1
|
Akhtar S, Ansari MM, Verma RD, Sharma J, Gupta A, Dhuriya RK, Verma DP, Saroj J, Ali M, Verma NK, Mitra K, Singh BN, Ghosh JK. Generating a Peptide Library Using the Repeats of Amino Acid Scaffolds Created by Sliding the Framework of a 7-mer Human Chemerin Segment and Discovery of Potent Antibacterial and Antimycobacterial Peptides. J Med Chem 2025; 68:566-589. [PMID: 39718360 DOI: 10.1021/acs.jmedchem.4c02351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The quest for new approaches for generating novel bioactive designer proteins/peptides has continued with their success in various biomedical applications. Previously, we designed a 14-mer α-helical peptide with antimicrobial and antimycobacterial activities by employing a tandem repeat of the 7-mer, "KVLGRLV" human chemerin segment. Herein, we devised a new method of "sliding framework" with this segment to create amino acid scaffolds of varying sizes and sequences and explored the design of a peptide library with antibacterial and antimycobacterial activities. By utilizing 2 to 7 repeats of these 2 to 6-residue scaffolds, we designed and synthesized 30 peptides of 10-16 residue lengths. Thus, we identified novel AMPs with α-helical, β-sheet, and random coil structures, membrane-destabilizing, and intracellular modes of action, and 9 of them showed therapeutic indices between 100 and 750. Three and two of these nine peptides showed in vivo antibacterial and antitubercular efficacies against Escherichia coli ATCC 25922 and Mycobacterium bovis BCG infections, respectively, in a mouse model.
Collapse
Affiliation(s)
- Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohd Mustkim Ansari
- Division of Molecular Microbiology and Immunology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rahul Dev Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Juhi Sharma
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Arvind Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajendra Kumar Dhuriya
- Division of Molecular Microbiology and Immunology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mehmood Ali
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- School of Studies in Biotechnology, Shaheed Mahendra Karma Vishwavidyalaya, Bastar, Dharampura-2, Jagdalpur, C.G. 494001, India
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhupendra Narain Singh
- Division of Molecular Microbiology and Immunology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Nagaraj B, Sivasubramanian A, Musthafa SA, Muhammad S, Anilkumar AK, Munuswamy-Ramanujam G, Kamaraj C, Dhanasekaran S, Subramaniyan V. Clerodane diterpene 3-deoxycaryoptinol (Clerodin) selectively induces apoptosis in human monocytic leukemia (THP-1) cells and upregulates apoptotic protein caspase-3. Free Radic Biol Med 2024; 225:925-932. [PMID: 39393554 DOI: 10.1016/j.freeradbiomed.2024.10.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
3-deoxycaryoptinol (Clerodin) is a clerodane diterpene isolated from the leaves of Clerodendrum infortunatum. The present research investigates the anticancer therapeutic efficacy of clerodin in human monocytic leukemic (THP-1) cells for the first time. In vitro assay using THP-1 cells showed the cytotoxic ability of clerodin. Further, Annexin-V(FITC)/PI and intracellular ROS (DCFDA) assays carried out using flow cytometry, and confocal laser scanning microscopy confirmed the apoptotic potential of clerodin. Moreover, the Western blot was used to detect mitochondrial apoptosis of THP-1 cells. RT-PCR, ELISA, and Western blot analysis clearly indicated that clerodin significantly increased the expression of pro-apoptotic marker caspase-3 in THP-1 cells. clerodin also selectively targeted the G2/M phase of THP-1 cells, a key feature for anticancer molecules. Importantly, the clerodin did not exhibit cytotoxicity against human peripheral blood cells. These properties of clerodin make it a potential chemotherapeutic agent that can selectively induce apoptosis in leukemia-like cancer cells.
Collapse
Affiliation(s)
- Bharathkumar Nagaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India; Department of Biotechnology, Faculty of Science and Humanities, SRM-IST, Kattankulathur, Chennai 603203, India
| | - Arvind Sivasubramanian
- Natural Products and Organic Synthesis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, 613401, Tamil Nadu, India
| | - Shazia Anjum Musthafa
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India; Department of Biotechnology, Faculty of Science and Humanities, SRM-IST, Kattankulathur, Chennai 603203, India
| | - Sadiq Muhammad
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India; Department of Chemistry, Faculty of Engineering and Technology, SRM-IST, Kattankulathur, Chennai 603203, India
| | - Aswathy Karanath Anilkumar
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institution of Science and Technology, Kattankulathur, Tamilnadu, 603203, India
| | - Ganesh Munuswamy-Ramanujam
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India; Department of Chemistry, Faculty of Engineering and Technology, SRM-IST, Kattankulathur, Chennai 603203, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India.
| | - Sivaraman Dhanasekaran
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| | - Vetriselvan Subramaniyan
- Vetriselvan Subramaniyan, Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
3
|
Maji S, Akhtar S, Halder S, Chatterjee I, Verma DP, Verma NK, Saroj J, Saxena D, Maitra R, Sharma J, Sharma B, Sakurai H, Mitra K, Chopra S, Ghosh JK, Panda G. Corannulene Amino Acid-Derived Water-Soluble Amphiphilic Buckybowls as Broad-Spectrum Membrane Targeting Antibacterial Agents. J Med Chem 2024; 67:15041-15060. [PMID: 39213648 DOI: 10.1021/acs.jmedchem.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
To date, the use of corannulene has been restricted in the area of material science, but its application in biomedical research has yet to be established due to its nonsolubility in an aqueous environment and synthetic infeasibility. Herein, we detail the development of a new family of highly curved π-conjugated corannulene-containing unnatural α-amino acid (CAA) derivatives to overcome this challenge. These CAAs have been extended as novel constituents for the synthesis of corannulene-containing water-soluble cationic peptides (CCPs), which display inhibitory activity against broad-spectrum pathogenic bacteria along with drug-resistant bacteria via a membrane-damaging mechanism. Importantly, several of the synthesized peptides were found to be appreciably nonhemolytic against hRBCs and noncytotoxic against mammalian 3T3 cells. In vivo efficacy studies of the potent and least cytotoxic peptide 6a demonstrated clearance of bacteria from the spleen, liver, lung, and blood of mice infected with S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Saroj Maji
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Sabyasachi Halder
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Indranil Chatterjee
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- School of Studies in Biotechnology, Shaheed Mahendra Karma Vishwavidyalaya, Dharampura, Jagdalpur 494001, Chhattisgarh, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Deepanshi Saxena
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Rahul Maitra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Juhi Sharma
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Bhawana Sharma
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gautam Panda
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Pyne N, Ray R, Paul S. Computational and experimental approaches manifest the leishmanicidal potential of α-mangostin resourced from Garcinia cowa. Acta Trop 2024; 257:107291. [PMID: 38889863 DOI: 10.1016/j.actatropica.2024.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Owing to the persistent number of parasitic deaths, Visceral leishmaniasis continues to haunt several economically weaker sections of India. The disease causes over 30,000 deaths and threatens millions annually on a global scale. The standard pentavalent antimonials, on the other hand, are associated with health adversities and disease relapse. The current study is focused on the search for the most potential natural bioactive phytocompound from the bark extract of the Northeastern Indian plant, Garcinia cowa, that shows potent anti-leishmanial properties. The High Resonance Liquid Chromatography followed by Mass Spectrometry (HR-LCMS) study followed by an in silico molecular docking using computational tools revealed that α-mangostin might potentially possess antiparasitic activity. To validate the anti-leishmanial efficacy of the compound, a cell viability assay was performed, which demonstrated the parasite-specific inhibitory activity of α-mangostin; with IC50 values ranging from 4.95 - 7.37 µM against the different forms of Leishmania donovani parasite. The flow cytometric analysis of the phytocompound treated parasites indicated an oxidative and nitrosative stress-mediated apoptotic cell death in the parasites, by the suggestive surge in nuclear fragmentation and mitochondrial dysfunction. Simultaneously, a cytokine profiling study suggested approximate two-to-three-fold upregulated levels of pro-inflammatory cytokines post-compound treatment, which is predicted to actively contribute to parasite-killing. α-mangostin was also found to reduce the chances of parasite survival by inhibiting arginase enzyme activity, which in favorable conditions facilitates its sustenance. This study thereby substantiates that α-mangostin significantly possesses anti-leishmanial potentiality that can be developed into a cure for this infectious disease.
Collapse
Affiliation(s)
- Nibedita Pyne
- Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata 700019, India
| | - Ribhu Ray
- Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata 700019, India
| | - Santanu Paul
- Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
5
|
Chhajer R, Bhattacharyya A, Ali N. Cell Death in Leishmania donovani promastigotes in response to Mammalian Aurora Kinase B Inhibitor- Hesperadin. Biomed Pharmacother 2024; 177:116960. [PMID: 38936193 DOI: 10.1016/j.biopha.2024.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024] Open
Abstract
Deciphering how hesperadin, a repurposed mammalian aurora kinase B inhibitor, affects the cellular pathways in Leishmania donovani might be beneficial. This investigation sought to assess the physiological effects of hesperadin on promastigotes of L. donovani, by altering the duration of treatment following exposure to hesperadin. Groups pre-treated with inhibitors such as EGTA, NAC, and z-VAD-fmk before hesperadin exposure were also included. Morphological changes by microscopy, ATP and ROS changes by luminometry; DNA degradation using agarose gel electrophoresis and metacaspase levels through RT-PCR were assessed. Flow cytometry was used to study mitochondrial depolarization using JC-1 and MitoTracker Red; mitochondrial-superoxide accumulation using MitoSOX; plasma membrane modifications using Annexin-V and propidium iodide, and lastly, caspase activation using ApoStat. Significant alterations in promastigote morphology were noted. Caspase activity and mitochondrial-superoxide rose early after exposure whereas mitochondrial membrane potential demonstrated uncharacteristic variations, with significant functional disturbances such as leakage of superoxide radicals after prolonged treatments. ATP depletion and ROS accumulation demonstrated inverse patterns, genomic DNA showed fragmentation and plasma membrane showed Annexin-V binding, soon followed by propidium iodide uptake. Multilobed macronuclei and micronuclei accumulated in hesperadin exposed cells before they disintegrated into necrotic debris. The pathologic alterations were unlike the intrinsic or extrinsic pathways of classical apoptosis and suggest a caspase-mediated cell death most akin to mitotic-catastrophe. Most likely, a G2/M transition block caused accumulation of death signals, disorganized spindles and mechanical stresses, causing changes in morphology, organellar functions and ultimately promastigote death. Thus, death was a consequence of mitotic-arrest followed by ablation of kinetoplast functions, often implicated in L. donovani killing.
Collapse
Affiliation(s)
- Rudra Chhajer
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Anirban Bhattacharyya
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
6
|
Majhi S, Awasthi BP, Sharma RK, Mitra K. Buparvaquone Induces Ultrastructural and Physiological Alterations Leading to Mitochondrial Dysfunction and Caspase-Independent Apoptotic Cell Death in Leishmania donovani. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:521-538. [PMID: 38709559 DOI: 10.1093/mam/ozae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/09/2024] [Accepted: 03/31/2024] [Indexed: 05/08/2024]
Abstract
Leishmaniasis is a neglected tropical disease (endemic in 99 countries) caused by parasitic protozoa of the genus Leishmania. As treatment options are limited, there is an unmet need for new drugs. The hydroxynaphthoquinone class of compounds demonstrates broad-spectrum activity against protozoan parasites. Buparvaquone (BPQ), a member of this class, is the only drug licensed for the treatment of theileriosis. BPQ has shown promising antileishmanial activity but its mode of action is largely unknown. The aim of this study was to evaluate the ultrastructural and physiological effects of BPQ for elucidating the mechanisms underlying the in vitro antiproliferative activity in Leishmania donovani. Transmission and scanning electron microscopy analyses of BPQ-treated parasites revealed ultrastructural effects characteristic of apoptosis-like cell death, which include alterations in the nucleus, mitochondrion, kinetoplast, flagella, and the flagellar pocket. Using flow cytometry, laser scanning confocal microscopy, and fluorometry, we found that BPQ induced caspase-independent apoptosis-like cell death by losing plasma membrane phospholipid asymmetry and cell cycle arrest at sub-G0/G1 phase. Depolarization of the mitochondrial membrane leads to the generation of oxidative stress and impaired ATP synthesis followed by disruption of intracellular calcium homeostasis. Collectively, these findings provide valuable mechanistic insights and demonstrate BPQ's potential for development as an antileishmanial agent.
