1
|
Zhu H, Zhu D, Wu K, He W, Li L, Li T, Liu L, Liu Z, Song X, Cheng W, Mo J, Yao Y, Li J. Establishment and evaluation of a qPCR method for the detection of pfmdr1 mutations in Plasmodium falciparum, the causal agent of fatal malaria. Diagn Microbiol Infect Dis 2024; 110:116400. [PMID: 38909426 DOI: 10.1016/j.diagmicrobio.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Drug resistance surveillance is a major integral part of malaria control programs. Molecular methods play a pivotal role in drug resistance detection and related molecular research. This study aimed to develop a rapid and accurate detection method for drug resistance of Plasmodium falciparum (P. falciparum). A quantitative real-time PCR (qPCR) assay has been developed that identifies the mutation at locus A256T in the P.falciparum multi-drug resistance(pfmdr1) gene producing amino acid change at position 86. The results of 198 samples detected by qPCR were consistent with nested PCR and sequencing, giving an accuracy of 94.3%. The sensitivity, specificity, positive and negative predictive value of qPCR were 85.7%, 97.6%, 90.0% and 96.4%, respectively. The results of qPCR are basically consistent with the nested PCR, which is expected to replace the nested PCR as a new molecular biological method for drug resistance detection, providing reliable technical support for global malaria prevention and control.
Collapse
Affiliation(s)
- Huiyin Zhu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China; Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Daiqian Zhu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Kai Wu
- Wuhan Centers for Disease Prevention and Control, Wuhan 430024, PR China
| | - Wei He
- Jiangnan University, Wuxi 442000, PR China
| | - Liugen Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Tongfei Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Long Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Zhixin Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Xiaonan Song
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Weijia Cheng
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Jinyu Mo
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Yi Yao
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Jian Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China.
| |
Collapse
|
2
|
Goodwin J, Kajubi R, Wang K, Li F, Wade M, Orukan F, Huang L, Whalen M, Aweeka FT, Mwebaza N, Parikh S. Persistent and multiclonal malaria parasite dynamics despite extended artemether-lumefantrine treatment in children. Nat Commun 2024; 15:3817. [PMID: 38714692 PMCID: PMC11076639 DOI: 10.1038/s41467-024-48210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/24/2024] [Indexed: 05/10/2024] Open
Abstract
Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Francis Orukan
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Liusheng Huang
- University of California, San Francisco, San Francisco, CA, USA
| | - Meghan Whalen
- University of California, San Francisco, San Francisco, CA, USA
| | | | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Hosch S, Wagner P, Giger JN, Dubach N, Saavedra E, Perno CF, Gody JC, Pagonendji MS, Ngoagouni C, Ndoua C, Nsanzabana C, Vickos U, Daubenberger C, Schindler T. PHARE: a bioinformatics pipeline for compositional profiling of multiclonal Plasmodium falciparum infections from long-read Nanopore sequencing data. J Antimicrob Chemother 2024; 79:987-996. [PMID: 38502783 PMCID: PMC11062946 DOI: 10.1093/jac/dkae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The emergence of drug-resistant clones of Plasmodium falciparum is a major public health concern, and the ability to detect and track the spread of these clones is crucial for effective malaria control and treatment. However, in endemic settings, malaria infected people often carry multiple P. falciparum clones simultaneously making it likely to miss drug-resistant clones using traditional molecular typing methods. OBJECTIVES Our goal was to develop a bioinformatics pipeline for compositional profiling in multiclonal P. falciparum samples, sequenced using the Oxford Nanopore Technologies MinION platform. METHODS We developed the 'Finding P. falciparum haplotypes with resistance mutations in polyclonal infections' (PHARE) pipeline using existing bioinformatics tools and custom scripts written in python. PHARE was validated on three control datasets containing P. falciparum DNA of four laboratory strains at varying mixing ratios. Additionally, the pipeline was tested on clinical samples from children admitted to a paediatric hospital in the Central African Republic. RESULTS The PHARE pipeline achieved high recall and accuracy rates in all control datasets. The pipeline can be used on any gene and was tested with amplicons of the P. falciparum drug resistance marker genes pfdhps, pfdhfr and pfK13. CONCLUSIONS The PHARE pipeline helps to provide a more complete picture of drug resistance in the circulating P. falciparum population and can help to guide treatment recommendations. PHARE is freely available under the GNU Lesser General Public License v.3.0 on GitHub: https://github.com/Fippu/PHARE.
Collapse
Affiliation(s)
- Salome Hosch
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Philipp Wagner
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Johanna Nouria Giger
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Nina Dubach
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Elis Saavedra
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Carlo Federico Perno
- Department of Microbiology, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’Onofrio, 4, 00165 Roma, Italy
| | - Jean-Chrysostome Gody
- Department of Intensive Care, Pediatric University Hospital Centre of Bangui, Bangui, Central African Republic
| | | | - Carine Ngoagouni
- Medical Entomology Unit, Institut Pasteur of Bangui, Bangui, Central African Republic
| | - Christophe Ndoua
- National Malaria Control Program, Ministry of Health, Bangui, Central African Republic
| | - Christian Nsanzabana
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Ulrich Vickos
- Department of Microbiology, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’Onofrio, 4, 00165 Roma, Italy
| | - Claudia Daubenberger
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Tobias Schindler
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| |
Collapse
|
4
|
Calderaro A, Piccolo G, Chezzi C. The Laboratory Diagnosis of Malaria: A Focus on the Diagnostic Assays in Non-Endemic Areas. Int J Mol Sci 2024; 25:695. [PMID: 38255768 PMCID: PMC10815132 DOI: 10.3390/ijms25020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Even if malaria is rare in Europe, it is a medical emergency and programs for its control should ensure both an early diagnosis and a prompt treatment within 24-48 h from the onset of the symptoms. The increasing number of imported malaria cases as well as the risk of the reintroduction of autochthonous cases encouraged laboratories in non-endemic countries to adopt diagnostic methods/algorithms. Microscopy remains the gold standard, but with limitations. Rapid diagnostic tests have greatly expanded the ability to diagnose malaria for rapid results due to simplicity and low cost, but they lack sensitivity and specificity. PCR-based assays provide more relevant information but need well-trained technicians. As reported in the World Health Organization Global Technical Strategy for Malaria 2016-2030, the development of point-of-care testing is important for the improvement of diagnosis with beneficial consequences for prompt/accurate treatment and for preventing the spread of the disease. Despite their limitations, diagnostic methods contribute to the decline of malaria mortality. Recently, evidence suggested that artificial intelligence could be utilized for assisting pathologists in malaria diagnosis.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (G.P.); (C.C.)
| | | | | |
Collapse
|
5
|
Girgis ST, Adika E, Nenyewodey FE, Senoo Jnr DK, Ngoi JM, Bandoh K, Lorenz O, van de Steeg G, Harrott AJR, Nsoh S, Judge K, Pearson RD, Almagro-Garcia J, Saiid S, Atampah S, Amoako EK, Morang'a CM, Asoala V, Adjei ES, Burden W, Roberts-Sengier W, Drury E, Pierce ML, Gonçalves S, Awandare GA, Kwiatkowski DP, Amenga-Etego LN, Hamilton WL. Drug resistance and vaccine target surveillance of Plasmodium falciparum using nanopore sequencing in Ghana. Nat Microbiol 2023; 8:2365-2377. [PMID: 37996707 PMCID: PMC10686832 DOI: 10.1038/s41564-023-01516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/06/2023] [Indexed: 11/25/2023]
Abstract
Malaria results in over 600,000 deaths annually, with the highest burden of deaths in young children living in sub-Saharan Africa. Molecular surveillance can provide important information for malaria control policies, including detection of antimalarial drug resistance. However, genome sequencing capacity in malaria-endemic countries is limited. We designed and implemented an end-to-end workflow to detect Plasmodium falciparum antimalarial resistance markers and diversity in the vaccine target circumsporozoite protein (csp) using nanopore sequencing in Ghana. We analysed 196 clinical samples and showed that our method is rapid, robust, accurate and straightforward to implement. Importantly, our method could be applied to dried blood spot samples, which are readily collected in endemic settings. We report that P. falciparum parasites in Ghana are mostly susceptible to chloroquine, with persistent sulfadoxine-pyrimethamine resistance and no evidence of artemisinin resistance. Multiple single nucleotide polymorphisms were identified in csp, but their significance is uncertain. Our study demonstrates the feasibility of nanopore sequencing for malaria genomic surveillance in endemic countries.
Collapse
Affiliation(s)
- Sophia T Girgis
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Edem Adika
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Felix E Nenyewodey
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Dodzi K Senoo Jnr
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Joyce M Ngoi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Kukua Bandoh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Oliver Lorenz
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Guus van de Steeg
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Sebastian Nsoh
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Kim Judge
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Richard D Pearson
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Samirah Saiid
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Solomon Atampah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Enock K Amoako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Victor Asoala
- Navrongo Health Research Centre (NHRC), Ghana Health Service, Navrongo, Upper East Region, Ghana
| | - Elrmion S Adjei
- Ledzokuku Krowor Municipal Assembly (LEKMA) Hospital, Accra, Ghana
| | - William Burden
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Eleanor Drury
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Megan L Pierce
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Sónia Gonçalves
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | | | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.
| | - William L Hamilton
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
6
|
Hantouly AT, Alzobi O, Toubasi AA, Zikria B, Al Dosari MAA, Ahmed G. Higher sensitivity and accuracy of synovial next-generation sequencing in comparison to culture in diagnosing periprosthetic joint infection: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2023; 31:3672-3683. [PMID: 36244018 PMCID: PMC10435641 DOI: 10.1007/s00167-022-07196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/02/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of this meta-analysis was to compare the diagnostic parameters of synovial next-generation sequencing (NGS) and cultures in diagnosing periprosthetic joint infections (PJI). METHODS PubMed, Web of Science, Cochrane, and Google Scholar were searched from inception until 8 Jan 2022 for literature investigating the role of NGS in comparison to culture in the diagnosis of PJI. The studies were included if they investigated the diagnostic value of culture and NGS in diagnosing PJIs against the Musculoskeletal Infection Society (MSIS) criteria. Diagnostic parameters, such as sensitivity, specificity, positive predictive value, negative predictive value, positive-likelihood ratio, negative-likelihood ratio, accuracy, and area under the curve (AUC), were calculated for the included studies to evaluate the performance of NGS in comparison to culture in PJI diagnosis. RESULTS The total number of the included patients was 341 from seven articles. The pooled sensitivity, specificity, and diagnostic odds ratio of NGS were 94% (95% CI 91-97%), 89% (95% CI 82-95%), and 138.5 (95% CI 49.1-390.5), respectively. NGS has positive- and negative-likelihood ratios of 7.9 (95% CI 3.99-15.6) and 0.1 (95% CI 0.0-0.1), respectively. On the other hand, the pooled sensitivity, specificity, and diagnostic odds ratio of culture were 70% (95% CI 61-79%), 94% (95% CI 88-98%), and 28.0 (95% CI 12.6-62.2), respectively. The SROC curve for NGS showed that the accuracy (AUC) was 91.9%, and that the positive and negative predictive values were 8.6 (95% CI 5.0-19.5) and 0.1 (95% CI 0.0-0.1), respectively. While, culture SROC curve demonstrated that the accuracy (AUC) was 80.5% and the positive- and negative-likelihood ratio were 12.1 (95% CI 4.5-49.6) and 0.3 (95% CI 0.2-0.4). CONCLUSIONS NGS has a potential role in diagnosing hip and knee PJIs due to its high sensitivity, specificity, and accuracy. However, the sensitivity and specificity reported by the studies varied according to the time of synovial sampling (preoperative, postoperative, or mixed).
