1
|
Liu N, Tang B, Wang H, Chen X, Wen P, Wang Z, Chen X, Guo X, Gou J, Song Y. Coexistence of a novel NDM-1-encoding MDR plasmid and an IMP-4-encoding IncN-IncU hybrid plasmid in a clinical isolate of Citrobacter freundii BC73. Front Microbiol 2024; 15:1388651. [PMID: 39077736 PMCID: PMC11285197 DOI: 10.3389/fmicb.2024.1388651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Objectives To investigate the genetic characteristics and transmission mechanism of the NDM-1-, IMP-4-, and SHV-12-producing multidrug-resistant (MDR) clinical isolate, Citrobacter freundii BC73. Methods C. freundii BC73 was isolated from a urine specimen of a urological patient diagnosed with bladder cancer at a Chinese teaching hospital. Antimicrobial susceptibility testing was carried out using DL-120E susceptibility cards and DL-96A system. Whole genome sequencing (WGS) of the isolate was performed using the Illumina and Oxford Nanopore platforms to analyze the genetic context of drug resistance genes and plasmid characteristics. The phylogenetic tree was constructed and visualized by KSNP3.0 software and iTOL5.0 online database. Results C. freundii isolate BC73 co-carrying bla NDM-1, bla IMP-4 and bla SHV-12 were multidrug-resistant. bla NDM-1 and bla IMP-4 were located on a novel IncFIB-like plasmid, pCFBC1, and an IncN-IncU hybrid plasmid, pCFBC2, respectively. The transferability of bla NDM-1 and bla IMP-4 from C. freundii BC73 to E. coli J53 was successfully demonstrated. The genetic context of the bla NDM-1 and bla IMP-4 genes were ISCR27-groEL-∆groES-cutA-dsbD-trpF-ble MBL-bla NDM-1-∆ISAba125-IS3000 and intI1-bla IMP-4-Kl.pn.13-mobC-IS6100, respectively. Additionally, two extensive transposition units (MGE1 in pCFBC1, MGE2 in pCFBC2) were identified and numerous antimicrobial resistance genes were discovered on it. Conclusion To our knowledge, our study represents the first characterization of a ST22 C. freundii isolate co-harboring bla NDM-1, bla IMP-4, and bla SHV-12, obtained from a urine sample. The dissemination of this MDR isolate should be of close concern in future clinical surveillance.
Collapse
Affiliation(s)
- Na Liu
- Translational Medicine Research Center, Zhengzhou People’s Hospital, The Fifth Clinical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Biao Tang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hui Wang
- Translational Medicine Research Center, Zhengzhou People’s Hospital, The Fifth Clinical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiangyang Chen
- Department of Laboratory Medicine, Zhengzhou People’s Hospital, The Fifth Clinical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Peipei Wen
- Translational Medicine Research Center, Zhengzhou People’s Hospital, The Fifth Clinical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhaorui Wang
- Translational Medicine Research Center, Zhengzhou People’s Hospital, The Fifth Clinical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xu Chen
- Translational Medicine Research Center, Zhengzhou People’s Hospital, The Fifth Clinical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinsen Song
- Translational Medicine Research Center, Zhengzhou People’s Hospital, The Fifth Clinical College of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Macesic N, Hawkey J, Vezina B, Wisniewski JA, Cottingham H, Blakeway LV, Harshegyi T, Pragastis K, Badoordeen GZ, Dennison A, Spelman DW, Jenney AWJ, Peleg AY. Genomic dissection of endemic carbapenem resistance reveals metallo-beta-lactamase dissemination through clonal, plasmid and integron transfer. Nat Commun 2023; 14:4764. [PMID: 37553339 PMCID: PMC10409761 DOI: 10.1038/s41467-023-39915-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Infections caused by metallo-beta-lactamase-producing organisms (MBLs) are a global health threat. Our understanding of transmission dynamics and how MBLs establish endemicity remains limited. We analysed two decades of blaIMP-4 evolution in a hospital using sequence data from 270 clinical and environmental isolates (including 169 completed genomes) and identified the blaIMP-4 gene across 7 Gram-negative genera, 68 bacterial strains and 7 distinct plasmid types. We showed how an initial multi-species outbreak of conserved IncC plasmids (95 genomes across 37 strains) allowed endemicity to be established through the ability of blaIMP-4 to disseminate in successful strain-genetic setting pairs we termed propagators, in particular Serratia marcescens and Enterobacter hormaechei. From this reservoir, blaIMP-4 persisted through diversification of genetic settings that resulted from transfer of blaIMP-4 plasmids between bacterial hosts and of the integron carrying blaIMP-4 between plasmids. Our findings provide a framework for understanding endemicity and spread of MBLs and may have broader applicability to other carbapenemase-producing organisms.
Collapse
Affiliation(s)
- Nenad Macesic
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | - Ben Vezina
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | - Jessica A Wisniewski
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | - Hugh Cottingham
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | - Luke V Blakeway
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | - Taylor Harshegyi
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | - Katherine Pragastis
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | - Gnei Zweena Badoordeen
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | | | - Denis W Spelman
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
- Microbiology Unit, Alfred Hospital, Melbourne, Australia
| | - Adam W J Jenney
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
- Microbiology Unit, Alfred Hospital, Melbourne, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia.
