silver-tellurite has reduced toxicity over individual metal/metalloid salts and provides increased antioxidant properties to the host. This work demonstrates that the addition of tellurite would improve the efficacy of silver in biomedical applications. IMPORTANCE Metals and/or metalloids could represent antimicrobial alternatives for industrial and clinical applications (e.g., surface coatings, livestock, and topical infection control) because of their great properties, such as good stability and long half-life. Silver is the most common antimicrobial metal, but resistance prevalence is high, and it can be toxic to the host above a certain concentration. We found that a silver-tellurite composition has antibacterial synergistic effect and that the combination is beneficial to the host. So, the efficacy and application of silver could increase by adding tellurite in the recommended concentration(s). We used different methods to evaluate the mechanism for how this combination can be so incredibly synergistic, leading to efficacy against antibiotic- and silver-resistant isolates. Our two main findings are that (i) both silver and tellurite mostly target the same pathways and (ii) the coapplication of silver with tellurite tends not to target new pathways but targets the same pathways with an amplified change.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- CCrest Laboratories, Inc., Montreal, Quebec, Canada
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo, Italy
| | - Daniel A. Salazar-Alemán
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Mohammadi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mohammad Zarei
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Ladjouzi R, Dussert E, Teiar R, Belguesmia Y, Drider D. A Review on Enterocin DD14, the Leaderless Two-Peptide Bacteriocin with Multiple Biological Functions and Unusual Transport Pathway. Antibiotics (Basel) 2023; 12:1188. [PMID: 37508284 PMCID: PMC10376788 DOI: 10.3390/antibiotics12071188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Enterocin DD14 (EntDD14) is a two-peptide leaderless bacteriocin (LLB) produced by Enterococcus faecalis 14, a human strain isolated from meconium. Studies performed on EntDD14 enabled it to show its activity against Gram-positive bacteria such as Listeria monocytogenes, Clostridium perfringens, Enterococcus faecalis, and Staphylococcus aureus. EntDD14 was also shown to potentiate the activity of different antibiotics such as erythromycin, kanamycin, and methicillin when assessed against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo in the NMRI-F holoxenic mouse model. Additionally, EntDD14 has an antiviral activity and decreased the secretion of pro-inflammatory IL-6 and IL-8 in inflamed human intestinal Caco-2 cells. The genome of E. faecalis 14 was sequenced and annotated. Molecular tools such as Bagel4 software enabled us to locate a 6.7kb-EntDD14 cluster. Transport of EntDD14 outside of the cytoplasm was shown to be performed synergistically by a channel composed of two pleckstrin-homology-domain-containing proteins, namely DdE/DdF and the ABC transporter DdGHIJ. This latter could also protect the bacteriocinogenic strain against extracellular EntDD14. Here, we focus on academic data and potential therapeutic issues of EntDD14, as a model of two-peptide LLB.
Collapse
Affiliation(s)
- Rabia Ladjouzi
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| | - Elodie Dussert
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| | - Radja Teiar
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| |
Collapse
|
4
|
Ghapanvari P, Taheri M, Jalilian FA, Dehbashi S, Dezfuli AAZ, Arabestani MR. The effect of nisin on the biofilm production, antimicrobial susceptibility and biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa. Eur J Med Res 2022; 27:173. [PMID: 36076252 PMCID: PMC9461124 DOI: 10.1186/s40001-022-00804-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives Staphylococcus aureus and Pseudomonas aeruginosa were the most common bacteria in nosocomial infections. Different bacteriocins are currently being studied as antibiotics or in conjunction with antibiotics as potential strategies to treat resistant infectious agents. The study aimed to determine nisin's effect on the biofilm production, antimicrobial susceptibility, and biofilm formation of S. aureus and P. aeruginosa. Materials and methods The experimental research tested two antibiotic-resistant isolates of S. aureus and P. aeruginosa strains. The experimental study tested two antibiotic-resistant isolates of S. aureus and P. aeruginosa strains. The MIC of bacteriocin nisin was determined using the micro broth dilution method, and crystal violet was used to assess the effect of bacteriocin on the biofilm. In addition, L929 cell culture was used to determine the effectiveness of bacteriocin on the isolate under similar cell conditions. Moreover, the MTT assay was used to and evaluate bacteriocin toxicity. In this study, the software Prism version 9 and Graph pad software were utilized. Results The results of this study reveal that the nisin has different activities at different doses and is considered dose-dependent. At various times and doses, nisin inhibits biofilm formation in S. aureus, and P. aeruginosa isolates. Nisin also showed a decreasing survival of the isolates. Antibiotic-resistant bacteria can be made more vulnerable by nisin. Furthermore, nisin treatment affected the production of virulence factors such as hemolysins in S. aureus and had little or a negative effect on P. aeruginosa virulence factors. This medication stops S. aureus and P. aeruginosa from growing and causes bacterial cell damage. Conclusions Antibacterial properties of nicin against S. aureus and P. aeruginosa were successfully studied. This bacteriocin stops S. aureus and P. aeruginosa from growing and causes bacterial cell damage or death. Damage to the membrane among the fundamental causes is reduced membrane potential and enzyme inactivation. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00804-x.
Collapse
Affiliation(s)
- Parnia Ghapanvari
- Microbiology department, Faculty of Medicine, Hamadan University of Medical Sciences, Pajoohesh junction, Hamadan, Iran
| | - Mohammad Taheri
- Microbiology department, Faculty of Medicine, Hamadan University of Medical Sciences, Pajoohesh junction, Hamadan, Iran
| | - Farid Aziz Jalilian
- Department of Virology, School of Medicine, University of Hamadan, Pajoohesh junction, Hamadan, Iran
| | - Sanaz Dehbashi
- Microbiology department, Faculty of Medicine, Hamadan University of Medical Sciences, Pajoohesh junction, Hamadan, Iran
| | - Aram Asareh Zadegan Dezfuli
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Microbiology department, Faculty of Medicine, Hamadan University of Medical Sciences, Pajoohesh junction, Hamadan, Iran. .,School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
High Level Expression and Purification of Cecropin-like Antimicrobial Peptides in Escherichia coli. Biomedicines 2022; 10:biomedicines10061351. [PMID: 35740373 PMCID: PMC9220022 DOI: 10.3390/biomedicines10061351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Cecropins are a family of antimicrobial peptides (AMPs) that are widely found in the innate immune system of Cecropia moths. Cecropins exhibit a broad spectrum of antimicrobial and anticancer activities. The structures of Cecropins are composed of 34–39 amino acids with an N-terminal amphipathic α-helix, an AGP hinge and a hydrophobic C-terminal α-helix. KR12AGPWR6 was designed based on the Cecropin-like structural feature. In addition to its antimicrobial activities, KR12AGPWR6 also possesses enhanced salt resistance, antiendotoxin and anticancer properties. Herein, we have developed a strategy to produce recombinant KR12AGPWR6 through a salt-sensitive, pH and temperature dependent intein self-cleavage system. The His6-Intein-KR12AGPWR6 was expressed by E. coli and KR12AGPWR6 was released by the self-cleavage of intein under optimized ionic strength, pH and temperature conditions. The molecular weight and structural feature of the recombinant KR12AGPWR6 was determined by MALDI-TOF mass, CD, and NMR spectroscopy. The recombinant KR12AGPWR6 exhibited similar antimicrobial activities compared to the chemically synthesized KR12AGPWR6. Our results provide a potential strategy to obtain large quantities of AMPs and this method is feasible and easy to scale up for commercial production.
Collapse
|
6
|
Hazime N, Belguesmia Y, Kempf I, Barras A, Drider D, Boukherroub R. Enhancing Colistin Activity against Colistin-Resistant Escherichia coli through Combination with Alginate Nanoparticles and Small Molecules. Pharmaceuticals (Basel) 2022; 15:ph15060682. [PMID: 35745601 PMCID: PMC9227550 DOI: 10.3390/ph15060682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Bacterial resistance to antibiotics has become a major public health problem worldwide, with the yearly number of deaths exceeding 700,000. To face this well-acknowledged threat, new molecules and therapeutic methods are considered. In this context, the application of nanotechnology to fight bacterial infection represents a viable approach and has experienced tremendous developments in the last decades. Escherichia coli (E. coli) is responsible for severe diarrhea, notably in the breeding sector, and especially in pig farming. The resulting infection (named colibacillosis) occurs in young piglets and could lead to important economic losses. Here, we report the design of several new formulations based on colistin loaded on alginate nanoparticles (Alg NPs) in the absence, but also in the presence, of small molecules, such as components of essential oils, polyamines, and lactic acid. These new formulations, which are made by concomitantly binding colistin and small molecules to Alg NPs, were successfully tested against E. coli 184, a strain resistant to colistin. When colistin was associated with Alg NPs, the minimal inhibition concentration (MIC) decreased from 8 to 1 µg/mL. It is notable that when menthol or lactic acid was co-loaded with colistin on Alg NPs, the MIC of colistin drastically decreased, reaching 0.31 or 0.62 µg/mL, respectively. These novel bactericidal formulations, whose innocuity towards eukaryotic HT-29 cells was established in vitro, are presumed to permeabilize the bacterial membrane and provoke the leakage of intracellular proteins. Our findings revealed the potentiating effect of the Alg NPs on colistin, but also of the small molecules mentioned above. Such ecological and economical formulations are easy to produce and could be proposed, after confirmation by in vivo and toxicology tests, as therapeutic strategies to replace fading antibiotics.
Collapse
Affiliation(s)
- Noura Hazime
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France; (N.H.); (A.B.)
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV-Institut Charles Viollette, 59000 Lille, France; (Y.B.); (D.D.)
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV-Institut Charles Viollette, 59000 Lille, France; (Y.B.); (D.D.)
| | - Isabelle Kempf
- Agence Nationale de Sécurité Sanitaire de L'Alimentation, de L'Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie Bactériologie Antibiorésistance, 22440 Ploufragan, France;
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France; (N.H.); (A.B.)