Collapse
Affiliation(s)
- Swetapadma Majhi
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Bhanu Priya Awasthi
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rakesh Kumar Sharma
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Kalyan Mitra
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
7
|
Imran M, Singh S, Ahmad MN, Malik P, Mukhopadhyay A, Yadav KS, Gupta UD, Mugale MN, Mitra K, Srivastava KK, Chopra S, Mignani S, Apartsin E, Majoral JP, Dasgupta A. Polycationic phosphorous dendrimer potentiates multiple antibiotics against drug-resistant mycobacterial pathogens. Biomed Pharmacother 2024; 173:116289. [PMID: 38452653 DOI: 10.1016/j.biopha.2024.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 03/09/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), causative agent of tuberculosis (TB) and non-tubercular mycobacterial (NTM) pathogens such as Mycobacterium abscessus are one of the most critical concerns worldwide due to increased drug-resistance resulting in increased morbidity and mortality. Therefore, focusing on developing novel therapeutics to minimize the treatment period and reducing the burden of drug-resistant Mtb and NTM infections are an urgent and pressing need. In our previous study, we identified anti-mycobacterial activity of orally bioavailable, non-cytotoxic, polycationic phosphorus dendrimer 2G0 against Mtb. In this study, we report ability of 2G0 to potentiate activity of multiple classes of antibiotics against drug-resistant mycobacterial strains. The observed synergy was confirmed using time-kill kinetics and revealed significantly potent activity of the combinations as compared to individual drugs alone. More importantly, no re-growth was observed in any tested combination. The identified combinations were further confirmed in intra-cellular killing assay as well as murine model of NTM infection, where 2G0 potentiated the activity of all tested antibiotics significantly better than individual drugs. Taken together, this nanoparticle with intrinsic antimycobacterial properties has the potential to represents an alternate drug candidate and/or a novel delivery agent for antibiotics of choice for enhancing the treatment of drug-resistant mycobacterial pathogens.
Collapse
Affiliation(s)
- Mohmmad Imran
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shriya Singh
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Mohammad Naiyaz Ahmad
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pradip Malik
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atri Mukhopadhyay
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karan Singh Yadav
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Umesh D Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra 282001, India
| | - Madhav N Mugale
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kalyan Mitra
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kishore K Srivastava
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sidharth Chopra
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Serge Mignani
- Centre d'Etudes et de Recherche sur le Medicament de Normandie (CERMN), Université de Caen Normandie, Caen 14032, France; Centro de Quimica da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, Funchal 9020-105 19, Portugal.
| | - Evgeny Apartsin
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac F-33600, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France; LCC-CNRS, Université de Toulouse, CNRS, Toulouse 31400, France.
| | - Arunava Dasgupta
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Chowdhury N, Naorem RS, Hazarika DJ, Goswami G, Dasgupta A, Bora SS, Boro RC, Barooah M. An oxalate decarboxylase-like cupin domain containing protein is involved in imparting acid stress tolerance in Bacillus amyloliquefaciens MBNC. World J Microbiol Biotechnol 2024; 40:64. [PMID: 38189984 DOI: 10.1007/s11274-023-03870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024]
Abstract
We report here the structural and functional properties of an oxalate decarboxylase (OxDC)-like cupin domain-containing protein of Bacillus amyloliquefaciens MBNC and its role in imparting tolerance to acid stress conditions. Quantitative real-time PCR (qPCR) analysis revealed 32-fold and 20-fold upregulation of the target gene [(OxDC')cupin] under acetic acid stress and hydrochloric acid stress, respectively, indicating its association with the acid stress response. Bacterial cells with targeted inactivation of the (OxDC')cupin gene using the pMUTIN4 vector system showed decreased growth and survival rate in acidic pH, with drastically reduced exopolysaccharide production. In Silico protein-protein interaction studies revealed seven genes (viz. glmS, nagA, nagB, tuaF, tuaF, gcvT, and ykgA) related to cell wall biosynthesis and biofilm production to interact with OxDC-like cupin domain containing protein. While all these seven genes were upregulated in B. amyloliquefaciens MBNC after 6 h of exposure to pH 4.5, the mutant cells containing the inactivated (OxDC')cupin gene displayed significantly lower expression (RQ: 0.001-0.02) (compared to the wild-type cells) in both neutral and acidic pH. Our results indicate that the OxDC-like cupin domain containing protein is necessary for cell wall biosynthesis and biofilm production in Bacillus amyloliquefaciens MBNC for survival in acid-stress conditions.
Collapse
Affiliation(s)
- Naimisha Chowdhury
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Romen Singh Naorem
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Dibya Jyoti Hazarika
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Gunajit Goswami
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Abhisek Dasgupta
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Sudipta Sankar Bora
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
9
|
Mianowska M, Zaremba-Czogalla M, Zygmunt A, Mahmud M, Süss R, Gubernator J. Dual Role of Vitamin C-Encapsulated Liposomal Berberine in Effective Colon Anticancer Immunotherapy. Pharmaceuticals (Basel) 2023; 17:5. [PMID: 38275991 PMCID: PMC10819181 DOI: 10.3390/ph17010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
The aim of the study was to achieve effective colon anticancer immunotherapy using the alkaloid berberine. In the presented paper we attempt to develop a formulation of berberine loaded into liposomal carriers using the vitamin C gradient method, characterized by efficient drug encapsulation, high stability during long-term storage, low drug release in human plasma with specific cytotoxicity towards colon cancer cells. Liposomal berberine was responsible for the induction of oxidative stress, the presence of Ca2+ ions in the cytosol, the reduction of Δψm, and ATP depletion with a simultaneous lack of caspase activity. Moreover, treatment with liposomal berberine led to CRT exposure on the surface of cancer cells, extracellular ATP, and HMGB1 release. The above-described mechanism of action was most likely associated with ICD induction, contributing to the increased number of phagocytic cancer cells. We have shown that cancer cells treated with liposomal berberine were phagocytosed more frequently by macrophages compared to the untreated cancer cells. What is more, we have shown that macrophage pre-treatment with liposomal berberine led to a 3-fold change in the number of phagocytosed SW620 cancer cells. The obtained results provide new insights into the role of berberine in maintaining the immune response against colorectal cancer.
Collapse
Affiliation(s)
- Martyna Mianowska
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
| | - Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
| | - Mohamed Mahmud
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
- Department of Medical Genetics, Faculty of Health Sciences, University of Misurata, Misurata 2478, Libya
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Albert Ludwig University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany;
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
| |
Collapse
|
10
|
Utage B, Patole M, Nagvenkar P, Gacche R. Prosopis juliflora (Sw.) DC.induces apoptotic-like programmed cell death in Leishmania donovani via over production of oxidative stress, mitochondrial dysfunction and ATP depletion. J Tradit Complement Med 2023; 13:611-622. [PMID: 38020554 PMCID: PMC10658441 DOI: 10.1016/j.jtcme.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Leishmaniasis is endemic in more than 60 countries with a large number of mortality cases. The current chemotherapy approaches employed for managing the leishmaniasis is associated with severe side effects. Therefore there is a need to develop effective, safe, and cost affordable antileishmanial drug candidates. Purpose of the study This study was designed to evaluate the in vitro antileishmanial activity of a Prosopis juliflora leaves extract (PJLME) towards the Leishmania donovani parasites. Material and methods PJLME was evaluated for its cytotoxicity against the L. donovani parasites and the mouse macrophage cells. Further, various in vitro experiments like ROS assay, mitochondrial membrane potential assay, annexin v assay, cell cycle assay, and caspase 3/7 assay were performed to understand the mechanism of cell death. Phytochemical profiling of P. juliflorawas performed by utilizing HPTLC and GC-MS analysis. Results PJLME demonstrated antileishmanial activity at a remarkably lower concentration of IC50 6.5 μg/mL. Of note, interestingly PJLME IC50 concentration has not demonstrated cytotoxicity against the mouse macrophage cell line. Performed experiments confirmed ROS inducing potential of PJLME which adversely affected the mitochondrial membrane potential and caused loss of mitochondrial membrane potential and thereby ATP levels. PJLME also arrested the cell cycle and induced apoptotic-like cell death in PJLME treated L. donovani promastigotes. Conclusion The results clearly established the significance of Prosopis juliflora as an effective and safe natural resource for managing visceral leishmaniasis. The findings can be used as a baseline reference for developing novel leads/formulations for effective management of visceral leishmaniasis.
Collapse
Affiliation(s)
| | - Milind Patole
- National Centre for Cell Science, NCCS Complex, Pune, 411007, MS, India
| | - Punam Nagvenkar
- National Centre for Cell Science, NCCS Complex, Pune, 411007, MS, India
| | - Rajesh Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, MS, India
| |
Collapse
|
11
|
Lourenço EMG, da Silva F, das Neves AR, Bonfá IS, Ferreira AMT, Menezes ACG, da Silva MEC, Dos Santos JT, Martines MAU, Perdomo RT, Toffoli-Kadri MC, G Barbosa E, Saba S, Beatriz A, Rafique J, de Arruda CCP, de Lima DP. Investigation of the Potential Targets behind the Promising and Highly Selective Antileishmanial Action of Synthetic Flavonoid Derivatives. ACS Infect Dis 2023; 9:2048-2061. [PMID: 37772925 DOI: 10.1021/acsinfecdis.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Leishmaniases are among the neglected tropical diseases that still cause devastating health, social, and economic consequences to more than 350 million people worldwide. Despite efforts to combat these vector-borne diseases, their incidence does not decrease. Meanwhile, current antileishmanial drugs are old and highly toxic, and safer presentations are unaffordable to the most severely affected human populations. In a previous study by our research group, we synthesized 17 flavonoid derivatives that demonstrated impressive inhibition capacity against rCPB2.8, rCPB3, and rH84Y. These cysteine proteases are highly expressed in the amastigote stage, the target form of the parasite. However, although these compounds have been already described in the literature, until now, the amastigote effect of any of these molecules has not been proven. In this work, we aimed to deeply analyze the antileishmanial action of this set of synthetic flavonoid derivatives by correlating their ability to inhibit cysteine proteases with the action against the parasite. Among all the synthesized flavonoid derivatives, 11 of them showed high activity against amastigotes of Leishmania amazonensis, also providing safety to mammalian host cells. Furthermore, the high production of nitric oxide by infected cells treated with the most active cysteine protease B (CPB) inhibitors confirms a potential immunomodulatory response of macrophages. Besides, considering flavonoids as multitarget drugs, we also investigated other potential antileishmanial mechanisms. The most active compounds were selected to investigate another potential biological pathway behind their antileishmanial action using flow cytometry analysis. The results confirmed an oxidative stress after 48 h of treatment. These data represent an important step toward the validation of CPB as an antileishmanial target, as well as aiding in new drug discovery studies based on this protease.
Collapse
Affiliation(s)
- Estela M G Lourenço
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Fernanda da Silva
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Amarith R das Neves
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Iluska S Bonfá
- Laboratório de Farmacologia e Inflamação, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79074-460 MS, Brazil
| | - Alda Maria T Ferreira
- Laboratório de Imunologia, Biologia Molecular e Bioensaios Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Adriana C G Menezes
- Biotério Central, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Maria E C da Silva
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Jéssica T Dos Santos
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Marco A U Martines
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Renata T Perdomo
- Laboratório de Biologia Molecular e Cultura de Células, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Mônica C Toffoli-Kadri
- Laboratório de Farmacologia e Inflamação, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79074-460 MS, Brazil
| | - Euzébio G Barbosa
- Laboratório de Química Farmacêutica Computacional, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, 59012-570, RN, Brazil
| | - Sumbal Saba
- Laboratório de Síntese Sustentável e Organocalcogênio - LabSO, Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, 74690-900 GO, Brazil
| | - Adilson Beatriz
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Jamal Rafique
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
- Laboratório de Síntese Sustentável e Organocalcogênio - LabSO, Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, 74690-900 GO, Brazil
| | - Carla C P de Arruda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Dênis P de Lima
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| |
Collapse
|
12
|
Ansari A, Seth A, Dutta M, Qamar T, Katiyar S, Jaiswal AK, Rani A, Majhi S, Kumar M, Bhatta RS, Guha R, Mitra K, Sashidhara KV, Kar S. Discovery, SAR and mechanistic studies of quinazolinone-based acetamide derivatives in experimental visceral leishmaniasis. Eur J Med Chem 2023; 257:115524. [PMID: 37290183 DOI: 10.1016/j.ejmech.2023.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
Towards identification of novel therapeutic candidates, a series of quinazolinone-based acetamide derivatives were synthesized and assessed for their anti-leishmanial efficacy. Amongst synthesized derivatives, compounds F12, F27 and F30 demonstrated remarkable activity towards intracellular L. donovani amastigotes in vitro, with IC50 values of 5.76 ± 0.84 μM, 3.39 ± 0.85 μM and 8.26 ± 1.23 μM against promastigotes, and 6.02 μM ± 0.52, 3.55 ± 0.22 μM and 6.23 ± 0.13 μM against amastigotes, respectively. Oral administration of compounds F12 and F27 entailed >85% reduction in organ parasite burden in L. donovani-infected BALB/c mice and hamsters, by promoting host-protective Th1 cytokine response. In host J774 macrophages, mechanistic studies revealed inhibition of PI3K/Akt/CREB axis, resulting in a decrease of IL-10 versus IL-12 release upon F27 treatment. In silico docking studies conducted with lead compound, F27 demonstrated plausible inhibition of Leishmania prolyl-tRNA synthetase, which was validated via detection of decreased proline levels in parasites and induction of amino acid starvation, leading to G1 cell cycle arrest and autophagy-mediated programmed cell death of L. donovani promastigotes. Structure-activity analysis and study of pharmacokinetic and physicochemical parameters suggest oral availability and underscore F27 as a promising lead for anti-leishmanial drug development.