- Centre to Impact AMR, Monash University, Clayton, Australia.
- Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.
| |
Collapse
|
3
|
Li Y, Qiu Y, Fang C, Dai X, Zhang L. Genomic Characterization of a Multidrug-Resistant Aeromonas caviae Isolate Carrying a Novel blaKPC-2-Harbouring Plasmid and an IMP-4-Encoding Phage-like Plasmid. Microbiol Spectr 2022; 10:e0084022. [PMID: 35862977 PMCID: PMC9430807 DOI: 10.1128/spectrum.00840-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ying Li
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yichuan Qiu
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chengju Fang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaoyi Dai
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Luhua Zhang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
4
|
Chen X, Lei CW, Liu SY, Li TY, Chen Y, Wang YT, Li C, Wang Q, Yang X, Huang ZR, Gao YF, Wang HN. Characterization of novel Tn7-derivatives and Tn7-like transposon found in Proteus mirabilis of food-producing animal origin in China. J Glob Antimicrob Resist 2022; 28:233-237. [DOI: 10.1016/j.jgar.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022] Open
|
5
|
Abed JY, Déraspe M, Bérubé È, D’Iorio M, Dewar K, Boissinot M, Corbeil J, Bergeron MG, Roy PH. Complete Genome Sequences of Klebsiella michiganensis and Citrobacter farmeri, KPC-2-Producers Serially Isolated from a Single Patient. Antibiotics (Basel) 2021; 10:antibiotics10111408. [PMID: 34827346 PMCID: PMC8614947 DOI: 10.3390/antibiotics10111408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 12/02/2022] Open
Abstract
Carbapenemase-producing Enterobacterales, including KPC-2 producers, have become a major clinical problem. During an outbreak in Quebec City, Canada, KPC-2-producing Klebsiella michiganensis and Citrobacter farmeri were isolated from a patient six weeks apart. We determined their complete genome sequences. Both isolates carried nearly identical IncN2 plasmids with blaKPC-2 on a Tn4401b element. Both strains also carried IncP1 plasmids, but that of C. farmeri did not carry a Beta-lactamase gene, whereas that of K. michiganensis carried a second copy of blaKPC-2 on Tn4401b. These results suggest recent plasmid transfer between the two species and a recent transposition event.
Collapse
Affiliation(s)
- Jehane Y. Abed
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, Université Laval, 2705 boul. Laurier, Suite R-0709, Québec, QC G1V 4G2, Canada; (J.Y.A.); (M.D.); (È.B.); (M.B.); (J.C.); (M.G.B.)
- Département de Microbiologie et Immunologie, Pavillon Vandry, Université Laval, Québec, QC G1V 0A6, Canada
| | - Maxime Déraspe
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, Université Laval, 2705 boul. Laurier, Suite R-0709, Québec, QC G1V 4G2, Canada; (J.Y.A.); (M.D.); (È.B.); (M.B.); (J.C.); (M.G.B.)
- Département de Microbiologie et Immunologie, Pavillon Vandry, Université Laval, Québec, QC G1V 0A6, Canada
| | - Ève Bérubé
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, Université Laval, 2705 boul. Laurier, Suite R-0709, Québec, QC G1V 4G2, Canada; (J.Y.A.); (M.D.); (È.B.); (M.B.); (J.C.); (M.G.B.)
| | - Matthew D’Iorio
- McGill Genome Centre, 740 Avenue Docteur-Penfield, Montréal, QC H3A 0G1, Canada;
| | - Ken Dewar
- Department of Human Genetics, McGill University, 3640 rue University, Rm 2/38F, Montréal, QC H3A 0C7, Canada;
- McGill Centre for Microbiome Research, 3605 de la Montagne, Montréal, QC H3G 2M1, Canada
| | - Maurice Boissinot
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, Université Laval, 2705 boul. Laurier, Suite R-0709, Québec, QC G1V 4G2, Canada; (J.Y.A.); (M.D.); (È.B.); (M.B.); (J.C.); (M.G.B.)
| | - Jacques Corbeil
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, Université Laval, 2705 boul. Laurier, Suite R-0709, Québec, QC G1V 4G2, Canada; (J.Y.A.); (M.D.); (È.B.); (M.B.); (J.C.); (M.G.B.)
- Département de Médecine Moléculaire, Pavillon Vandry, Université Laval, Québec, QC G1V 0A6, Canada
| | - Michel G. Bergeron
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, Université Laval, 2705 boul. Laurier, Suite R-0709, Québec, QC G1V 4G2, Canada; (J.Y.A.); (M.D.); (È.B.); (M.B.); (J.C.); (M.G.B.)