Collapse
Affiliation(s)
- Ashraf T Hantouly
- Department of Orthopedic Surgery, Surgical Specialty Center, Hamad Medical Corporation, Doha, Qatar
| | - Osama Alzobi
- Department of Orthopedic Surgery, Surgical Specialty Center, Hamad Medical Corporation, Doha, Qatar
| | | | - Bashir Zikria
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | | | - Ghalib Ahmed
- Department of Orthopedic Surgery, Surgical Specialty Center, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
7
|
Osborne A, Phelan JE, Kaneko A, Kagaya W, Chan C, Ngara M, Kongere J, Kita K, Gitaka J, Campino S, Clark TG. Drug resistance profiling of asymptomatic and low-density Plasmodium falciparum malaria infections on Ngodhe island, Kenya, using custom dual-indexing next-generation sequencing. Sci Rep 2023; 13:11416. [PMID: 37452073 PMCID: PMC10349106 DOI: 10.1038/s41598-023-38481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Malaria control initiatives require rapid and reliable methods for the detection and monitoring of molecular markers associated with antimalarial drug resistance in Plasmodium falciparum parasites. Ngodhe island, Kenya, presents a unique malaria profile, with lower P. falciparum incidence rates than the surrounding region, and a high proportion of sub-microscopic and low-density infections. Here, using custom dual-indexing and Illumina next generation sequencing, we generate resistance profiles on seventy asymptomatic and low-density P. falciparum infections from a mass drug administration program implemented on Ngodhe island between 2015 and 2016. Our assay encompasses established molecular markers on the Pfcrt, Pfmdr1, Pfdhps, Pfdhfr, and Pfk13 genes. Resistance markers for sulfadoxine-pyrimethamine were identified at high frequencies, including a quintuple mutant haplotype (Pfdhfr/Pfdhps: N51I, C59R, S108N/A437G, K540E) identified in 62.2% of isolates. The Pfdhps K540E biomarker, used to inform decision making for intermittent preventative treatment in pregnancy, was identified in 79.2% of isolates. Several variants on Pfmdr1, associated with reduced susceptibility to quinolones and lumefantrine, were also identified (Y184F 47.1%; D1246Y 16.0%; N86 98%). Overall, we have presented a low-cost and extendable approach that can provide timely genetic profiles to inform clinical and surveillance activities, especially in settings with abundant low-density infections, seeking malaria elimination.
Collapse
Affiliation(s)
- Ashley Osborne
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Jody E Phelan
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Akira Kaneko
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wataru Kagaya
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Chim Chan
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Mtakai Ngara
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - James Kongere
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Centre for Research in Tropical Medicine and Community Development (CRTMCD), Hospital Road Next to Kenyatta National Hospital, Nairobi, Kenya
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Centre for Malaria Elimination, Mount Kenya University, Thika, Kenya
| | - Susana Campino
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Taane G Clark
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
8
|
Castañeda-Mogollón D, Toppings NB, Kamaliddin C, Lang R, Kuhn S, Pillai DR. Amplicon Deep Sequencing Reveals Multiple Genetic Events Lead to Treatment Failure with Atovaquone-Proguanil in Plasmodium falciparum. Antimicrob Agents Chemother 2023; 67:e0170922. [PMID: 37154745 PMCID: PMC10269153 DOI: 10.1128/aac.01709-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/05/2023] [Indexed: 05/10/2023] Open
Abstract
Atovaquone-proguanil (AP) is used as treatment for uncomplicated malaria, and as a chemoprophylactic agent against Plasmodium falciparum. Imported malaria remains one of the top causes of fever in Canadian returning travelers. Twelve sequential whole-blood samples before and after AP treatment failure were obtained from a patient diagnosed with P. falciparum malaria upon their return from Uganda and Sudan. Ultradeep sequencing was performed on the cytb, dhfr, and dhps markers of treatment resistance before and during the episode of recrudescence. Haplotyping profiles were generated using three different approaches: msp2-3D7 agarose and capillary electrophoresis, and cpmp using amplicon deep sequencing (ADS). A complexity of infection (COI) analysis was conducted. De novo cytb Y268C mutants strains were observed during an episode of recrudescence 17 days and 16 h after the initial malaria diagnosis and AP treatment initiation. No Y268C mutant reads were observed in any of the samples prior to the recrudescence. SNPs in the dhfr and dhps genes were observed upon initial presentation. The haplotyping profiles suggest multiple clones mutating under AP selection pressure (COI > 3). Significant differences in COI were observed by capillary electrophoresis and ADS compared to the agarose gel results. ADS using cpmp revealed the lowest haplotype variation across the longitudinal analysis. Our findings highlight the value of ultra-deep sequencing methods in the understanding of P. falciparum haplotype infection dynamics. Longitudinal samples should be analyzed in genotyping studies to increase the analytical sensitivity.
Collapse
Affiliation(s)
- Daniel Castañeda-Mogollón
- Cumming School of Medicine, Department of Pathology & Laboratory Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Microbiology, Immunology, and Infectious Diseases, the University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, Alberta, Canada
| | - Noah B. Toppings
- Cumming School of Medicine, Department of Pathology & Laboratory Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Microbiology, Immunology, and Infectious Diseases, the University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, Alberta, Canada
| | - Claire Kamaliddin
- Cumming School of Medicine, Department of Pathology & Laboratory Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Microbiology, Immunology, and Infectious Diseases, the University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, Alberta, Canada
| | - Raynell Lang
- Cumming School of Medicine, Department of Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Community Health Sciences, the University of Calgary, Calgary, Alberta, Canada
| | - Susan Kuhn
- Cumming School of Medicine, Department of Pediatrics, the University of Calgary, Calgary, Alberta, Canada
| | - Dylan R. Pillai
- Cumming School of Medicine, Department of Pathology & Laboratory Medicine, the University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Microbiology, Immunology, and Infectious Diseases, the University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Diagnostic & Scientific Centre, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Molecular Markers of Sulfadoxine-Pyrimethamine Resistance in Samples from Children with Uncomplicated Plasmodium falciparum at Three Sites in Angola in 2019. Antimicrob Agents Chemother 2023; 67:e0160122. [PMID: 36916920 PMCID: PMC10112138 DOI: 10.1128/aac.01601-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Sulfadoxine-pyrimethamine (SP) is used for prevention of malaria in pregnant women in Angola. We sequenced the Plasmodium falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes, implicated in SP resistance, in samples collected during a 2019 study of artemisinin-based combination therapy efficacy in Benguela, Lunda Sul, and Zaire provinces. A total of 90 day 0 and day of failure samples were individually sequenced, while 508 day 0 samples from participants without recurrent parasitemia were pooled after DNA extraction into 61 pools. The N51I, C59R, and S108N pfdhfr mutations and A437G pfdhps mutations were present at high proportions in all provinces (weighted allele frequencies, 62% to 100%). The K540E pfdhps mutation was present at lower proportions (10% to 14%). The A581G pfdhps mutation was only observed in Zaire, at a 4.6% estimated prevalence. The I431V and A613S mutations were also only observed in Zaire, at a prevalence of 2.8% to 2.9%. The most common (27% to 66%) reconstructed haplotype in all three provinces was the canonical quadruple pfdhfr pfdhps mutant. The canonical quintuple mutant was absent in Lunda Sul and Benguela and present in 7.9% of samples in Zaire. A single canonical sextuple (2.6%) mutant was observed in Zaire Province. Proportions of the pfdhps K540E and A581G mutations were well below the World Health Organization thresholds for meaningful SP resistance (prevalence of 95% for K540E and 10% for A581G). Samples from therapeutic efficacy studies represent a convenient source of samples for monitoring SP resistance markers.
Collapse
|
10
|
Kattenberg JH, Fernandez-Miñope C, van Dijk NJ, Llacsahuanga Allcca L, Guetens P, Valdivia HO, Van geertruyden JP, Rovira-Vallbona E, Monsieurs P, Delgado-Ratto C, Gamboa D, Rosanas-Urgell A. Malaria Molecular Surveillance in the Peruvian Amazon with a Novel Highly Multiplexed Plasmodium falciparum AmpliSeq Assay. Microbiol Spectr 2023; 11:e0096022. [PMID: 36840586 PMCID: PMC10101074 DOI: 10.1128/spectrum.00960-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/02/2022] [Indexed: 02/24/2023] Open
Abstract
Molecular surveillance for malaria has great potential to support national malaria control programs (NMCPs). To bridge the gap between research and implementation, several applications (use cases) have been identified to align research, technology development, and public health efforts. For implementation at NMCPs, there is an urgent need for feasible and cost-effective tools. We designed a new highly multiplexed deep sequencing assay (Pf AmpliSeq), which is compatible with benchtop sequencers, that allows high-accuracy sequencing with higher coverage and lower cost than whole-genome sequencing (WGS), targeting genomic regions of interest. The novelty of the assay is its high number of targets multiplexed into one easy workflow, combining population genetic markers with 13 nearly full-length resistance genes, which is applicable for many different use cases. We provide the first proof of principle for hrp2 and hrp3 deletion detection using amplicon sequencing. Initial sequence data processing can be performed automatically, and subsequent variant analysis requires minimal bioinformatic skills using any tabulated data analysis program. The assay was validated using a retrospective sample collection (n = 254) from the Peruvian Amazon between 2003 and 2018. By combining phenotypic markers and a within-country 28-single-nucleotide-polymorphism (SNP) barcode, we were able to distinguish different lineages with multiple resistance haplotypes (in dhfr, dhps, crt and mdr1) and hrp2 and hrp3 deletions, which have been increasing in recent years. We found no evidence to suggest the emergence of artemisinin (ART) resistance in Peru. These findings indicate a parasite population that is under drug pressure but is susceptible to current antimalarials and demonstrate the added value of a highly multiplexed molecular tool to inform malaria strategies and surveillance systems. IMPORTANCE While the power of next-generation sequencing technologies to inform and guide malaria control programs has become broadly recognized, the integration of genomic data for operational incorporation into malaria surveillance remains a challenge in most countries where malaria is endemic. The main obstacles include limited infrastructure, limited access to high-throughput sequencing facilities, and the need for local capacity to run an in-country analysis of genomes at a large-enough scale to be informative for surveillance. In addition, there is a lack of standardized laboratory protocols and automated analysis pipelines to generate reproducible and timely results useful for relevant stakeholders. With our standardized laboratory and bioinformatic workflow, malaria genetic surveillance data can be readily generated by surveillance researchers and malaria control programs in countries of endemicity, increasing ownership and ensuring timely results for informed decision- and policy-making.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Miñope
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Norbert J. van Dijk
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Lidia Llacsahuanga Allcca
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pieter Guetens
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | - Eduard Rovira-Vallbona
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Pieter Monsieurs
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| |
Collapse
|
11
|
Vrancianu CO, Serban B, Gheorghe-Barbu I, Czobor Barbu I, Cristian RE, Chifiriuc MC, Cirstoiu C. The Challenge of Periprosthetic Joint Infection Diagnosis: From Current Methods to Emerging Biomarkers. Int J Mol Sci 2023; 24:ijms24054320. [PMID: 36901750 PMCID: PMC10002145 DOI: 10.3390/ijms24054320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Due to the increase in the life span and mobility at older ages, the number of implanted prosthetic joints is constantly increasing. However, the number of periprosthetic joint infections (PJIs), one of the most severe complications after total joint arthroplasty, also shows an increasing trend. PJI has an incidence of 1-2% in the case of primary arthroplasties and up to 4% in the case of revision operations. The development of efficient protocols for managing periprosthetic infections can lead to the establishment of preventive measures and effective diagnostic methods based on the results obtained after the laboratory tests. In this review, we will briefly present the current methods used in PJI diagnosis and the current and emerging synovial biomarkers used for the prognosis, prophylaxis, and early diagnosis of periprosthetic infections. We will discuss treatment failure that may result from patient factors, microbiological factors, or factors related to errors during diagnosis.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Bogdan Serban
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (B.S.); (I.G.-B.)
| | - Irina Gheorghe-Barbu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Correspondence: (B.S.); (I.G.-B.)
| | - Ilda Czobor Barbu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Roxana Elena Cristian
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| | - Catalin Cirstoiu
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
12
|
Sabin S, Jones S, Patel D, Subramaniam G, Kelley J, Aidoo M, Talundzic E. Portable and cost-effective genetic detection and characterization of Plasmodium falciparum hrp2 using the MinION sequencer. Sci Rep 2023; 13:2893. [PMID: 36801925 PMCID: PMC9938884 DOI: 10.1038/s41598-022-26935-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/22/2022] [Indexed: 02/20/2023] Open
Abstract
The prevalence of Plasmodium falciparum hrp2 (pfhrp2)-deleted parasites threatens the efficacy of the most used and sensitive malaria rapid diagnostic tests and highlights the need for continued surveillance for this gene deletion. While PCR methods are adequate for determining pfhrp2 presence or absence, they offer a limited view of its genetic diversity. Here, we present a portable sequencing method using the MinION. Pfhrp2 amplicons were generated from individual samples, barcoded, and pooled for sequencing. To overcome potential crosstalk between barcodes, we implemented a coverage-based threshold for pfhrp2 deletion confirmation. Amino acid repeat types were then counted and visualized with custom Python scripts following de novo assembly. We evaluated this assay using well-characterized reference strains and 152 field isolates with and without pfhrp2 deletions, of which 38 were also sequenced on the PacBio platform to provide a standard for comparison. Of 152 field samples, 93 surpassed the positivity threshold, and of those samples, 62/93 had a dominant pfhrp2 repeat type. PacBio-sequenced samples with a dominant repeat-type profile from the MinION sequencing data matched the PacBio profile. This field-deployable assay can be used alone for surveilling pfhrp2 diversity or as a sequencing-based addition to the World Health Organization's existing deletion surveillance protocol.
