1
|
Knap K, Kwiecień K, Ochońska D, Reczyńska-Kolman K, Pamuła E, Brzychczy-Włoch M. Synergistic effect of antibiotics, α-linolenic acid and solvent type against Staphylococcus aureus biofilm formation. Pharmacol Rep 2024:10.1007/s43440-024-00669-3. [PMID: 39466341 DOI: 10.1007/s43440-024-00669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND A promising approach to the treatment of bacterial infections involves inhibiting the quorum sensing (QS) mechanism to prevent the formation and growth of bacterial biofilm. While antibiotics are used to kill remaining bacteria, QS inhibitors (QSIs) allow for antibiotic doses to be reduced. This study focuses on evaluating the synergy between gentamicin sulphate (GEN), tobramycin (TOB), or azithromycin (AZM) with linolenic acid (LNA) against the formation of an early Staphylococcus aureus biofilm. METHODS Minimum biofilm inhibitory concentration (MBIC) was determined using the resazurin reduction assay for all antibiotics and LNA. The reduction of biofilm mass was assessed using the crystal violet (CV) assay. We have also evaluated the effect of dimethyl sulfoxide with TWEEN (DMSO_T) on early biofilm formation. Synergy was determined by metabolic activity assay and fractional biofilm inhibitory concentration (FBIC). RESULTS DMSO_T at a concentration of 1% enhanced early biofilm formation, but also decreased the doses of antibiotic needed to reduce the biofilm by up to 8 times. Adding LNA at a concentration of 32 µg/ml or 64 µg/ml allowed up to a 32-fold reduction of antibiotic doses for GEN and TOB and a 4-fold reduction for AZM. CONCLUSIONS LNA's use in combination with various antibiotics could reduce their doses and help fight drug-resistant bacteria in the biofilm.
Collapse
Affiliation(s)
- Karolina Knap
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, Al. Mickiewicza 30, Kraków, 30-059, Poland
| | - Konrad Kwiecień
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, Al. Mickiewicza 30, Kraków, 30-059, Poland
| | - Dorota Ochońska
- Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, Jagiellonian University Medical College, ul. Św. Anny 12, Kraków, 31-121, Poland
| | - Katarzyna Reczyńska-Kolman
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, Al. Mickiewicza 30, Kraków, 30-059, Poland
| | - Elżbieta Pamuła
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, Al. Mickiewicza 30, Kraków, 30-059, Poland.
| | - Monika Brzychczy-Włoch
- Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, Jagiellonian University Medical College, ul. Św. Anny 12, Kraków, 31-121, Poland.
| |
Collapse
|
2
|
Lv J, Liu G, Ju Y, Huang H, Sun Y. AADB: A Manually Collected Database for Combinations of Antibiotics With Adjuvants. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2827-2836. [PMID: 37279138 DOI: 10.1109/tcbb.2023.3283221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Antimicrobial resistance is a global public health concern. The lack of innovations in antibiotic development has led to renewed interest in antibiotic adjuvants. However, there is no database to collect antibiotic adjuvants. Herein, we build a comprehensive database named Antibiotic Adjuvant DataBase (AADB) by manually collecting relevant literature. Specifically, AADB includes 3,035 combinations of antibiotics with adjuvants, covering 83 antibiotics, 226 adjuvants, and 325 bacterial strains. AADB provides user-friendly interfaces for searching and downloading. Users can easily obtain these datasets for further analysis. In addition, we also collected related datasets (e.g., chemogenomic and metabolomic data) and proposed a computational strategy to dissect these datasets. As a test case, we identified 10 candidates for minocycline, and 6 of 10 candidates are the known adjuvants that synergize with minocycline to inhibit the growth of E. coli BW25113. We hope that AADB can help users to identify effective antibiotic adjuvants. AADB is freely available at http://www.acdb.plus/AADB.
Collapse
|
3
|
Lv J, Liu G, Ju Y, Huang H, Li D, Sun Y. Identification of Robust Antibiotic Subgroups by Integrating Multi-Species Drug-Drug Interactions. J Chem Inf Model 2023; 63:4970-4978. [PMID: 37459588 DOI: 10.1021/acs.jcim.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Previous studies have shown that antibiotics can be divided into groups, and drug-drug interactions (DDI) depend on their groups. However, these studies focused on a specific bacteria strain (i.e., Escherichia coli BW25113). Existing datasets often contain noise. Noisy labeled data may have a bad effect on the clustering results. To address this problem, we developed a multi-source information fusion method for integrating DDI information from multiple bacterial strains. Specifically, we calculated drug similarities based on the DDI network of each bacterial strain and then fused these drug similarity matrices to obtain a new fused similarity matrix. The fused similarity matrix was combined with the T-distributed stochastic neighbor embedding algorithm, and hierarchical clustering algorithm can effectively identify antibiotic subgroups. These antibiotic subgroups are strongly correlated with known antibiotic classifications, and group-group interactions are almost monochromatic. In summary, our method provides a promising framework for understanding the mechanism of action of antibiotics and exploring multi-species group-group interactions.