- Département de Microbiologie et Immunologie, Pavillon Vandry, Université Laval, Québec, QC G1V 0A6, Canada
| | - Paul H. Roy
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, Université Laval, 2705 boul. Laurier, Suite R-0709, Québec, QC G1V 4G2, Canada; (J.Y.A.); (M.D.); (È.B.); (M.B.); (J.C.); (M.G.B.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Pavillon Vachon, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-843-7134
| |
Collapse
|
6
|
Huang X, Shen S, Shi Q, Ding L, Wu S, Han R, Zhou X, Yu H, Hu F. First Report of bla IMP-4 and bla SRT-2 Coproducing Serratia marcescens Clinical Isolate in China. Front Microbiol 2021; 12:743312. [PMID: 34659175 PMCID: PMC8517538 DOI: 10.3389/fmicb.2021.743312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) has become a major therapeutic concern in clinical settings, and carbapenemase genes have been widely reported in various bacteria. In Serratia marcescens, class A group carbapenemases including SME and KPC were mostly identified. However, there are few reports of metallo-β-lactamase-producing S. marcescens. Here, we isolated a carbapenem-resistant S. marcescens (S378) from a patient with asymptomatic urinary tract infection which was then identified as an IMP-4-producing S. marcescens at a tertiary hospital in Sichuan Province in southwest of China. The species were identified using MALDI-TOF MS, and carbapenemase-encoding genes were detected using PCR and DNA sequencing. The results of antimicrobial susceptibility testing by broth microdilution method indicated that the isolate S. marcescens S378 was resistant to meropenem (MIC = 32 μg/ml) and imipenem (MIC = 64 μg/ml) and intermediate to aztreonam (MIC = 8 μg/ml). The complete genomic sequence of S. marcescens was identified using Illumina (Illumina, San Diego, CA, United States) short-read sequencing (150 bp paired-end reads); five resistance genes had been identified, including blaIMP–4, blaSRT–2, aac(6′)-Ic, qnrS1, and tet(41). Conjugation experiments indicated that the blaIMP–4-carrying plasmid pS378P was conjugative. Complete sequence analysis of the plasmid pS378P bearing blaIMP–4 revealed that it was a 48,780-bp IncN-type plasmid with an average GC content of 50% and was nearly identical to pP378-IMP (99% nucleotide identity and query coverage).
Collapse
Affiliation(s)
- Xiangning Huang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Siquan Shen
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Qingyu Shi
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Li Ding
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Shi Wu
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Xun Zhou
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Hua Yu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fupin Hu
- Huashan Hospital, Institute of Antibiotics, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
7
|
Epidemic HI2 Plasmids Mobilising the Carbapenemase Gene blaIMP-4 in Australian Clinical Samples Identified in Multiple Sublineages of Escherichia coli ST216 Colonising Silver Gulls. Microorganisms 2021; 9:microorganisms9030567. [PMID: 33801844 PMCID: PMC7999438 DOI: 10.3390/microorganisms9030567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli ST216, including those that carry blaKPC-2, blaFOX-5, blaCTX-M-15 and mcr-1, have been linked to wild and urban-adapted birds and the colonisation of hospital environments causing recalcitrant, carbapenem-resistant human infections. Here we sequenced 22 multiple-drug resistant ST216 isolates from Australian silver gull chicks sampled from Five Islands, of which 21 carried nine or more antibiotic resistance genes including blaIMP-4 (n = 21), blaTEM-1b (n = 21), aac(3)-IId (n = 20), mph(A) (n = 20), catB3 (n = 20), sul1 (n = 20), aph(3”)-Ib (n = 18) and aph(6)-Id (n = 18) on FIB(K) (n = 20), HI2-ST1 (n = 11) and HI2-ST3 (n = 10) plasmids. We show that (i) all HI2 plasmids harbour blaIMP-4 in resistance regions containing In809 flanked by IS26 (HI2-ST1) or IS15DI (HI2-ST3) and diverse metal resistance genes; (ii) HI2-ST1 plasmids are highly related to plasmids reported in diverse Enterobacteriaceae sourced from humans, companion animals and wildlife; (iii) HI2 were a feature of the Australian gull isolates and were not observed in international ST216 isolates. Phylogenetic analyses identified close relationships between ST216 from Australian gull and clinical isolates from overseas. E. coli ST216 from Australian gulls harbour HI2 plasmids encoding resistance to clinically important antibiotics and metals. Our studies underscore the importance of adopting a one health approach to AMR and pathogen surveillance.
Collapse
|
8
|
Liu W, Dong H, Yan T, Liu X, Cheng J, Liu C, Zhang S, Feng X, Liu L, Wang Z, Qin S. Molecular Characterization of bla IMP - 4 -Carrying Enterobacterales in Henan Province of China. Front Microbiol 2021; 12:626160. [PMID: 33679645 PMCID: PMC7925629 DOI: 10.3389/fmicb.2021.626160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) pose a serious threat to clinical management and public health. We investigated the molecular characteristics of 12 IMP-4 metallo-β-lactamase-producing strains, namely, 5 Enterobacter cloacae, 3 Escherichia coli, 2 Klebsiella pneumoniae, and 2 Citrobacter freundii. These strains were collected from a tertiary teaching hospital in Zhengzhou from 2013 to 2015. The minimum inhibitory concentration (MIC) results showed that each blaIMP–4-positive isolate was multidrug-resistant (MDR) but susceptible to colistin. All of the E. coli belonged to ST167, two C. freundii isolates belonged to ST396, and diverse ST types were identified in E. cloacae and K. pneumoniae. S1-PFGE, Southern blotting, and PCR-based replicon typing assays showed that the blaIMP–4-carrying plasmids ranged from ∼52 to ∼360 kb and belonged to FII, FIB, HI2/HI2A, and N types. N plasmids were the predominant type (8/12, 66.7%). Plasmid stability testing indicated that the blaIMP–4-carrying N-type plasmid is more stable than the other types of plasmids. Conjugative assays revealed that three of the blaIMP–4-carrying N plasmids were transferrable. Complete sequence analysis of a representative N type (pIMP-ECL14–57) revealed that it was nearly identical to pIMP-FJ1503 (KU051710) (99% nucleotide identity and query coverage), an N-type blaIMP–4-carrying epidemic plasmid in a C. freundii strain. PCR mapping indicated that a transposon-like structure [IS6100-mobC-intron (K1.pn.I3)-blaIMP–4-IntI1-IS26] was highly conserved in all of the N plasmids. IS26 involved recombination events that resulted in variable structures of this transposon-like module in FII and FIB plasmids. The blaIMP–4 gene was captured by a sul1-type integron In1589 on HI2/HI2A plasmid pIMP-ECL-13–46.