Collapse
Affiliation(s)
- Susanna Sabin
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
| | - Sophie Jones
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Williams Consulting, Catonsville, MD, USA
| | - Dhruviben Patel
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Williams Consulting, Catonsville, MD, USA
| | - Gireesh Subramaniam
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Julia Kelley
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael Aidoo
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
13
|
Molecular assays for determining sulphadoxine-pyrimethamine drug resistance in India: a systematic review. Parasitol Res 2022; 121:2765-2774. [PMID: 35980472 DOI: 10.1007/s00436-022-07623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
A plethora of studies analyse the molecular markers of drug resistance and hence help in guiding the evidence-based malaria treatment policies in India. For reporting mutations, a number of techniques including DNA sequencing, restriction-fragment length polymorphism and mutation-specific polymerase chain reaction have been employed across numerous studies, including variations in the methodology used. However, there is no sufficient data from India comparing these methods as well as report the prevalence of polymorphisms in SP drug resistance molecular markers independently using such methods. Therefore, all data from Indian studies available for molecular marker studies of Plasmodium falciparum drug resistance to sulphadoxine-pyrimethamine was gathered, and a systematic review was performed. This systematic review identifies the molecular methods in use in India and compares each method for detecting sulphadoxine-pyrimethamine drug resistance marker. To delay the spread of drug-resistant parasite strains, a simplified and standardized molecular method is much needed which can be obtained by analysing the performance of each method in use and answering the necessity of newer methodological approaches.
Collapse
|
14
|
Lyimo BM, Popkin-Hall ZR, Giesbrecht DJ, Mandara CI, Madebe RA, Bakari C, Pereus D, Seth MD, Ngamba RM, Mbwambo RB, MacInnis B, Mbwambo D, Garimo I, Chacky F, Aaron S, Lusasi A, Molteni F, Njau R, Cunningham JA, Lazaro S, Mohamed A, Juliano JJ, Bailey J, Ishengoma DS. Potential Opportunities and Challenges of Deploying Next Generation Sequencing and CRISPR-Cas Systems to Support Diagnostics and Surveillance Towards Malaria Control and Elimination in Africa. Front Cell Infect Microbiol 2022; 12:757844. [PMID: 35909968 PMCID: PMC9326448 DOI: 10.3389/fcimb.2022.757844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Recent developments in molecular biology and genomics have revolutionized biology and medicine mainly in the developed world. The application of next generation sequencing (NGS) and CRISPR-Cas tools is now poised to support endemic countries in the detection, monitoring and control of endemic diseases and future epidemics, as well as with emerging and re-emerging pathogens. Most low and middle income countries (LMICs) with the highest burden of infectious diseases still largely lack the capacity to generate and perform bioinformatic analysis of genomic data. These countries have also not deployed tools based on CRISPR-Cas technologies. For LMICs including Tanzania, it is critical to focus not only on the process of generation and analysis of data generated using such tools, but also on the utilization of the findings for policy and decision making. Here we discuss the promise and challenges of NGS and CRISPR-Cas in the context of malaria as Africa moves towards malaria elimination. These innovative tools are urgently needed to strengthen the current diagnostic and surveillance systems. We discuss ongoing efforts to deploy these tools for malaria detection and molecular surveillance highlighting potential opportunities presented by these innovative technologies as well as challenges in adopting them. Their deployment will also offer an opportunity to broadly build in-country capacity in pathogen genomics and bioinformatics, and to effectively engage with multiple stakeholders as well as policy makers, overcoming current workforce and infrastructure challenges. Overall, these ongoing initiatives will build the malaria molecular surveillance capacity of African researchers and their institutions, and allow them to generate genomics data and perform bioinformatics analysis in-country in order to provide critical information that will be used for real-time policy and decision-making to support malaria elimination on the continent.
Collapse
Affiliation(s)
- Beatus M. Lyimo
- National Institute for Medical Research, Dar es Salaam, Tanzania
- School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | | | - David J. Giesbrecht
- Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, RI, United States
| | | | - Rashid A. Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Catherine Bakari
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Dativa Pereus
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Misago D. Seth
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Ruth B. Mbwambo
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Bronwyn MacInnis
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute, Boston, MA, United States
| | | | - Issa Garimo
- National Malaria Control Programme, Dodoma, Tanzania
| | - Frank Chacky
- National Malaria Control Programme, Dodoma, Tanzania
| | | | | | | | - Ritha Njau
- World Health Organization, Country Office, Dar es Salaam, Tanzania
| | - Jane A. Cunningham
- Global Malaria Programme, World Health Organization, Headquarters, Geneva, Switzerland
| | - Samwel Lazaro
- National Malaria Control Programme, Dodoma, Tanzania
| | - Ally Mohamed
- National Malaria Control Programme, Dodoma, Tanzania
| | - Jonathan J. Juliano
- School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Jeffrey A. Bailey
- Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, RI, United States
| | - Deus S. Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Faculty of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
An update on cerebral malaria for therapeutic intervention. Mol Biol Rep 2022; 49:10579-10591. [PMID: 35670928 DOI: 10.1007/s11033-022-07625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cerebral malaria is often pronounced as a major life-threatening neurological complication of Plasmodium falciparum infection. The complex pathogenic landscape of the parasite and the associated neurological complications are still not elucidated properly. The growing concerns of drugresistant parasite strains along with the failure of anti-malarial drugs to subdue post-recovery neuro-cognitive dysfunctions in cerebral malaria patients have called for a demand to explore novel biomarkers and therapeutic avenues. Due course of the brain infection journey of the parasite, events such as sequestration of infected RBCs, cytoadherence, inflammation, endothelial activation, and blood-brain barrier disruption are considered critical. METHODS In this review, we briefly summarize the diverse pathogenesis of the brain-invading parasite associated with loss of the blood-brain barrier integrity. In addition, we also discuss proteomics, transcriptomics, and bioinformatics strategies to identify an array of new biomarkers and drug candidates. CONCLUSION A proper understanding of the parasite biology and mechanism of barrier disruption coupled with emerging state-of-art therapeutic approaches could be helpful to tackle cerebral malaria.
Collapse
|
16
|
Kunasol C, Dondorp AM, Batty EM, Nakhonsri V, Sinjanakhom P, Day NPJ, Imwong M. Comparative analysis of targeted next-generation sequencing for Plasmodium falciparum drug resistance markers. Sci Rep 2022; 12:5563. [PMID: 35365711 PMCID: PMC8974807 DOI: 10.1038/s41598-022-09474-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Well-defined molecular resistance markers are available for a range of antimalarial drugs, and molecular surveillance is increasingly important for monitoring antimalarial drug resistance. Different genotyping platforms are available, but these have not been compared in detail. We compared Targeted Amplicon Deep sequencing (TADs) using Ion Torrent PGM with Illumina MiSeq for the typing of antimalarial drug resistance genes. We developed and validated protocols to type the molecular resistance markers pfcrt, pfdhfr, pfdhps, pfmdr1, pfkelch, and pfcytochrome b, in Plasmodium falciparum for the Ion Torrent PGM and Illumina MiSeq sequencing platforms. With P. falciparum 3D7 and K1 as reference strains, whole blood samples (N = 20) and blood spots from Rapid Diagnostic Test (RDT) samples (N = 5) from patients with uncomplicated falciparum malaria from Ubon Ratchathani were assessed on both platforms and compared for coverage (average reads per amplicon), sequencing accuracy, variant accuracy, false positive rate, false negative rate, and alternative allele detection, with conventional Sanger sequencing as the reference method for SNP calling. Both whole blood and RDT samples could be successfully sequenced using the Ion Torrent PGM and Illumina MiSeq platforms. Coverage of reads per amplicon was higher with Illumina MiSeq (28,886 reads) than with Ion Torrent PGM (1754 reads). In laboratory generated artificial mixed infections, the two platforms could detect the minor allele down to 1% density at 500X coverage. SNPs calls from both platforms were in complete agreement with conventional Sanger sequencing. The methods can be multiplexed with up to 96 samples per run, which reduces cost by 86% compared to conventional Sanger sequencing. Both platforms, using the developed TAD protocols, provide an accurate method for molecular surveillance of drug resistance markers in P. falciparum, but Illumina MiSeq provides higher coverage than Ion Torrent PGM.
Collapse
Affiliation(s)
- Chanon Kunasol
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd., Bangkok, 10400, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth M Batty
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Vorthunju Nakhonsri
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), 144 Innovation Cluster 2 Building (INC) Tower A, Thailand Science Park, Khlong Nueng, Khlong Luang District, Pathum Thani, Thailand
| | - Puritat Sinjanakhom
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd., Bangkok, 10400, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd., Bangkok, 10400, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
17
|
Fitri LE, Widaningrum T, Endharti AT, Prabowo MH, Winaris N, Nugraha RYB. Malaria diagnostic update: From conventional to advanced method. J Clin Lab Anal 2022; 36:e24314. [PMID: 35247002 PMCID: PMC8993657 DOI: 10.1002/jcla.24314] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Update diagnostic methods play essential roles in dealing with the current global malaria situation and decreasing malaria incidence. AIM Global malaria control programs require the availability of adequate laboratory tests in the quick and convenient field. RESULTS There are several methods to find out the existence of parasites within the blood. The oldest one is by microscopy, which is still a gold standard, although rapid diagnostic tests (RDTs) have rapidly become a primary diagnostic test in many endemic areas. Because of microscopy and RDTs limitation, novel serological and molecular methods have been developed. Many kinds of polymerase chain reaction (PCR) provide rapid results and higher specificity and sensitivity. The loop-mediated isothermal amplification (LAMP) and biosensing-based molecular techniques as point of care tests (POCT) will become a cost-effective approach to advance diagnostic testing. CONCLUSION Despite conventional techniques are still being used in the field, the exploration and field implementation of advanced techniques for the diagnosis of malaria are still being developed rapidly.
Collapse
Affiliation(s)
- Loeki Enggar Fitri
- Department of ParasitologyFaculty of Medicine Universitas BrawijayaMalangIndonesia
- Malaria Research GroupFaculty of Medicine Universitas BrawijayaMalangIndonesia
| | - Tarina Widaningrum
- Malaria Research GroupFaculty of Medicine Universitas BrawijayaMalangIndonesia
- Department of PharmacologyFaculty of Medicine Universitas BrawijayaMalangIndonesia
| | | | | | - Nuning Winaris
- Department of ParasitologyFaculty of Medicine Universitas BrawijayaMalangIndonesia
- Malaria Research GroupFaculty of Medicine Universitas BrawijayaMalangIndonesia
| | - Rivo Yudhinata Brian Nugraha
- Department of ParasitologyFaculty of Medicine Universitas BrawijayaMalangIndonesia
- Malaria Research GroupFaculty of Medicine Universitas BrawijayaMalangIndonesia
| |
Collapse
|
18
|
Tenfold difference in DNA recovery rate: systematic comparison of whole blood vs. dried blood spot sample collection for malaria molecular surveillance. Malar J 2022; 21:88. [PMID: 35292038 PMCID: PMC8922754 DOI: 10.1186/s12936-022-04122-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Molecular and genomic surveillance is becoming increasingly used to track malaria control and elimination efforts. Blood samples can be collected as whole blood and stored at - 20 °C until DNA extraction, or as dried blood spots (DBS), circumventing the need for a cold chain. Despite the wide use of either method, systematic comparisons of how the method of blood sample preservation affects the limit of detection (LOD) of molecular diagnosis and the proportion of DNA recovered for downstream applications are lacking. METHODS Extractions based on spin columns, magnetic beads, Tween-Chelex, and direct PCR without prior extraction were compared for whole blood and dried blood spots (DBS) using dilution series of Plasmodium falciparum culture samples. Extracted DNA was quantified by qPCR and droplet digital PCR (ddPCR). RESULTS DNA recovery was 5- to 10-fold higher for whole blood compared to DBS, resulting in a 2- to 3-fold lower LOD for both extraction methods compared to DBS. For whole blood, a magnetic bead-based method resulted in a DNA recovery rate of 88-98% when extracting from whole blood compared to 17-33% for a spin-column based method. For extractions from DBS, the magnetic bead-based method resulted in 8-20% DNA recovery, while the spin-column based method resulted in only 2% DNA recovery. The Tween-Chelex method was superior to other methods with 15-21% DNA recovery, and even more sensitive than extractions from whole blood samples. The direct PCR method was found to have the lowest LOD overall for both, whole blood and DBS. CONCLUSIONS Pronounced differences in LOD and DNA yield need to be considered when comparing prevalence estimates based on molecular methods and when selecting sampling protocols for other molecular surveillance applications.
