1
|
Ferreira ML, Barboza AS, Fernandez M, Ribeiro de Andrade JS, Pappen FG, Hwang G, Lund RG. Antifungal agents incorporated in denture base materials: a scoping review of the current evidence and technology prospecting. Aust Dent J 2024. [PMID: 39045908 DOI: 10.1111/adj.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND The aim of this study was to summarize existing data and perform technological prospecting on the effect of incorporating antifungal agents into denture base materials in inhibiting Candida spp., as well as to explore the antimicrobial properties of these materials. METHODS A comprehensive electronic search was carried out in six major bibliographic databases (PubMed, Scopus, Embase, Cochrane Library, Web of Science and Lilacs) until February 2024. In addition, international patent databases were also examined. The search process, study and patent selection, data extraction and risk of bias assessment were carried out independently by researchers. The collected data underwent qualitative analysis. RESULTS A total of 10 718 articles were identified in the searched databases, of which 40 documents were included for qualitative data analysis (articles: 31; patents: 9). The majority of the studies focused on investigating tissue conditioners (n = 14) and acrylic resins (n = 14). The primary antifungal agents studied were nystatin (n = 15) and fluconazole (n = 13). The most commonly utilized microbiological evaluation methodology was the agar diffusion test (n = 16), followed by the microdilution (n = 7) and biofilm formation assays (n = 7). All of the studies investigated the inhibitory effect of these materials against Candida species. CONCLUSION The incorporation of antifungal agents into denture base materials has been extensively studied and has shown a significant inhibitory response against Candida spp. across various methodological assays.
Collapse
Affiliation(s)
- M L Ferreira
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - A S Barboza
- Department of Dentistry, Graduate Program in Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - MdS Fernandez
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - J S Ribeiro de Andrade
- Department of Dentistry, Graduate Program in Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - F G Pappen
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - G Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - R G Lund
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas (UFPel), Pelotas, Brazil
| |
Collapse
|
2
|
Alfaifi AA, Wang TW, Perez P, Sultan AS, Meiller TF, Rock P, Kleiner DE, Chertow DS, Hewitt SM, Gasmi B, Stein S, Ramelli S, Martin D, Warner BM, Jabra-Rizk MA. SARS-CoV-2 Infection of Salivary Glands Compromises Oral Antifungal Innate Immunity and Predisposes to Oral Candidiasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593942. [PMID: 38798323 PMCID: PMC11118411 DOI: 10.1101/2024.05.13.593942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Saliva contains antimicrobial peptides considered integral components of host innate immunity, and crucial for protection against colonizing microbial species. Most notable is histatin-5 which is exclusively produced in salivary glands with uniquely potent antifungal activity against the opportunistic pathogen Candida albicans. Recently, SARS-CoV-2 was shown to replicate in salivary gland acinar cells eliciting local immune cell activation. In this study, we performed mechanistic and clinical studies to investigate the implications of SARS-CoV-2 infection on salivary histatin-5 production and Candida colonization. Bulk RNA-sequencing of parotid salivary glands from COVID-19 autopsies demonstrated statistically significant decreased expression of histatin genes. In situ hybridization, coupled with immunofluorescence for co-localization of SARS-CoV-2 spike and histatin in salivary gland cells, showed that histatin was absent or minimally present in acinar cells with replicating viruses. To investigate the clinical implications of these findings, salivary histatin-5 levels and oral Candida burden in saliva samples from three independent cohorts of mild and severe COVID-19 patients and matched healthy controls were evaluated. Results revealed significantly reduced histatin-5 in SARS-CoV-2 infected subjects, concomitant with enhanced prevalence of C. albicans. Analysis of prospectively recovered samples indicated that the decrease in histatin-5 is likely reversible in mild-moderate disease as concentrations tended to increase during the post-acute phase. Importantly, salivary cytokine profiling demonstrated correlations between activation of the Th17 inflammatory pathway, changes in histatin-5 concentrations, and subsequent clearance of C. albicans in a heavily colonized subject. The importance of salivary histatin-5 in controlling the proliferation of C. albicans was demonstrated using an ex vivo assay where C. albicans was able to proliferate in COVID-19 saliva with low histatin-5, but not with high histatin-5. Taken together, the findings from this study provide direct evidence implicating SARS-CoV-2 infection of salivary glands with compromised oral innate immunity, and potential predisposition to oral candidiasis.