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV-Institut Charles Viollette, 59000 Lille, France; (Y.B.); (D.D.)
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France; (N.H.); (A.B.)
- Correspondence:
| |
Collapse
|
7
|
Ilangumaran Ponmalar I, Swain J, Basu JK. Escherichia coli response to subinhibitory concentrations of colistin: insights from a study of membrane dynamics and morphology. Biomater Sci 2022; 10:2609-2617. [PMID: 35411890 DOI: 10.1039/d2bm00037g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prevalence of widespread bacterial infections brings forth a critical need to understand the molecular mechanisms of the antibiotics as well as the bacterial response to those antibiotics. Improper use of antibiotics, which can be in sub-lethal concentrations is one among the multiple reasons for acquiring antibiotic resistance which makes it vital to understand the bacterial response towards sub-lethal concentrations of antibiotics. In this work, we have used colistin, a well-known membrane active antibiotic used to treat severe bacterial infections and explored the impact of its sub-minimum inhibitory concentration (MIC) on the lipid membrane dynamics and morphological changes of E. coli. Upon investigation of live cell membrane properties such as lipid dynamics using fluorescence correlation spectroscopy, we observed that colistin disrupts the lipid membrane at sub-MIC by altering the lipid diffusivity. Interestingly, filamentation-like cell elongation was observed upon colistin treatment which led to further exploration of surface morphology with the help of atomic force spectroscopy. The changes in the surface roughness upon colistin treatment provides additional insight on the colistin-membrane interaction corroborating with the altered lipid diffusion. Although altered lipid dynamics could be attributed to an outcome of lipid rearrangement due to direct disruption by antibiotic molecules on the membrane or an indirect consequence of disruptions in lipid biosynthetic pathways, we were able to ascertain that altered bacterial membrane dynamics is due to direct disruptions. Our results provide a broad overview on the consequence of the cyclic polypeptide colistin on membrane-specific lipid dynamics and morphology of a live Gram-negative bacterial cell.
Collapse
Affiliation(s)
| | - Jitendriya Swain
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
8
|
Drider D, Boukherroub R, Le Devendec L, Belguesmia Y, Hazime N, Mourand G, Paboeuf F, Kempf I. Impact of colistin and colistin-loaded on alginate nanoparticles on pigs infected with a colistin-resistant enterotoxigenic Escherichia coli strain. Vet Microbiol 2022; 266:109359. [PMID: 35121303 DOI: 10.1016/j.vetmic.2022.109359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Colistin is frequently used for the control of post-weaning diarrhoea in pigs. Colistin resistance caused by plasmidic genes is a public health issue. We evaluated, in experimental animal facilities, whether free colistin or colistin-loaded on alginate nanoparticles (colistin/Alg NPs) could select a colistin-resistant Enterotoxigenic Escherichia coli. The Alg NPs were produced by a simple top-down approach through ball milling of sodium alginate polymer precursor, and colistin loading was achieved through physical adsorption. Colistin loading on Alg NPs was confirmed using various tools such Fourier transform infrared spectroscopy and dynamic light scattering measurements. Thirty-four piglets were orally inoculated or not with a mcr-1-positive, rifampicin-resistant enterotoxigenic E. coli strain, and the inoculated pigs were either treated or not during five days with commercial colistin (100,000 IU/kg) or colistin/Alg NPs (40,415 IU/kg). Clinical signs were recorded. Fecal and post-mortem samples were analyzed by culture. The result clearly indicated that colistin/Alg NPs had a slightly better therapeutic effect. Both treatments led to a transitory decrease of the total E. coli fecal population with a majority of colistin-resistant E. coli isolates during treatment, but the dominant E. coli population was found susceptible at the end of the trial. Further studies are needed to evaluate, in diverse experimental or field conditions, the therapeutic efficacy of colistin/Alg NPs for post-weaning diarrhoea.
Collapse
Affiliation(s)
- Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000, Lille, France
| | - Laetitia Le Devendec
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Zoopole les croix, 22440, Ploufragan, France
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Noura Hazime
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France; Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000, Lille, France
| | - Gwenaelle Mourand
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Zoopole les croix, 22440, Ploufragan, France
| | - Frédéric Paboeuf
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Zoopole les croix, 22440, Ploufragan, France
| | - Isabelle Kempf
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Zoopole les croix, 22440, Ploufragan, France.
| |
Collapse
|
9
|
Madi-Moussa D, Belguesmia Y, Charlet A, Drider D, Coucheney F. Lacticaseicin 30 and Colistin as a Promising Antibiotic Formulation against Gram-Negative β-Lactamase-Producing Strains and Colistin-Resistant Strains. Antibiotics (Basel) 2021; 11:20. [PMID: 35052897 PMCID: PMC8772908 DOI: 10.3390/antibiotics11010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance is a global health concern across the world and it is foreseen to swell if no actions are taken now. To help curbing this well announced crisis different strategies are announced, and these include the use of antimicrobial peptides (AMP), which are remarkable molecules known for their killing activities towards pathogenic bacteria. Bacteriocins are ribosomally synthesized AMP produced by almost all prokaryotic lineages. Bacteriocins, unlike antibiotics, offer a set of advantages in terms of cytotoxicity towards eukaryotic cells, their mode of action, cross-resistance and impact of microbiota content. Most known bacteriocins are produced by Gram-positive bacteria, and specifically by lactic acid bacteria (LAB). LAB-bacteriocins were steadily reported and characterized for their activity against genetically related Gram-positive bacteria, and seldom against Gram-negative bacteria. The aim of this study is to show that lacticaseicin 30, which is one of the bacteriocins produced by Lacticaseibacillus paracasei CNCM I-5369, is active against Gram-negative clinical strains (Salmonella enterica Enteritidis H10, S. enterica Typhimurium H97, Enterobacter cloacae H51, Escherichia coli H45, E. coli H51, E. coli H66, Klebsiella oxytoca H40, K. pneumoniae H71, K. variicola H77, K. pneumoniae H79, K. pneumoniae H79), whereas antibiotics failed. In addition, lacticaseicin 30 and colistin enabled synergistic interactions towards the aforementioned target Gram-negative clinical strains. Further, the combinations of lacticaseicin 30 and colistin prompted a drastic downregulation of mcr-1 and mcr-9 genes, which are associated with the colistin resistance phenotypes of these clinical strains. This report shows that lacticaseicin 30 is active against Gram-negative clinical strains carrying a rainbow of mcr genes, and the combination of these antimicrobials constitutes a promising therapeutic option that needs to be further exploited.
Collapse
Affiliation(s)
- Désiré Madi-Moussa
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| | - Audrey Charlet
- Centre Hospitalier de Lille, Centre de Biologie Pathologie, Laboratoire de Bactériologie, F-59000 Lille, France;
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| | - Françoise Coucheney
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| |
Collapse
|
10
|
How to Combat Gram-Negative Bacteria Using Antimicrobial Peptides: A Challenge or an Unattainable Goal? Antibiotics (Basel) 2021; 10:antibiotics10121499. [PMID: 34943713 PMCID: PMC8698890 DOI: 10.3390/antibiotics10121499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) represent a promising and effective alternative for combating pathogens, having some advantages compared to conventional antibiotics. However, AMPs must also contend with complex and specialised Gram-negative bacteria envelops. The variety of lipopolysaccharide and phospholipid composition in Gram-negative bacteria strains and species are decisive characteristics regarding their susceptibility or resistance to AMPs. Such biological and structural barriers have created delays in tuning AMPs to deal with Gram-negative bacteria. This becomes even more acute because little is known about the interaction AMP–Gram-negative bacteria and/or AMPs’ physicochemical characteristics, which could lead to obtaining selective molecules against Gram-negative bacteria. As a consequence, available AMPs usually have highly associated haemolytic and/or cytotoxic activity. Only one AMP has so far been FDA approved and another two are currently in clinical trials against Gram-negative bacteria. Such a pessimistic panorama suggests that efforts should be concentrated on the search for new molecules, designs and strategies for combating infection caused by this type of microorganism. This review has therefore been aimed at describing the currently available AMPs for combating Gram-negative bacteria, exploring the characteristics of these bacteria’s cell envelop hampering the development of new AMPs, and offers a perspective regarding the challenges for designing new AMPs against Gram-negative bacteria.
Collapse
|
11
|
Lactic Acid Bacteria Bacteriocin, an Antimicrobial Peptide Effective Against Multidrug Resistance: a Comprehensive Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10317-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, Darb Emamie A, Ghanavati R, Kakanj M. Bacteriocins: Properties and potential use as antimicrobials. J Clin Lab Anal 2021; 36:e24093. [PMID: 34851542 PMCID: PMC8761470 DOI: 10.1002/jcla.24093] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/03/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
A variety of bacteriocins originate from lactic acid bacteria, which have recently been modified by scientists. Many strains of lactic acid bacteria related to food groups could produce bacteriocins or antibacterial proteins highly effective against foodborne pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, P. aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, and Clostridium botulinum. A wide range of bacteria belonging primarily to the genera Bifidobacterium and Lactobacillus have been characterized with different health‐promoting attributes. Extensive studies and in‐depth understanding of these antimicrobials mechanisms of action could enable scientists to determine their production in specific probiotic lactic acid bacteria, as they are potentially crucial for the final preservation of functional foods or for medicinal applications. In this review study, the structure, classification, mode of operation, safety, and antibacterial properties of bacteriocins as well as their effect on foodborne pathogens and antibiotic‐resistant bacteria were extensively studied.