Collapse
|
19
|
Louha S, Herman C, Gupta M, Patel D, Kelley J, OH JHM, Guru J, Lemoine JF, Chang MA, Venkatachalam U, Rogier E, Talundzic E. Evaluation of a parasite-density based pooled targeted amplicon deep sequencing (TADS) method for molecular surveillance of Plasmodium falciparum drug resistance genes in Haiti. PLoS One 2022; 17:e0262616. [PMID: 35030215 PMCID: PMC8759662 DOI: 10.1371/journal.pone.0262616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individual patient DNA samples of dried blood spots from a 2017 nationwide drug resistance surveillance study in Haiti, we compared codon coverage of drug resistance-conferring mutations in four Plasmodium falciparum genes (crt, dhps, dhfr, and mdr1), for the same deep sequenced samples run individually and pooled. Samples with similar real-time PCR cycle threshold (Ct) values (+/- 1.0 Ct value) were combined with ten samples per pool. The sequencing success for samples in pools were higher at a lower parasite density than the individual samples sequence method. The median codon coverage for drug resistance-associated mutations in all four genes were greater than 3-fold higher in the pooled samples than in individual samples. The overall codon coverage distribution for pooled samples was wider than the individual samples. The sample pools with < 40 parasites/μL blood showed more discordance in AF calls for dhfr and mdr1 between the individual and pooled samples. This discordance in AF estimation may be due to low amounts of parasite DNA, which could lead to variable PCR amplification efficiencies. Grouping samples with an estimated ≥ 40 parasites/μL blood prior to pooling and deep sequencing yielded the expected population level AF. Pooling DNA samples based on estimates of > 40 parasites/μL prior to deep sequencing can be used for rapid genotyping of a large number of samples for these four genes and possibly other drug resistant markers in population-based studies. As Haiti is a low malaria transmission country with very few mixed infections and continued chloroquine sensitivity, the pooled sequencing approach can be used for routine national molecular surveillance of resistant parasites.
Collapse
Affiliation(s)
- Swarnali Louha
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
- * E-mail:
| | - Camelia Herman
- Centers for Disease Control and Prevention Foundation, Atlanta, GA, United States America
| | - Mansi Gupta
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Dhruviben Patel
- Williams Consulting LLC, Atlanta, GA, United States America
- Division of Parasitic Diseases and Malaria, Malaria Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States America
| | - Julia Kelley
- Centers for Disease Control and Prevention Foundation, Atlanta, GA, United States America
- Division of Parasitic Diseases and Malaria, Malaria Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States America
| | - Je-Hoon M. OH
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Janani Guru
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States America
| | - Jean F. Lemoine
- Programme National de Contrôle de la Malaria, MSPP, Port-au-Prince, Haiti
| | - Michelle A. Chang
- Division of Parasitic Diseases and Malaria, Malaria Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States America
| | - Udhayakumar Venkatachalam
- Division of Parasitic Diseases and Malaria, Malaria Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States America
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Malaria Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States America
| | - Eldin Talundzic
- Division of Parasitic Diseases and Malaria, Malaria Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States America
| |
Collapse
|
20
|
Guo Y, Dong HY, Zhou HC, Zhang ZS, Zhao Y, Zhang YJ. Mechanism of the Passage of Angiostrongylus cantonensis across the Final Host Blood-Brain Barrier Using the Next-Generation Sequencing. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:454-463. [PMID: 34630591 PMCID: PMC8476730 DOI: 10.18502/ijpa.v16i3.7099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022]
Abstract
Background: Multicellular parasites Angiostrogylus cantonensis larvae develop in the final host rat brain at the fourth stage (L4) and migrate to the lungs by the adult stage. The potential mechanism of its blood-brain barrier (BBB) passage remains unclear. Methods: By using Illumina Hiseq/Miseq sequencing, we obtained the transcriptomes of 3 groups of adult males and 3 groups of female of A. cantonensis to generate similarly expressed genes (SEGs) between 2 genders at the adult stage. Next 2 groups of L4 expressed genes were used to compared with SEGs to create differentially expressed genes (DEGs) between 2 life stages to unlock potential mechanism of BBB passage. Results: In total, we obtained 381 581 802 clean reads and 56 990 699 010 clean bases. Of these, 331 803 unigenes and 482 056 transcripts were successfully annotated. A total of 3 166 DEGs between L4 and adults SEGs were detected. Annotation of these DEGs showed 167 were down-regulated and 181 were up-regulated. Pathway analysis exhibited that calcium signaling pathway, the ECM−receptor interaction, focal adhesion, and cysteine and methionine metabolism were highly associated with DEGs. The function of these pathways might be related to BBB traversal, as well as neuro-regulation, interactions between parasite and host, environmental adaption. Conclusion: This study expanded the regulatory characteristics of the two important life stages of A. cantonensis. This information may provide a better appreciation of the biological features of the stages of the parasitic A. cantonensis.
Collapse
Affiliation(s)
- Yue Guo
- School of Medicine, Huzhou University, Huzhou Cent Hosp, Zhejiang, China.,Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, China
| | - Hai Yan Dong
- School of Medicine, Huzhou University, Huzhou Cent Hosp, Zhejiang, China.,Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, China
| | - Hong Chang Zhou
- School of Medicine, Huzhou University, Huzhou Cent Hosp, Zhejiang, China.,Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, China
| | - Zhong Shan Zhang
- School of Medicine, Huzhou University, Huzhou Cent Hosp, Zhejiang, China.,School of Life Sciences, Huzhou University, Zhejiang, China
| | - Yu Zhao
- School of Medicine, Huzhou University, Huzhou Cent Hosp, Zhejiang, China
| | - Yu Jie Zhang
- School of Medicine, Huzhou University, Huzhou Cent Hosp, Zhejiang, China
| |
Collapse
|
21
|
Diagnosing the drug resistance signature in Plasmodium falciparum: a review from contemporary methods to novel approaches. J Parasit Dis 2021; 45:869-876. [PMID: 34475670 DOI: 10.1007/s12639-020-01333-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022] Open
Abstract
The genome sequence project of the human malaria parasite Plasmodium falciparum reveal variations in the parasite DNA sequence. Most of these variations are single nucleotide polymorphism (SNP). A high frequency of single nucleotide polymorphism (SNP) in the Plasmodium falciparum population is usually a benchmark for anti-malarial resistance which allows parasites to be elusive to the chemotherapeutic agents, vaccine and vector control strategies, resulting in the leading cause of morbidity and mortality globally. The high density of drug resistance signature markers such as pfcrt,pfmdr1, pfdhps, pfdhfr, pfkelch13, pfatpase6 and pfmrp1 in the genome opens up a scope for the study of the genetic basis of this elusive parasite. The precise and prompt diagnosis of resistance strains of parasite plays vital role in malaria elimination program.This review probably shed light on contemporary SNP diagnostic tools used in molecular surveillance of Plasmodium falciparum drug resistance in terms of mechanism, reaction modalities, and development with their virtues and shortcomings.
Collapse
|
22
|
Should deep-sequenced amplicons become the new gold-standard for analysing malaria drug clinical trials? Antimicrob Agents Chemother 2021; 65:e0043721. [PMID: 34252299 PMCID: PMC8448141 DOI: 10.1128/aac.00437-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Regulatory clinical trials are required to ensure the continued supply and deployment of effective antimalarial drugs. Patient follow-up in such trials typically lasts several weeks, as the drugs have long half-lives and new infections often occur during this period. “Molecular correction” is therefore used to distinguish drug failures from new infections. The current WHO-recommended method for molecular correction uses length-polymorphic alleles at highly diverse loci but is inherently poor at detecting low-density clones in polyclonal infections. This likely leads to substantial underestimates of failure rates, delaying the replacement of failing drugs with potentially lethal consequences. Deep-sequenced amplicons (AmpSeq) substantially increase the detectability of low-density clones and may offer a new “gold standard” for molecular correction. Pharmacological simulation of clinical trials was used to evaluate the suitability of AmpSeq for molecular correction. We investigated the impact of factors such as the number of amplicon loci analyzed, the informatics criteria used to distinguish genotyping “noise” from real low-density signals, the local epidemiology of malaria transmission, and the potential impact of genetic signals from gametocytes. AmpSeq greatly improved molecular correction and provided accurate drug failure rate estimates. The use of 3 to 5 amplicons was sufficient, and simple, nonstatistical criteria could be used to classify recurrent infections as drug failures or new infections. These results suggest AmpSeq is strongly placed to become the new standard for molecular correction in regulatory trials, with potential extension into routine surveillance once the requisite technical support becomes established.
Collapse
|
23
|
Schmedes SE, Patel D, Dhal S, Kelley J, Svigel SS, Dimbu PR, Adeothy AL, Kahunu GM, Nkoli PM, Beavogui AH, Kariuki S, Mathanga DP, Koita O, Ishengoma D, Mohamad A, Hawela M, Moriarty LF, Samuels AM, Gutman J, Plucinski MM, Udhayakumar V, Zhou Z, Lucchi NW, Venkatesan M, Halsey ES, Talundzic E. Plasmodium falciparum kelch 13 Mutations, 9 Countries in Africa, 2014-2018. Emerg Infect Dis 2021; 27:1902-1908. [PMID: 34152946 PMCID: PMC8237877 DOI: 10.3201/eid2707.203230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The spread of drug resistance to antimalarial treatments poses a serious public health risk globally. To combat this risk, molecular surveillance of drug resistance is imperative. We report the prevalence of mutations in the Plasmodium falciparum kelch 13 propeller domain associated with partial artemisinin resistance, which we determined by using Sanger sequencing samples from patients enrolled in therapeutic efficacy studies from 9 sub-Saharan countries during 2014-2018. Of the 2,865 samples successfully sequenced before treatment (day of enrollment) and on the day of treatment failure, 29 (1.0%) samples contained 11 unique nonsynonymous mutations and 83 (2.9%) samples contained 27 unique synonymous mutations. Two samples from Kenya contained the S522C mutation, which has been associated with delayed parasite clearance; however, no samples contained validated or candidate artemisinin-resistance mutations.
Collapse
|
24
|
L'Episcopia M, Kelley J, Djeunang Dongho BG, Patel D, Schmedes S, Ravishankar S, Perrotti E, Modiano D, Lucchi NW, Russo G, Talundzic E, Severini C. Targeted deep amplicon sequencing of antimalarial resistance markers in Plasmodium falciparum isolates from Cameroon. Int J Infect Dis 2021; 107:234-241. [PMID: 33940188 DOI: 10.1016/j.ijid.2021.04.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Recent studies showed the first emergence of the R561H artemisinin-associated resistance marker in Africa, which highlights the importance of continued molecular surveillance to assess the selection and spread of this and other drug resistance markers in the region. METHOD In this study, we used targeted amplicon deep sequencing of 116 isolates collected in two areas of Cameroon to genotype the major drug resistance genes, k13, crt, mdr1, dhfr, and dhps, and the cytochrome b gene (cytb) in Plasmodium falciparum. RESULTS No confirmed or associated artemisinin resistance markers were observed in Pfk13. In comparison, both major and minor alleles associated with drug resistance were found in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps. Notably, a high frequency of other nonsynonymous mutations was observed across all the genes, except for Pfcytb, suggesting continued selection pressure. CONCLUSIONS The results from this study supported the continued use of artemisinin-based combination therapy and administration of sulfadoxine-pyrimethamine for intermittent preventive therapy in pregnant women, and for seasonal chemoprevention in these study sites in Cameroon.