Collapse
Affiliation(s)
- Areej A. Alfaifi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Maryland, United States of America
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Tristan W. Wang
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Maryland, United States of America
| | - Paola Perez
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ahmed S. Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Maryland, United States of America
- University of Maryland Greenebaum Cancer Center, University of Maryland Baltimore, Maryland, United States of America
| | - Timothy F. Meiller
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Maryland, United States of America
- University of Maryland Greenebaum Cancer Center, University of Maryland Baltimore, Maryland, United States of America
| | - Peter Rock
- Department of Anesthesia, School of Medicine, University of Maryland Baltimore, Maryland, United States of America
| | - David E. Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel S. Chertow
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America, USA
| | - Stephen M. Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Billel Gasmi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sydney Stein
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina Ramelli
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Blake M. Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Han Z, Xiong J, Jin X, Dai Q, Han M, Wu H, Yang J, Tang H, He L. Advances in reparative materials for infectious bone defects and their applications in maxillofacial regions. J Mater Chem B 2024; 12:842-871. [PMID: 38173410 DOI: 10.1039/d3tb02069j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Infectious bone defects are characterized by the partial loss or destruction of bone tissue resulting from bacterial contaminations subsequent to diseases or external injuries. Traditional bone transplantation and clinical methods are insufficient in meeting the treatment demands for such diseases. As a result, researchers have increasingly focused on the development of more sophisticated biomaterials for improved therapeutic outcomes in recent years. This review endeavors to investigate specific reparative materials utilized for the treatment of infectious bone defects, particularly those present in the maxillofacial region, with a focus on biomaterials capable of releasing therapeutic substances, functional contact biomaterials, and novel physical therapy materials. These biomaterials operate via heightened antibacterial or osteogenic properties in order to eliminate bacteria and/or stimulate bone cells regeneration in the defect, ultimately fostering the reconstitution of maxillofacial bone tissue. Based upon some successful applications of new concept materials in bone repair of other parts, we also explore their future prospects and potential uses in maxillofacial bone repair later in this review. We highlight that the exploration of advanced biomaterials holds promise in establishing a solid foundation for the development of more biocompatible, effective, and personalized treatments for reconstructing infectious maxillofacial defects.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jingdi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xiaohan Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qinyue Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Haiqin Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Golshani S, Vatanara A, Balalaie S, Kadkhoda Z, Abdollahi M, Amin M. Development of a Novel Histatin-5 Mucoadhesive Gel for the Treatment of Oral Mucositis: In Vitro Characterization and In Vivo Evaluation. AAPS PharmSciTech 2023; 24:177. [PMID: 37639072 DOI: 10.1208/s12249-023-02632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Antimicrobial peptides have appeared to be promising candidates for therapeutic purposes due to their broad antimicrobial activity and non-toxicity. Histatin-5 (Hst-5) is a notable salivary antimicrobial peptide that exhibited therapeutic properties in the oral cavity. Oral mucositis is an acute inflammation of the oral cavity, following cancer therapy. The current treatment methods of oral mucositis have low effectiveness. The aim of this study was to design, formulate and characterize a mucoadhesive gel delivery system for Hst-5 usage in the treatment of oral mucositis. Carbopol 934 and hydroxypropyl methylcellulose (HPMC) have been used in the development of a Hst-5 mucoadhesive gel that was optimized by using Box-Behnken design. The optimized formulation was evaluated in-vitro, based on mucoadhesive strength, viscoelasticity, spreadability, release rate, peptide secondary structure analysis, antimicrobial activity, and storage stability. The efficacy of Hst-5 gel was assessed in vivo in a chemotherapy-induced mucositis model. The results showed a sustained release of Hst-5 from the new formulation. Hst-5 gel exerted antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. The histopathological, immunohistochemical and statistical analysis showed that the Hst-5 gel had wound healing activity in vivo. The findings of this study indicate that the mentioned compound possesses promising potential as a novel and efficient therapeutic agent in managing oral mucositis. Moreover, the results suggest that the compound is commercially feasible for further development and utilization.