Collapse
Affiliation(s)
- Alisha Ansari
- Medicinal and Process Chemistry Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Anuradha Seth
- Molecular Microbiology & Immunology Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mukul Dutta
- Molecular Microbiology & Immunology Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Tooba Qamar
- Molecular Microbiology & Immunology Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sarita Katiyar
- Medicinal and Process Chemistry Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Arvind K Jaiswal
- Medicinal and Process Chemistry Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ankita Rani
- Molecular Microbiology & Immunology Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Swetapadma Majhi
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mukesh Kumar
- Pharmacokinetics and Metabolism Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi S Bhatta
- Pharmacokinetics and Metabolism Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Rajdeep Guha
- Laboratory Animal Facility Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Susanta Kar
- Molecular Microbiology & Immunology Division, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
13
|
Elawad MA, Elkhalifa MEM, Hamdoon AAE, Salim LHM, Ahmad Z, Ayaz M. Natural products derived steroids as potential anti-leishmanial agents; disease prevalence, underlying mechanisms and future perspectives. Steroids 2023; 193:109196. [PMID: 36764565 DOI: 10.1016/j.steroids.2023.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Leishmaniasis is a vector-borne infection caused by protozoan parasites from the genus leishmania and is among the most neglected tropical diseases. It is highly prevalent disease, affecting about 350 million population worldwide. Only limited number of anti-leishmanial agents are approved for clinical use till now and they are associated with side effects and have limited efficacy. Subsequently, natural products based discovery of more safe and effective drugs against leishmania is under scientific consideration. Various studies reported the efficacy of natural products against intracellular and extracellular forms of leishmania species. This work is aimed to evaluate current literature focused on the anti-leihmanial efficacy of steroidal moieties from natural products and their mechanism of action. Compounds including steroidal saponins, steroidal alkaloids and phytosterols were found to exhibit considerable anti-leishmanial efficacy. For instance, steroidal saponin, (25R)-spirost-5-en-3b-ol,3-O-α-rhamnopyranosyl-(1 → 4)-α-rhamnopyranosyl-(1 → 4)-[a-rhamnopyranosyl-(1 → 2)]-glucopyranoside isolated from A. paradoxum has completely eradicated Leishmania major promastigotes at 50 µg mL-1 dose. Spirostanic saponins isolated from Solanum paniculatum L. were effective against Leishmania amazonensis promastigotes. Turgidosterones isolated from Panicum turgidum exhibited high leishmanicidal potentials against Leishmania donovani promastigotes with IC50 of 4.95-8.03 µg mL-1 and even better activity against amastigotes exhibiting an IC50 of 4.50-9.29 µg mL-1. Likewise, racemoside-A from Asparagus racemosus was found effective against an antimonial sensitive (AG83) and antimonial resistant (GE1F8R) strains of the L. donovani. Moreover, steroidal alkaloids including hookerianamide-1, hookerianamide-H, hookerianamide-J, hookerianamide-K, dehydrosarsalignone, vagenine-A, sarcovagine-C, holaphylline, saracodine, holamine, 15-α hydroxyholamine, holacurtin, N-desmethyl holacurtine and elasticine has exhibited time and dose-dependent efficacy against various strains of leishmania. β-sitosterol was found active against multiple strains of leishmania. These compounds mainly exhibit their therapeutic efficacy via liberation of ROS, mitochondrial depolarization, morphological and ultra-structural changes, accumulation of lipid droplets, depletion of non-protein thiols and triggering apoptotic pathways. In conclusion, leishmaniasis is a major health problem in many countries. Plants-derived steroids moieties have reveled efficacy against leishmaniasis and is a source of lead compounds. Further detailed molecular studies are warranted for the discovery of more effective and safe anti-leishmanial drugs.
Collapse
Affiliation(s)
- Mohammed Ahmed Elawad
- Public Health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, Saudi Arabia; University of Khartoum, Faculty of Public and Environmental Health, Sudan.
| | - Modawy Elnour Modawy Elkhalifa
- Public Health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, Saudi Arabia; University of Khartoum, Faculty of Public and Environmental Health, Sudan.
| | - Alashary Adam Eisa Hamdoon
- Public Health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, Saudi Arabia; University of Khartoum, Faculty of Public and Environmental Health, Sudan.
| | - Liga Hasan Mohammed Salim
- Public Health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, Saudi Arabia; University of Khartoum, Faculty of Public and Environmental Health, Sudan.
| | - Zeeshan Ahmad
- Department of Pharmacy, Facutly of Biological Sciences, University of Malakand, Chakdara 18000, Dir (L), KPK, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Facutly of Biological Sciences, University of Malakand, Chakdara 18000, Dir (L), KPK, Pakistan.
| |
Collapse
|
14
|
Alves AB, da Silva Bortoleti BT, Tomiotto-Pellissier F, Ganaza AFM, Gonçalves MD, Carloto ACM, Rodrigues ACJ, Silva TF, Nakazato G, Kobayashi RKT, Lazarin-Bidóia D, Miranda-Sapla MM, Costa IN, Pavanelli WR, Conchon-Costa I. Synergistic Antileishmanial Effect of Oregano Essential Oil and Silver Nanoparticles: Mechanisms of Action on Leishmania amazonensis. Pathogens 2023; 12:pathogens12050660. [PMID: 37242330 DOI: 10.3390/pathogens12050660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
American tegumentary leishmaniasis, a zoonotic disease caused by the Leishmania genus, poses significant challenges in treatment, including administration difficulty, low efficacy, and parasite resistance. Novel compounds or associations offer alternative therapies, and natural products such as oregano essential oil (OEO), extracted from Origanum vulgare, have been extensively researched due to biological effects, including antibacterial, antifungal, and antiparasitic properties. Silver nanoparticles (AgNp), a nanomaterial with compelling antimicrobial and antiparasitic activity, have been shown to exhibit potent leishmanicidal properties. We evaluated the in vitro effect of OEO and AgNp-Bio association on L. amazonensis and the death mechanisms of the parasite involved. Our results demonstrated a synergistic antileishmanial effect of OEO + AgNp on promastigote forms and L. amazonensis-infected macrophages, which induced morphological and ultrastructural changes in promastigotes. Subsequently, we investigated the mechanisms underlying parasite death and showed an increase in NO, ROS, mitochondrial depolarization, accumulation of lipid-storage bodies, autophagic vacuoles, phosphatidylserine exposure, and damage to the plasma membrane. Moreover, the association resulted in a reduction in the percentage of infected cells and the number of amastigotes per macrophage. In conclusion, our findings establish that OEO + AgNp elicits a late apoptosis-like mechanism to combat promastigote forms and promotes ROS and NO production in infected macrophages to target intracellular amastigote forms.
Collapse
Affiliation(s)
- Alex Barbosa Alves
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
- Carlos Chagas Institute (ICC-Fiocruz-Pr), Curitiba 81310-020, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
- Carlos Chagas Institute (ICC-Fiocruz-Pr), Curitiba 81310-020, PR, Brazil
| | - Ana Flávia Marques Ganaza
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Manoela Daiele Gonçalves
- Laboratory of Biotransformation and Phytochemistry, Department of Chemistry, Center of Exact Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Amanda Cristina Machado Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | | | - Danielle Lazarin-Bidóia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
15
|
Kumar V, Lin JS, Molchanova N, Fortkort JA, Reckmann C, Bräse S, Jenssen H, Barron AE, Chugh A. Membrane-acting biomimetic peptoids against visceral leishmaniasis. FEBS Open Bio 2023; 13:519-531. [PMID: 36683396 PMCID: PMC9989931 DOI: 10.1002/2211-5463.13562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/08/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Visceral leishmaniasis (VL) is among the most neglected tropical diseases in the world. Drug cell permeability is essential for killing the intracellular residing parasites responsible for VL, making cell-permeating peptides a logical choice to address VL. Unfortunately, the limited biological stability of peptides restricts their usage. Sequence-specific oligo-N-substituted glycines ('peptoids') are a class of peptide mimics that offers an excellent alternative to peptides in terms of ease of synthesis and good biostability. We tested peptoids against the parasite Leishmania donovani in both forms, that is, intracellular amastigotes and promastigotes. N-alkyl hydrophobic chain addition (lipidation) and bromination of oligopeptoids yielded compounds with good antileishmanial activity against both forms, showing the promise of these antiparasitic peptoids as potential drug candidates to treat VL.
Collapse
Affiliation(s)
- Vivek Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, CA, USA
| | | | - John A Fortkort
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, CA, USA
| | - Carolin Reckmann
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Germany
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Denmark
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, CA, USA
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| |
Collapse
|
16
|
Sasidharan S, Saudagar P. Knockout of Tyrosine Aminotransferase Gene by Homologous Recombination Arrests Growth and Disrupts Redox Homeostasis in Leishmania Parasite. Parasitol Res 2022; 121:3229-3241. [PMID: 36056961 DOI: 10.1007/s00436-022-07642-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
Tyrosine aminotransferase is a well-characterized enzyme in the Leishmania parasite, but the role of TAT in the parasite functioning remains largely unknown. In this study, we attempt to gain a better understanding of the enzyme's role in the parasite by gene knockout and overexpression of the TAT gene. The overexpression of TAT protein was well tolerated by the parasites in two independent repeats. Single knockout of TAT gene by homologous recombination, LdTAT+/- displayed distinct retardation in the proliferation rates and entered the death phase immediately. Morphology of LdTAT+/- parasites had important structural defects as they rounded up with elongated flagella. Gene regulation studies suggested the upregulation of key apoptotic and redox metabolism genes in LdTAT+/-. Moreover, LdTAT+/- cells accumulated higher ROS, thiols, intracellular Ca2+ concentrations, and mitochondrial membrane depolarization signifying the onset of apoptosis. Tocopherol levels were reduced by 50% in LdTAT+/- suggesting the involvement of TAT in tocopherol biosynthesis in the parasite. Overall, our results provide the first evidence that gene knockout of TAT results in apoptosis and that TAT is required for the survival and viability of Leishmania donovani.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
17
|
Lima ML, Abengózar MA, Torres-Santos EC, Borborema SET, Godzien J, López-Gonzálvez Á, Barbas C, Rivas L, Tempone AG. Energy metabolism as a target for cyclobenzaprine: A drug candidate against Visceral Leishmaniasis. Bioorg Chem 2022; 127:106009. [PMID: 35841672 DOI: 10.1016/j.bioorg.2022.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/13/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Leishmaniases have a broad spectrum of clinical manifestations, ranging from a cutaneous to a progressive and fatal visceral disease. Chemotherapy is nowadays the almost exclusive way to fight the disease but limited by its scarce therapeutic arsenal, on its own compromised by adverse side effects and clinical resistance. Cyclobenzaprine (CBP), an FDA-approved oral muscle relaxant drug has previously demonstrated in vitro and in vivo activity against Leishmania sp., but its targets were not fully unveiled. This study aimed to define the role of energy metabolism as a target for the leishmanicidal mechanisms of CBP. Methodology to assess CBP leishmanicidal mechanism variation of intracellular ATP levels using living Leishmania transfected with a cytoplasmic luciferase. Induction of plasma membrane permeability by assessing depolarization with DiSBAC(2)3 and entrance of the vital dye SYTOX® Green. Mitochondrial depolarization by rhodamine 123 accumulation. Mapping target site within the respiratory chain by oxygen consumption rate. Reactive oxygen species (ROS) production using MitoSOX. Morphological changes by transmission electron microscopy. CBP caused on L. infantum promastigotes a decrease of intracellular ATP levels, with irreversible depolarization of plasma membrane, the collapse of the mitochondrial electrochemical potential, mild uncoupling of the respiratory chain, and ROS production, with ensuing intracellular Ca2+ imbalance and DNA fragmentation. Electron microscopy supported autophagic features but not a massive plasma membrane disruption. The severe and irreversible mitochondrial damage induced by CBP endorsed the bioenergetics metabolism as a relevant target within the lethal programme induced by CBP in Leishmania. This, together with the mild-side effects of this oral drug, endorses CBP as an appealing novel candidate as a leishmanicidal drug under a drug repurposing strategy.