Collapse
Affiliation(s)
| | - Julia Kelley
- Atlanta Research and Education Foundation, VAMC, Atlanta, GA, USA.
| | | | - Dhruviben Patel
- Atlanta Research and Education Foundation, VAMC, Atlanta, GA, USA.
| | - Sarah Schmedes
- Association of Public Health Laboratories, Silver Spring, MD, USA.
| | | | - Edvige Perrotti
- Istituto Superiore di Sanità, Department of Infectious Diseases, Rome, Italy.
| | - David Modiano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Naomi W Lucchi
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA.
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Eldin Talundzic
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA.
| | - Carlo Severini
- Istituto Superiore di Sanità, Department of Infectious Diseases, Rome, Italy.
| |
Collapse
|
25
|
Ippolito MM, Moser KA, Kabuya JBB, Cunningham C, Juliano JJ. Antimalarial Drug Resistance and Implications for the WHO Global Technical Strategy. CURR EPIDEMIOL REP 2021; 8:46-62. [PMID: 33747712 PMCID: PMC7955901 DOI: 10.1007/s40471-021-00266-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Five years have passed since the World Health Organization released its Global Technical Strategy for Malaria (GTS). In that time, progress against malaria has plateaued. This review focuses on the implications of antimalarial drug resistance for the GTS and how interim progress in parasite genomics and antimalarial pharmacology offer a bulwark against it. RECENT FINDINGS For the first time, drug resistance-conferring genes have been identified and validated before their global expansion in malaria parasite populations. More efficient methods for their detection and elaboration have been developed, although low-density infections and polyclonality remain a nuisance to be solved. Clinical trials of alternative regimens for multidrug-resistant malaria have delivered promising results. New agents continue down the development pipeline, while a nascent infrastructure in sub-Saharan Africa for conducting phase I trials and trials of transmission-blocking agents has come to fruition after years of preparation. SUMMARY These and other developments can help inform the GTS as the world looks ahead to the next two decades of its implementation. To remain ahead of the threat that drug resistance poses, wider application of genomic-based surveillance and optimization of existing and forthcoming antimalarial drugs are essential.
Collapse
Affiliation(s)
- Matthew M. Ippolito
- Divisions of Clinical Pharmacology and Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University School of Public Health, Baltimore, MD USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kara A. Moser
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC USA
| | | | - Clark Cunningham
- School of Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, CB#7030, 130 Mason Farm Rd, Chapel Hill, NC 27599 USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
26
|
Yin H, Xu D, Wang D. Diagnostic value of next-generation sequencing to detect periprosthetic joint infection. BMC Musculoskelet Disord 2021; 22:252. [PMID: 33676477 PMCID: PMC7937267 DOI: 10.1186/s12891-021-04116-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background We herein compared the diagnostic value of next-generation sequencing (NGS), bacterial culture, and serological biomarkers to detect periprosthetic joint infection (PJI) after joint replacement. Methods According to the diagnostic criteria of the Musculoskeletal Infection Society, 35 patients who underwent joint revision surgery were divided into infection (15 cases) and non-infection (20 cases) groups, and were routinely examined preoperatively for erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), and D-dimer levels. All patients underwent arthrocentesis preoperatively. Synovial fluid was used for white blood cell count, white blood cell classification, bacterial culture, and NGS. Furthermore, we calculated the area under the curve (AUC) of the receiver operating characteristic curve (ROC) for ESR, CRP, PCT, IL-6, and D-dimer. Data were assessed by comparing diagnostic accuracy, sensitivity, and specificity. Results Fourteen patients showed positive results by NGS and seven showed positive bacterial culture results in the infection group; further, 18 showed negative results by NGS in the non-infection group. The AUC of ESR, D-dimer, CRP, IL-6, and PCT was 0.667, 0.572, 0.827, 0.767, and 0.808, respectively. The accuracy of NGS, bacterial culture, CRP, IL-6, and PCT was 0.91, 0.74, 0.77, 0.74, and 0.83, respectively. When comparing NGS with CRP, IL-6, PCT, and bacterial culture, differences in overall test results and those in sensitivity were statistically significant, and compared with CRP, differences in specificity were also statistically significant. In comparison with IL-6, PCT, and bacterial culture, the specificity of NGS was statistically insignificant. Conclusions Our results indicated that NGS had higher accuracy and sensitivity than the bacterial culture method and commonly used serological biomarkers for diagnosing PJI.
Collapse
Affiliation(s)
- Han Yin
- Department of Orthopaedics, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, No. 67, Dongchang Road, Liaocheng, Shandong, China
| | - Duliang Xu
- Department of Orthopaedics, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, No. 67, Dongchang Road, Liaocheng, Shandong, China
| | - Dawei Wang
- Department of Orthopaedics, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, No. 67, Dongchang Road, Liaocheng, Shandong, China.
| |
Collapse
|
27
|
Maljkovic Berry I, Melendrez MC, Bishop-Lilly KA, Rutvisuttinunt W, Pollett S, Talundzic E, Morton L, Jarman RG. Next Generation Sequencing and Bioinformatics Methodologies for Infectious Disease Research and Public Health: Approaches, Applications, and Considerations for Development of Laboratory Capacity. J Infect Dis 2021; 221:S292-S307. [PMID: 31612214 DOI: 10.1093/infdis/jiz286] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Next generation sequencing (NGS) combined with bioinformatics has successfully been used in a vast array of analyses for infectious disease research of public health relevance. For instance, NGS and bioinformatics approaches have been used to identify outbreak origins, track transmissions, investigate epidemic dynamics, determine etiological agents of a disease, and discover novel human pathogens. However, implementation of high-quality NGS and bioinformatics in research and public health laboratories can be challenging. These challenges mainly include the choice of the sequencing platform and the sequencing approach, the choice of bioinformatics methodologies, access to the appropriate computation and information technology infrastructure, and recruiting and retaining personnel with the specialized skills and experience in this field. In this review, we summarize the most common NGS and bioinformatics workflows in the context of infectious disease genomic surveillance and pathogen discovery, and highlight the main challenges and considerations for setting up an NGS and bioinformatics-focused infectious disease research public health laboratory. We describe the most commonly used sequencing platforms and review their strengths and weaknesses. We review sequencing approaches that have been used for various pathogens and study questions, as well as the most common difficulties associated with these approaches that should be considered when implementing in a public health or research setting. In addition, we provide a review of some common bioinformatics tools and procedures used for pathogen discovery and genome assembly, along with the most common challenges and solutions. Finally, we summarize the bioinformatics of advanced viral, bacterial, and parasite pathogen characterization, including types of study questions that can be answered when utilizing NGS and bioinformatics.
Collapse
Affiliation(s)
- Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Kimberly A Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Maryland
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland.,Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Eldin Talundzic
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lindsay Morton
- Global Emerging Infections Surveillance, Armed Forces Health Surveillance Branch, Silver Spring, Maryland
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
28
|
Continued Low Efficacy of Artemether-Lumefantrine in Angola in 2019. Antimicrob Agents Chemother 2021; 65:AAC.01949-20. [PMID: 33168604 PMCID: PMC7849008 DOI: 10.1128/aac.01949-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023] Open
Abstract
Biennial therapeutic efficacy monitoring is a crucial activity for ensuring the efficacy of currently used artemisinin-based combination therapy in Angola. Children with acute uncomplicated Plasmodium falciparum infection in sentinel sites in the Benguela, Zaire, and Lunda Sul Provinces were treated with artemether-lumefantrine (AL) or artesunate-amodiaquine (ASAQ) and monitored for 28 days to assess clinical and parasitological responses. Molecular correction was performed using seven microsatellite markers. Biennial therapeutic efficacy monitoring is a crucial activity for ensuring the efficacy of currently used artemisinin-based combination therapy in Angola. Children with acute uncomplicated Plasmodium falciparum infection in sentinel sites in the Benguela, Zaire, and Lunda Sul Provinces were treated with artemether-lumefantrine (AL) or artesunate-amodiaquine (ASAQ) and monitored for 28 days to assess clinical and parasitological responses. Molecular correction was performed using seven microsatellite markers. Samples from treatment failures were genotyped for the pfk13, pfcrt, and pfmdr1 genes. Day 3 clearance rates were ≥95% in all arms. Uncorrected day 28 Kaplan-Meier efficacy estimates ranged from 84.2 to 90.1% for the AL arms and 84.7 to 100% for the ASAQ arms. Corrected day 28 estimates were 87.6% (95% confidence interval [CI], 81 to 95%) for the AL arm in Lunda Sul, 92.2% (95% CI, 87 to 98%) for AL in Zaire, 95.6% (95% CI, 91 to 100%) for ASAQ in Zaire, 98.4% (95% CI, 96 to 100%) for AL in Benguela, and 100% for ASAQ in Benguela and Lunda Sul. All 103 analyzed samples had wild-type pfk13 sequences. The 76T pfcrt allele was found in most (92%; 11/12) ASAQ late-failure samples but in only 16% (4/25) of AL failure samples. The N86 pfmdr1 allele was found in 97% (34/35) of treatment failures. The AL efficacy in Lunda Sul was below the 90% World Health Organization threshold, the third time in four rounds that this threshold was crossed for an AL arm in Angola. In contrast, the observed ASAQ efficacy has not been below 95% to date in Angola, including this latest round.
Collapse
|
29
|
Flaherty BR, Barratt J, Lane M, Talundzic E, Bradbury RS. Sensitive universal detection of blood parasites by selective pathogen-DNA enrichment and deep amplicon sequencing. MICROBIOME 2021; 9:1. [PMID: 33388088 PMCID: PMC7778815 DOI: 10.1186/s40168-020-00939-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/14/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Targeted amplicon deep sequencing (TADS) has enabled characterization of diverse bacterial communities, yet the application of TADS to communities of parasites has been relatively slow to advance. The greatest obstacle to this has been the genetic diversity of parasitic agents, which include helminths, protozoa, arthropods, and some acanthocephalans. Meanwhile, universal amplification of conserved loci from all parasites without amplifying host DNA has proven challenging. Pan-eukaryotic PCRs preferentially amplify the more abundant host DNA, obscuring parasite-derived reads following TADS. Flaherty et al. (2018) described a pan-parasitic TADS method involving amplification of eukaryotic 18S rDNA regions possessing restriction sites only in vertebrates. Using this method, host DNA in total DNA extracts could be selectively digested prior to PCR using restriction enzymes, thereby increasing the number of parasite-derived reads obtained following NGS. This approach showed promise though was only as sensitive as conventional PCR. RESULTS Here, we expand on this work by designing a second set of pan-eukaryotic primers flanking the priming sites already described, enabling nested PCR amplification of the established 18S rDNA target. This nested approach facilitated introduction of a second restriction digestion between the first and second PCR, reducing the proportional mass of amplifiable host-derived DNA while increasing the number of PCR amplification cycles. We applied this method to blood specimens containing Babesia, Plasmodium, various kinetoplastids, and filarial nematodes and confirmed its limit of detection (LOD) to be approximately 10-fold lower than previously described, falling within the range of most qPCR methods. CONCLUSIONS The assay detects and differentiates the major malaria parasites of humans, along with several other clinically important blood parasites. This represents an important step towards a TADS-based universal parasite diagnostic (UPDx) test with a sufficient LOD for routine applications. Video Abstract.