Collapse
Affiliation(s)
- Shiva Golshani
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, 16th Azar Street, Tehran, Iran
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran
| | - Zeinab Kadkhoda
- Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, 16th Azar Street, Tehran, Iran.
- Pharmaceutical Quality Assurance Research Center, the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Hardan L, Chedid JCA, Bourgi R, Cuevas-Suárez CE, Lukomska-Szymanska M, Tosco V, Monjarás-Ávila AJ, Jabra M, Salloum-Yared F, Kharouf N, Mancino D, Haikel Y. Peptides in Dentistry: A Scoping Review. Bioengineering (Basel) 2023; 10:bioengineering10020214. [PMID: 36829708 PMCID: PMC9952573 DOI: 10.3390/bioengineering10020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Currently, it remains unclear which specific peptides could be appropriate for applications in different fields of dentistry. The aim of this scoping review was to scan the contemporary scientific papers related to the types, uses and applications of peptides in dentistry at the moment. Literature database searches were performed in the following databases: PubMed/MEDLINE, Scopus, Web of Science, Embase, and Scielo. A total of 133 articles involving the use of peptides in dentistry-related applications were included. The studies involved experimental designs in animals, microorganisms, or cells; clinical trials were also identified within this review. Most of the applications of peptides included caries management, implant osseointegration, guided tissue regeneration, vital pulp therapy, antimicrobial activity, enamel remineralization, periodontal therapy, the surface modification of tooth implants, and the modification of other restorative materials such as dental adhesives and denture base resins. The in vitro and in vivo studies included in this review suggested that peptides may have beneficial effects for treating early carious lesions, promoting cell adhesion, enhancing the adhesion strength of dental implants, and in tissue engineering as healthy promotors of the periodontium and antimicrobial agents. The lack of clinical trials should be highlighted, leaving a wide space available for the investigation of peptides in dentistry.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Jean Claude Abou Chedid
- Department of Pediatric Dentistry, Faculty of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| | | | - Vincenzo Tosco
- Department of Clinical Sciences and Stomatology (DISCO), Polytechnic University of Marche, 60126 Ancona, Italy
| | - Ana Josefina Monjarás-Ávila
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
| | - Massa Jabra
- Faculty of Medicine, Damascus University, Damascus 0100, Syria
| | | | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| |
Collapse
|
6
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
7
|
Alavi SE, Raza A, Gholami M, Giles M, Al-Sammak R, Ibrahim A, Ebrahimi Shahmabadi H, Sharma LA. Advanced Drug Delivery Platforms for the Treatment of Oral Pathogens. Pharmaceutics 2022; 14:2293. [PMID: 36365112 PMCID: PMC9692332 DOI: 10.3390/pharmaceutics14112293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/26/2023] Open
Abstract
The oral cavity is a complex ecosystem accommodating various microorganisms (e.g., bacteria and fungi). Various factors, such as diet change and poor oral hygiene, can change the composition of oral microbiota, resulting in the dysbiosis of the oral micro-environment and the emergence of pathogenic microorganisms, and consequently, oral infectious diseases. Systemic administration is frequently used for drug delivery in the treatment of diseases and is associated with the problems, such as drug resistance and dysbiosis. To overcome these challenges, oral drug delivery systems (DDS) have received considerable attention. In this literature review, the related articles are identified, and their findings, in terms of current therapeutic challenges and the applications of DDSs, especially nanoscopic DDSs, for the treatment of oral infectious diseases are highlighted. DDSs are also discussed in terms of structures and therapeutic agents (e.g., antibiotics, antifungals, antiviral, and ions) that they deliver. In addition, strategies (e.g., theranostics, hydrogel, microparticle, strips/fibers, and pH-sensitive nanoparticles), which can improve the treatment outcome of these diseases, are highlighted.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Michael Giles
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Rayan Al-Sammak
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Ali Ibrahim
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Lavanya A. Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| |
Collapse
|
8
|
Zhang Y, Jiang R, Lei L, Yang Y, Hu T. Drug delivery systems for oral disease applications. J Appl Oral Sci 2022; 30:e20210349. [PMID: 35262595 PMCID: PMC8908861 DOI: 10.1590/1678-7757-2021-0349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
There are many restrictions on topical medications for the oral cavity. Various factors affect the topical application of drugs in the oral cavity, an open and complex environment. The complex physical and chemical environment of the oral cavity, such as saliva and food, will influence the effect of free drugs. Therefore, drug delivery systems have served as supporting structures or as carriers loading active ingredients, such as antimicrobial agents and growth factors (GFs), to promote antibacterial properties, tissue regeneration, and engineering for drug diffusion. These drug delivery systems are considered in the prevention and treatment of dental caries, periodontal disease, periapical disease, the delivery of anesthetic drugs, etc. These carrier materials are designed in different ways for clinical application, including nanoparticles, hydrogels, nanofibers, films, and scaffolds. This review aimed to summarize the advantages and disadvantages of different carrier materials. We discuss synthesis methods and their application scope to provide new perspectives for the development and preparation of more favorable and effective local oral drug delivery systems.