Collapse
Affiliation(s)
- Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Masoume Halaj Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Darb Emamie
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Kakanj
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| |
Collapse
|
13
|
Bis(Tryptophan) Amphiphiles Form Ion Conducting Pores and Enhance Antimicrobial Activity against Resistant Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10111391. [PMID: 34827329 PMCID: PMC8614774 DOI: 10.3390/antibiotics10111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
The compounds referred to as bis(tryptophan)s (BTs) have shown activity as antimicrobials. The hypothesis that the activity of these novel amphiphiles results from insertion in bilayer membranes and transport of cations is supported by planar bilayer voltage-clamp studies reported herein. In addition, fluorescence studies of propidium iodide penetration of vital bacteria confirmed enhanced permeability. It was also found that BTs having either meta-phenylene or n-dodecylene linkers function as effective adjuvants to enhance the properties of FDA-approved antimicrobials against organisms such as S. aureus. In one example, a BT-mediated synergistic effect enhanced the potency of norfloxacin against S. aureus by 128-fold. In order to determine if related compounds in which tryptophan was replaced by other common amino acids (H2N-Aaa-linker-Aaa-NH2) we active, a family of analogs have been prepared, characterized, and tested as controls for both antimicrobial activity and as adjuvants for other antimicrobials against both Gram-negative and Gram-positive bacteria. The most active of the compounds surveyed remain the bis(tryptophan) derivatives.
Collapse
|
14
|
Potentiating effects of leaderless enterocin DD14 in combination with methicillin on clinical methicillin-resistant Staphylococcus aureus S1 strain. Microbiol Res 2021; 252:126864. [PMID: 34521050 DOI: 10.1016/j.micres.2021.126864] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022]
Abstract
Biofilm formation by pathogenic bacteria as well as their resilience to antibiotic treatments are a major health problem. Here, we sequenced and analyzed the genome of the clinical methicillin-resistant Staphylococcus aureus S1 (MRSA-S1) strain and established its sensitivity to the combination of methicillin and the leaderless two peptides enterocin DD14 (EntDD14). Such sensitivity was assessed in vitro based on the MIC/FIC values as well as on killing curves experiments. Moreover, combination of EntDD14 and methicillin was able to reduce the biofilm formation of Staphylococcus aureus S1 of about ∼30 %. Interestingly, genes thought to be involved in the virulence of MRSA-S1, like nuc and pvl which code, respectively, for nuclease and Panton-Valentine leucocidin, were shown to be downregulated following treatment with EntDD14 and methicillin. Similar effects were registered for other genes such as cflA, cflB and icaB, coding for bacterial ligands clumping factors A, B and intercellular adhesion factor respectively. All these data, suggest that combinations of bacteriocins and antibiotics are useful as a backup for treatment of bacterial infections.
Collapse
|
15
|
van Staden ADP, van Zyl WF, Trindade M, Dicks LMT, Smith C. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl Environ Microbiol 2021; 87:e0018621. [PMID: 33962984 PMCID: PMC8231447 DOI: 10.1128/aem.00186-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides, with modifications that are incorporated during biosynthesis by dedicated enzymes. Various modifications of the peptides are possible, resulting in a highly diverse group of bioactive peptides that offer a potential reservoir for use in the fight against a plethora of diseases. Their activities range from the antimicrobial properties of lantibiotics, especially against antibiotic-resistant strains, to antiviral activity, immunomodulatory properties, antiallodynic effects, and the potential to alleviate cystic fibrosis symptoms. Lanthipeptide biosynthetic genes are widespread within bacterial genomes, providing a substantial repository for novel bioactive peptides. Using genome mining tools, novel bioactive lanthipeptides can be identified, and coupled with rapid screening and heterologous expression technologies, the lanthipeptide drug discovery pipeline can be significantly sped up. Lanthipeptides represent a group of bioactive peptides that hold great potential as biotherapeutics, especially at a time when novel and more effective therapies are required. With this review, we provide insight into the latest developments made toward the therapeutic applications and production of lanthipeptides, specifically looking at heterologous expression systems.
Collapse
Affiliation(s)
- Anton Du Preez van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
16
|
Nguyen HT, Venter H, Veltman T, Williams R, O'Donovan LA, Russell CC, McCluskey A, Page SW, Ogunniyi AD, Trott DJ. In vitro synergistic activity of NCL195 in combination with colistin against Gram-negative bacterial pathogens. Int J Antimicrob Agents 2021; 57:106323. [PMID: 33746046 DOI: 10.1016/j.ijantimicag.2021.106323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
In this study, the potential of using the novel antibiotic NCL195 combined with subinhibitory concentrations of colistin against infections caused by Gram-negative bacteria (GNB) was investigated. We showed synergistic activity of the combination NCL195 + colistin against clinical multidrug-resistant GNB pathogens with minimum inhibitory concentrations (MICs) for NCL195 ranging from 0.5-4 μg/mL for Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, whereas NCL195 alone had no activity. Transmission electron microscopy of the membrane morphology of E. coli and P. aeruginosa after single colistin or combination drug treatment showed marked ultrastructural changes most frequently in the cell envelope. Exposure to NCL195 alone did not show any change compared with untreated control cells, whereas treatment with the NCL195 + colistin combination caused more damage than colistin alone. Direct evidence for this interaction was demonstrated by fluorescence-based membrane potential measurements. We conclude that the synergistic antimicrobial activity of the combination NCL195 + colistin against GNB pathogens warrants further exploration for specific treatment of acute GNB infections.
Collapse
Affiliation(s)
- Hang Thi Nguyen
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia; Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Tania Veltman
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Ruth Williams
- Adelaide Microscopy, University of Adelaide, Adelaide, SA, Australia
| | - Lisa Anne O'Donovan
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food & Wine, University of Adelaide, SA, Australia
| | - Cecilia C Russell
- Chemistry, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | | | - Abiodun David Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.
| |
Collapse
|
17
|
Li Q, Cebrián R, Montalbán-López M, Ren H, Wu W, Kuipers OP. Outer-membrane-acting peptides and lipid II-targeting antibiotics cooperatively kill Gram-negative pathogens. Commun Biol 2021; 4:31. [PMID: 33398076 PMCID: PMC7782785 DOI: 10.1038/s42003-020-01511-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023] Open
Abstract
The development and dissemination of antibiotic-resistant bacterial pathogens is a growing global threat to public health. Novel compounds and/or therapeutic strategies are required to face the challenge posed, in particular, by Gram-negative bacteria. Here we assess the combined effect of potent cell-wall synthesis inhibitors with either natural or synthetic peptides that can act on the outer-membrane. Thus, several linear peptides, either alone or combined with vancomycin or nisin, were tested against selected Gram-negative pathogens, and the best one was improved by further engineering. Finally, peptide D-11 and vancomycin displayed a potent antimicrobial activity at low μM concentrations against a panel of relevant Gram-negative pathogens. This combination was highly active in biological fluids like blood, but was non-hemolytic and non-toxic against cell lines. We conclude that vancomycin and D-11 are safe at >50-fold their MICs. Based on the results obtained, and as a proof of concept for the newly observed synergy, a Pseudomonas aeruginosa mouse infection model experiment was also performed, showing a 4 log10 reduction of the pathogen after treatment with the combination. This approach offers a potent alternative strategy to fight (drug-resistant) Gram-negative pathogens in humans and mammals.
Collapse
Affiliation(s)
- Qian Li
- grid.4830.f0000 0004 0407 1981Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands ,grid.34418.3a0000 0001 0727 9022Present Address: State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062 Wuhan, China
| | - Rubén Cebrián
- grid.4830.f0000 0004 0407 1981Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Manuel Montalbán-López
- grid.4830.f0000 0004 0407 1981Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands ,grid.4489.10000000121678994Present Address: Department of Microbiology, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Huan Ren
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, 30071 Tianjin, China
| | - Weihui Wu
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, 30071 Tianjin, China
| | - Oscar P. Kuipers
- grid.4830.f0000 0004 0407 1981Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
18
|
Jahangiri A, Neshani A, Mirhosseini SA, Ghazvini K, Zare H, Sedighian H. Synergistic effect of two antimicrobial peptides, Nisin and P10 with conventional antibiotics against extensively drug-resistant Acinetobacter baumannii and colistin-resistant Pseudomonas aeruginosa isolates. Microb Pathog 2020; 150:104700. [PMID: 33346078 DOI: 10.1016/j.micpath.2020.104700] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/17/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Infections caused by drug-resistant strains of Acinetobacter baumannii and Pseudomonas aeruginosa are now a global problem that requires the immediate development of new antimicrobial drugs. Combination therapy and using antimicrobial peptides are two strategies with high potential to solve this issue. By these strategies, this study aimed to determine the antimicrobial effect of Nisin and P10 antimicrobial peptides on extensively drug-resistant Acinetobacter baumannii and colistin-resistant Pseudomonas aeruginosa isolates, and investigate the most effective combination of an antimicrobial peptide with an antibiotic. MATERIAL AND METHODS This study was performed on five resistant clinical isolates and one standard strain for each kind of bacterium. First, the minimum inhibitory concentrations of two antimicrobial peptides (Nisin and P10) and five common antibiotics for the treatment of Gram-negative bacteria (ceftazidime, tobramycin, ciprofloxacin, doripenem, and colistin) was determined using Scanner-Assisted Colorimetric MIC Method. Then, the combination effect of P10+Nisin, P10+antibiotics, Nisin + antibiotics was investigated using checkerboard method. RESULTS The MIC value of Nisin and P10 against studied pathogens were 64-256 and 8-32 μg/ml, respectively. P10+Nisin combination showed synergistic effect against standard strains and additive effect against drug-resistant clinical isolates. It was also found that the combination effect of P10+ceftazidim, P10+doripenem, and Nisin + colistin was synergistic in most cases. Nisin + tobramycin combination showed synergistic effect in exposure to standard strains, while the synergy is strain-dependent against drug-resistant clinical isolates. CONCLUSION In conclusion, the synergism of Nisin + colistin and P10+ceftazidime/doripenem could be of great therapeutic value as antimicrobial drugs against infections caused by colistin-resistant P.aeruginosa and XDR A. baumannii.