Collapse
Affiliation(s)
- Ji Lv
- College of Computer Science and Technology, Jilin University, Changchun 130000, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130000, China
| | - Guixia Liu
- College of Computer Science and Technology, Jilin University, Changchun 130000, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130000, China
| | - Yuan Ju
- Sichuan University Library, Sichuan University, 610000 Chengdu, China
| | - Houhou Huang
- College of Chemistry, Jilin University, Changchun 130000, China
| | - Dalin Li
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Ying Sun
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
4
|
Sun G, Kaw HY, Zhou M, Guo P, Zhu L, Wang W. Chlorinated nucleotides and analogs as potential disinfection byproducts in drinking water. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131242. [PMID: 36963195 DOI: 10.1016/j.jhazmat.2023.131242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Identification of emerging disinfection byproducts (DBPs) of health relevance is important to uncover the health risk of drinking water observed in epidemiology studies. In this study, mutagenic chlorinated nucleotides were proposed as potential DBPs in drinking water, and the formation and transformation pathways of these DBPs in chlorination of nucleotides were carefully investigated. A total of eleven chlorinated nucleotides and analogs were provisionally identified as potential DBPs, such as monochloro uridine/cytidine/adenosine acid and dichloro cytidine acid, and the formation mechanisms involved chlorination, decarbonization, hydrolysis, oxidation and decarboxylation. The active sites of nucleotides that reacted with chlorine were on the aromatic heterocyclic rings of nucleobases, and the carbon among the two nitrogen atoms in the nucleobases tended to be transformed into carboxyl group or be eliminated, further forming ring-opening or reorganization products. Approximately 0.2-4.0 % (mol/mol) of these chlorinated nucleotides and analogs finally decomposed to small-molecule aliphatic DBPs, primarily including haloacetic acids, trichloromethane, and trichloroacetaldehyde. Eight intermediates, particularly chlorinated imino-D-ribose and imino-D-ribose, were tentatively identified in chlorination of uridine. This study provides the first set of preliminary evidence for indicating the promising occurrence of chlorinated nucleotides and analogs as potential toxicological-relevant DBPs after disinfection of drinking water.
Collapse
Affiliation(s)
- Guangrong Sun
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Meijiao Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Pei Guo
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
5
|
Abstract
During the past 85 years of antibiotic use, we have learned a great deal about how these 'miracle' drugs work. We know the molecular structures and interactions of these drugs and their targets and the effects on the structure, physiology and replication of bacteria. Collectively, we know a great deal about these proximate mechanisms of action for virtually all antibiotics in current use. What we do not know is the ultimate mechanism of action; that is, how these drugs irreversibly terminate the 'individuality' of bacterial cells by removing barriers to the external world (cell envelopes) or by destroying their genetic identity (DNA). Antibiotics have many different 'mechanisms of action' that converge to irreversible lethal effects. In this Perspective, we consider what our knowledge of the proximate mechanisms of action of antibiotics and the pharmacodynamics of their interaction with bacteria tell us about the ultimate mechanisms by which these antibiotics kill bacteria.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain.
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, USA.
- Antibiotic Resistance Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Influence of Hydrogen Peroxide, Lactic Acid, and Surfactants from Vaginal Lactobacilli on the Antibiotic Sensitivity of Opportunistic Bacteria. Probiotics Antimicrob Proteins 2018; 9:131-141. [PMID: 27832440 DOI: 10.1007/s12602-016-9238-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We studied as hydrogen peroxide, lactic acid, or surfactants from clinical isolates of vaginal lactobacilli and cell-free supernatants from probiotic strain LCR35 can influence on the sensitivity of opportunistic bacteria to antibiotics. We found that the most effective in increasing sensitivity to antibiotics were hydrogen peroxide and surfactants or their combination but no lactic acid. In some cases, the effect of the composition of hydrogen peroxide and surfactants was clearly higher than the sum of effects of these substances alone. With using of the supernatant of LCR35 was shown that the combination of surfactant and lactate has greater effect compared with surfactants alone. In concluding, metabolites of vaginal lactobacilli are suitable for the role of "antibiotic assistants" and it can help solve the problems the antibiotic resistance.
Collapse
|
7
|
|