Collapse
Affiliation(s)
- Marta Lopes Lima
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil
| | - Maria A Abengózar
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | | | | | - Joanna Godzien
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad CEU San Pablo, Madrid, Spain
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad CEU San Pablo, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad CEU San Pablo, Madrid, Spain.
| | - Luis Rivas
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.
| | - Andre Gustavo Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Effects of terpenes in the treatment of visceral leishmaniasis: a systematic review of preclinical evidence. Pharmacol Res 2022; 177:106117. [DOI: 10.1016/j.phrs.2022.106117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/15/2022]
|
19
|
Pedra-Rezende Y, Bombaça ACS, Menna-Barreto/ RFS. Is the mitochondrion a promising drug target in trypanosomatids? Mem Inst Oswaldo Cruz 2022; 117:e210379. [PMID: 35195164 PMCID: PMC8862782 DOI: 10.1590/0074-02760210379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
|
20
|
Paula JC, Fernandes NS, Karam TK, Baréa P, Sarragiotto MH, Ueda-Nakamura T, Silva SO, Nakamura CV. β-carbolines RCC and C5 induce death of Leishmania amazonensis intracellular amastigotes. Future Microbiol 2021; 17:99-110. [PMID: 34913373 DOI: 10.2217/fmb-2020-0263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Cutaneous leishmaniasis is caused by Leishmania spp., and its treatment is limited. The β-carbolines have shown activity against kinetoplastids. Aim: To evaluate the activity and effects of the β-carbolines, N-{2-[(4,6-bis(isopropylamino)-1,3,5-triazin-2-yl)amino]ethyl}-1-(4-methoxyphenyl)-β-carboline-3-carboxamide (RCC) and N-benzyl-1-(4-methoxy)phenyl-9H-beta-carboline-3-carboxamide (C5), against L. amazonensis intracellular amastigotes and to suggest their mechanism of action. Methods: We analyzed the activity and cytotoxicity of β-carbolines and the morphological alterations by electron microscopy. Mitochondrial membrane potential, production nitric oxide, reactive oxygen species, lipidic bodies, autophagic vacuoles and ATP were also evaluated. Results & conclusion: The results showed that RCC and C5 are active against intracellular amastigotes and were able to induce oxidative stress and ultrastructural alterations such as accumulation of lipid bodies and autophagic vacuoles, leading to parasite death.
Collapse
Affiliation(s)
- Jéssica C Paula
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Brazil
| | - Nilma S Fernandes
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Brazil
| | - Thaysa K Karam
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Brazil
| | - Paula Baréa
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Maria H Sarragiotto
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Tania Ueda-Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Brazil
| | - Sueli O Silva
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Brazil
| | - Celso V Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
21
|
Dullah S, Hazarika DJ, Parveen A, Kakoti M, Borgohain T, Gautom T, Bhattacharyya A, Barooah M, Boro RC. Fungal interactions induce changes in hyphal morphology and enzyme production. Mycology 2021; 12:279-295. [PMID: 34900382 PMCID: PMC8654418 DOI: 10.1080/21501203.2021.1932627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In nature, species interacts/competes with one other within their surrounding for food and space and the type of interactions are unique to each species. The interacting partners secrete different metabolites, which may have high importance in human welfare. Fungal-fungal interactions are complex mechanisms that need better understanding. Here, 14 fungal isolates were facilitated in 105 possible combinations to interact on potato dextrose agar. Morphologically, no changes were observed when the same fungal isolates were allowed to interact within them. However, 10 interactions between different fungal isolates showed mutual replacement with each fungus; capturing territory from the other. Contrastingly, 35 interactions resulted into complete replacement as one of the fungi was inhibited by rapid growth of the other fungus. In 46 interactions, formation of barrage was observed leading to deadlock type of interaction wherein both fungi have restricted growth. To study in details about the barrage formation, two fungal interactions were taken (i) T. coccinea vs. L. lactinea and (ii) T. coccinea vs. T. versicolor. Microscopic changes in the hyphal growth during interaction were observed. There was significant increase in the enzymatic activities including cellulase, xylanase and chitinase during in-vitro fungal-fungal interaction, suggesting the importance of such interactions for commercial enzyme production.
Collapse
Affiliation(s)
- Samim Dullah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Assma Parveen
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Merilin Kakoti
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Tanushree Borgohain
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Trishnamoni Gautom
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.,Royal School of Bio-Sciences, Royal Global University, Guwahati, India
| | - Ashok Bhattacharyya
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
22
|
Das A, Kamran M, Ali N. HO-3867 Induces ROS-Dependent Stress Response and Apoptotic Cell Death in Leishmania donovani. Front Cell Infect Microbiol 2021; 11:774899. [PMID: 34926321 PMCID: PMC8677699 DOI: 10.3389/fcimb.2021.774899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Lack of vaccine and increasing chemotherapeutic toxicities currently necessitate the development of effective and safe drugs against various forms of leishmaniases. We characterized the cellular stress induced by a novel curcumin analogue, HO-3867, encapsulated within the phosphatidylcholine-stearylamine (PC-SA) liposome for the first time against Leishmania. The liposomal formulation of HO-3867 (i.e., PC-SA/HO-3867) initiated oxidative stress-induced apoptosis in L. donovani, revealed by altered cell morphology, phosphatidylserine externalization, mitochondrial depolarization, intracellular lipid accumulation, and cell cycle arrest in promastigotes. Liposomal HO-3867 was observed to be a strong apoptosis inducer in L. donovani and L. major in a dose-dependent manner, yet completely safe for normal murine macrophages. Moreover, PC-SA/HO-3867 treatment induced L. donovani metacaspase and PARP1 activation along with downregulation of the Sir2 gene. PC-SA/HO-3867 arrested intracellular L. donovani amastigote burden in vitro, with reactive oxygen species (ROS) and nitric oxide (NO)-mediated parasite killing. These data suggest that liposomal HO-3867 represents a highly promising and non-toxic nanoparticle-based therapeutic platform against leishmaniasis inspiring further preclinical developments.
Collapse
Affiliation(s)
| | | | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
23
|
Keshav P, Goyal DK, Kaur S. GC-MS screening and antiparasitic action of Putranjiva roxburghii leaves against sensitive and resistant strains of Leishmania donovani. J Parasit Dis 2021; 45:1002-1013. [PMID: 34789984 PMCID: PMC8556436 DOI: 10.1007/s12639-021-01388-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
Looming drug resistance cases of leishmaniasis infection are an undeniably serious danger to worldwide public health, also jeopardize the efficacy of available drugs. Besides this, no successful vaccine is available till date. Since the ancient era, many plants and their parts have been used as medicines against various ailments. Hence, the importance of drug development for new molecules against Leishmania infection is significant that is a cost-effective and safer drug preferably from the natural herbal resources. We evaluated the GC-MS screening and efficacy of Putranjiva roxburghii (PR) against the sensitive and resistant promastigotes of L. donovani. GC-MS profiling revealed that the extract was rich in myo-inositol-4-C-methyl, azulene and desulphosinigrin. Quantitative investigation of phytoconstituents confirmed that PR was rich in phenols, flavonoids and terpenoids. We found an IC50 25.61 ± 0.57 µg/mL and 29.02 ± 1.21 µg/mL of PR against sodium stibogluconate sensitive and resistant strain respectively. It was found to be safer in cytotoxicity assay and generated ROS mediated oxidative stress in the parasitic cells which was evidenced by the increased and decreased levels of superoxide radicals, lipid peroxidation products, lipid bodies and levels of thiol, plasma membrane integrity respectively. Therefore, our results support the importance of P. roxburghii as a medicinal plant against L. donovani and showed potential for exploration as an antileishmanial agent.
Collapse
Affiliation(s)
- Poonam Keshav
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, UT India
| | - Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, UT India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, UT India
| |
Collapse
|
24
|
Antiparasitic potential of Indian honey bee glue against strains of Leishmania donovani sensitive and resistant to synthetic antileishmanial. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Ali R, Tabrez S, Akand SK, Rahman F, Husein A, Arish M, Alqahtani AS, Ahmed MZ, Husain M, Rub A. Sesamol Induces Apoptosis-Like Cell Death in Leishmania donovani. Front Cell Infect Microbiol 2021; 11:749420. [PMID: 34778106 PMCID: PMC8581470 DOI: 10.3389/fcimb.2021.749420] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background Visceral leishmaniasis (VL), caused by the protozoan parasite Leishmania donovani (L. donovani), is the most severe form of leishmaniasis. It is largely responsible for significant morbidity and mortality in tropical and subtropical countries. Currently, available therapeutics have lots of limitations including high-cost, adverse side-effects, painful route of administration, less efficacy, and resistance. Therefore, it is time to search for cheap and effective antileishmanial agents. In the present work, we evaluated the antileishmanial potential of sesamol against promastigotes as well as intracellular amastigotes. Further, we tried to work out its mechanism of antileishmanial action on parasites through different assays. Methodology In vitro and ex vivo antileishmanial assays were performed to evaluate the antileishmanial potential of sesamol on L. donovani. Cytotoxicity was determined by MTT assay on human THP-1-derived macrophages. Sesamol-induced morphological and ultrastructural changes were determined by electron microscopy. H2DCFDA staining, JC-1dye staining, and MitoSOX red staining were performed for reactive oxygen assay (ROS), mitochondrial membrane potential, and mitochondrial superoxide, respectively. Annexin V/PI staining for apoptosis, TUNEL assay, and DNA laddering for studying sesamol-induced DNA fragmentation were performed. Conclusions Sesamol inhibited the growth and proliferation of L. donovani promastigotes in a dose-dependent manner. It also reduced the intracellular parasite load without causing significant toxicity on host-macrophages. Overall, it showed antileishmanial effects through induction of ROS, mitochondrial dysfunction, DNA fragmentation, cell cycle arrest, and apoptosis-like cell death to parasites. Our results suggested the possible use of sesamol for the treatment of leishmaniasis after further in vivo validations.
Collapse
Affiliation(s)
- Rahat Ali
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Shams Tabrez
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sajjadul Kadir Akand
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Fazlur Rahman
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Atahar Husein
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mohd Arish
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ali S Alqahtani
- College of Pharmacy, Department of Pharmacognosy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Z Ahmed
- College of Pharmacy, Department of Pharmacognosy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Husain
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Abdur Rub
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
26
|
Dullah S, Hazarika DJ, Goswami G, Borgohain T, Ghosh A, Barooah M, Bhattacharyya A, Boro RC. Melanin production and laccase mediated oxidative stress alleviation during fungal-fungal interaction among basidiomycete fungi. IMA Fungus 2021; 12:33. [PMID: 34749811 PMCID: PMC8576908 DOI: 10.1186/s43008-021-00082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
Fungal-fungal interaction often leads to the change in metabolite profile of both the interacting fungus which may have potential implication in industry or agriculture. In the present study, we performed two sets of fungal-fungal interaction-Trametes coccinea (F3) with Leiotrametes lactinea (F9) and T. coccinea (F3) with T. versicolor (F1) to understand the changes in the metabolite profile during the interaction process and how this process impacts the hyphal/mycelial morphology of the participating fungi. The metabolites produced during interaction of T. coccinea (F3) with L. lactinea (F9) and T. coccinea (F3) with T. versicolor (F1) was analysed through liquid chromatography coupled to mass spectroscopy (LC-MS). Most of the metabolites secreted or produced during interaction are associated with defensive response. Further, visualization with scanning electron microscopy revealed that interaction between the tested fungi led to the changes in the hyphal morphology. The bipartite fungal interaction resulted in the production of a dark brown colour pigment-melanin as confirmed by the LC-MS, FTIR and NMR analysis. Moreover, the fungal-fungal interaction also led to increase in the production of laccase, a group of multicopper oxidases involved in detoxification of toxic compounds. Further, increased activity of superoxide dismutase, an enzyme that catalyzes the dismutation of the superoxide anion to hydrogen peroxide was also recorded during fungal-fungal interaction. Quantitative real-time PCR revealed upregulation of lcc1 (encoding a laccase enzyme) and few other stress related genes of T. versicolor during its hyphal interaction with T. coccinea, suggesting a direct correlation between laccase production and melanin production.