Collapse
Affiliation(s)
- Wentian Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Huiyue Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Tingting Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Xuchun Liu
- Department of Medical Laboratory, Yicheng District Central Hospital, Zhumadian, China
| | - Jing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Congcong Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Songxuan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Xiang Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Luxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China.,Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
He DD, Cui MM, Zhang TL, Hu GZ, Liu JH, Pan YS. Characterization of bla CMY-2-carrying IncC and rmtB-carrying IncI1/ST136 plasmids in an avian Escherichia coli ST224 strain. Plasmid 2021; 114:102555. [PMID: 33472047 DOI: 10.1016/j.plasmid.2021.102555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022]
Abstract
To analyze characteristics and underlying evolutionary processes of IncC and IncI1 plasmids in a multidrug-resistant avian E. coli strain, antibiotic susceptibility testing, PCR, conjugation assays, and next-generation sequencing were performed. The type 1 IncC plasmid pEC009.1 harbored three antimicrobial resistance regions including ISEcp1-blaCMY-2-blc-sugE, ARI-B resistance island, and ARI-A island that was a mosaic multidrug resistance region (MRR) comprised of a class 1 integron with cassette array |aac(6')-II(aacA7)|qacE∆1|sul1|, IS26-mphR(A)-mrx-mph(A)-IS26, IS26-fosA3-IS26, and mercury resistance cluster merRTPABDE. It is the first report of three different size circular forms derived from IS26-mphR(A)-mrx-mph(A)-IS26-fosA3-IS26 in ARI-A of type 1 IncC plasmid. In IncI1/ST136 pEC009.2, the truncated transposon Tn1722 carrying blaTEM-1b, rmtB, aac(3)-IId(aacC2d), and a class 1 integron with cassette array |dfrA12|orfF|aadA2|, inserted into the plasmid backbone generating 5-bp direct repeats (DRs, TATAA) at the boundaries of the region, which was highly similar to that of other IncI1 plasmids, and differed by the arrangements of resistance determinants. Comparison among two epidemic plasmid lineages showed complex MRRs respectively located in the specific position in type 1 IncC and IncI1/ST136 plasmids with conserved backbones, and these have evolved via multiple events involved in mobile elements-mediated loss and gain of resistance genes and accessory genes. Strains harboring these plasmids may serve as a reservoir for antibiotic resistance genes, thereby contributing to the rapid spread of resistance genes and posing a public health threat.
Collapse
Affiliation(s)
- Dan-Dan He
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng-Mei Cui
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Teng-Li Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong-Zheng Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jian-Hua Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Yu-Shan Pan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
10
|
Zhu Y, Zhang W, Schwarz S, Wang C, Liu W, Chen F, Luan T, Liu S. Characterization of a blaIMP-4-carrying plasmid from Enterobacter cloacae of swine origin. J Antimicrob Chemother 2020; 74:1799-1806. [PMID: 30879063 DOI: 10.1093/jac/dkz107] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/28/2019] [Accepted: 02/25/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To characterize an MDR blaIMP-4-harbouring plasmid from Enterobacter cloacae EC62 of swine origin in China. METHODS Plasmid pIMP-4-EC62 from E. cloacae EC62 was transferred by conjugation via filter mating into Escherichia coli J53. Plasmid DNA was extracted from an E. coli J53 transconjugant and sequenced using single-molecule real-time (SMRT) technology. MIC values for both the isolate EC62 and the transconjugant were determined using the broth microdilution and agar dilution methods. Plasmid stability in both the isolate EC62 and the transconjugant was assessed through a series of passages on antibiotic-free media. RESULTS Plasmid pIMP-4-EC62 is 314351 bp in length, encodes 369 predicted proteins and harbours a novel class 1 integron carrying blaIMP-4 and a group II intron. The blaIMP-4-bearing plasmid belongs to the IncHI2/ST1 incompatibility group. Sequence analysis showed that pIMP-4-EC62 carries four MDR regions and several gene clusters encoding heavy metal resistance. Plasmid pIMP-4-EC62 was stably maintained in both the E. cloacae EC62 isolate and the transconjugant E. coli J53-pIMP-4-EC62 in the absence of selective pressure. Analysis of the evolutionary relatedness of selected IncHI2 plasmids indicates that ST1-type plasmids are key carriers of carbapenemase genes among IncHI2 plasmids. CONCLUSIONS pIMP-4-EC62 represents the first fully sequenced IncHI2-type blaIMP-4-harbouring plasmid from E. cloacae in China. Co-location of blaIMP-4 with other resistance genes on an MDR plasmid is likely to further accelerate the dissemination of blaIMP-4 by co-selection among bacteria from humans, animals and the environment under the selective pressure of other antimicrobial agents, heavy metals and disinfectants.