Collapse
Affiliation(s)
- Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Neshani
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosna Zare
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
|
20
|
Broadening and Enhancing Bacteriocins Activities by Association with Bioactive Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217835. [PMID: 33114656 PMCID: PMC7663325 DOI: 10.3390/ijerph17217835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Bacteriocins are antimicrobial peptides some of which are endowed with antiviral, anticancer and antibiofilm properties. These properties could be improved through synergistic interactions of these bacteriocins with other bioactive molecules such as antibiotics, phages, nanoparticles and essential oils. A number of studies are steadily reporting the effects of these combinations as new and potential therapeutic strategies in the future, as they may offer many incentives over existing therapies. In particular, bacteriocins can benefit from combination with nanoparticles which can improve their stability and solubility, and protect them from enzymatic degradation, reduce their interactions with other molecules and improve their bioavailability. Furthermore, the combination of bacteriocins with other antimicrobials is foreseen as a way to reduce the development of antibiotic resistance due to the involvement of several modes of action. Another relevant advantage of these synergistic combinations is that it decreases the concentration of each antimicrobial component, thereby reducing their side effects such as their toxicity. In addition, combination can extend the utility of bacteriocins as antiviral or anticancer agents. Thus, in this review, we report and discuss the synergistic effects of bacteriocin combinations as medicines, and also for other diverse applications including, antiviral, antispoilage, anticancer and antibiofilms.
Collapse
|
21
|
Antimicrobial Peptides with Enhanced Salt Resistance and Antiendotoxin Properties. Int J Mol Sci 2020; 21:ijms21186810. [PMID: 32948086 PMCID: PMC7554977 DOI: 10.3390/ijms21186810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022] Open
Abstract
A strategy was described to design antimicrobial peptides (AMPs) with enhanced salt resistance and antiendotoxin activities by linking two helical AMPs with the Ala-Gly-Pro (AGP) hinge. Among the designed peptides, KR12AGPWR6 demonstrated the best antimicrobial activities even in high salt conditions (NaCl ~300 mM) and possessed the strongest antiendotoxin activities. These activities may be related to hydrophobicity, membrane-permeability, and α-helical content of the peptide. Amino acids of the C-terminal helices were found to affect the peptide-induced permeabilization of LUVs, the α-helicity of the designed peptides under various LUVs, and the LPS aggregation and size alternation. A possible model was proposed to explain the mechanism of LPS neutralization by the designed peptides. These findings could provide a new approach for designing AMPs with enhanced salt resistance and antiendotoxin activities for potential therapeutic applications.
Collapse
|
22
|
Montalbán-López M, Cebrián R, Galera R, Mingorance L, Martín-Platero AM, Valdivia E, Martínez-Bueno M, Maqueda M. Synergy of the Bacteriocin AS-48 and Antibiotics against Uropathogenic Enterococci. Antibiotics (Basel) 2020; 9:antibiotics9090567. [PMID: 32887311 PMCID: PMC7558097 DOI: 10.3390/antibiotics9090567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023] Open
Abstract
The genus Enterococcus comprises a ubiquitous group of Gram-positive bacteria that can cause diverse health care-associated infections. Their genome plasticity enables easy acquisition of virulence factors as well as antibiotic resistances. Urinary tract infections (UTIs) and catheter-associated UTIs are common diseases caused by enterococci. In this study, Enterococcus strains isolated from UTIs were characterized, showing that the majority were E. faecalis and contained several virulence factors associated to a better colonization of the urinary tract. Their susceptibility against the bacteriocin AS-48 and several antibiotics was tested. AS-48 is a potent circular bacteriocin that causes bacterial death by pore formation in the cell membrane. The interest of this bacteriocin is based on the potent inhibitory activity, the high stability against environmental conditions, and the low toxicity. AS-48 was active at concentrations below 10 mg/L even against antibiotic-resistant strains, whereas these strains showed resistance to, at least, seven of the 20 antibiotics tested. Moreover, the effect of AS-48 combined with antibiotics commonly used to treat UTIs was largely synergistic (with up to 100-fold MIC reduction) and only occasionally additive. These data suggest AS-48 as a potential novel drug to deal with or prevent enterococcal infections.
Collapse
|
23
|
Daba GM, Elkhateeb WA. Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101750] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Jiang Y, Mei C, Huang X, Gu Q, Song D. Antibacterial Activity and Mechanism of a Bacteriocin Derived from the Valine-Cecropin A(1–8)-Plantaricin ZJ5(1–18) Hybrid Peptide Against Escherichia coli O104. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09636-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Wu CL, Hsueh JY, Yip BS, Chih YH, Peng KL, Cheng JW. Antimicrobial Peptides Display Strong Synergy with Vancomycin Against Vancomycin-Resistant E. faecium, S. aureus, and Wild-Type E. coli. Int J Mol Sci 2020; 21:ijms21134578. [PMID: 32605123 PMCID: PMC7369893 DOI: 10.3390/ijms21134578] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/25/2023] Open
Abstract
There is an urgent and imminent need to develop new antimicrobials to fight against antibiotic-resistant bacterial and fungal strains. In this study, a checkerboard method was used to evaluate the synergistic effects of the antimicrobial peptide P-113 and its bulky non-nature amino acid substituted derivatives with vancomycin against vancomycin-resistant Enterococcus faecium, Staphylococcus aureus, and wild-type Escherichia coli. Boron-dipyrro-methene (BODIPY) labeled vancomycin was used to characterize the interactions between the peptides, vancomycin, and bacterial strains. Moreover, neutralization of antibiotic-induced releasing of lipopolysaccharide (LPS) from E. coli by the peptides was obtained. Among these peptides, Bip-P-113 demonstrated the best minimal inhibitory concentrations (MICs), antibiotics synergism, bacterial membrane permeabilization, and supernatant LPS neutralizing activities against the bacteria studied. These results could help in developing antimicrobial peptides that have synergistic activity with large size glycopeptides such as vancomycin in therapeutic applications.
Collapse
Affiliation(s)
- Chih-Lung Wu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; (C.-L.W.); (J.-Y.H.); (B.-S.Y.); (Y.-H.C.); (K.-L.P.)
| | - Ju-Yun Hsueh
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; (C.-L.W.); (J.-Y.H.); (B.-S.Y.); (Y.-H.C.); (K.-L.P.)
| | - Bak-Sau Yip
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; (C.-L.W.); (J.-Y.H.); (B.-S.Y.); (Y.-H.C.); (K.-L.P.)
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan
| | - Ya-Han Chih
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; (C.-L.W.); (J.-Y.H.); (B.-S.Y.); (Y.-H.C.); (K.-L.P.)
| | - Kuang-Li Peng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; (C.-L.W.); (J.-Y.H.); (B.-S.Y.); (Y.-H.C.); (K.-L.P.)
| | - Jya-Wei Cheng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; (C.-L.W.); (J.-Y.H.); (B.-S.Y.); (Y.-H.C.); (K.-L.P.)
- Correspondence: ; Tel.: +886-3-574-2763; Fax: +886-3-571-5934
| |
Collapse
|
26
|
Belguesmia Y, Bendjeddou K, Kempf I, Boukherroub R, Drider D. Heterologous Biosynthesis of Five New Class II Bacteriocins From Lactobacillus paracasei CNCM I-5369 With Antagonistic Activity Against Pathogenic Escherichia coli Strains. Front Microbiol 2020; 11:1198. [PMID: 32636812 PMCID: PMC7318550 DOI: 10.3389/fmicb.2020.01198] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/12/2020] [Indexed: 11/13/2022] Open
Abstract
Lactobacillus paracasei CNCM I-5369 isolated from a traditional Algerian dairy product produces extracellular inhibitory substances, namely, bacteriocins, which are active against a panel of pathogenic Escherichia coli strains. This activity was observed only at a narrow pH 4.5–5, and resulted to be heat stable and sensitive to the action of proteolytic enzymes, which indicate a proteinaceous nature. This new strain has a genome of 2,752,975 bp, with a 46.6% G + C ratio and contains at least 2664 coding sequences. The Bagel software analysis identified five open reading frames (ORFs) that are translated to new class II bacteriocin. Each ORF was cloned in frame with a His-tag tail and expressed in E. coli BL21 (DE3) (pLysS) strain. Of note, each fusion protein carrying any of these ORFs at the C- or N-terminal position resulted to be active against E. coli 184 strain used as target organism. This manuscript reports the first multi-bacteriocinogenic strain producing five new class II bacteriocins with activity against Gram-negative bacilli (GNB), namely, E. coli. Heterologous expression and activity of each new class II bacteriocin were demonstrated.
Collapse
Affiliation(s)
- Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro N° 1158, Université de Lille, INRAE, Université de Liège, UPJV, YNCREA, Université d'Artois, Universite du Littoral Côte d'Opale, ICV - Institut Charles Viollette, Lille, France
| | - Kamel Bendjeddou
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Béjaïa, Algeria
| | - Isabelle Kempf
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie Bactériologie Antibiorésistance, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Rabah Boukherroub
- Université de Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, Lille, France
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro N° 1158, Université de Lille, INRAE, Université de Liège, UPJV, YNCREA, Université d'Artois, Universite du Littoral Côte d'Opale, ICV - Institut Charles Viollette, Lille, France
| |
Collapse
|
27
|
Genome Sequencing and Analysis of Bacillus pumilus ICVB403 Isolated from Acartia tonsa Copepod Eggs Revealed Surfactin and Bacteriocin Production: Insights on Anti-Staphylococcus Activity. Probiotics Antimicrob Proteins 2020; 11:990-998. [PMID: 30229513 DOI: 10.1007/s12602-018-9461-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here we show that Bacillus pumilus ICVB403 recently isolated from copepod eggs is able to produce, after 48-72 h of growth in Landy medium, extracellular inhibitory compounds, which are active against Staphylococcus aureus ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 43300, MRSA-S1, Staphylococcus epidermidis 11EMB, Staphylococcus warneri 27EMB, and Staphylococcus hominis 13EMB. Moreover, these extracellular inhibitory compound(s) were able to potentiate erythromycin against the aforementioned staphylococci. The minimum inhibitory concentration (MIC) of erythromycin was reduced from 32 μg/mL to 8 μg/mL for MRSA ATCC 43300 and MRSA SA-1 strains, and from 32-64 μg/mL to 4 μg/mL for S. epidermidis 11EMB and S. hominis 13EMB strains.The genome sequencing and analysis of B. pumilus ICVB403 unveiled 3.666.195 nucleotides contained in 22 contigs with a G + C ratio of 42.0%, 3.826 coding sequences, and 73 RNAs. In silico analysis guided identification of two putative genes coding for synthesis of surfactin A, a lipopeptide with 7 amino acids, and for a circular bacteriocin belonging to the circularin A/uberolysin family, respectively.