Collapse
Affiliation(s)
- Samim Dullah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Gunajit Goswami
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Tanushree Borgohain
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Alokesh Ghosh
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Ashok Bhattacharyya
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| |
Collapse
|
27
|
Pratap Verma D, Ansari MM, Verma NK, Saroj J, Akhtar S, Pant G, Mitra K, Singh BN, Ghosh JK. Tandem Repeat of a Short Human Chemerin-Derived Peptide and Its Nontoxic d-Lysine-Containing Enantiomer Display Broad-Spectrum Antimicrobial and Antitubercular Activities. J Med Chem 2021; 64:15349-15366. [PMID: 34662112 DOI: 10.1021/acs.jmedchem.1c01352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To design novel antimicrobial peptides by utilizing the sequence of the human host defense protein, chemerin, a seven-residue amphipathic stretch located in the amino acid region, 109-115, was identified, which possesses the highest density of hydrophobic and positively charged residues. Although this 7-mer peptide was inactive toward microorganisms, its 14-mer tandem repeat (Chem-KVL) was highly active against different bacteria including methicillin-resistant Staphylococcus aureus, a multidrug-resistant Staphylococcus aureus strain, and slow- and fast-growing mycobacterial species. The selective enantiomeric substitutions of its two l-lysine residues were attempted to confer cell selectivity and proteolytic stability to Chem-KVL. Chem-8dK with a d-lysine replacement in its middle (eighth position) showed the lowest hemolytic activity against human red blood cells among Chem-KVL analogues and maintained high antimicrobial properties. Chem-8dK showed in vivo efficacy against Pseudomonas aeruginosa infection in BALB/c mice and inhibited the development of resistance in this microorganism up to 30 serial passages and growth of intracellular mycobacteria in THP-1 cells.
Collapse
Affiliation(s)
- Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohd Mustkim Ansari
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Garima Pant
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Bhupendra Narain Singh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| |
Collapse
|
28
|
Ali R, Islamuddin M, Tabrez S, Alsaweed M, Alaidarous MA, Alshehri BM, Banawas S, Bin Dukhyil AA, Rub A. Embilica officinalis L. inhibits the growth and proliferation of Leishmania donovani through the induction of ultrastructural changes, mitochondrial dysfunction, oxidative stress and apoptosis-like cell death. Biomed Pharmacother 2021; 143:112156. [PMID: 34649333 DOI: 10.1016/j.biopha.2021.112156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Visceral leishmaniasis (VL) is caused by a protozoan parasite, Leishmania donovani (L. donovani). It affects around 1-2 million people around the world annually. There is an urgent need to investigate new medicament of it due to difficult method of drug administration, long period of treatment, high cost of the drug, adverse side-effects, low efficacy and development of parasite resistance to the available drugs. Medicinal plants have also been used for the treatment of different diseases in traditional system of medicines due to their holistic effects. The Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland has already started the program for identification of potential medicinal plant and plant products having antileishmanial potential. Keeping all these in consideration, we planned to study the antileishmanial activity of one of the medicinal plant, Embilica officinalis L. (EO) fruit extract. EO fruit extract inhibited the growth and proliferation of promastigotes as well as intra-macrophagic amastigotes in dose-dependent manner. EO fruit extract induced morphological and ultrastructural changes in parasites as observed under Electron Microscope. It also induced the oxidative stress, mitochondrial dysfunction, DNA laddering and apotosis-like cell death in parasites. Here, we for the first time reported such a detailed mechanism of action of antileishmanial activity of EO fruit extract. Our results suggested that EO fruit extract could be used for the development of new phytomedicine against leishmaniasis.
Collapse
Affiliation(s)
- Rahat Ali
- Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammad Islamuddin
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shams Tabrez
- Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mohammed A Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Bader Mohammed Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abdur Rub
- Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
29
|
Marcolino LMC, Pereira AHC, Pinto JG, Mamone LA, Strixino JF. CELLULAR AND METABOLIC CHANGES AFTER PHOTODYNAMIC THERAPY IN LEISHMANIA PROMASTIGOTES. Photodiagnosis Photodyn Ther 2021; 35:102403. [PMID: 34161856 DOI: 10.1016/j.pdpdt.2021.102403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 01/21/2023]
Abstract
Leishmaniasis is a zoonotic disease, regarded by WHO as a public health problem that has presented a significant increase in the recent years. Conventional treatment is toxic and leads to serious side effects. Photodynamic therapy has been studied as a treatment to cutaneous leishmaniasis. This study aimed to evaluate the cell viability, morphological changes, type of cell death, production of reactive oxygen species, and changes in the mitochondrial membrane and DNA fragmentation in Leishmania braziliensis and Leishmania major promastigotes. Confocal microscopy was used to quantify the fluorescence emitted by JC-1, Annexin V, and propidium iodide reagents. The trypan blue exclusion test was used to evaluate the viability of the cells, the mitochondrial activity was verified with MTT, and the morphological changes were analyzed for SEM and DNA damage using the comet assay. PDT using curcumin at 500, 125, and 31,25 μg/mL decreased the viability of the parasites and induced changes in the mitochondrial membrane potential. The production of reactive oxygen species was dose-dependent and was observed only in the groups submitted to PDT. DNA damage was also observed in the parasite cells. The morphology of the cells was affected mainly at the highest curcumin concentration, resulting in rounded cells with a shortened flagellum. When the type of cell death was analyzed, the prevalence of apoptosis was noted. The results support the use of curcumin as photosensitizer in PDT against Leishmania promastigotes in the treatment for cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Luciana Maria Cortez Marcolino
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil.
| | - André Henrique Correia Pereira
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil
| | - Juliana Guerra Pinto
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil
| | - Leandro Ariel Mamone
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - Juliana Ferreira Strixino
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil.
| |
Collapse
|
30
|
Discovery of 1,3,4,5-tetrasubstituted pyrazoles as anti-trypanosomatid agents: Identification of alterations in flagellar structure of L. amazonensis. Bioorg Chem 2021; 114:105082. [PMID: 34147880 DOI: 10.1016/j.bioorg.2021.105082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/28/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Trypanosoma cruzi and Leishmania species are causative agents of Chagas disease and Leishmaniasis, respectively, known as Neglected Tropical Diseases. Up to now, the treatments are inadequate and based on old drugs. Thus, we report herein the discovery of 1,3,4,5-tetrasubstituted pyrazole derivatives that presented potent and selective inhibition against promastigote forms of L. amazonensis, and epimastigote forms of T. cruzi. The structure-activity relationship led to the identification of three compounds (2m, 2n and 2p) with an in vitro IC50 of 7.4 µM (selective index - SI ≥ 133.0), 3.8 µM (SI in the range of 148.4 to 200.8), and 7.3 µM (SI in the range of 87.2 to 122.4) against L. amazonensis, respectively. Also, those compounds exhibited in vitro IC50 of 9.7 µM (SI ≥ 101.5), 4.5 µM (SI in the range of 125.3 to 169.6) and 17.1 µM (SI in the range of 37.2 to 52.2) against T. cruzi, respectively. A preliminary study about the reaction mechanism in promastigotes showed that 2n caused an increase of the production of ROS and of lipid storage bodies. Furthermore, 2n induced abnormalities in the flagellum that may have an impact on the parasite motility.
Collapse
|
31
|
Sahai R, Bhattacharjee A, Shukla VN, Yadav P, Hasanain M, Sarkar J, Narender T, Mitra K. Gedunin isolated from the mangrove plant Xylocarpus granatum exerts its anti-proliferative activity in ovarian cancer cells through G2/M-phase arrest and oxidative stress-mediated intrinsic apoptosis. Apoptosis 2021; 25:481-499. [PMID: 32399945 DOI: 10.1007/s10495-020-01605-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gedunin is a natural tetranorterpenoid secondary metabolite found in plants of the Meliaceae family, which has been reported for its antiparasitic, antifungal and anticancer activities. Here, we describe the molecular mechanisms underlying the in vitro anti proliferative activity of gedunin (isolated from the mangrove plant Xylocarpus granatum) in human ovarian cancer cells. We observed that gedunin triggered severe ROS generation leading to DNA damage and cell cycle arrest in G2/M phase thus inhibiting cell proliferation. ROS upregulation also led to mitochondrial stress and membrane depolarization, which eventually resulted in mitochondria-mediated apoptosis following cytochrome C release, caspase 9, 3 activation, and PARP cleavage. Transmission electron microscopy of gedunin treated cells revealed sub-cellular features typical of apoptosis. Moreover, an upregulation in stress kinases like phospho-ERK 1/2, phospho-p38 and phospho-JNK was also observed in gedunin treated cells. Free radical scavenger N-Acetyl-L-Cysteine (NAC) reversed all these effects resulting in increased cell survival, abrogation of cell cycle arrest, rescue of mitochondrial membrane potential and suppression of apoptotic markers. Interestingly, gedunin is also an inhibitor of the evolutionarily conserved molecular chaperone Heat Shock Protein 90 (hsp90) responsible for maintaining cellular homeostasis. Targeting this chaperone could be an attractive strategy for developing cancer therapeutics since many oncogenic proteins are also client proteins of hsp90. Collectively, our findings provide insights into the molecular mechanism of action of gedunin, which may aid drug development efforts against ovarian cancer.
Collapse
Affiliation(s)
- Rohit Sahai
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India
| | - Arindam Bhattacharjee
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India
| | - Vishwa Nath Shukla
- Medicinal and Process Chemistry Division, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India
| | - Pragya Yadav
- Medicinal and Process Chemistry Division, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Mohammad Hasanain
- Division of Biochemistry, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Jayanta Sarkar
- Division of Biochemistry, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - T Narender
- Medicinal and Process Chemistry Division, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Kalyan Mitra
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
32
|
da Silva MA, Fokoue HH, Fialho SN, Dos Santos APDA, Rossi NRDLP, Gouveia ADJ, Ferreira AS, Passarini GM, Garay AFG, Alfonso JJ, Soares AM, Zanchi FB, Kato MJ, Teles CBG, Kuehn CC. Antileishmanial activity evaluation of a natural amide and its synthetic analogs against Leishmania (V.) braziliensis: an integrated approach in vitro and in silico. Parasitol Res 2021; 120:2199-2218. [PMID: 33963899 DOI: 10.1007/s00436-021-07169-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Leishmaniasis is considered a neglected disease, which makes it an unattractive market for the pharmaceutical industry; hence, efforts in the search for biologically active substances are hampered by this lack of financial motivation. Thus, in the present study, we report the leishmanicidal activity and the possible mechanisms of action of compounds with promising activity against the species Leishmania (V.) braziliensis, the causative agent of the skin disease leishmaniasis. The natural compound 1a (piplartine) and the analog 2a were the most potent against promastigote forms with growth inhibition values for 50% of the parasite population (IC50) = 8.58 and 11.25 μM, respectively. For amastigote forms, the ICa50 values were 1.46 and 16.7 μM, respectively. In the molecular docking study, piplartine showed favorable binding energy (-7.13 kcal/mol) and with 50% inhibition of trypanothione reductase (IC50) = 91.1 μM. Preliminary investigations of the mechanism of action indicate that piplartine increased ROS levels, induced loss of cell membrane integrity, and caused accumulation of lipid bodies after 24 h of incubation at its lowest effective concentration (IC50), which was not observed for the synthetic analog 2a. The mode of action for the leishmanicidal activity of piplartine (1a) was assigned to involve affinity for the trypanothione reductase of Leishmania (V.) braziliensis TR.
Collapse
Affiliation(s)
- Minelly A da Silva
- Federal Institute of Education, Science and Technology of Rondônia - IFRO, Porto Velho, Rondônia, Brazil.
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil.