Collapse
Affiliation(s)
- Briana R Flaherty
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Joel Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
| | - Meredith Lane
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Synergy America Inc., Duluth, GA, USA
| | - Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard S Bradbury
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- School of Health and Life Sciences, Federation University, Ballarat, Australia.
| |
Collapse
|
30
|
Tong Z, Yan C, Dong YA, Yao M, Zhang H, Liu L, Zheng Y, Zhao P, Wang Y, Fang W, Zhang F, Jiang W. Whole-exome sequencing reveals potential mechanisms of drug resistance to FGFR3-TACC3 targeted therapy and subsequent drug selection: towards a personalized medicine. BMC Med Genomics 2020; 13:138. [PMID: 32957974 PMCID: PMC7507681 DOI: 10.1186/s12920-020-00794-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Background Drug resistance is a major obstacle to effective cancer therapy. In order to detect the change in tumor genomic states under drug selection pressure, we use next-generation sequencing technology to investigate the underlying potential mechanisms of drug resistance. Methods In our study, we presented a bladder cancer patient who had been a bona fide responder to first-line gemcitabine plus cisplatin regimen and second-line pazopanib (tyrosine kinase inhibitor (TKI) for FGFR3-TACC3 fusion) but finally had disease progression as an ideal case for showing genomic alteration during drug resistance. We applied whole-exome sequencing and ultra-deep target sequencing to the patient pre- and post- pazopanib resistance. Protein-protein interaction (PPI) network and Gene Ontology (GO) analyses were used to analysis protein interactions and genomic alterations. Patient-derived xenograft (PDX) model was built to test drug sensitivity. Results Twelve mutations scattered in 12 genes were identified by WES pre- pazopanib resistance, while 63 mutations in 50 genes arose post- pazopanib resistance. PPI network showed proteins from multiple epigenetic regulator families were involved post- pazopanib resistance, including subunits of chromatin remodeler SWI/SNF complex ARID1A/1B and SMARCA4, histone acetylation writers CREBBP, histone methylation writer NSD1 and erasers KDM6A/5A. GO enrichment analysis showed pazopanib resistance genes were prominently tagged for chromatin modification, transcription, as well as gland development, leaving genes with the best adaptive FGFR TKI-coping mechanisms. In addition, significantly elevated tumor mutational burden suggested possible utility of immunotherapy. Intriguingly, PDX model suggested that, sensitivity to original chemotherapy regimen (cisplatin) was restored in patient tumor post-pazopanib. Conclusions Epigenetic regulation may play a role in acquired TKI resistance. Our study traced the complete tumor genomic variation course from chemo-resistant but TKI-sensitive to TKI-resistant but chemo-(re) sensitive, revealing the potential complex dynamic drug-driven mechanisms of resistance.
Collapse
Affiliation(s)
- Zhou Tong
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Cong Yan
- Department of Medical Oncology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Yu-An Dong
- OrigiMed, Building 3, 115 Xinjun Huan Rd. Minghang, Shanghai, 201114, China
| | - Ming Yao
- OrigiMed, Building 3, 115 Xinjun Huan Rd. Minghang, Shanghai, 201114, China
| | - Hangyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lulu Liu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yi Zheng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yimin Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China
| | - Feifei Zhang
- Shanghai LIDE Biotech Co.LTD, Shanghai, 201203, China
| | - Weiqin Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
31
|
Martins JF, Marques C, Nieto-Andrade B, Kelley J, Patel D, Nace D, Herman C, Barratt J, Ponce de León G, Talundzic E, Rogier E, Halsey ES, Plucinski MM. Malaria Risk and Prevention in Asian Migrants to Angola. Am J Trop Med Hyg 2020; 103:1918-1926. [PMID: 32815500 DOI: 10.4269/ajtmh.20-0706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The number of Asian migrants working in sub-Saharan developing countries like Angola has been increasing. Their malaria risk, prevention, and care-seeking practices have not been characterized. A cross-sectional survey was conducted in 733 Chinese and Southeast Asian migrants in Angola. Respondents were interviewed and provided blood samples. Samples were analyzed to detect Plasmodium antigen and characterize host anti-Plasmodium response. Positive samples were genotyped using the pfs47 marker. Most respondents (72%; 95% CI: 68-75) reported using bed nets, but less than 1% reported using chemoprophylaxis. Depending on the assay, 1-4% of respondents had evidence of active malaria infection. By contrast, 55% (95% CI: 52-59) were seropositive for Plasmodium antibodies. Most infections were Plasmodium falciparum, but infection and/or exposure to Plasmodium vivax and Plasmodium malariae was also detected. Seroprevalence by time in Angola showed most exposure occurred locally. One respondent had sufficiently high parasitemia for pfs47 genotyping, which showed that the infection was likely locally acquired despite recent travel to home country. Asian migrants to Angola are at substantial risk of malaria. Employers should consider enhanced malaria prevention programs, including chemoprophylaxis; embassies should encourage prevention practices. Angolan healthcare workers should be aware of high malaria exposure in Asian migrants.
Collapse
Affiliation(s)
| | | | | | - Julia Kelley
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Dhruviben Patel
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Doug Nace
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Camelia Herman
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joel Barratt
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Gabriel Ponce de León
- U.S. President's Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia.,Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eldin Talundzic
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric S Halsey
- U.S. President's Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia.,Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mateusz M Plucinski
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia.,U.S. President's Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
32
|
Chebore W, Zhou Z, Westercamp N, Otieno K, Shi YP, Sergent SB, Rondini KA, Svigel SS, Guyah B, Udhayakumar V, Halsey ES, Samuels AM, Kariuki S. Assessment of molecular markers of anti-malarial drug resistance among children participating in a therapeutic efficacy study in western Kenya. Malar J 2020; 19:291. [PMID: 32795367 PMCID: PMC7427724 DOI: 10.1186/s12936-020-03358-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Anti-malarial drug resistance remains a major threat to global malaria control efforts. In Africa, Plasmodium falciparum remains susceptible to artemisinin-based combination therapy (ACT), but the emergence of resistant parasites in multiple countries in Southeast Asia and concerns over emergence and/or spread of resistant parasites in Africa warrants continuous monitoring. The World Health Organization recommends that surveillance for molecular markers of resistance be included within therapeutic efficacy studies (TES). The current study assessed molecular markers associated with resistance to Artemether-lumefantrine (AL) and Dihydroartemisinin-piperaquine (DP) from samples collected from children aged 6-59 months enrolled in a TES conducted in Siaya County, western Kenya from 2016 to 2017. METHODS Three hundred and twenty-three samples collected pre-treatment (day-0) and 110 samples collected at the day of recurrent parasitaemia (up to day 42) were tested for the presence of drug resistance markers in the Pfk13 propeller domain, and the Pfmdr1 and Pfcrt genes by Sanger sequencing. Additionally, the Pfpm2 gene copy number was assessed by real-time polymerase chain reaction. RESULTS No mutations previously associated with artemisinin resistance were detected in the Pfk13 propeller region. However, other non-synonymous mutations in the Pfk13 propeller region were detected. The most common mutation found on day-0 and at day of recurrence in the Pfmdr1 multidrug resistance marker was at codon 184F. Very few mutations were found in the Pfcrt marker (< 5%). Within the DP arm, all recrudescent cases (8 sample pairs) that were tested for Pfpm2 gene copy number had a single gene copy. None of the associations between observed mutations and treatment outcomes were statistically significant. CONCLUSION The results indicate absence of Pfk13 mutations associated with parasite resistance to artemisinin in this area and a very high proportion of wild-type parasites for Pfcrt. Although the frequency of Pfmdr1 184F mutations was high in these samples, the association with treatment failure did not reach statistical significance. As the spread of artemisinin-resistant parasites remains a possibility, continued monitoring for molecular markers of ACT resistance is needed to complement clinical data to inform treatment policy in Kenya and other malaria-endemic regions.
Collapse
Affiliation(s)
- Winnie Chebore
- Kenya Medical Research Institute, Centre for Global Health Research, P.O. Box 1578, Kisumu, Kenya
- Maseno University, Kisumu, Kenya
| | - Zhiyong Zhou
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | - Nelli Westercamp
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | - Kephas Otieno
- Kenya Medical Research Institute, Centre for Global Health Research, P.O. Box 1578, Kisumu, Kenya
| | - Ya Ping Shi
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | - Sheila B Sergent
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | - Kelsey Anne Rondini
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Samaly Souza Svigel
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | | | | | - Eric S Halsey
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
- U.S. President's Malaria Initiative, Atlanta, GA, USA
| | - Aaron M Samuels
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
- Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Simon Kariuki
- Kenya Medical Research Institute, Centre for Global Health Research, P.O. Box 1578, Kisumu, Kenya.
| |
Collapse
|
33
|
L'Episcopia M, Kelley J, Patel D, Schmedes S, Ravishankar S, Menegon M, Perrotti E, Nurahmed AM, Talha AA, Nour BY, Lucchi N, Severini C, Talundzic E. Targeted deep amplicon sequencing of kelch 13 and cytochrome b in Plasmodium falciparum isolates from an endemic African country using the Malaria Resistance Surveillance (MaRS) protocol. Parasit Vectors 2020; 13:137. [PMID: 32171330 PMCID: PMC7071742 DOI: 10.1186/s13071-020-4005-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background Routine molecular surveillance for imported drug-resistant malaria parasites to the USA and European Union is an important public health activity. The obtained molecular data are used to help keep chemoprophylaxis and treatment guidelines up to date for persons traveling to malaria endemic countries. Recent advances in next-generation sequencing (NGS) technologies provide a new and effective way of tracking malaria drug-resistant parasites. Methods As part of a technology transfer arrangement between the CDC Malaria Branch and the Istituto Superiore di Sanità (ISS), Rome, Italy, the recently described Malaria Resistance Surveillance (MaRS) protocol was used to genotype 148 Plasmodium falciparum isolates from Eritrea for kelch 13 (k13) and cytochrome b (cytb) genes, molecular markers associated with resistance to artemisinin (ART) and atovaquone/proguanil (AP), respectively. Results Spanning the full-length k13 gene, seven non-synonymous single nucleotide polymorphisms (SNPs) were found (K189N, K189T, E208K, D281V, E401Q, R622I and T535M), of which none have been associated with artemisinin resistance. No mutations were found in cytochrome b. Conclusion All patients successfully genotyped carried parasites susceptible to ART and AP treatment. Future studies between CDC Malaria Branch and ISS are planned to expand the MaRS system, including data sharing, in an effort to maintain up to date treatment guidelines for travelers to malaria endemic countries. ![]()
Collapse
Affiliation(s)
| | - Julia Kelley
- Atlanta Research and Education Foundation, VAMC, Atlanta, Georgia, USA
| | - Dhruviben Patel
- Atlanta Research and Education Foundation, VAMC, Atlanta, Georgia, USA
| | - Sarah Schmedes
- Association of Public Health Laboratories, Silver Spring, MD, USA
| | | | - Michela Menegon
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Edvige Perrotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Albadawi A Talha
- Faculty of Medical Laboratory Science, University of Gezira, Gezira, Sudan.,Department of clinical laboratory Sciences, College of Applied Medical Sciences, Juof University, Sakaka, Saudi Arabia
| | - Bakri Y Nour
- Blue Nile Research National Institute for Communicable Diseases, University of Gezira, Wad Medani, Sudan
| | - Naomi Lucchi
- Centers for Disease Control and Prevention, CGH, DPDM, Atlanta, GA, USA
| | - Carlo Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eldin Talundzic
- Centers for Disease Control and Prevention, CGH, DPDM, Atlanta, GA, USA
| |
Collapse
|
34
|
Abstract
Malaria is a vector-borne disease that involves multiple parasite species in a variety of ecological settings. However, the parasite species causing the disease, the prevalence of subclinical infections, the emergence of drug resistance, the scale-up of interventions, and the ecological factors affecting malaria transmission, among others, are aspects that vary across areas where malaria is endemic. Such complexities have propelled the study of parasite genetic diversity patterns in the context of epidemiologic investigations. Importantly, molecular studies indicate that the time and spatial distribution of malaria cases reflect epidemiologic processes that cannot be fully understood without characterizing the evolutionary forces shaping parasite population genetic patterns. Although broad in scope, this review in the Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology highlights the need for understanding population genetic concepts when interpreting parasite molecular data. First, we discuss malaria complexity in terms of the parasite species involved. Second, we describe how molecular data are changing our understanding of malaria incidence and infectiousness. Third, we compare different approaches to generate parasite genetic information in the context of epidemiologically relevant questions related to malaria control. Finally, we describe a few Plasmodium genomic studies as evidence of how these approaches will provide new insights into the malaria disease dynamics. *This article is part of a curated collection.