Collapse
Affiliation(s)
- Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Stefan Schwarz
- Department of Veterinary Medicine, Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Changzhen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenyu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fuguang Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tian Luan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
11
|
Whole Genome Sequencing Analysis of Porcine Faecal Commensal Escherichia coli Carrying Class 1 Integrons from Sows and Their Offspring. Microorganisms 2020; 8:microorganisms8060843. [PMID: 32512857 PMCID: PMC7355456 DOI: 10.3390/microorganisms8060843] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Intensive pig production systems often rely on the use of antimicrobials and heavy metal feed additives to maintain animal health and welfare. To gain insight into the carriage of antimicrobial resistance genes (ARGs) in the faecal flora of commercially reared healthy swine, we characterised the genome sequences of 117 porcine commensal E. coli that carried the class 1 integrase gene (intI1+). Isolates were sourced from 42 healthy sows and 126 of their offspring from a commercial breeding operation in Australia in 2017. intI1+ E. coli was detected in 28/42 (67%) sows and 90/126 (71%) piglets. Phylogroup A, particularly clonal complex 10, and phylogroup B1 featured prominently in the study collection. ST10, ST20, ST48 and ST361 were the dominant sequence types. Notably, 113/117 isolates (96%) carried three or more ARGs. Genes encoding resistance to -lactams, aminoglycosides, trimethoprim, sulphonamides, tetracyclines and heavy metals were dominant. ARGs encoding resistance to last-line agents, such as carbapenems and third generation cephalosporins, were not detected. IS26, an insertion sequence noted for its ability to capture and mobilise ARGs, was present in 108/117 (92%) intI1+ isolates, and it played a role in determining class 1 integron structure. Our data shows that healthy Australian pig faeces are an important reservoir of multidrug resistant E. coli that carry genes encoding resistance to multiple first-generation antibiotics and virulence-associated genes.
Collapse
|
12
|
Chi X, Guo J, Zhou Y, Xiao T, Xu H, Lv T, Chen C, Chen J, Zheng B. Complete-Genome Sequencing and Comparative Genomic Characterization of an IMP-4 Producing Citrobacter freundii Isolate from Patient with Diarrhea. Infect Drug Resist 2020; 13:1057-1065. [PMID: 32341658 PMCID: PMC7166059 DOI: 10.2147/idr.s244683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
Background Citrobacter freundii is the most common class of pathogens in the genus Citrobacter and is an important pathogen associated with certain underlying diseases or immune dysfunction. The aim of this study was to elucidate the resistance mechanism of clinically derived carbapenem-resistant C. freundii isolate and to characterize the genetic environment and delivery pattern of the IncN1 plasmid carrying the blaIMP-4 gene from C. freundii isolate. Materials and Methods We identified a clinical isolate of C. freundii L91 carrying blaIMP-4 and performed phylogenetic analysis by whole-genome sequencing. The complete genomic sequence of L91 was obtained using the Illumina HiSeq 4000-PE150 and PacBio RS II platforms. Antimicrobial susceptibility testing was determined by the VITEK 2 system. Plasmid characteristics were presented by S1-pulsed-field gel electrophoresis (PFGE), Southern blotting and conjugation experiments. Results S1-PFGE, Southern blot and conjugation assay confirmed the presence of blaIMP-4 genes on a conjugative plasmid in this isolate. C. freundii L91 and transconjugant L91-E. coli 600 strains both showed resistance to carbapenems. In silico analysis further showed that pIMP-4-L91 is an IncN1 plasmid with a length of 51,042 bp. Furthermore, blaIMP-4 gene was found encoded in the blaIMP-4-qacG2-aacA4-catB3 cassette array within a class 1 integron. A conserved structure sequence (ΔISKpn27-blaIMP-4-ΔISSen2-hp-hp-IS6100) was found in the upstream and downstream of the blaIMP-4. Conclusion We performed a comprehensive phylogenetic analysis of carbapenemase-resistant C. freundii and elucidated the resistance mechanism of clinically derived C. freundii L91. Not only that, we also found that the blaIMP-4 gene is located on the IncN1 plasmid and has a horizontal transfer function and a certain ability to spread. To lower the risk of the dissemination of such C. freundii isolates in clinical settings, more surveillance is needed in the future.