- Instituto Federal de Rondônia - Porto Velho-Calama, Av. Calama, 4985 - Flodoaldo Pontes Pinto, Porto Velho, RO, 76820-441, Brazil.
| | - Harold H Fokoue
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos - FIOCRUZ/RJ, Rio de Janeiro, Brazil
| | - Saara N Fialho
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
| | | | - Norton R D L P Rossi
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
| | | | - Amália S Ferreira
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
| | - Guilherme M Passarini
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
| | - Ana F G Garay
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Centro para el Desarrollo de la Investigación Científica - CEDIC, Asunción, Paraguay
| | - Jorge J Alfonso
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Centro para el Desarrollo de la Investigación Científica - CEDIC, Asunción, Paraguay
| | - Andreimar M Soares
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
- National Institute of Science and Technology of Epidemiology in the Western Amazon - INCT-EpiAmO, Rondônia, Brazil
| | - Fernando B Zanchi
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
| | - Massuo J Kato
- Institute of Chemistry, University of São Paulo - USP, São Paulo, Brazil
| | - Carolina B G Teles
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
- National Institute of Science and Technology of Epidemiology in the Western Amazon - INCT-EpiAmO, Rondônia, Brazil
| | - Christian C Kuehn
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
| |
Collapse
|
33
|
Kumar V, Chugh A. Peptide-mediated leishmaniasis management strategy: Tachyplesin emerges as an effective anti-leishmanial peptide against Leishmania donovani. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183629. [PMID: 33933430 DOI: 10.1016/j.bbamem.2021.183629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/23/2023]
Abstract
Visceral leishmaniasis is one of the neglected tropical diseases caused by an intracellular parasite, Leishmania donovani. Drug resistance, adverse side effects and long treatment regimes are important limitations in achieving the effective elimination of visceral leishmaniasis. In the absence of any vaccine, chemotherapy remains a viable treatment for leishmaniasis. For effective killing of leishmania parasite, the drug molecule needs to cross the cell membrane. In the present study, marine membrane-active peptide Tachyplesin has been used against Leishmania donovani. Further, the mechanism of action and importance of cysteine amino acids of Tachyplesin in anti-leishmanial activity has been assessed. The cargo-carrying ability of Tachyplesin in L. donovani has been established. Thus, dual-use of Tachyplesin as an anti-leishmanial peptide as well as a cargo delivery vehicle makes the marine peptide an attractive therapeutic target against visceral leishmaniasis.
Collapse
Affiliation(s)
- Vivek Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
34
|
Mondal DK, Pal DS, Abbasi M, Datta R. Functional partnership between carbonic anhydrase and malic enzyme in promoting gluconeogenesis in
Leishmania major. FEBS J 2021; 288:4129-4152. [DOI: 10.1111/febs.15720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/29/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Dipon Kumar Mondal
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Dhiman Sankar Pal
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Mazharul Abbasi
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Rupak Datta
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| |
Collapse
|
35
|
Machado PDA, Gomes PS, Midlej V, Coimbra ES, de Matos Guedes HL. PF-429242, a Subtilisin Inhibitor, Is Effective in vitro Against Leishmania infantum. Front Microbiol 2021; 12:583834. [PMID: 33584607 PMCID: PMC7876069 DOI: 10.3389/fmicb.2021.583834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/06/2021] [Indexed: 01/16/2023] Open
Abstract
PF-429242 is an inhibitor of subtilisin, an important protease found in Leishmania. However, studies regarding the effect of PF-429242 on Leishmania are scarce. In this work we evaluated the antileishmanial effect of PF-429242 against Leishmania infantum and the mechanism involved in the death of the parasite. PF-429242 had low toxicity against mammalian cells (peritoneal macrophages) (CC50 = 189.07 μM) and presented activity against L. infantum promastigotes (IC50 = 2.78 μM) and intracellular amastigotes (IC50 = 14.07 μM), indicating selectivity toward the parasite. Transmission electron microscopy (TEM), as well as staining of L. infantum promastigotes with MitoTracker® Red, rhodamine 123 and MitoSOX, revealed that the mitochondria was a potential target of PF-429242. In addition, PF-429242 caused an accumulation of neutral lipids in promastigotes, which was demonstrated by Nile Red staining and TEM, and induced oxidative stress (H2DCFDA staining). Furthermore the formation of autophagic vacuoles in L. infantum promastigotes was observed by MDC staining and TEM. However, the killing induced by PF-429242 in L. infantum promastigotes appeared to be unrelated to apoptosis and/or necrosis as there was no phosphatidylserine externalization, DNA fragmentation or alterations in the permeability of the parasite plasma membrane, as assessed by annexin V-FITC, TUNEL and propidium iodide staining, respectively. The morphological and ultrastructural evaluation of the promastigotes by optical microscopy, scanning electron microscopy (SEM) and TEM, revealed the presence of parasites with flagellar defects. TEM analysis of the intracellular amastigotes indicated that mitochondrial damage and autophagy could also be involved in the death of these forms after treatment with PF-429242. In addition, PF-429242 treatment stimulated NO production from infected macrophage, but only at a high concentration (100 μM), as well as an increase of TNF levels after treatment with 10 μM of PF-429242. The compound did not stimulate ROS or IL-10 production. Together, these data highlight the antileishmanial potential of PF-429242, inducing several cellular alterations in the parasite, such as mitochondrial damage, neutral lipids accumulation, oxidative stress and autophagy which culminate in the death of L. infantum, as well as modulating host cellular responses that favor the development of an immune response against the parasite.
Collapse
Affiliation(s)
- Patrícia de Almeida Machado
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Núcleo de Pesquisa em Parasitologia (NUPEP), Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Pollyanna Stephanie Gomes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Elaine Soares Coimbra
- Núcleo de Pesquisa em Parasitologia (NUPEP), Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Herbert Leonel de Matos Guedes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,UFRJ Campus Duque de Caxias Professor Geraldo Cidade - Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil.,Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Keshav P, Goyal DK, Kaur S. Promastigotes of Leishmania donovani exhibited sensitivity towards the high altitudinal plant Cicer microphyllum. ACTA ACUST UNITED AC 2021; 1:100040. [PMID: 35284854 PMCID: PMC8906067 DOI: 10.1016/j.crpvbd.2021.100040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
In this study, we explored Cicer microphyllum (CM), a Trans-Himalayan plant for its chemical components by GC-MS, phytochemical quantitation, and anti-leishmanial efficacy against sensitive strain (SS) and resistant strain (RS) promastigotes of L. donovani in vitro. The hydroethanolic extract of aerial parts of CM was screened for the presence of chemical compounds and phytochemical estimation. The antileishmanial activity of CM was assessed against the promastigotes of L. donovani. The cell volume and cell viability were analyzed by flow cytometry. The generation of reactive oxygen species (ROS) and lipid bodies was determined after treatment with reference and test drug. The extract of CM is complemented with major plant secondary metabolites and the quantitative assessment for phytoconstituents showed the highest concentration of phenols followed by flavonoids and terpenoids. Different biologically active chemical compounds were identified by the GC-MS analysis. The 50% inhibitory concentrations against L. donovani sensitive strain were 14.40 μg/ml and 23.03 μg/ml whereas for resistant promastigotes these were 49.84 μg/ml and 26.77 μg/ml after SAG (sodium stibogluconate) and CM exposure, respectively. CM treatment reduced cell viability induced by loss in plasma membrane integrity. Drug treatment resulted in higher ROS generation and production of lipid bodies. GC-MS screening of the extract revealed the richness of active chemical components in CM. The presence of diverse phytochemicals, no cytotoxicity to human macrophages, and the antileishmanial action of CM depicted its potential as an alternative future drug. First report of in vitro leishmanial activity of Cicer microphyllum (CM) against SAG-resistant and SAG-sensitive strain. Chemical characterization of CM by GC-MS revealed biologically active components. CM augmented ROS production and lipid bodiesʼ formation in Leishmania parasites. Parasitic cells exhibited loss of membrane integrity upon drug treatment. No significant toxicity on THP-1 cell line was observed.
Collapse
|
37
|
Matta CBBD, Santos-Júnior PFDS, Gonçalves VT, Araújo MVD, Queiroz ACD, Silva JKS, Silva JFMD, Padilha RJR, Alves LC, Santos FABD, Barcellos LT, Silva-Júnior EFD, Araújo-Júnior JXD, Costa JBND, Sant’Anna CMR, Alexandre-Moreira MS. In vitro and in vivo evaluation of dialkylphosphorylhydrazones against Leishmania chagasi promastigotes and amastigotes. NEW J CHEM 2021. [DOI: 10.1039/d1nj03694g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In our study, two new dialkylphosphorylhydrazones have been designed targeting activity against L. braziliensis and L. amazonensis parasites, and their mechanism of action, as well as their leishmanicidal activity against L. chagasi, was evaluated.
Collapse
Affiliation(s)
- Carolina Barbosa Brito da Matta
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | | | - Vinícius Tomaz Gonçalves
- Federal Center for Technology Education Celso Suckow da Fonseca (CEFET/RJ), Itaguaí 20271-110, RJ, Brazil
| | - Morgana Vital de Araújo
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Aline Cavalcanti de Queiroz
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - João Kaycke Sarmento Silva
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - João Flávio Monteiro da Silva
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Rafael José Ribeiro Padilha
- Laboratory of Immunopathology Keizo Asami (LIKA) and Biochemistry Department, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Luiz Carlos Alves
- Laboratory of Immunopathology Keizo Asami (LIKA) and Aggeu Magalhães Research Center, CPqAM/FIOCRUZ, Federal University of Pernambuco, Av. Moraes Rego s/n, Cidade Universitária, Recife 50670-420, PE, Brazil
| | - Fábio André Brayner dos Santos
- Laboratory of Immunopathology Keizo Asami (LIKA) and Aggeu Magalhães Research Center, CPqAM/FIOCRUZ, Federal University of Pernambuco, Av. Moraes Rego s/n, Cidade Universitária, Recife 50670-420, PE, Brazil
| | - Lucas Tricarico Barcellos
- Rural Federal University of Rio de Janeiro, Institute of Chemistry, Seropédica 23970-000, RJ, Brazil
| | | | - João Xavier de Araújo-Júnior
- Rural Federal University of Rio de Janeiro, Institute of Chemistry, Seropédica 23970-000, RJ, Brazil
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | | | | | - Magna Suzana Alexandre-Moreira
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| |
Collapse
|
38
|
Karampetsou K, Koutsoni OS, Gogou G, Angelis A, Skaltsounis LA, Dotsika E. Total Phenolic Fraction (TPF) from Extra Virgin Olive Oil: Induction of apoptotic-like cell death in Leishmania spp. promastigotes and in vivo potential of therapeutic immunomodulation. PLoS Negl Trop Dis 2021; 15:e0008968. [PMID: 33428610 PMCID: PMC7799795 DOI: 10.1371/journal.pntd.0008968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Leishmaniasis is a serious multifactorial parasitic disease with limited treatment options. Current chemotherapy is mainly consisted of drugs with serious drawbacks such as toxicity, variable efficacy and resistance. Alternative bioactive phytocompounds may provide a promising source for discovering new anti-leishmanial drugs. Extra Virgin Olive Oil (EVOO), a key-product in the Mediterranean diet, is rich in phenols which are associated with anti-inflammatory, anti-cancer and anti-microbial effects. In this study, we investigate the anti-leishmanial effect of Total Phenolic Fraction (TPF) derived from EVOO in both in vitro and in vivo systems by investigating the contributing mechanism of action. METHODOLOGY/PRINCIPAL FINDINGS We tested the ability of TPF to cause apoptotic-like programmed cell death in L. infantum and L. major exponential-phase promastigotes by evaluating several apoptotic indices, such as reduction of proliferation rate, sub-G0/G1 phase cell cycle arrest, phosphatidylserine externalization, mitochondrial transmembrane potential disruption and increased ROS production, by using flow cytometry and microscopy techniques. Moreover, we assessed the therapeutic effect of TPF in L. major-infected BALB/c mice by determining skin lesions, parasite burden in popliteal lymph nodes, Leishmania-specific antibodies and biomarkers of tissue site cellular immune response, five weeks post-treatment termination. Our results show that TPF triggers cell-cycle arrest and apoptotic-like changes in Leishmania spp. promastigotes. Moreover, TPF treatment induces significant reduction of parasite burden in draining lymph nodes together with an antibody profile indicative of the polarization of Th1/Th2 immune balance towards the protective Th1-type response, characterized by the presence of IFN-γ-producing CD4+ T-cells and increased Tbx21/GATA-3 gene expression ratio in splenocytes. CONCLUSIONS/SIGNIFICANCE TPF exhibits chemotherapeutic anti-leishmanial activity by inducing programmed cell death on cell-free promastigotes and immunomodulatory properties that induce in vivo T cell-mediated responses towards the protective Th1 response in experimental cutaneous leishmaniasis. These findings enable deeper understanding of TPF's dual mode of action that encourages further studies.