Collapse
|
35
|
Armstrong GL, MacCannell DR, Taylor J, Carleton HA, Neuhaus EB, Bradbury RS, Posey JE, Gwinn M. Pathogen Genomics in Public Health. N Engl J Med 2019; 381:2569-2580. [PMID: 31881145 PMCID: PMC7008580 DOI: 10.1056/nejmsr1813907] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rapid advances in DNA sequencing technology ("next-generation sequencing") have inspired optimism about the potential of human genomics for "precision medicine." Meanwhile, pathogen genomics is already delivering "precision public health" through more effective investigations of outbreaks of foodborne illnesses, better-targeted tuberculosis control, and more timely and granular influenza surveillance to inform the selection of vaccine strains. In this article, we describe how public health agencies have been adopting pathogen genomics to improve their effectiveness in almost all domains of infectious disease. This momentum is likely to continue, given the ongoing development in sequencing and sequencing-related technologies.
Collapse
Affiliation(s)
- Gregory L Armstrong
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Duncan R MacCannell
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Jill Taylor
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Heather A Carleton
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Elizabeth B Neuhaus
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Richard S Bradbury
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - James E Posey
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Marta Gwinn
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| |
Collapse
|
36
|
Cheaveau J, Mogollon DC, Mohon MAN, Golassa L, Yewhalaw D, Pillai DR. Asymptomatic malaria in the clinical and public health context. Expert Rev Anti Infect Ther 2019; 17:997-1010. [PMID: 31718324 DOI: 10.1080/14787210.2019.1693259] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: Historically, the global community has focused on the control of symptomatic malaria. However, interest in asymptomatic malaria has been growing, particularly in the context of malaria elimination.Areas covered: We undertook a comprehensive PubMed literature review on asymptomatic malaria as it relates to detection and elimination with emphasis between 2014 and 2019. Diagnostic tools with a low limit of detection (LOD) have allowed us to develop a more detailed understanding of asymptomatic malaria and its impact. These highly sensitive diagnostics have demonstrated that the prevalence of asymptomatic malaria is greater than previously thought. In addition, it is now possible to detect the malaria reservoir in the community, something that was previously not feasible. Asymptomatic malaria has previously not been treated, but research has begun to examine whether treating individuals with asymptomatic malaria may lead to health benefits. Finally, we have begun to understand the importance of asymptomatic malaria in ongoing transmission.Expert opinion: Therefore, with malaria elimination back on the agenda, asymptomatic malaria can no longer be ignored, especially in light of new ultra-sensitive diagnostic tools.
Collapse
Affiliation(s)
- James Cheaveau
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Canada, AB, Canada
| | - Daniel Castaneda Mogollon
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Canada, AB, Canada
| | - Md Abu Naser Mohon
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Canada, AB, Canada
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Dylan R Pillai
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Canada, AB, Canada.,Department of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
37
|
Ghansah A, Kamau E, Amambua-Ngwa A, Ishengoma DS, Maiga-Ascofare O, Amenga-Etego L, Deme A, Yavo W, Randrianarivelojosia M, Ochola-Oyier LI, Helegbe GK, Bailey J, Alifrangis M, Djimde A. Targeted Next Generation Sequencing for malaria research in Africa: current status and outlook. Malar J 2019; 18:324. [PMID: 31547818 PMCID: PMC6757370 DOI: 10.1186/s12936-019-2944-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/29/2019] [Indexed: 11/10/2022] Open
Abstract
Targeted Next Generation Sequencing (TNGS) is an efficient and economical Next Generation Sequencing (NGS) platform and the preferred choice when specific genomic regions are of interest. So far, only institutions located in middle and high-income countries have developed and implemented the technology, however, the efficiency and cost savings, as opposed to more traditional sequencing methodologies (e.g. Sanger sequencing) make the approach potentially well suited for resource-constrained regions as well. In April 2018, scientists from the Plasmodium Diversity Network Africa (PDNA) and collaborators met during the 7th Pan African Multilateral Initiative of Malaria (MIM) conference held in Dakar, Senegal to explore the feasibility of applying TNGS to genetic studies and malaria surveillance in Africa. The group of scientists reviewed the current experience with TNGS platforms in sub-Saharan Africa (SSA) and identified potential roles the technology might play to accelerate malaria research, scientific discoveries and improved public health in SSA. Research funding, infrastructure and human resources were highlighted as challenges that will have to be mitigated to enable African scientists to drive the implementation of TNGS in SSA. Current roles of important stakeholders and strategies to strengthen existing networks to effectively harness this powerful technology for malaria research of public health importance were discussed.
Collapse
Affiliation(s)
- Anita Ghansah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG 581, Legon, Ghana
| | - Edwin Kamau
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate -Africa (USAMR D-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Alfred Amambua-Ngwa
- Parasite Molecular Biology, Disease Control and Elimination, Medical Research Council Unit The Gambia at LSHTM, Atlantic Road Fajara, Banjul, The Gambia
| | | | | | - Lucas Amenga-Etego
- West Africa Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Awa Deme
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - William Yavo
- Faculty of Pharmacy, Department of Parasitology and Mycology, Fe ́lix Houphoue ̈t-Boigny University, BPV 34, Abidjan, Côte d'Ivoire.,Malaria Research and Control Centre, National Institute of Public Health, BPV 47, Abidjan, Côte d'Ivoire
| | | | | | | | - Gideon Kofi Helegbe
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, University for Development Studies, P. O. Box TL1883, Tamale, Northern Region, Ghana
| | - Jeffery Bailey
- Warren Alpert Medical School, Brown University, 55 Claverick St, Rm 314B, Providence, RI, 02903, USA
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abdoulaye Djimde
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali. .,Wellcome Trust Sanger Institute, Hinxton, UK.
| |
Collapse
|
38
|
Idowu AO, Oyibo WA, Bhattacharyya S, Khubbar M, Mendie UE, Bumah VV, Black C, Igietseme J, Azenabor AA. Rare mutations in Pfmdr1 gene of Plasmodium falciparum detected in clinical isolates from patients treated with anti-malarial drug in Nigeria. Malar J 2019; 18:319. [PMID: 31533729 PMCID: PMC6751857 DOI: 10.1186/s12936-019-2947-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/06/2019] [Indexed: 01/18/2023] Open
Abstract
Background Plasmodium falciparum, the deadliest causative agent of malaria, has high prevalence in Nigeria. Drug resistance causing failure of previously effective drugs has compromised anti-malarial treatment. On this basis, there is need for a proactive surveillance for resistance markers to the currently recommended artemisinin-based combination therapy (ACT), for early detection of resistance before it become widespread. Methods This study assessed anti-malarial resistance genes polymorphism in patients with uncomplicated P. falciparum malaria in Lagos, Nigeria. Sanger and Next Generation Sequencing (NGS) methods were used to screen for mutations in thirty-seven malaria positive blood samples targeting the P. falciparum chloroquine-resistance transporter (Pfcrt), P. falciparum multidrug-resistance 1 (Pfmdr1), and P. falciparum kelch 13 (Pfk13) genes, which have been previously associated with anti-malarial resistance. Results Expectedly, the NGS method was more proficient, detecting six Pfmdr1, seven Pfcrt and three Pfk13 mutations in the studied clinical isolates from Nigeria, a malaria endemic area. These mutations included rare Pfmdr1 mutations, N504K, N649D, F938Y and S967N, which were previously unreported. In addition, there was moderate prevalence of the K76T mutation (34.6%) associated with chloroquine and amodiaquine resistance, and high prevalence of the N86 wild type allele (92.3%) associated with lumefantrine resistance. Conclusion Widespread circulation of mutations associated with resistance to current anti-malarial drugs could potentially limit effective malaria therapy in endemic populations.
Collapse
Affiliation(s)
- Abel O Idowu
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin, 2400 E. Hartford Avenue, Milwaukee, WI, 53211, USA.,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Wellington A Oyibo
- ANDI Centre of Excellence in Malaria Diagnosis, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | - Manjeet Khubbar
- City of Milwaukee Health Department Laboratory, Milwaukee, USA
| | - Udoma E Mendie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Violet V Bumah
- Department of Biology, North Life Science 317, San Diego State University, San Diego, CA, 92182, USA
| | - Carolyn Black
- Molecular Pathogenesis Laboratory, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph Igietseme
- Molecular Pathogenesis Laboratory, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anthony A Azenabor
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin, 2400 E. Hartford Avenue, Milwaukee, WI, 53211, USA. .,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria.
| |
Collapse
|
39
|
Ishengoma DS, Saidi Q, Sibley CH, Roper C, Alifrangis M. Deployment and utilization of next-generation sequencing of Plasmodium falciparum to guide anti-malarial drug policy decisions in sub-Saharan Africa: opportunities and challenges. Malar J 2019; 18:267. [PMID: 31477109 PMCID: PMC6719357 DOI: 10.1186/s12936-019-2853-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/22/2019] [Indexed: 01/13/2023] Open
Abstract
Parasite resistance against anti-malarial drugs is a major threat to the ongoing malaria control and elimination strategies. This is especially true since resistance to the currently recommended artemisinins and partner drugs has been confirmed in South East Asia (SEA) and new anti-malarial compounds are not expected to be available in the near future. Spread from SEA or independent emergence of artemisinin resistance in sub-Saharan Africa (SSA) could reverse the achievements in malaria control that have been attained in the past two decades and derail the ongoing elimination strategies. The current surveillance of clinical efficacy and resistance to anti-malarial drugs is based on efficacy trials to assess the clinical performance of anti-malarials, in vivo/ex vivo assessment of parasite susceptibility to anti-malarials and prevalence of known molecular markers of drug resistance. Whereas clinical efficacy trials are restricted by cost and the complex logistics of patient follow-up, molecular detection of genetic mutations associated with resistance or reduced susceptibility to anti-malarials is by contrast a simple and powerful tool for early detection and monitoring of the prevalence of resistant parasites at population level. This provides needed information before clinical failure emerges, allowing policy makers to anticipate problems and respond. The various methods previously used in detection of molecular markers of drug resistance share some limitations: low-throughput, and high costs per sample and demanding infrastructure. However, recent technological advances including next-generation sequencing (NGS) methodologies promise greatly increased throughput and reduced costs, essentially providing unprecedented potential to address different research and operational questions of relevance for drug policy. This review assesses the potential role of NGS to provide comprehensive information that could guide drug policies in malaria endemic countries and looks at the foreseeable challenges facing the establishment of NGS approaches for routine surveillance of parasite resistance to anti-malarials in SSA.
Collapse
Affiliation(s)
- Deus S Ishengoma
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania.
| | - Queen Saidi
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Carol H Sibley
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Cally Roper
- London School of Hygiene & Tropical Medicine, London, UK
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
40
|
Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis, Drug Resistance, Epidemiology, and Evolution. Clin Microbiol Rev 2019; 32:32/4/e00019-19. [PMID: 31366610 DOI: 10.1128/cmr.00019-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protozoan Plasmodium parasites are the causative agents of malaria, a deadly disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild or severe symptoms, or fatal, depending on many factors such as parasite virulence and host immune status. Malaria can be treated with various drugs, with artemisinin-based combination therapies (ACTs) being the first-line choice. Recent advances in genetics and genomics of malaria parasites have contributed greatly to our understanding of parasite population dynamics, transmission, drug responses, and pathogenesis. However, knowledge gaps in parasite biology and host-parasite interactions still remain. Parasites resistant to multiple antimalarial drugs have emerged, while advanced clinical trials have shown partial efficacy for one available vaccine. Here we discuss genetic and genomic studies of Plasmodium biology, host-parasite interactions, population structures, mosquito infectivity, antigenic variation, and targets for treatment and immunization. Knowledge from these studies will advance our understanding of malaria pathogenesis, epidemiology, and evolution and will support work to discover and develop new medicines and vaccines.