Collapse
Affiliation(s)
- Xiaohui Chi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Environment and Health, School of Public Health, Shandong University, Jinan, People's Republic of China
| | - Jing Guo
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanzi Zhou
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tingting Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tao Lv
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chunlei Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian Chen
- Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
13
|
Kizny Gordon A, Phan HTT, Lipworth SI, Cheong E, Gottlieb T, George S, Peto TEA, Mathers AJ, Walker AS, Crook DW, Stoesser N. Genomic dynamics of species and mobile genetic elements in a prolonged blaIMP-4-associated carbapenemase outbreak in an Australian hospital. J Antimicrob Chemother 2020; 75:873-882. [PMID: 31960024 PMCID: PMC7069471 DOI: 10.1093/jac/dkz526] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hospital outbreaks of carbapenemase-producing organisms, such as blaIMP-4-containing organisms, are an increasing threat to patient safety. OBJECTIVES To investigate the genomic dynamics of a 10 year (2006-15) outbreak of blaIMP-4-containing organisms in a burns unit in a hospital in Sydney, Australia. METHODS All carbapenem-non-susceptible or MDR clinical isolates (2006-15) and a random selection of equivalent or ESBL-producing environmental isolates (2012-15) were sequenced [short-read (Illumina), long-read (Oxford Nanopore Technology)]. Sequence data were used to assess genetic relatedness of isolates (Mash; mapping and recombination-adjusted phylogenies), perform in silico typing (MLST, resistance genes and plasmid replicons) and reconstruct a subset of blaIMP plasmids for comparative plasmid genomics. RESULTS A total of 46/58 clinical and 67/96 environmental isolates contained blaIMP-4. All blaIMP-4-positive organisms contained five or more other resistance genes. Enterobacter cloacae was the predominant organism, with 12 other species mainly found in either the environment or patients, some persisting despite several cleaning methods. On phylogenetic analysis there were three genetic clusters of E. cloacae containing both clinical and environmental isolates, and an additional four clusters restricted to either reservoir. blaIMP-4 was mostly found as part of a cassette array (blaIMP-4-qacG2-aacA4-catB3) in a class 1 integron within a previously described IncM2 plasmid (pEl1573), with almost complete conservation of this cassette across the species over the 10 years. Several other plasmids were also implicated, including an IncF plasmid backbone not previously widely described in association with blaIMP-4. CONCLUSIONS Genetic backgrounds disseminating blaIMP-4 can persist, diversify and evolve amongst both human and environmental reservoirs during a prolonged outbreak despite intensive prevention efforts.
Collapse
Affiliation(s)
- A Kizny Gordon
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H T T Phan
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - S I Lipworth
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - E Cheong
- Department of Microbiology & Infectious Diseases, Concord Repatriation General Hospital, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - T Gottlieb
- Department of Microbiology & Infectious Diseases, Concord Repatriation General Hospital, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - S George
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - T E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford/Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - A J Mathers
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - A S Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford/Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - D W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford/Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - N Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Xu J, Lin W, Chen Y, He F. Characterization of an IMP-4-Producing Klebsiella pneumoniae ST1873 Strain Recovered from an Infant with a Bloodstream Infection in China. Infect Drug Resist 2020; 13:773-779. [PMID: 32210591 PMCID: PMC7069566 DOI: 10.2147/idr.s247341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/23/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Imipenemase (IMP), an Ambler class B metallo-β-lactamase, is an important carbapenemase that confers resistance to almost all β-lactams. In this study, we characterized the genomic feature of an IMP-4-producing Klebsiella pneumoniae ST1873 strain, a rare sequence type (ST) isolated from an infant with a bloodstream infection in China. Patients and Methods K. pneumoniae strain, BKP19, was collected from a bloodstream infection in an infant who was hospitalized at the department of paediatrics. The whole genome sequence of the strain was sequenced using the Illumina NovaSeq 6000 platform and long-read MinION sequencer. Multilocus sequence typing, antimicrobial resistance gene identification, plasmid and phylogenetic relationship analysis of the strain were analysed by various bioinformatics approaches. Results K. pneumoniae BKP19 was resistant to multiple antimicrobials, including carbapenems. Eleven antimicrobial resistance genes corresponding to beta-lactam resistance, quinolone resistance, phenicol resistance and fosfomycin resistance could be identified in the genome. The carbapenem resistance gene bla IMP-4 was located in an IS26-associated class 1 integron of an IncN-type plasmid with 39,033 bp (pIMP-4-BKP19). Sequence alignment revealed that pIMP-4-BKP19 is closely related to the common plasmid carrying IMP-4 in K. pneumoniae (pIMP-HZ1-like plasmid) but is smaller, lacking the quinolone resistance gene qnrS1 and multiple tra gene orthologs. Conjugation experiment revealed that pIMP-4-BKP19 is a non-conjugative plasmid. According to in silico MLST analysis, K. pneumoniae strain BKP19 belongs to a sporadic clone ST1873. Conclusion In summary, our study reports the first genome sequence of a K. pneumoniae ST1873 strain harbouring the class B β-lactamase bla IMP-4 in an IncN-type plasmid recovered from an infant with a bloodstream infection in China. Considering the global emergence of IMP-4 carbapenemase, more attention must be paid to prevent its future prevalence.