Collapse
Affiliation(s)
- Kalliopi Karampetsou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga S. Koutsoni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Georgia Gogou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros-Alexios Skaltsounis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
39
|
Barbosa LG, Costa TR, Borges IP, Costa MS, Carneiro AC, Borges BC, Silva MJB, Amorim FG, Quinton L, Yoneyama KAG, de Melo Rodrigues V, Sampaio SV, Rodrigues RS. A comparative study on the leishmanicidal activity of the L-amino acid oxidases BjussuLAAO-II and BmooLAAO-II isolated from Brazilian Bothrops snake venoms. Int J Biol Macromol 2020; 167:267-278. [PMID: 33242552 DOI: 10.1016/j.ijbiomac.2020.11.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
This study aims to examine whether two L-amino acid oxidases isolated from Bothrops snake venom (SV-LAAOs) were cytotoxic to Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis, two causative agents of leishmaniasis, which is an endemic disease in tropical and subtropical countries. The SV-LAAOs BjussuLAAO-II and BmooLAAO-II were isolated from Bothrops jararacussu and Bothrops moojeni venom, respectively, through a three-step chromatography process that used molecular exclusion, hydrophobic interaction, and affinity columns. BmooLAAO-II is a new SV-LAAO isoform that we isolated in this study. The purified BjussuLAAO-II and BmooLAAO-II had high L-amino acid oxidase-specific activity: 3481.17 and 4924.77 U/mg/min, respectively. Both SV-LAAOs were strongly cytotoxic to the two Leishmania species, even at low concentrations. At the same concentration, BjussuLAAO-II and BmooLAAO-II exerted different cytotoxic effects on the parasites. We reported for the first time that the SV-LAAOs suppressed cell proliferation and altered the mitochondrial membrane potential of the two Leishmania species. Surprisingly, BjussuLAAO-II increased the intracellular reactive oxygen species production only in L. (L.) amazonensis, while BmooLAAO-II increased the intracellular reactive oxygen species production only in L. (V.) braziliensis, indicating that these SV-LAAOs had a certain specificity of action.
Collapse
Affiliation(s)
- Luana Gonçalves Barbosa
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Tássia Rafaella Costa
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Isabela Pacheco Borges
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Mônica Soares Costa
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Anna Cecília Carneiro
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Laboratory of Osteoimmunology and Tumor Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Laboratory of Osteoimmunology and Tumor Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Liège, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Liège, Belgium
| | - Kelly Aparecida Geraldo Yoneyama
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Renata Santos Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
40
|
Pramanik PK, Chakraborti S, Bagchi A, Chakraborti T. Bioassay-based Corchorus capsularis L. leaf-derived β-sitosterol exerts antileishmanial effects against Leishmania donovani by targeting trypanothione reductase. Sci Rep 2020; 10:20440. [PMID: 33235245 PMCID: PMC7686382 DOI: 10.1038/s41598-020-77066-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis, a major neglected tropical disease, affects millions of individuals worldwide. Among the various clinical forms, visceral leishmaniasis (VL) is the deadliest. Current antileishmanial drugs exhibit toxicity- and resistance-related issues. Therefore, advanced chemotherapeutic alternatives are in demand, and currently, plant sources are considered preferable choices. Our previous report has shown that the chloroform extract of Corchorus capsularis L. leaves exhibits a significant effect against Leishmania donovani promastigotes. In the current study, bioassay-guided fractionation results for Corchorus capsularis L. leaf-derived β-sitosterol (β-sitosterolCCL) were observed by spectroscopic analysis (FTIR, 1H NMR, 13C NMR and GC–MS). The inhibitory efficacy of this β-sitosterolCCL against L. donovani promastigotes was measured (IC50 = 17.7 ± 0.43 µg/ml). β-SitosterolCCL significantly disrupts the redox balance via intracellular ROS production, which triggers various apoptotic events, such as structural alteration, increased storage of lipid bodies, mitochondrial membrane depolarization, externalization of phosphatidylserine and non-protein thiol depletion, in promastigotes. Additionally, the antileishmanial activity of β-sitosterolCCL was validated by enzyme inhibition and an in silico study in which β-sitosterolCCL was found to inhibit Leishmania donovani trypanothione reductase (LdTryR). Overall, β-sitosterolCCL appears to be a novel inhibitor of LdTryR and might represent a successful approach for treatment of VL in the future.
Collapse
Affiliation(s)
- Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
41
|
de Paula JC, Bakoshi ABK, Lazarin-Bidóia D, Ud Din Z, Rodrigues-Filho E, Ueda-Nakamura T, Nakamura CV. Antiproliferative activity of the dibenzylideneacetone derivate (E)-3-ethyl-4-(4-nitrophenyl)but‑3-en-2-one in Trypanosoma cruzi. Acta Trop 2020; 211:105653. [PMID: 32777226 DOI: 10.1016/j.actatropica.2020.105653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/18/2023]
Abstract
Chagas disease is one of the most prevalent neglected diseases in the world. The illness is caused by Trypanosoma cruzi, a protozoan parasite with a complex life cycle and three morphologically distinct developmental stages. Nowadays, the only treatment is based on two nitro-derivative drugs, benznidazole and nifurtimox, which cause serious side effects. Since the treatment is limited, the search for new treatment options for patients with Chagas disease is highly necessary. In this study we analyzed the substance A11K3, a dibenzylideneacetone (DBA). DBAs have an acyclic dienone attached to aryl groups in both β-positions and studies have shown that they have biological activity against tumors cells, bacteria, and protozoa such as T. cruzi and Leishmania spp. Here we show that A11K3 is active against all three T. cruzi evolutionary forms: the epimastigote (IC50 = 3.3 ± 0.8), the trypomastigote (EC50 = 24 ± 4.3) and the intracellular amastigote (IC50 = 9.3 ± 0.5 µM). A cytotoxicity assay in LLCMK2 cells showed a CC50 of 239.2 ± 15.7 µM giving a selectivity index (CC50/IC50) of 72.7 for epimastigotes, 9.9 for trypomastigotes and 25.9 for intracellular amastigotes. Morphological and ultrastructural analysis of the parasites treated with A11K3 by TEM and SEM revealed alterations in the Golgi complex, mitochondria, plasma membrane and cell body, with an increase of autophagic vacuoles and lipid bodies. Biochemical assays of A11K3-treated T. cruzi showed an increase of ROS, plasma membrane ruptures, lipid peroxidation, mitochondrial membrane depolarization with a decrease in ATP and accumulation of autophagic vacuoles. The results lead to the hypothesis that A11K3 causes death of the protozoan through events such as plasma membrane and mitochondrial alterations and autophagy, characteristic of cell collapse.
Collapse
Affiliation(s)
- Jéssica Carreira de Paula
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil
| | - Amanda Beatriz Kawano Bakoshi
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil
| | - Danielle Lazarin-Bidóia
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil
| | - Zia Ud Din
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, SP 13.565-905, Brazil
| | - Edson Rodrigues-Filho
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, SP 13.565-905, Brazil
| | - Tania Ueda-Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil.
| |
Collapse
|
42
|
Pereira KLG, Vasconcelos NBR, Braz JVC, InÁcio JDF, Estevam CS, Correa CB, Fernandes RPM, Almeida-Amaral EE, Scher R. Ethanolic extract of Croton blanchetianus Ball induces mitochondrial defects in Leishmania amazonensis promastigotes. AN ACAD BRAS CIENC 2020; 92:e20180968. [PMID: 33146273 DOI: 10.1590/0001-3765202020180968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/06/2019] [Indexed: 01/18/2023] Open
Abstract
Leishmaniasis is a neglected disease caused by Leishmania. Chemotherapy remains the mainstay for leishmaniasis control; however, available drugs fail to provide a parasitological cure, and are associated with high toxicity. Natural products are promising leads for the development of novel chemotherapeutics against leishmaniasis. This work investigated the leishmanicidal properties of ethanolic extract of Croton blanchetianus (EECb) on Leishmania infantum and Leishmania amazonensis, and found that EECb, rich in terpenic compounds, was active against promastigote and amastigote forms of both Leishmania species. Leishmania infantum promastigotes and amastigotes presented IC50 values of 208.6 and 8.8 μg/mL, respectively, whereas Leishmania amazonensis promastigotes and amastigotes presented IC50 values of 73.6 and 3.1 μg/mL, respectively. Promastigotes exposed to EECb (100 µg/mL) had their body cellular volume reduced and altered to a round shape, and the flagellum was duplicated, suggesting that EECb may interfere with the process of cytokinesis, which could be the cause of the decline in the parasite multiplication rate. Regarding possible EECb targets, a marked depolarization of the mitochondrial membrane potential was observed. No cytotoxic effects of EECb were observed in murine macrophages at concentrations below 60 µg/mL, and the CC50 obtained was 83.8 µg/mL. Thus, the present results indicated that EECb had effective and selective effects against Leishmania infantum and Leishmania amazonensis, and that these effects appeared to be mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Katily L G Pereira
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Nancy B R Vasconcelos
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Juliana V C Braz
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Job D F InÁcio
- Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, Brazil
| | - Charles S Estevam
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Cristiane B Correa
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Roberta P M Fernandes
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Elmo E Almeida-Amaral
- Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, Brazil
| | - Ricardo Scher
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| |
Collapse
|
43
|
Assolini JP, da Silva TP, da Silva Bortoleti BT, Gonçalves MD, Tomiotto-Pellissier F, Sahd CS, Carloto ACM, Feuser PE, Cordeiro AP, Sayer C, Hermes de Araújo PH, Costa IN, Conchon-Costa I, Miranda-Sapla MM, Pavanelli WR. 4-nitrochalcone exerts leishmanicidal effect on L. amazonensis promastigotes and intracellular amastigotes, and the 4-nitrochalcone encapsulation in beeswax copaiba oil nanoparticles reduces macrophages cytotoxicity. Eur J Pharmacol 2020; 884:173392. [PMID: 32735985 DOI: 10.1016/j.ejphar.2020.173392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 11/27/2022]
Abstract
The Leishmaniasis treatment currently available involves some difficulties, such as high toxicity, variable efficacy, high cost, therefore, it is crucial to search for new therapeutic alternatives. Over the past few years, research on new drugs has focused on the use of natural compounds such as chalcones and nanotechnology. In this context, this research aimed at assessing the in vitro leishmanicidal activity of free 4-nitrochalcone (4NC) on promastigotes and encapsulated 4NC on L. amazonensis-infected macrophages, as well as their action mechanisms. Free 4NC was able to reduce the viability of promastigotes, induce reactive oxygen species production, decrease mitochondrial membrane potential, increase plasma membrane permeability, and expose phosphatidylserine, in addition to altering the morphology and lowering parasite cellular volume. Treatment containing encapsulated 4NC in beeswax-copaiba oil nanoparticles (4NC-beeswax-CO Nps) did not alter the viability of macrophages. Furthermore, 4NC-beeswax-CO Nps reduced the percentage of infected macrophages and the number of amastigotes per macrophages, increasing the production of reactive oxygen species, NO, TNF-α, and IL-10. Therefore, free 4NC proved to exert anti-promastigote effect, while 4NC-beeswax-CO Nps showed a leishmanicidal effect on L. amazonensis-infected macrophages by activating the macrophage microbicidal machinery.
Collapse
Affiliation(s)
- João Paulo Assolini
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil.
| | - Thais Peron da Silva
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil; Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil
| | | | - Fernanda Tomiotto-Pellissier
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil; Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil
| | - Claudia Stoeglehner Sahd
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | | | - Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Arthur Poester Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | | | - Idessania Nazareth Costa
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil
| | | | - Wander Rogério Pavanelli
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil; Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.
| |
Collapse
|
44
|
Prakash C, Pandey M, Talwar S, Singh Y, Kanojiya S, Pandey AK, Kumar N. Extra-ribosomal functions of Mtb RpsB in imparting stress resilience and drug tolerance to mycobacteria. Biochimie 2020; 177:87-97. [PMID: 32828823 DOI: 10.1016/j.biochi.2020.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 01/21/2023]
Abstract
Emerging observations suggest that ribosomal proteins (RPs) play important extra-ribosomal roles in maintenance of cellular homeostasis. However, the mechanistic insights into these processes have not been extensively explored, especially in pathogenic bacteria. Here, we present our findings on potential extra-ribosomal functions of Mycobacterium tuberculosis (Mtb) RPs. We observed that Mtb RpsB and RpsQ are differentially localized to cell wall fraction in M. tuberculosis (H37Rv), while their M. smegmatis (Msm) homologs are primarily cytosolic. Cellular fractionation of ectopically expressed Mtb RPs in surrogate host (M. smegmatis) also shows their association with cell membrane/cell wall without any gross changes in cell morphology. M. smegmatis expressing Mtb RpsB exhibited altered redox homeostasis, decreased drug-induced ROS, reduced cell wall permeability and increased tolerance to various proteotoxic stress (oxidative stress, SDS and starvation). Mtb RpsB expression was also associated with increased resistance specifically towards Isoniazid, Ethionamide and Streptomycin. The enhanced drug tolerance was specific to Mtb RpsB and not observed upon ectopic expression of M. smegmatis homolog (Msm RpsB). Interestingly, C-terminus deletion in Mtb RpsB affected its localization and reversed the stress-resilient phenotypes. We also observed that M. tuberculosis (H37Rv) with upregulated RpsB levels had higher intracellular survival in macrophage. All these observations hint towards existence of moonlighting roles of Mtb RpsB in imparting stress resilience to mycobacteria. This work open avenues for further exploration of alternative pathways associated with fitness and drug tolerance in mycobacteria.