Collapse
Affiliation(s)
- Yue Zhang
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Ruining Jiang
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Lei Lei
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Yingming Yang
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Tao Hu
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| |
Collapse
|
9
|
Alfaifi A, Sultan AS, Montelongo-Jauregui D, Meiller TF, Jabra-Rizk MA. Long-Term Post-COVID-19 Associated Oral Inflammatory Sequelae. Front Cell Infect Microbiol 2022; 12:831744. [PMID: 35310855 PMCID: PMC8924417 DOI: 10.3389/fcimb.2022.831744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
The oral cavity remains an underappreciated site for SARS-CoV-2 infection despite the myriad oral conditions observed in COVID-19 patients. Recently, replicating SARS-CoV-2 was found inside salivary epithelial cells resulting in inflammation and atrophy of salivary glands. Saliva possesses healing properties crucial for maintaining the health of the oral mucosa. Specifically, salivary antimicrobial peptides, most notable, histatin-5 exclusively produced in salivary glands, plays a vital role in innate immunity against colonizing microbial species. The demonstration of SARS-CoV-2 destruction of gland tissue where histatin-5 is produced strongly indicate that histatin-5 production is compromised due to COVID-19. Here we present a case of a patient presenting with unexplained chronic oral dysesthesia and dysgeusia post-recovery from COVID-19. To explore potential physiological mechanisms behind the symptoms, we comparatively analyzed saliva samples from the patient and matched healthy subject for histatin-5 and key cytokines. Findings demonstrated significantly reduced histatin-5 levels in patient's saliva and activation of the Th17 inflammatory pathway. As histatin-5 exhibits potent activity against the opportunistic oral pathogen Candida albicans, we evaluated saliva potency against C. albicans ex vivo. Compared to control, patient saliva exhibited significantly reduced anti-candidal efficacy. Although speculative, based on history and salivary analysis we hypothesize that salivary histatin-5 production may be compromised due to SARS-CoV-2 mediated salivary gland destruction. With the current lack of emphasis on implications of COVID-19 on oral health, this report may provide lacking mechanistic insights that may lead to reassessment of risks for oral opportunistic infections and mucosal inflammatory processes in acutely-ill and recovered COVID-19 patients.
Collapse
Affiliation(s)
- Areej Alfaifi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, MD, United States.,Department of Restorative and Prosthetic Dental Sciences, College of Dentistry King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmed S Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, MD, United States.,Greenebaum Cancer Center, University of Maryland, Baltimore, MD, United States
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, MD, United States
| | - Timothy F Meiller
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, MD, United States.,Greenebaum Cancer Center, University of Maryland, Baltimore, MD, United States
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, MD, United States.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
10
|
Huang M, Huang Y, LIU H, Tang Z, Chen Y, Huang Z, Xu S, Du J, Jia B. Hydrogels for Treatment of Oral and Maxillofacial Diseases: Current Research, Challenge, and Future Directions. Biomater Sci 2022; 10:6413-6446. [DOI: 10.1039/d2bm01036d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oral and maxillofacial diseases such as infection and trauma often involve various organs and tissues, resulting in structural defects, dysfunctions and/or adverse effects on facial appearance. Hydrogels have been applied...