Collapse
|
28
|
El-Kazzaz SS, Abou El-Khier NT. Effect of the lantibiotic nisin on inhibitory and bactericidal activities of antibiotics used against vancomycin-resistant enterococci. J Glob Antimicrob Resist 2020; 22:263-269. [PMID: 32169681 DOI: 10.1016/j.jgar.2020.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Antibiotic resistance is a serious issue facing clinicians all over the world. Vancomycin-resistant enterococci (VRE) are amongst the most common resistant pathogens that are isolated from patients suffering from infections in our locality. New antimicrobial agents such as the lantibiotic nisin have been previously examined against resistant bacteria as it has strong antibacterial action with no chance of resistance development. This study aimed to explore the effect of nisin in combination with the conventional antibiotics against VRE, with a view to using it as an auxiliary therapy with such antibiotics for combating resistant isolates. METHODS Twenty-three VRE had been examined for the combined effect of nisin with the routine sets of antibiotics using the microplate dilution technique for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) testing. Checkerboard microbroth assay was conducted for inspection of synergism between nisin and either ampicillin or chloramphenicol. RESULTS An obvious improvement of inhibitory and bactericidal activities of the tested antibiotics after addition of lantibiotic nisin was observed, with a remarkable reduction in the MIC values of vancomycin against all of the isolates. Nisin recorded a synergistic outcome when combined with either ampicillin or chloramphenicol using the checkerboard assay. CONCLUSION Nisin could be effectively considered as a supplementary agent to traditional antibiotics in the management of VRE-associated infections, as it had a synergistic outcome with commonly prescribed antibiotics such as ampicillin and chloramphenicol.
Collapse
Affiliation(s)
- Samah Sabry El-Kazzaz
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Noha Tharwat Abou El-Khier
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
29
|
Cote CK, Blanco II, Hunter M, Shoe JL, Klimko CP, Panchal RG, Welkos SL. Combinations of early generation antibiotics and antimicrobial peptides are effective against a broad spectrum of bacterial biothreat agents. Microb Pathog 2020; 142:104050. [PMID: 32050093 DOI: 10.1016/j.micpath.2020.104050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
The misuse of infectious disease pathogens as agents of deliberate attack on civilians and military personnel is a serious national security concern, which is exacerbated by the emergence of natural or genetically engineered multidrug resistant strains. In this study, the therapeutic potential of combinations of an antibiotic and a broad-spectrum antimicrobial peptide (AMP) was evaluated against five bacterial biothreats, the etiologic agents of glanders (Burkholderia mallei), melioidosis (Burkholderia pseudomallei), plague (Yersinia pestis), tularemia (Francisella tularensis), and anthrax (Bacillus anthracis). The therapeutics included licensed early generation antibiotics which are now rarely used. Three antibiotics and one 24- amino acid AMP were selected based on MIC assay data. Combinations of the AMP and tigecycline, minocycline, or novobiocin were screened for synergistic activity by checkerboard MIC assay. The combinations each enhanced the susceptibility of several strains. The tetracycline-peptide combinations increased the sensitivities of Y. pestis, F. tularensis, B. anthracis and B. pseudomallei, and the novobiocin-AMP combination augmented the sensitivity of all five. In time-kill assays, down-selected combinations of the peptide and minocycline or tigecycline enhanced killing of B. anthracis, Y. pestis, F. tularensis, and Burkholderia mallei but not B. pseudomallei. The novobiocin-AMP pair significantly reduced viability of all strains except B. mallei, which was very sensitive to the antibiotic alone. The results suggested that antibiotic-AMP combinations are useful tools for combating diverse pathogens. Future studies employing cell culture and animal models will utilize virulent strains of the agents to investigate the in vivo availability, host cytotoxicity, and protective efficacy of these therapeutics.
Collapse
Affiliation(s)
- Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| | - Irma I Blanco
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | | | - Susan L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| |
Collapse
|
30
|
Ahmad B, Hanif Q, Xubiao W, Lulu Z, Shahid M, Dayong S, Rijun Z. Expression and Purification of Hybrid LL-37Tα1 Peptide in Pichia pastoris and Evaluation of Its Immunomodulatory and Anti-inflammatory Activities by LPS Neutralization. Front Immunol 2019; 10:1365. [PMID: 31258535 PMCID: PMC6587124 DOI: 10.3389/fimmu.2019.01365] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
This study pertains to the new approach for the development of hybrid peptide LL-37Tα1 and its biomedical applications. A linear cationic hybrid peptide, LL-37Tα1 was derived from two parental peptides (LL-37 and Tα1) recognized as potent anti-endotoxin without any hemolytic or cytotoxic activity. We successfully cloned the gene of hybrid peptide LL-37Tα1 in PpICZαA vector and expressed in the Pichia pastoris. The recombinant peptide was purified by Ni-affinity column and reverse-phase high performance liquid chromatography (RP-HPLC) with an estimated molecular mass of 3.9 kDa as determined by SDS-PAGE and mass spectrometry. We analyzed the LPS neutralization by limulus amebocyte lysate (LAL) activity and the results indicate that the hybrid peptide LL-37Tα1 directly binds endotoxin and significantly (p < 0.05) neutralizes the effect of LPS in a dose-dependent manner. Lactate dehydrogenase (LDH) assay revealed that LL-37Tα1 successfully reduces the LPS-induced cytotoxicity in mouse RAW264.7 macrophages. Moreover, it significantly (p < 0.05) decreased the levels of nitric oxide, proinflammatory cytokines including TNF-α, IL-6, IL-1β, and diminished the number of apoptotic cells in LPS-stimulated mouse RAW264.7 macrophages. Our results suggest that the P. pastoris expression system is cost-effective for commercial production of the immunomodulatory and anti-inflammatory hybrid peptide (IAHP) LL-37Tα1 and the peptide may serve as effective anti-endotoxin/anti-inflammatory agent with minimal cytotoxicity.
Collapse
Affiliation(s)
- Baseer Ahmad
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Quratulain Hanif
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Wei Xubiao
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhang Lulu
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Shahid
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Si Dayong
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhang Rijun
- State Key Laboratory of Animal Nutrition and Feed Sciences, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Synergistic effect between nisin and polymyxin B against pandrug-resistant and extensively drug-resistant Acinetobacter baumannii. Int J Antimicrob Agents 2019; 53:663-668. [DOI: 10.1016/j.ijantimicag.2019.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/27/2019] [Accepted: 03/09/2019] [Indexed: 11/23/2022]
|
32
|
Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front Microbiol 2019; 10:57. [PMID: 30804896 PMCID: PMC6378274 DOI: 10.3389/fmicb.2019.00057] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Resistance to antibiotics is escalating and threatening humans and animals worldwide. Different countries have legislated or promoted the ban of antibiotics as growth promoters in livestock and aquaculture to reduce this phenomenon. Therefore, to improve animal growth and reproduction performance and to control multiple bacterial infections, there is a potential to use probiotics as non-antibiotic growth promoters. Lactic acid bacteria (LAB) offer various advantages as potential probiotics and can be considered as alternatives to antibiotics during food-animal production. LAB are safe microorganisms with abilities to produce different inhibitory compounds such as bacteriocins, organic acids as lactic acid, hydrogen peroxide, diacetyl, and carbon dioxide. LAB can inhibit harmful microorganisms with their arsenal, or through competitive exclusion mechanism based on competition for binding sites and nutrients. LAB endowed with specific enzymatic functions (amylase, protease…) can improve nutrients acquisition as well as animal immune system stimulation. This review aimed at underlining the benefits and inputs from LAB as potential alternatives to antibiotics in poultry, pigs, ruminants, and aquaculture production.