Collapse
Affiliation(s)
- Chetan Prakash
- CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Ext, Sector 10, Lucknow, 226031, Uttar Pradesh, India
| | - Manitosh Pandey
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurgaon Expressway, Faridabad, 121001, Haryana, India; Department of Life Sciences, ITM University, Gwalior 475001, Madhya Pradesh, India
| | - Sakshi Talwar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Yatendra Singh
- CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Ext, Sector 10, Lucknow, 226031, Uttar Pradesh, India
| | - Sanjeev Kanojiya
- CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Ext, Sector 10, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| | - Amit Kumar Pandey
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Niti Kumar
- CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Ext, Sector 10, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Delhi, India.
| |
Collapse
|
45
|
Mukherjee S, Moitra S, Xu W, Hernandez V, Zhang K. Sterol 14-α-demethylase is vital for mitochondrial functions and stress tolerance in Leishmania major. PLoS Pathog 2020; 16:e1008810. [PMID: 32817704 PMCID: PMC7462297 DOI: 10.1371/journal.ppat.1008810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/01/2020] [Accepted: 07/14/2020] [Indexed: 11/18/2022] Open
Abstract
Sterol 14-α-demethylase (C14DM) is a key enzyme in the biosynthesis of sterols and the primary target of azoles. In Leishmania major, genetic or chemical inactivation of C14DM leads to accumulation of 14-methylated sterol intermediates and profound plasma membrane abnormalities including increased fluidity and failure to maintain ordered membrane microdomains. These defects likely contribute to the hypersensitivity to heat and severely reduced virulence displayed by the C14DM-null mutants (c14dm‾). In addition to plasma membrane, sterols are present in intracellular organelles. In this study, we investigated the impact of C14DM ablation on mitochondria. Our results demonstrate that c14dm‾ mutants have significantly higher mitochondrial membrane potential than wild type parasites. Such high potential leads to the buildup of reactive oxygen species in the mitochondria, especially under nutrient-limiting conditions. Consistent with these mitochondrial alterations, c14dm‾ mutants show impairment in respiration and are heavily dependent on glucose uptake and glycolysis to generate energy. Consequently, these mutants are extremely sensitive to glucose deprivation and such vulnerability can be rescued through the supplementation of glucose or glycerol. In addition, the accumulation of oxidants may also contribute to the heat sensitivity exhibited by c14dm‾. Finally, genetic or chemical ablation of C14DM causes increased susceptibility to pentamidine, an antimicrobial agent with activity against trypanosomatids. In summary, our investigation reveals that alteration of sterol synthesis can negatively affect multiple cellular processes in Leishmania parasites and make them vulnerable to clinically relevant stress conditions.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Veronica Hernandez
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Elucidating the possible mechanism of action of some pathogen box compounds against Leishmania donovani. PLoS Negl Trop Dis 2020; 14:e0008188. [PMID: 32275665 PMCID: PMC7176276 DOI: 10.1371/journal.pntd.0008188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/22/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
Leishmaniasis is one of the Neglected Tropical Diseases (NTDs) which is closely associated with poverty and has gained much relevance recently due to its opportunistic coinfection with HIV. It is a protozoan zoonotic disease transmitted by a dipteran Phlebotomus, Lutzomyia/ Sergentomyia sandfly; during blood meals on its vertebrate intermediate hosts. It is a four-faceted disease with its visceral form being more deadly if left untreated. It is endemic across the tropics and sub-tropical regions of the world. It can be considered the third most important NTD after malaria and lymphatic filariasis. Currently, there are numerous drawbacks on the fight against leishmaniasis which includes: non-availability of vaccines, limited availability of drugs, high cost of mainstay drugs and parasite resistance to current treatments. In this study, we screened the antileishmanial activity, selectivity, morphological alterations, cell cycle progression and apoptotic potentials of six Pathogen box compounds from Medicine for Malaria Venture (MMV) against Leishmania donovani promastigotes and amastigotes. From this study, five of the compounds showed great promise as lead chemotherapeutics based on their high selectivity against the Leishmania donovani parasite when tested against the murine mammalian macrophage RAW 264.7 cell line (with a therapeutic index ranging between 19–914 (promastigotes) and 1–453 (amastigotes)). The cell cycle progression showed growth arrest at the G0-G1 phase of mitotic division, with an indication of apoptosis induced by two (2) of the pathogen box compounds tested. Our findings present useful information on the therapeutic potential of these compounds in leishmaniasis. We recommend further in vivo studies on these compounds to substantiate observations made in the in vitro study. There are numerous drawbacks in the fight against leishmaniasis which includes difficulty in drug administration, lengthy time of treatment, high toxicity, adverse side effects, high cost of drugs and increasing parasite resistance to treatment. These have made the search for new antileishmanial chemotherapeutics very essential. The Medicine for Malaria Venture (MMV) with the aim of accelerating drug development for poverty-related diseases has assembled some 400 diverse, drug-like molecules active against neglected diseases called the Pathogen box compounds. Thus, in this study we explored the antileishmanial potency and elucidated some possible mechanisms of action of some of the compounds against the Leishmania donovani parasites. The six compounds studied caused a distortion in the mitochondrion morphology, loss of kinetoplastid DNA and eventual nuclear degeneration upon treatment for 72 hours. Parasites treated with two of the cytocidal compounds MMV676057 (E03C) and MMV688942 (D06A) showed no significant programmed cell death due to apoptosis when compared to the untreated parasites but rather showed a cell cycle growth arrest in the G0-G1 and S-phases.
Collapse
|
47
|
Appidi T, Pemmaraju DB, Khan RA, Alvi SB, Srivastava R, Pal M, Khan N, Rengan AK. Light-triggered selective ROS-dependent autophagy by bioactive nanoliposomes for efficient cancer theranostics. NANOSCALE 2020; 12:2028-2039. [PMID: 31912859 DOI: 10.1039/c9nr05211a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Light-responsive nanoliposomes are being reported to induce cancer cell death through heat and reactive oxygen species (ROS). Nanoliposomes (CIR NLPs) encapsulating a near-infrared (NIR) light-sensitive dye, IR780, and a bioactive chlorophyll-rich fraction of Anthocephalus cadamba (CfAc) were synthesized and characterized. These CIR NLPs, when activated by NIR light, displayed localized synergistic cancer cell death under in vitro and in vivo conditions. We demonstrated a NIR light-mediated release of CfAc in cancer cells. The bioactive CfAc was selective in causing ROS generation (leading to autophagic cell death) in cancer cells, while normal healthy cells were unaffected. An increase in the intracellular ROS leading to enhanced lipidation of microtubule-associated protein light chain 3 (LC3-II) was observed only in cancer cells, while normal cells showed no increase in either ROS or LC3-II. In vivo analysis of CIR NLPs in an orthotopic mouse model showed better anti-tumorigenic potential through a combined effect (i.e. via heat and CfAc). We reported for the first time induction of selective and localized, bioactive phyto fraction-mediated autophagic cancer cell death through an NIR light trigger. The synergistic activation of ROS-mediated autophagy by light-triggered nanoliposomes can be a useful strategy for enhancing the anticancer potential of combinational therapies.
Collapse
Affiliation(s)
- Tejaswini Appidi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, India.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
A novel nanoliposomal formulation of the FDA approved drug Halofantrine causes cell death of Leishmania donovani promastigotes in vitro. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Chandrakar P, Gunaganti N, Parmar N, Kumar A, Singh SK, Rashid M, Wahajuddin M, Mitra K, Narender T, Kar S. β-Amino acid derivatives as mitochondrial complex III inhibitors of L. donovani: A promising chemotype targeting visceral leishmaniasis. Eur J Med Chem 2019; 182:111632. [PMID: 31499363 DOI: 10.1016/j.ejmech.2019.111632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
β-amino acids and their analogues are gathering increased attention not only because of their antibacterial and antifungal activity, but also for their use in designing peptidomimetics with increased oral bioavailability and resistance to metabolic degradation. In this study, a series of α-phenyl substituted chalcones, α-phenyl, β-amino substituted dihydrochalcones and β-amino acid derivatives were synthesized and evaluated for their antileishmanial efficacy against experimental visceral leishmaniasis (VL). Among all synthesized derivatives, 10c showed promising antileishmanial efficacy against both extracellular promastigote and intracellular amastigote (IC50 8.2 μM and 20.5 μM respectively) of L. donovani with negligible cytotoxic effect towards J774 macrophages and Vero cells. 10c effectively reduced spleen and liver parasite burden (>90%) in both hamster and Balb/c model of VL without any hepatotoxicity. In vitro pharmacokinetic analysis showed that 10c was stable in gastric fluid and plasma of Balb/c mice at 10 μg/ml. Further analysis of the molecular mechanism revealed that 10c entered into the parasite by depolarizing the plasma membrane rather than forming nonspecific pores and induced molecular events like loss in mitochondrial membrane potential with a gradual decline in ATP production. This, in turn, did not induce programmed cell death of the parasite; rather 10c induced bioenergetic collapse of the parasite by decreasing ATP synthesis through specific inhibition of mitochondrial complex III activity. Altogether, our results allude to the therapeutic potential of β-amino acid derivatives as novel antileishmanials, identifying them as lead compounds for further exploration in the design of potent candidates for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Pragya Chandrakar
- Parasitology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Naresh Gunaganti
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Naveen Parmar
- Parasitology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Ashok Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sandeep Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mamunur Rashid
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - M Wahajuddin
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kalyan Mitra
- Sophisticated Analytical Instrument Facility Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Tadigopula Narender
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India.
| | - Susanta Kar
- Parasitology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India.
| |
Collapse
|
50
|
Shukla V, Kaushal JB, Kumar R, Popli P, Agnihotri PK, Mitra K, Dwivedi A. Microtubule depolymerization attenuates WNT4/CaMKIIα signaling in mouse uterus and leads to implantation failure. Reproduction 2019; 158:47-59. [DOI: 10.1530/rep-18-0611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/04/2019] [Indexed: 01/24/2023]
Abstract
Microtubule (MT) dynamics plays a crucial role in fertilization and early embryonic development; however its involvement in uterus during embryo implantation remains unclear. Herein, we report the effect of microtubule depolymerization during embryo implantation in BALB/c mice. Intrauterine treatment with depolymerizing agent nocodazole at pre-implantation phase (D4, 07:00 h) in mice resulted into mitigation in receptivity markers viz. LIF, HoxA10, Integrin-β3, IHH, WNT4 and led to pregnancy failure. MT depolymerization in endometrial epithelial cells (EECs) also inhibited the blastocyst attachment and the adhesion. The decreased expression of MT polymerization-related proteins TPPP and α/β-tubulin in luminal and glandular epithelial cells along with the alteration in morphology of pinopodes in the luminal epithelium was observed in nocodazole receiving uteri. Nocodazole treatment also led to increased intracellular Ca+2levels in EECs, which indicated that altered Ca+2homeostasis might be responsible for implantation failure. Microtubule depolymerization inhibited WNT4 and Fz-2 interaction, thereby suppressing the downstream WNT4/CaMKIIα signaling cascades calmodulin and calcineurin which led to attenuation of NF-κB transcriptional promoter activity in EECs. MT depolymerization or CaMKIIα knockdown inhibited the transcription factor NFAT and NF-κB expression along with reduced secretion of prostaglandins PGE2 and PGF2α in mouse EECs. Overall, MT depolymerization impaired the WNT4/CaMKIIα signaling and suppressed the secretion of PGE2 and PGF2α in EECs which may be responsible for implantation failure in mice.
Collapse
|