Collapse
|
11
|
Sharma P, Chaudhary M, Khanna G, Rishi P, Kaur IP. Envisaging Antifungal Potential of Histatin 5: A Physiological Salivary Peptide. J Fungi (Basel) 2021; 7:1070. [PMID: 34947052 PMCID: PMC8707063 DOI: 10.3390/jof7121070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Fungi are reported to cause a range of superficial to invasive human infections. These often result in high morbidity and at times mortality. Conventional antifungal agents though effective invariably exhibit drug interactions, treatment-related toxicity, and fail to elicit significant effect, thus indicating a need to look for suitable alternatives. Fungi thrive in humid, nutrient-enriched areas. Such an environment is well-supported by the oral cavity. Despite this, there is a relatively low incidence of severe oral and periodontal fungal infections, attributed to the presence of antimicrobial peptides hosted by saliva, viz. histatin 5 (Hstn 5). It displays fungicidal activity against a variety of fungi including Candida albicans, Candida glabrata, Candida krusei, Cryptococcus neoformans, and unicellular yeast-like Saccharomyces cerevisiae. Candida albicans alone accounts for about 70% of all global fungal infections including periodontal disease. This review intends to discuss the scope of Hstn 5 as a novel recourse for the control of fungal infections.
Collapse
Affiliation(s)
- Pratibha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (P.S.); (M.C.); (G.K.)
| | - Mehak Chaudhary
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (P.S.); (M.C.); (G.K.)
| | - Garima Khanna
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (P.S.); (M.C.); (G.K.)
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (P.S.); (M.C.); (G.K.)
| |
Collapse
|
12
|
Hosseinpour-Moghadam R, Mehryab F, Torshabi M, Haeri A. Applications of Novel and Nanostructured Drug Delivery Systems for the Treatment of Oral Cavity Diseases. Clin Ther 2021; 43:e377-e402. [PMID: 34844769 DOI: 10.1016/j.clinthera.2021.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Novel drug delivery systems (DDSs) hold great promise for the treatment of oral cavity diseases. The main objective of this article was to provide a detailed overview regarding recent advances in the use of novel and nanostructured DDSs in alleviating and treating unpleasant conditions of the oral cavity. Strategies to maximize the benefits of these systems in the treatment of oral conditions and future directions to overcome these issues are also discussed. METHODS Publications from the last 10 years investigating novel and nanostructured DDSs for pathologic oral conditions were browsed in a systematic search using the PubMed/MEDLINE, Web of Science, and Scopus databases. Research on applications of novel DDSs for periodontitis, oral carcinomas, oral candidiasis, xerostomia, lichen planus, aphthous stomatitis, and oral mucositis is summarized. A narrative exploratory review of the most recent literature was undertaken. FINDINGS Conventional systemic administration of therapeutic agents could exhibit high clearance of drugs from the bloodstream and low accumulation at the target site. In contrast, conventional topical systems face problems such as short residence time in the affected region and low patient compliance. Novel and nanostructured DDSs are among the most effective and commonly used methods for overcoming the problems of conventional DDSs. The main advantages of these systems are that they possess the ability to protect active agents from systemic and local clearance, enhance bioavailability and cellular uptake, and provide immediate or modified release of therapeutic agents after administration. In the design of local drug delivery devices such as nanofiber mats, films, and patches, components and excipients can significantly affect factors such as drug release rate, residence time in the oral cavity, and taste in the mouth. Choosing appropriate additives is therefore essential. IMPLICATIONS Local drug delivery devices such as nanofiber mats, nanoparticles, liposomes, hydrogels, films, and patches for oral conditions can significantly affect drug efficacy and safety. However, more precise clinical studies should be designed and conducted to confirm promising in vitro and in vivo results. In recent years, novel and nanostructured DDSs increasingly attracted the attention of researchers as a means of treatment and alleviation of oral diseases and unpleasant conditions. However, more clinical studies should be performed to confirm promising in vitro and in vivo results. To transform a successful laboratory model into a marketable product, the long-term stability of prepared formulations is essential. Also, proper scale-up methods with optimum preparation costs should be addressed.