Collapse
Affiliation(s)
- Nuria Vieco-Saiz
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Yanath Belguesmia
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| | - Ruth Raspoet
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Eric Auclair
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Frédérique Gancel
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| | - Isabelle Kempf
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Djamel Drider
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| |
Collapse
|
33
|
Sparo M, Delpech G, García Allende N. Impact on Public Health of the Spread of High-Level Resistance to Gentamicin and Vancomycin in Enterococci. Front Microbiol 2018; 9:3073. [PMID: 30619158 PMCID: PMC6305282 DOI: 10.3389/fmicb.2018.03073] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance has turned into a global public health issue. Enterococci are intrinsically resistant to many antimicrobials groups. These bacteria colonize dairy and meat products and integrate the autochthonous microbiota of mammal's gastrointestinal tract. Over the last decades, detection of vanA genotype in Enterococcus faecium from animals and from food of animal origin has been reported. Vancomycin-resistant E. faecium has become a prevalent nosocomial pathogen. Hospitalized patients are frequently treated with broad-spectrum antimicrobials and this leads to an increase in the presence of VanA or VanB vancomycin-resistant enterococci in patients' gastrointestinal tract and the risk of invasive infections. In humans, E. faecium is the main reservoir of VanA and VanB phenotypes. Acquisition of high-level aminoglycoside resistance is a significant therapeutic problem for patients with severe infections because it negates the synergistic effect between aminoglycosides and a cell-wall-active agent. The aac(6')-Ie-aph (2″)-Ia gene is widely spread in E. faecalis and has been detected in strains of human origin and in the food of animal origin. Enzyme AAC(6')-Ie-APH(2″)-Ia confers resistance to available aminoglycosides, except to streptomycin. Due to the fast dissemination of this genetic determinant, the impact of its horizontal transferability among enterococcal species from different origin has been considered. The extensive use of antibiotics in food-producing animals contributes to an increase in drug-resistant animal bacteria that can be transmitted to humans. Innovation is needed for the development of new antibacterial drugs and for the design of combination therapies with conventional antibiotics. Nowadays, semi-purified bacteriocins and probiotics are becoming an attractive alternative to the antibiotic in animal production. Therefore, a better understanding of a complex and relevant issue for Public Health such as high-level vancomycin and gentamicin resistance in enterococci and their impact is needed. Hence, it is necessary to consider the spread of vanA E. faecium and high-level gentamicin resistant E. faecalis strains of different origin in the environment, and also highlight the potential horizontal transferability of these resistance determinants to other bacteria.
Collapse
Affiliation(s)
- Mónica Sparo
- Clinical Department, Medicine School, National University of Central Buenos Aires, Tandil, Argentina
| | - Gaston Delpech
- Clinical Department, Medicine School, National University of Central Buenos Aires, Tandil, Argentina
| | | |
Collapse
|
34
|
Sandiford SK. Current developments in lantibiotic discovery for treating Clostridium difficile infection. Expert Opin Drug Discov 2018; 14:71-79. [PMID: 30479173 DOI: 10.1080/17460441.2019.1549032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Clostridium difficile is a major cause of healthcare-associated diarrhea linked to the misuse of antimicrobials and the corresponding deleterious impact they have on the protective microbiota of the gut. Resistance to agents used to treat C. difficile including metronizadole and vancomycin has been reported highlighting the need for novel agents. Lantibiotics represent a novel class of agents that many studies have highlighted as effective against C. difficile. Areas covered: In this review lantibiotics including nisin, actagardine, mersacidin, NAI-107 and MU-1140 that exhibit good activity against C.difficile, all of which are currently in the preclinical phase of investigation are discussed. The lantibiotic NVB302, which has completed phase I clinical trials for the treatment of C. difficile, is also described. Expert opinion: Lantibiotics represent promising candidates for the treatment of C. difficile infections due to their novel mode of action, which is thought to decrease the potential of resistance developing and the fact they often possess a less deleterious effect on the protective gut microbiota when compared to traditional agents. They are also extremely amenable to bioengineering approaches and the incorporation of synthetic biology to produce more potent variants.
Collapse
|
35
|
Si W, Wang L, Usongo V, Zhao X. Colistin Induces S. aureus Susceptibility to Bacitracin. Front Microbiol 2018; 9:2805. [PMID: 30515145 PMCID: PMC6255926 DOI: 10.3389/fmicb.2018.02805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/31/2018] [Indexed: 01/11/2023] Open
Abstract
Bacitracin has been used in topical preparations with polymyxin B for bacterial infections. Colistin belongs to the polymyxin group of antibiotics and is effective against most Gram-negative bacilli. This study investigated whether colistin could affect the susceptibility of S. aureus to bacitracin. S. aureus isolates were first incubated with colistin and the susceptibility of S. aureus to bacitracin was increased. The effect of the combination of colistin and bacitracin on S. aureus was then confirmed by the checkerboard assay and the time-kill kinetics. The Triton X-100-induced autolysis was significantly increased after S. aureus was exposed to colistin. Exposure to colistin also led to a less positive charge on the cell surface and a significant leakage of Na+, Mg2, K+, Ca2+, Mn2+, Cu2+, and Zn2+. Finally, disruptions on the cell surface and an irregular morphology were observed when the bacteria were exposed to colistin and bacitracin. Bacitracin had a stronger antibacterial activity against S. aureus in the presence of colistin. This could be due to the fact that colistin damaged the bacterial membrane. This study suggests that combination of colistin with bacitracin has a potential for treating clinical S. aureus infections.
Collapse
Affiliation(s)
- Wei Si
- Department of Animal Science, McGill University, Montreal, QC, Canada
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Liangliang Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Valentine Usongo
- Department of Animal Science, McGill University, Montreal, QC, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Chih YH, Wang SY, Yip BS, Cheng KT, Hsu SY, Wu CL, Yu HY, Cheng JW. Dependence on size and shape of non-nature amino acids in the enhancement of lipopolysaccharide (LPS) neutralizing activities of antimicrobial peptides. J Colloid Interface Sci 2018; 533:492-502. [PMID: 30176540 DOI: 10.1016/j.jcis.2018.08.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS Release of lipopolysaccharides (LPS) from bacteria into bloodstream may cause serious unwanted stimulation of the host immune system. P-113 is a clinically active histidine-rich antimicrobial peptide. Nal-P-113, a β-naphthylalanine-substituted P-113, is salt-resistant but has limited LPS neutralizing activity. We suspected the size and shape of the non-natural bulky amino acid may affect its LPS neutralizing activity. Herein, antimicrobial, LPS neutralizing, and antiproteolytic effects of phenylalanine- (Phe-P-113), β-naphthylalanine- (Nal-P-113), β-diphenylalanine- (Dip-P-113), and β-(4,4'-biphenyl)alanine- (Bip-P-113) substituted P-113 were studied. EXPERIMENTS Structure-activity relationships of P-113, Phe-P-113, Nal-P-113, Dip-P-113, and Bip-P-113 were evaluated using antimicrobial activity assays, serum proteolytic assays, peptide-induced permeabilization of large unilamellar vesicles, zeta potential measurements, dynamic light scattering measurement of LPS aggregation, and Limulus amebocyte lysate assays for measuring LPS neutralization. In vitro and in vivo LPS neutralizing activities were further confirmed by LPS-induced inflammation inhibition in an endotoxemia mouse model. FINDINGS Bip-P-113 and Dip-P-113 had the longest and widest non-nature amino acids, respectively. Bip-P-113 enhanced salt resistance, serum proteolytic stability, peptide-induced permeabilization, zeta potential measurements, LPS aggregation, and in vitro and in vivo LPS neutralizing activities. These results could help design novel antimicrobial peptides that have enhanced stability in vivo and that can have potential therapeutic applications.
Collapse
Affiliation(s)
- Ya-Han Chih
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Siou-Ying Wang
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Bak-Sau Yip
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan
| | - Kuang-Ting Cheng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Su-Ya Hsu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chih-Lung Wu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hui-Yuan Yu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Jya-Wei Cheng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
37
|
Control of Propionibacterium acnes by natural antimicrobial substances: Role of the bacteriocin AS-48 and lysozyme. Sci Rep 2018; 8:11766. [PMID: 30082920 PMCID: PMC6079106 DOI: 10.1038/s41598-018-29580-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
We report the high susceptibility of several clinical isolates of Propionibacterium acnes from different sources (skin, bone, wound exudates, abscess or blood contamination) to the head-to-tail cyclized bacteriocin AS-48. This peptide is a feasible candidate for further pharmacological development against this bacterium, due to its physicochemical and biological characteristics, even when it is growing in a biofilm. Thus, the treatment of pre-formed biofilms with AS-48 resulted in a dose- and time-dependent disruption of the biofilm architecture beside the decrease of bacterial viability. Furthermore, we demonstrated the potential of lysozyme to bolster the inhibitory activity of AS-48 against P. acnes, rendering high reductions in the MIC values, even in matrix-growing cultures, according to the results obtained using a range of microscopy and bioassay techniques. The improvement of the activity of AS-48 through its co-formulation with lysozyme may be considered an alternative in the control of P. acnes, especially after proving the absence of cytotoxicity demonstrated by these natural compounds on relevant human skin cell lines. In summary, this study supports that compositions comprising the bacteriocin AS-48 plus lysozyme must be considered as promising candidates for topical applications with medical and pharmaceutical purposes against dermatological diseases such as acne vulgaris.
Collapse
|
38
|
Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments. Clin Microbiol Rev 2018; 31:31/4/e00023-18. [PMID: 30068737 DOI: 10.1128/cmr.00023-18] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogens that infect the gastrointestinal and respiratory tracts are subjected to intense pressure due to the environmental conditions of the surroundings. This pressure has led to the development of mechanisms of bacterial tolerance or persistence which enable microorganisms to survive in these locations. In this review, we analyze the general stress response (RpoS mediated), reactive oxygen species (ROS) tolerance, energy metabolism, drug efflux pumps, SOS response, quorum sensing (QS) bacterial communication, (p)ppGpp signaling, and toxin-antitoxin (TA) systems of pathogens, such as Escherichia coli, Salmonella spp., Vibrio spp., Helicobacter spp., Campylobacter jejuni, Enterococcus spp., Shigella spp., Yersinia spp., and Clostridium difficile, all of which inhabit the gastrointestinal tract. The following respiratory tract pathogens are also considered: Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia cenocepacia, and Mycobacterium tuberculosis Knowledge of the molecular mechanisms regulating the bacterial tolerance and persistence phenotypes is essential in the fight against multiresistant pathogens, as it will enable the identification of new targets for developing innovative anti-infective treatments.