Collapse
Affiliation(s)
- Juan Xu
- Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, People's Republic of China
| | - Wenping Lin
- Centers for Disease Control and Prevention of Ningbo, Ningbo, Zhejiang 315010, People's Republic of China
| | - Yanmin Chen
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Fang He
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
15
|
Complete Genome and Plasmids Sequences of a Clinical Proteus mirabilis Isolate Producing Plasmid Mediated NDM-1 from Italy. Microorganisms 2020; 8:microorganisms8030339. [PMID: 32121207 PMCID: PMC7142865 DOI: 10.3390/microorganisms8030339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
Background: The spread of carbapenemase genes, such as blaNDM-1, in Proteus mirabilis poses a public health threat. The aim of the study was to characterize the genome and plasmids sequences of an NDM-1-positive strain (IBCRE14), which was isolated in 2019 from a catheterized patient hospitalized in Italy. Methods: Whole genome sequencing (WGS) of IBCRE14 was performed on extracted genomic DNA using Sequel I platform. Genome assembly was performed using "Microbial Assembly". Genomic analysis was conducted by uploading the contigs to ResFinder and PlasmidFinder databases from the Center for Genomic Epidemiology. Results: IBCRE14 had a genome size of 4,018,329 bp and harboured genes coding for resistance to aminoglycosides (aadA1), phenicol (cat), tetracycline (tetJ), and trimethoprim (dfrA1). A large plasmid (pIB_NDM_1) harboured antibiotic resistance genes against sulphonamide (sul1), trimethoprim (dfrA14), tetracycline (tetB), rifampicin (arr-2), aminoglycosides (aadA1, aph3-VI), and beta-lactams (blaOXA-10, blaNDM-1). Furthermore, a small plasmid (pIB_COL3M) harboured a qnrD1 gene coding for quinolone resistance. Conclusion: The ability to conjugate and the presence of a composite antibiotic resistance island suggests that pIB_NDM_1 could both acquire more resistance genes and easily disseminate. To our knowledge, this is the first report on an untypable plasmid harbouring blaNDM-1 in P. mirabilis, in Italy.
Collapse
|
16
|
Dong D, Li M, Liu Z, Feng J, Jia N, Zhao H, Zhao B, Zhou T, Zhang X, Tong Y, Zhu Y. Characterization of a NDM-1- Encoding Plasmid pHFK418-NDM From a Clinical Proteus mirabilis Isolate Harboring Two Novel Transposons, Tn 6624 and Tn 6625. Front Microbiol 2019; 10:2030. [PMID: 31551967 PMCID: PMC6737455 DOI: 10.3389/fmicb.2019.02030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Acquisition of the blaNDM–1 gene by Proteus mirabilis is a concern because it already has intrinsic resistance to polymyxin E and tigecycline antibiotics. Here, we describe a P. mirabilis isolate that carries a pPrY2001-like plasmid (pHFK418-NDM) containing a blaNDM–1 gene. The pPrY2001-like plasmid, pHFK418-NDM, was first reported in China. The pHFK418-NDM plasmid was sequenced using a hybrid approach based on Illumina and MinION platforms. The sequence of pHFK418-NDM was compared with those of the six other pPrY2001-like plasmids deposited in GenBank. We found that the multidrug-resistance encoding region of pHFK418-NDM contains ΔTn10 and a novel transposon Tn6625. Tn6625 consists of ΔTn1696, Tn6260, In251, ΔTn125 (carrying blaNDM–1), ΔTn2670, and a novel mph(E)-harboring transposon Tn6624. In251 was first identified in a clinical isolate, suggesting that it has been transferred efficiently from environmental organisms to clinical isolates. Genomic comparisons of all these pPrY2001-like plasmids showed that their relatively conserved backbones could integrate the numerous and various accessory modules carrying multifarious antibiotic resistance genes. Our results provide a greater depth of insight into the horizontal transfer of resistance genes and add interpretive value to the genomic diversity and evolution of pPrY2001-like plasmids.
Collapse
Affiliation(s)
- Dandan Dong
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Manli Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Zhenzhen Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jiantao Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| | - Nan Jia
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Tingting Zhou
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yuanqi Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Kopotsa K, Osei Sekyere J, Mbelle NM. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review. Ann N Y Acad Sci 2019; 1457:61-91. [PMID: 31469443 DOI: 10.1111/nyas.14223] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) have been listed by the WHO as high-priority pathogens owing to their high association with mortalities and morbidities. Resistance to multiple β-lactams complicates effective clinical management of CRE infections. Using plasmid typing methods, a wide distribution of plasmid replicon groups has been reported in CREs around the world, including IncF, N, X, A/C, L/M, R, P, H, I, and W. We performed a literature search for English research papers, published between 2013 and 2018, reporting on plasmid-mediated carbapenem resistance. A rise in both carbapenemase types and associated plasmid replicon groups was seen, with China, Canada, and the United States recording a higher increase than other countries. blaKPC was the most prevalent, except in Angola and the Czech Republic, where OXA-181 (n = 50, 88%) and OXA-48-like (n = 24, 44%) carbapenemases were most prevalent, respectively; blaKPC-2/3 accounted for 70% (n = 956) of all reported carbapenemases. IncF plasmids were found to be responsible for disseminating different antibiotic resistance genes worldwide, accounting for almost 40% (n = 254) of plasmid-borne carbapenemases. blaCTX-M , blaTEM , blaSHV , blaOXA-1/9 , qnr, and aac-(6')-lb were mostly detected concurrently with carbapenemases. Most reported plasmids were conjugative but not present in multiple countries or species, suggesting limited interspecies and interboundary transmission of a common plasmid. A major limitation to effective characterization of plasmid evolution was the use of PCR-based instead of whole-plasmid sequencing-based plasmid typing.