Collapse
|
41
|
Evolution and Genetic Diversity of the k13 Gene Associated with Artemisinin Delayed Parasite Clearance in Plasmodium falciparum. Antimicrob Agents Chemother 2019; 63:AAC.02550-18. [PMID: 31085516 DOI: 10.1128/aac.02550-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/28/2019] [Indexed: 01/19/2023] Open
Abstract
Mutations in the Plasmodium falciparum k13 (Pfk13) gene are linked to delayed parasite clearance in response to artemisinin-based combination therapies (ACTs) in Southeast Asia. To explore the evolutionary rate and constraints acting on this gene, k13 orthologs from species sharing a recent common ancestor with P. falciparum and Plasmodium vivax were analyzed. These comparative studies were followed by genetic polymorphism analyses within P. falciparum using 982 complete Pfk13 sequences from public databases and new data obtained by next-generation sequencing from African and Haitian isolates. Although k13 orthologs evolve at heterogeneous rates, the gene was conserved across the genus, with only synonymous substitutions being found at residues where mutations linked to the delayed parasite clearance phenotype have been reported. This suggests that those residues were under constraint from undergoing nonsynonymous changes during evolution of the genus. No fixed nonsynonymous differences were found between Pfk13 and its orthologs in closely related species found in African apes. This indicates that all nonsynonymous substitutions currently found in Pfk13 are younger than the time of divergence between P. falciparum and its closely related species. At the population level, no mutations linked to delayed parasite clearance were found in our samples from Africa and Haiti. However, there is a high number of single Pfk13 mutations segregating in P. falciparum populations, and two predominant alleles are distributed worldwide. This pattern is discussed in terms of how changes in the efficacy of natural selection, affected by population expansion, may have allowed for the emergence of mutations tolerant to ACTs.
Collapse
|
42
|
Dieng CC, Gonzalez L, Pestana K, Dhikrullahi SB, Amoah LE, Afrane YA, Lo E. Contrasting Asymptomatic and Drug Resistance Gene Prevalence of Plasmodium falciparum in Ghana: Implications on Seasonal Malaria Chemoprevention. Genes (Basel) 2019; 10:genes10070538. [PMID: 31315304 PMCID: PMC6678124 DOI: 10.3390/genes10070538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/28/2022] Open
Abstract
Malaria is a significant public health problem in Ghana. Seasonal Malaria Chemoprevention (SMC) using a combination of sulfadoxine-pyrimethamine and amodiaquine has been implemented since 2015 in northern Ghana where malaria transmission is intense and seasonal. In this study, we estimated the prevalence of asymptomatic P. falciparum carriers in three ecological zones of Ghana, and compared the sensitivity and specificity of different molecular methods in identifying asymptomatic infections. Moreover, we examined the frequency of mutations in pfcrt, pfmdr1, pfdhfr, and pfdhps that relate to the ongoing SMC. A total of 535 asymptomatic schoolchildren were screened by microscopy and PCR (18s rRNA and TARE-2) methods. Among all samples, 28.6% were detected as positive by 18S nested PCR, whereas 19.6% were detected by microscopy. A high PCR-based asymptomatic prevalence was observed in the north (51%) compared to in the central (27.8%) and south (16.9%). The prevalence of pfdhfr-N51I/C59R/S108N/pfdhps-A437G quadruple mutant associated with sulfadoxine-pyrimethamine resistance was significantly higher in the north where SMC was implemented. Compared to 18S rRNA, TARE-2 serves as a more sensitive molecular marker for detecting submicroscopic asymptomatic infections in high and low transmission settings. These findings establish a baseline for monitoring P. falciparum prevalence and resistance in response to SMC over time.
Collapse
Affiliation(s)
- Cheikh Cambel Dieng
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Lauren Gonzalez
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kareen Pestana
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Shittu B Dhikrullahi
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, P.O. Box LG 25, Accra, Ghana
| | - Linda E Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Yaw A Afrane
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, P.O. Box LG 25, Accra, Ghana
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
43
|
Dalmat R, Naughton B, Kwan-Gett TS, Slyker J, Stuckey EM. Use cases for genetic epidemiology in malaria elimination. Malar J 2019; 18:163. [PMID: 31064369 PMCID: PMC6503548 DOI: 10.1186/s12936-019-2784-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/22/2019] [Indexed: 12/22/2022] Open
Abstract
Background While traditional epidemiological approaches have supported significant reductions in malaria incidence across many countries, higher resolution information about local and regional malaria epidemiology will be needed to efficiently target interventions for elimination. The application of genetic epidemiological methods for the analysis of parasite genetics has, thus far, primarily been confined to research settings. To illustrate how these technical methods can be used to advance programmatic and operational needs of National Malaria Control Programmes (NMCPs), and accelerate global progress to eradication, this manuscript presents seven use cases for which genetic epidemiology approaches to parasite genetic data are informative to the decision-making of NMCPs. Methods The use cases were developed through a highly iterative process that included an extensive review of the literature and global guidance documents, including the 2017 World Health Organization’s Framework for Malaria Elimination, and collection of stakeholder input. Semi-structured interviews were conducted with programmatic and technical experts about the needs and opportunities for genetic epidemiology methods in malaria elimination. Results Seven use cases were developed: Detect resistance, Assess drug resistance gene flow, Assess transmission intensity, Identify foci, Determine connectivity of parasite populations, Identify imported cases, and Characterize local transmission chains. The method currently used to provide the information sought, population unit for implementation, the pre-conditions for using these approaches, and post-conditions intended as a product of the use case were identified for each use case. Discussion This framework of use cases will prioritize research and development of genetic epidemiology methods that best achieve the goals of NMCPs, and ultimately, inform the establishment of normative policy guidance for their uses. With significant engagement of stakeholders from malaria endemic countries and collaboration with local programme experts to ensure strategic implementation, genetic epidemiological approaches have tremendous potential to accelerate global malaria elimination efforts. Electronic supplementary material The online version of this article (10.1186/s12936-019-2784-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ronit Dalmat
- Department of Epidemiology, University of Washington, Seattle, WA, USA.,Strategic Analysis Research and Training Center, University of Washington, Seattle, WA, USA
| | - Brienna Naughton
- Department of Global Health, University of Washington, Seattle, WA, USA.,Strategic Analysis Research and Training Center, University of Washington, Seattle, WA, USA
| | - Tao Sheng Kwan-Gett
- Department of Health Services, University of Washington, Seattle, WA, USA.,Strategic Analysis Research and Training Center, University of Washington, Seattle, WA, USA
| | - Jennifer Slyker
- Department of Epidemiology, University of Washington, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA.,Strategic Analysis Research and Training Center, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
44
|
Schmedes SE, Patel D, Kelley J, Udhayakumar V, Talundzic E. Using the Plasmodium mitochondrial genome for classifying mixed-species infections and inferring the geographical origin of P. falciparum parasites imported to the U.S. PLoS One 2019; 14:e0215754. [PMID: 31039178 PMCID: PMC6490880 DOI: 10.1371/journal.pone.0215754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
The ability to identify mixed-species infections and track the origin of Plasmodium parasites can further enhance the development of treatment and prevention recommendations as well as outbreak investigations. Here, we explore the utility of using the full Plasmodium mitochondrial genome to classify Plasmodium species, detect mixed infections, and infer the geographical origin of imported P. falciparum parasites to the United States (U.S.). Using the recently developed standardized, high-throughput Malaria Resistance Surveillance (MaRS) protocol, the full Plasmodium mitochondrial genomes of 265 malaria cases imported to the U.S. from 2014-2017 were sequenced and analyzed. P. falciparum infections were found in 94.7% (251/265) of samples. Five percent (14/265) of samples were identified as mixed- Plasmodium species or non-P. falciparum, including P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. P. falciparum mitochondrial haplotypes analysis revealed greater than eighteen percent of samples to have at least two P. falciparum mitochondrial genome haplotypes, indicating either heteroplasmy or multi-clonal infections. Maximum-likelihood phylogenies of 912 P. falciparum mitochondrial genomes with known country origin were used to infer the geographical origin of thirteen samples from persons with unknown travel histories as: Africa (country unspecified) (n = 10), Ghana (n = 1), Southeast Asia (n = 1), and the Philippines (n = 1). We demonstrate the utility and current limitations of using the Plasmodium mitochondrial genome to classify samples with mixed-infections and infer the geographical origin of imported P. falciparum malaria cases to the U.S. with unknown travel history.
Collapse
Affiliation(s)
- Sarah E. Schmedes
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States America
- Association of Public Health Laboratories, Silver Spring, Maryland, United States America
| | - Dhruviben Patel
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States America
- Williams Consulting LLC, Baltimore, Maryland, United States America
| | - Julia Kelley
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States America
- Atlanta Research and Education Foundation, Atlanta, Georgia, United States America
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States America
| | - Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States America
| |
Collapse
|
45
|
Resistance to Artemisinin Combination Therapies (ACTs): Do Not Forget the Partner Drug! Trop Med Infect Dis 2019; 4:tropicalmed4010026. [PMID: 30717149 PMCID: PMC6473515 DOI: 10.3390/tropicalmed4010026] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/30/2023] Open
Abstract
Artemisinin-based combination therapies (ACTs) have become the mainstay for malaria treatment in almost all malaria endemic settings. Artemisinin derivatives are highly potent and fast acting antimalarials; but they have a short half-life and need to be combined with partner drugs with a longer half-life to clear the remaining parasites after a standard 3-day ACT regimen. When introduced, ACTs were highly efficacious and contributed to the steep decrease of malaria over the last decades. However, parasites with decreased susceptibility to artemisinins have emerged in the Greater Mekong Subregion (GMS), followed by ACTs’ failure, due to both decreased susceptibility to artemisinin and partner drug resistance. Therefore, there is an urgent need to strengthen and expand current resistance surveillance systems beyond the GMS to track the emergence or spread of artemisinin resistance. Great attention has been paid to the spread of artemisinin resistance over the last five years, since molecular markers of decreased susceptibility to artemisinin in the GMS have been discovered. However, resistance to partner drugs is critical, as ACTs can still be effective against parasites with decreased susceptibility to artemisinins, when the latter are combined with a highly efficacious partner drug. This review outlines the different mechanisms of resistance and molecular markers associated with resistance to partner drugs for the currently used ACTs. Strategies to improve surveillance and potential solutions to extend the useful therapeutic lifespan of the currently available malaria medicines are proposed.
Collapse
|
46
|
Molecular assays for antimalarial drug resistance surveillance: A target product profile. PLoS One 2018; 13:e0204347. [PMID: 30235327 PMCID: PMC6147503 DOI: 10.1371/journal.pone.0204347] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/05/2018] [Indexed: 11/25/2022] Open
Abstract
Antimalarial drug resistance is a major constraint for malaria control and elimination efforts. Artemisinin-based combination therapy is now the mainstay for malaria treatment. However, delayed parasite clearance following treatment with artemisinin derivatives has now spread in the Greater Mekong Sub region and may emerge or spread to other malaria endemic regions. This spread is of great concern for malaria control programmes, as no alternatives to artemisinin-based combination therapies are expected to be available in the near future. There is a need to strengthen surveillance systems for early detection and response to the antimalarial drug resistance threat. Current surveillance is mainly done through therapeutic efficacy studies; however these studies are complex and both time- and resource-intensive. For multiple common antimalarials, parasite drug resistance has been correlated with specific genetic mutations, and the molecular markers associated with antimalarial drug resistance offer a simple and powerful tool to monitor the emergence and spread of resistant parasites. Different techniques to analyse molecular markers associated with antimalarial drug resistance are available, each with advantages and disadvantages. However, procedures are not adequately harmonized to facilitate comparisons between sites. Here we describe the target product profiles for tests to analyse molecular markers associated with antimalarial drug resistance, discuss how use of current techniques can be standardised, and identify the requirements for an ideal product that would allow malaria endemic countries to provide useful spatial and temporal information on the spread of resistance.
Collapse
|
47
|
Lowering the Barriers to Routine Whole-Genome Sequencing of Bacteria in the Clinical Microbiology Laboratory. J Clin Microbiol 2018; 56:JCM.00813-18. [PMID: 29950328 DOI: 10.1128/jcm.00813-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Whole-genome sequencing of bacterial isolates is increasingly being used to predict antibacterial susceptibility and resistance. Mason and coauthors describe the phenotypic susceptibility interpretations of more than 1,300 Staphylococcus aureus isolates tested against a dozen antistaphylococcal agents, and they compared these findings to susceptibility predictions made by analyzing whole-genome sequence data (J Clin Microbiol 56:e01815-17, 2018, https://doi.org/10.1128/JCM.01815-17). The genotype-phenotype susceptibility interpretations correlated in 96.3% (2,720/2,825) of resistant findings and 98.8% (11,504/11,639) of susceptible findings. This work by Mason and colleagues is helping to lower the barriers to using whole-genome sequencing of S. aureus in clinical microbiology practice.
Collapse
|