Collapse
|
39
|
Perales-Adán J, Rubiño S, Martínez-Bueno M, Valdivia E, Montalbán-López M, Cebrián R, Maqueda M. LAB Bacteriocins Controlling the Food Isolated (Drug-Resistant) Staphylococci. Front Microbiol 2018; 9:1143. [PMID: 29946300 PMCID: PMC6005826 DOI: 10.3389/fmicb.2018.01143] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Staphylococci are a group of microorganisms that can be often found in processed food and they might pose a risk for human health. In this study we have determined the content of staphylococci in 7 different fresh goat-milk cheeses. These bacteria were present in all of them, ranging from 103 to 106 CFU/g based on growth on selective media. Thus, a set of 97 colonies was randomly picked for phenotypic and genotypic identification. They could be clustered by RAPD-PCR in 10 genotypes, which were assigned by 16S rDNA sequencing to four Staphylococcus species: Staphylococcus aureus, Staphylococcus chromogenes, S. simulans, and S. xylosus. Representative strains of these species (n = 25) were tested for antibiotic sensitivity, and 11 of them were resistant to at least one of the antibiotics tested, including erythromycin, amoxicillin-clavulanic acid and oxacillin. We also tested two bacteriocins produced by lactic acid bacteria (LAB), namely the circular bacteriocin AS-48 and the lantibiotic nisin. These peptides have different mechanism of action at the membrane level. Nevertheless, both were able to inhibit staphylococci growth at low concentrations ranging between 0.16-0.73 μM for AS-48 and 0.02-0.23 μM for nisin, including the strains that displayed antibiotic resistance. The combined effect of these bacteriocins were tested and the fractional inhibitory concentration index (FICI) was calculated. Remarkably, upon combination, they were active at the low micromolar range with a significant reduction of the minimal inhibitory concentration. Our data confirms synergistic effect, either total or partial, between AS-48 and nisin for the control of staphylococci and including antibiotic resistant strains. Collectively, these results indicate that the combined use of AS-48 and nisin could help controlling (pathogenic) staphylococci in food processing and preventing antibiotic-resistant strains reaching the consumer in the final products.
Collapse
|
40
|
Drider D, Bendali F, Naghmouchi K, Chikindas ML. Bacteriocins: Not Only Antibacterial Agents. Probiotics Antimicrob Proteins 2018; 8:177-182. [PMID: 27481236 DOI: 10.1007/s12602-016-9223-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This commentary was aimed at shedding light on the multifunction of bacteriocins mainly those produced by lactic acid bacteria. These antibacterial agents were first used to improve food safety and quality. With the increasing antibiotic resistance concern worldwide, they have been considered as viable agents to replace or potentiate the fading abilities of conventional antibiotics to control human pathogens. Bacteriocins were also shown to have potential as antiviral agents, plant protection agents, and anticancer agents. Bacteriocins were reported to be involved in shaping bacterial communities through inter- and intra-specific interactions, conferring therefore to producing strains a probiotic added value. Furthermore, bacteriocins recently were shown as molecules with a fundamental impact on the resilience and virulence of some pathogens.
Collapse
Affiliation(s)
- Djamel Drider
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, 59000, Lille, France.
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaïa, Algeria
| | - Karim Naghmouchi
- Laboratoire des Microorganismes et Biomolécules Actives (LMBA), Faculté des Sciences de Tunis, Université El-Manar II 2092 El-Manar-II, Tunis, Tunisia
| | - Michael L Chikindas
- School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, 08901, USA.,Center for Digestive Health, New Jersey Institute for Food, Nutrition and Health, New Brunswick, NJ, 08901, USA
| |
Collapse
|
41
|
Al Atya AK, Abriouel H, Kempf I, Jouy E, Auclair E, Vachée A, Drider D. Effects of Colistin and Bacteriocins Combinations on the In Vitro Growth of Escherichia coli Strains from Swine Origin. Probiotics Antimicrob Proteins 2018; 8:183-190. [PMID: 27557837 DOI: 10.1007/s12602-016-9227-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Escherichia coli strains from swine origin, either susceptible or resistant to colistin, were grown under planktonic and biofilm cultures. After which, they were treated with antibacterial agents including nisin and enterocin DD14 bacteriocins, colistin and their combinations. Importantly, the combination of colistin, enterocin DD14 and nisin eradicated the planktonic and biofilm cultures of E. coli CIP54127 and the E. coli strains with colistin-resistance phenotype such as E. coli 184 (mcr-1 +) and E. coli 289 (mcr-1 -), suggesting therefore that bacteriocins from lactic acid bacteria could be used as agents with antibiotic augmentation capability.
Collapse
Affiliation(s)
- Ahmed K Al Atya
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, 59000, Lille, France
| | - Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Isabelle Kempf
- ANSES, Ploufragan Laboratory, Ploufragan, Univ Bretagne Loire, Rennes, France
| | - Eric Jouy
- ANSES, Ploufragan Laboratory, Ploufragan, Univ Bretagne Loire, Rennes, France
| | - Eric Auclair
- Phileo Animal Care, 137 rue Gabriel Péri, 59700, Marcq-en-Barœul, France
| | - Anne Vachée
- Laboratoire de Bactériologie, Hôpital Victor Provo, Boulevard Lacordaire, 59100, Roubaix, France
| | - Djamel Drider
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, 59000, Lille, France.
| |
Collapse
|
42
|
Field D, Baghou I, Rea MC, Gardiner GE, Ross RP, Hill C. Nisin in Combination with Cinnamaldehyde and EDTA to Control Growth of Escherichia coli Strains of Swine Origin. Antibiotics (Basel) 2017; 6:antibiotics6040035. [PMID: 29231854 PMCID: PMC5745478 DOI: 10.3390/antibiotics6040035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Post-weaning diarrhoea (PWD) due to enterotoxigenic Escherichia coli (ETEC) is an economically important disease in pig production worldwide. Although antibiotics have contributed significantly to mitigate the economic losses caused by PWD, there is major concern over the increased incidence of antimicrobial resistance among bacteria isolated from pigs. Consequently, suitable alternatives that are safe and effective are urgently required. Many naturally occurring compounds, including the antimicrobial peptide nisin and a number of plant essential oils, have been widely studied and are reported to be effective as antimicrobial agents against pathogenic microorganisms. Here, we evaluate the potential of nisin in combination with the essential oil cinnamaldehyde and ethylenediaminetetraacetic acid (EDTA) to control the growth of E. coli strains of swine origin including two characterized as ETEC. The results reveal that the use of nisin (10 μM) with low concentrations of trans-cinnamaldehyde (125 μg/mL) and EDTA (0.25–2%) resulted in extended lag phases of growth compared to when either antimicrobial is used alone. Further analysis through kill curves revealed that an approximate 1-log reduction in E. coli cell counts was observed against the majority of targets tested following 3 h incubation. These results highlight the potential benefits of combining the natural antimicrobial nisin with trans-cinnamaldehyde and EDTA as a new approach for the inhibition of E. coli strains of swine origin.
Collapse
Affiliation(s)
- Des Field
- School of Microbiology, University College Cork, Cork T12 YT20, Ireland.
| | - Inès Baghou
- School of Microbiology, University College Cork, Cork T12 YT20, Ireland.
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork P61 C996, Ireland.
- APC Microbiome Institute, University College Cork, Cork T12 YT20, Ireland.
| | - Gillian E Gardiner
- Department of Science, Waterford Institute of Technology, Waterford X91 K0EK, Ireland.
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork T12 YT20, Ireland.
- APC Microbiome Institute, University College Cork, Cork T12 YT20, Ireland.
| | - Colin Hill
- School of Microbiology, University College Cork, Cork T12 YT20, Ireland.
- APC Microbiome Institute, University College Cork, Cork T12 YT20, Ireland.
| |
Collapse
|
43
|
Pérez-Granda MJ, Latorre MC, Alonso B, Hortal J, Samaniego R, Bouza E, Guembe M. Eradication of P. aeruginosa biofilm in endotracheal tubes based on lock therapy: results from an in vitro study. BMC Infect Dis 2017; 17:746. [PMID: 29202722 PMCID: PMC5715999 DOI: 10.1186/s12879-017-2856-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/26/2017] [Indexed: 02/08/2023] Open
Abstract
Background Despite the several strategies available for the management of biofilm-associated ventilator-associated pneumonia, data regarding the efficacy of applying antibiotics to the subglottic space (SS) are scarce. We created an in vitro model to assess the efficacy of antibiotic lock therapy (ALT) applied in the SS for eradication of Pseudomonas aeruginosa biofilm in endotracheal tubes (ETTs). Methods We applied 2 h of ALT to a P. aeruginosa biofilm in ETTs using a single dose (SD) and a 5-day therapy model (5D). We used sterile saline lock therapy (SLT) as the positive control. We compared colony count and the percentage of live cells between both models. Results The median (IQR) cfu counts/ml and percentage of live cells in the SD-ALT and SD-SLT groups were, respectively, 3.12 × 105 (9.7 × 104-0) vs. 8.16 × 107 (7.0 × 107-0) (p = 0.05) and 53.2% (50.9%-57.2%) vs. 91.5% (87.3%-93.9%) (p < 0.001). The median (IQR) cfu counts/ml and percentage of live cells in the 5D-ALT and 5D-SLT groups were, respectively, 0 (0-0) vs. 3.2 × 107 (2.32 × 107-0) (p = 0.03) and 40.6% (36.6%-60.0%) vs. 90.3% (84.8%-93.9%) (p < 0.001). Conclusion We demonstrated a statistically significant decrease in the viability of P. aeruginosa biofilm after application of 5D-ALT in the SS. Future clinical studies to assess ALT in patients under mechanical ventilation are needed.