Collapse
Affiliation(s)
- Katlego Kopotsa
- Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa.,National Health Laboratory Service, Tshwane Division, Department of Medical Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
18
|
Dolejska M, Papagiannitsis CC. Plasmid-mediated resistance is going wild. Plasmid 2018; 99:99-111. [PMID: 30243983 DOI: 10.1016/j.plasmid.2018.09.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/08/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Multidrug resistant (MDR) Gram-negative bacteria have been increasingly reported in humans, companion animals and farm animals. The growing trend of plasmid-mediated resistance to antimicrobial classes of critical importance is attributed to the emergence of epidemic plasmids, rapidly disseminating resistance genes among the members of Enterobacteriaceae family. The use of antibiotics to treat humans and animals has had a significant impact on the environment and on wild animals living and feeding in human-influenced habitats. Wildlife can acquire MDR bacteria selected in hospitals, community or livestock from diverse sources, including wastewater, sewage systems, landfills, farm facilities or agriculture fields. Therefore, wild animals are considered indicators of environmental pollution by antibiotic resistant bacteria, but they can also act as reservoirs and vectors spreading antibiotic resistance across the globe. The level of resistance and reported plasmid-mediated resistance mechanisms observed in bacteria of wildlife origin seem to correlate well with the situation described in humans and domestic animals. Additionaly, the identification of epidemic plasmids in samples from different human, animal and wildlife sources underlines the role of horizontal gene transfer in the dissemination of resistance genes. The present review focuses on reports of plasmid-mediated resistance to critically important antimicrobial classes such as broad-spectrum beta-lactams and colistin in Enterobacteriaceae isolates from samples of wildlife origin. The role of plasmids in the dissemination of ESBL-, AmpC- and carbapenemase-encoding genes as well as plasmid-mediated colistin resistance determinants in wildlife are discussed, and their similarities to plasmids previously identified in samples of human clinical or livestock origin are highlighted. Furthermore, we present features of completely sequenced plasmids reported from wildlife Enterobacteriaceae isolates, with special focus on genes that could be associated with the plasticity and stable maintenance of these molecules in antibiotic-free environments.
Collapse
Affiliation(s)
- Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Costas C Papagiannitsis
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| |
Collapse
|
19
|
Characteristics of the Conjugative Transfer System of the IncM Plasmid pCTX-M3 and Identification of Its Putative Regulators. J Bacteriol 2018; 200:JB.00234-18. [PMID: 29986941 PMCID: PMC6112013 DOI: 10.1128/jb.00234-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/30/2018] [Indexed: 12/21/2022] Open
Abstract
Horizontal gene transfer is responsible for rapid changes in bacterial genomes, and the conjugative transfer of plasmids has a great impact on the plasticity of bacteria. Here, we present a deletion analysis of the conjugative transfer system genes of the pCTX-M3 plasmid of the IncM group, which is responsible for the dissemination of antibiotic resistance genes in Enterobacteriaceae. We found that the deletion of either of the orf35 and orf36 genes, which are dispensable for conjugative transfer, increased the plasmid mobilization efficiency. Real-time quantitative PCR (RT-qPCR) analysis suggested the involvement of orf35 and orf36 in regulating the expression of transfer genes. We also revised the host range of pCTX-M3 by showing that its conjugative transfer system has a much broader host range than its replicon. Plasmid conjugative transfer systems comprise type IV secretion systems (T4SS) coupled to DNA processing and replication. The T4SSs are divided into two phylogenetic subfamilies, namely, IVA and IVB, or on the basis of the phylogeny of the VirB4 ATPase, into eight groups. The conjugation system of the IncM group plasmid pCTX-M3, from Citrobacter freundii, is classified in the IVB subfamily and in the MPFI group, as are the conjugation systems of IncI1 group plasmids. Although the majority of the conjugative genes of the IncM and IncI1 plasmids display conserved synteny, there are several differences. Here, we present a deletion analysis of 27 genes in the conjugative transfer regions of pCTX-M3. Notably, the deletion of either of two genes dispensable for conjugative transfer, namely, orf35 and orf36, resulted in an increased plasmid mobilization efficiency. Transcriptional analysis of the orf35 and orf36 deletion mutants suggested an involvement of these genes in regulating the expression of conjugative transfer genes. We also revised the host range of the pCTX-M3 replicon by finding that this replicon is unable to support replication in Agrobacterium tumefaciens, Ralstonia eutropha, and Pseudomonas putida, though its conjugation system is capable of introducing plasmids bearing oriTpCTX-M3 into these bacteria, which are representatives of Alpha-, Beta-, and Gammaproteobacteria, respectively. Thus, the conjugative transfer system of pCTX-M3 has a much broader host range than its replicon. IMPORTANCE Horizontal gene transfer is responsible for rapid changes in bacterial genomes, and the conjugative transfer of plasmids has a great impact on the plasticity of bacteria. Here, we present a deletion analysis of the conjugative transfer system genes of the pCTX-M3 plasmid of the IncM group, which is responsible for the dissemination of antibiotic resistance genes in Enterobacteriaceae. We found that the deletion of either of the orf35 and orf36 genes, which are dispensable for conjugative transfer, increased the plasmid mobilization efficiency. Real-time quantitative PCR (RT-qPCR) analysis suggested the involvement of orf35 and orf36 in regulating the expression of transfer genes. We also revised the host range of pCTX-M3 by showing that its conjugative transfer system has a much broader host range than its replicon.
Collapse
|