Collapse
Affiliation(s)
- María Jesús Pérez-Granda
- Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | | | - Beatriz Alonso
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Javier Hortal
- Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - Rafael Samaniego
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Confocal Laser Scanning Microscopy Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emilio Bouza
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María Guembe
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain. .,Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario "Gregorio Marañón", C/. Dr. Esquerdo, 46, 28007, Madrid, Spain.
| |
Collapse
|
44
|
Synergistic Antimicrobial Activity Between the Broad Spectrum Bacteriocin Garvicin KS and Nisin, Farnesol and Polymyxin B Against Gram-Positive and Gram-Negative Bacteria. Curr Microbiol 2017; 75:272-277. [PMID: 29058043 PMCID: PMC5809525 DOI: 10.1007/s00284-017-1375-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/12/2017] [Indexed: 01/18/2023]
Abstract
The increasing emergence of antibiotics resistance is of global concern. Finding novel antimicrobial agents and strategies based on synergistic combinations are essential to combat resistant bacteria. We evaluated the activity of garvicin KS, a new bacteriocin produced by Lactococcus garvieae. The bacteriocin has a broad inhibitory spectrum, inhibiting members of all the 19 species of Gram-positive bacteria tested. Unlike other bacteriocins from Gram-positive bacteria, garvicin KS inhibits Acinetobacter but not other Gram-negative bacteria. Garvicin KS was tested in combination with other antimicrobial agents. We demonstrated synergy with polymyxin B against Acinetobacter spp. and Escherichia coli, but not against Pseudomonas aeruginosa. Similar effects were seen with mixtures of nisin and polymyxin B. The synergistic mixtures of all three components caused rapid killing and full eradication of Acinetobacter spp. and E. coli. In addition, garvicin KS and nisin also acted synergistically against Staphylococcus aureus, indicating different in modes of action between the two bacteriocins. Both bacteriocins showed synergy with farnesol, and the combination of low concentrations of garvicin KS, nisin and farnesol caused rapid eradication of all the S. aureus strains tested. Its broad inhibitory spectrum, rapid killing, and synergy with other antimicrobials makes garvicin KS a promising antimicrobial.
Collapse
|
45
|
Phumisantiphong U, Siripanichgon K, Reamtong O, Diraphat P. A novel bacteriocin from Enterococcus faecalis 478 exhibits a potent activity against vancomycin-resistant enterococci. PLoS One 2017; 12:e0186415. [PMID: 29023515 PMCID: PMC5638566 DOI: 10.1371/journal.pone.0186415] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/29/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of multidrug-resistant enterococci (MDRE) and particularly vancomycin-resistant enterococci (VRE) is considered a serious health problem worldwide, causing the need for new antimicrobials. The aim of this study was to discover and characterize bacteriocin against clinical isolates of MDRE and VRE. Over 10,000 bacterial isolates from water, environment and clinical samples were screened. E. faecalis strain 478 isolated from human feces produced the highest antibacterial activity against several MDRE and VRE strains. The optimum condition for bacteriocin production was cultivation in MRS broth at 37°C, pH 5-6 for 16 hours. The bacteriocin-like substance produced from E. faecalis strain EF478 was stable at 60°C for at least 1 hour and retained its antimicrobial activity after storage at -20°C for 1 year, at 4°C for 6 months, and at 25°C for 2 months. A nano-HPLC electrospray ionization multi-stage tandem mass spectrometry (nLC-ESI-MS/MS) analysis showed that the amino acid sequences of the bacteriocin-like substance was similar to serine protease of E. faecalis, gi|488296663 (NCBI database), which has never been reported as a bacteriocin. This study reported a novel bacteriocin with high antibacterial activity against VRE and MDRE.
Collapse
Affiliation(s)
| | - Kanokrat Siripanichgon
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornphan Diraphat
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| |
Collapse
|
46
|
Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM. Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 2017; 49:23-28. [PMID: 28787641 DOI: 10.1016/j.copbio.2017.07.011] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 12/17/2022]
Abstract
Bacteriocins, defined as ribosomally synthesized antimicrobial peptides, have traditionally been used as food preservatives, either added or produced by starter cultures during fermentation. In-depth studies of a select few bacteriocins opened exiting new research fields and broadened the application of these antimicrobial peptides. The possibility of developing bacteriocins into next generation antibiotics, accompanied with the rapid development in genetics and nanotechnology, paves the way to even more fascinating applications such as novel carrier molecules (delivery systems) and the treatment of cancer. Also, some bacteriocins are found to regulate quorum sensing which suggests novel applications for this group of substances. While there is some interesting translational research on bacteriocins from Gram-negative bacteria, the majority of application-oriented studies are focused on bacteriocins from Gram-positive microorganisms, mostly lactic acid bacteria. The applications of bacteriocins are expanding from food to human health.
Collapse
Affiliation(s)
- Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ 08901, USA; Center for Digestive Health, New Jersey Institute for Food, Nutrition and Health, 61 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Djamel Drider
- Université de Lille, EA 7394 - ICV - Institut Charles Viollette, 59000 Lille, France
| | - Vladimir A Chistyakov
- D. I. Ivanovsky Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Prospekt Stachki 194/1, Russia
| | - Leon Mt Dicks
- Department of Microbiology, Stellenbosch University, 7600 Stellenbosch, South Africa
| |
Collapse
|
47
|
Mathur H, Field D, Rea MC, Cotter PD, Hill C, Ross RP. Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front Microbiol 2017; 8:1205. [PMID: 28706513 PMCID: PMC5489601 DOI: 10.3389/fmicb.2017.01205] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
The continuing emergence of multi-drug resistant pathogens has sparked an interest in seeking alternative therapeutic options. Antimicrobial combinatorial therapy is one such avenue. A number of studies have been conducted, involving combinations of bacteriocins with other antimicrobials, to circumvent the development of antimicrobial resistance and/or increase antimicrobial potency. Such bacteriocin-antimicrobial combinations could have tremendous value, in terms of reducing the likelihood of resistance development due to the involvement of two distinct mechanisms of antimicrobial action. Furthermore, antimicrobial synergistic interactions may also have potential financial implications in terms of decreasing the costs of treatment by reducing the concentration of an expensive antimicrobial and utilizing it in combination with an inexpensive one. In addition, combinatorial therapies with bacteriocins can broaden antimicrobial spectra and/or result in a reduction in the concentration of an antibiotic required for effective treatments to the extent that potentially toxic or adverse side effects can be reduced or eliminated. Here, we review studies in which bacteriocins were found to be effective in combination with other antimicrobials, with a view to targeting clinical and/or food-borne pathogens. Furthermore, we discuss some of the bottlenecks which are currently hindering the development of bacteriocins as viable therapeutic options, as well as addressing the need to exercise caution when attempting to predict clinical outcomes of bacteriocin-antimicrobial combinations.
Collapse
Affiliation(s)
- Harsh Mathur
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Des Field
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Colin Hill
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| |
Collapse
|
48
|
Bacteriocins: antibiotics in the age of the microbiome. Emerg Top Life Sci 2017; 1:55-63. [PMID: 33525813 DOI: 10.1042/etls20160015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/20/2022]
Abstract
Antibiotics have revolutionised the treatment of infectious disease and improved the lives of billions of people worldwide over many decades. With the rise in antimicrobial resistance (AMR) and corresponding lack of antibiotic development, we find ourselves in dire need of alternative treatments. Bacteriocins are a class of bacterially produced, ribosomally synthesised, antimicrobial peptides that may be narrow or broad in their spectra of activity. Animal models have demonstrated the safety and efficacy of bacteriocins in treating a broad range of infections; however, one of the principal drawbacks has been their relatively narrow spectra when compared with small-molecule antibiotics. In an era where we are beginning to appreciate the role of the microbiota in human and animal health, the fact that bacteriocins cause much less collateral damage to the host microbiome makes them a highly desirable therapeutic. This review makes a case for the implementation of bacteriocins as therapeutic antimicrobials, either alone or in combination with existing antibiotics to alleviate the AMR crisis and to lessen the impact of antibiotics on the host microbiome.
Collapse
|
49
|
Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms. PLoS One 2017; 12:e0174654. [PMID: 28355248 PMCID: PMC5371341 DOI: 10.1371/journal.pone.0174654] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial research is being pressured to look for more effective therapeutics for the ever-growing antibiotic-resistant infections, and antimicrobial peptides (AMP) and antimicrobial combinations are promising solutions. This work evaluates colistin-AMP combinations against two major pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, encompassing non- and resistant strains. Colistin (CST) combined with the AMP temporin A (TEMP-A), citropin 1.1 (CIT-1.1) and tachyplesin I linear analogue (TP-I-L) was tested against planktonic, single- and double-species biofilm cultures. Overall synergy for planktonic P. aeruginosa and synergy/additiveness for planktonic S. aureus were observed. Biofilm growth prevention was achieved with synergy and additiveness. Pre-established 24 h-old biofilms were harder to eradicate, especially for S. aureus and double-species biofilms; still, some synergy and addictiveness was observed for higher concentrations, including for the biofilms of resistant strains. Different treatment times and growth media did not greatly influence AMP activity. CST revealed low toxicity compared with the other AMP but its combinations were toxic for high concentrations. Overall, combinations reduced effective AMP concentrations, mainly in prevention scenarios. Improvement of effectiveness and toxicity of therapeutic strategies will be further investigated.
Collapse
|
50
|
Abstract
INTRODUCTION The effectiveness of lantibiotics against MDR pathogens and the progression of agents MU1140, NAI-107, NVB302 and duramycin into pre-clinical and clinical trials have highlighted their potential in the fight against bacterial resistance. The number of known lantibiotics and knowledge of their biosynthetic pathways has increased in recent years due to higher quality genomic data being delivered by next generation sequencing technologies combined with the development of specific genome mining tools, enabling the prediction of lantibiotic clusters. Areas covered: In this review, the author describes how the increase of high quality genomic data has increased the discovery of novel lantibiotics. Expert opinion: Novel apparatus such as the iChip enabling the isolation of uncultable bacteria will undoubtedly increase the identification rate of novel antimicrobial peptides including lantibiotics. The ability to then assess the lantibiotic clusters via recombinant production or synthesis using a high throughput method is one of the next challenges for developing these agents into the clinical environment.
Collapse
|