Collapse
Affiliation(s)
- Reza Hosseinpour-Moghadam
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Niculescu AG, Grumezescu AM. Natural Compounds for Preventing Ear, Nose, and Throat-Related Oral Infections. PLANTS 2021; 10:plants10091847. [PMID: 34579380 PMCID: PMC8468404 DOI: 10.3390/plants10091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
Oral health is an essential element in maintaining general well-being. By preserving the complex equilibrium within the oral microbial community, commensal microorganisms can protect against extrinsic pathogenic threats. However, when an imbalance occurs, the organism is susceptible to a broad range of infections. Synthetic drugs can be administered to help the body fight against the fungal, bacterial, or viral burden. Nonetheless, they may produce undesirable consequences such as toxicity, adverse effects, and drug resistance. In this respect, research has focused on finding safer and more efficient alternatives. Particularly, increasing attention has been drawn towards developing novel formulations based on natural compounds. This paper reviews the plant-based, algae-based, and beehive products investigated for their antimicrobial properties, aiming to thoroughly present the state of the art on oral infection prevention in the ear, nose, and throat (ENT) field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 50044 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3997
| |
Collapse
|
14
|
Körtvélyessy G, Tarjányi T, Baráth ZL, Minarovits J, Tóth Z. Bioactive coatings for dental implants: A review of alternative strategies to prevent peri-implantitis induced by anaerobic bacteria. Anaerobe 2021; 70:102404. [PMID: 34146701 DOI: 10.1016/j.anaerobe.2021.102404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Members of oral bacterial communities form biofilms not only on tooth surfaces but also on the surface of dental implants that replace natural teeth. Prolonged interaction of host cells with biofilm-forming anaerobes frequently elicits peri-implantitis, a destructive inflammatory disease accompanied by alveolar bone loss leading to implant failure. Here we wish to overview how the deposition of bioactive peptides to dental implant surfaces could potentially inhibit bacterial colonization and the development of peri-implantisis. One preventive strategy is based on natural antimicrobial peptides (AMPs) immobilized on titanium surfaces. AMPs are capable to destroy both Gram positive and Gram negative bacteria directly. An alternative strategy aims at coating implant surfaces - especially the transmucosal part - with peptides facilitating the attachment of gingival epithelial cells and connective tissue cells. These cells produce AMPs and may form a soft tissue seal that prevents oral bacteria from accessing the apical part of the osseointegrated implant. Because a wide variety of titanium-bound peptides were studied in vitro, we wish to concentrate on bioactive peptides of human origin and some of their derivatives. Furthermore, special attention will be given to peptides effective under in vivo test conditions.
Collapse
Affiliation(s)
- Győző Körtvélyessy
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Tamás Tarjányi
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Zoltán L Baráth
- Department of Prosthodontics, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Zsolt Tóth
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary; Department of Experimental Physics, University of Szeged, Faculty of Science and Informatics, 6720, Szeged, Dóm Tér 9, Hungary.
| |
Collapse
|
15
|
Biomaterials for the Prevention of Oral Candidiasis Development. Pharmaceutics 2021; 13:pharmaceutics13060803. [PMID: 34072188 PMCID: PMC8229946 DOI: 10.3390/pharmaceutics13060803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Thousands of microorganisms coexist within the human microbiota. However, certain conditions can predispose the organism to the overgrowth of specific pathogens that further lead to opportunistic infections. One of the most common such imbalances in the normal oral flora is the excessive growth of Candida spp., which produces oral candidiasis. In immunocompromised individuals, this fungal infection can reach the systemic level and become life-threatening. Hence, prompt and efficient treatment must be administered. Traditional antifungal agents, such as polyenes, azoles, and echinocandins, may often result in severe adverse effects, regardless of the administration form. Therefore, novel treatments have to be developed and implemented in clinical practice. In this regard, the present paper focuses on the newest therapeutic options against oral Candida infections, reviewing compounds and biomaterials with inherent antifungal properties, improved materials for dental prostheses and denture adhesives, drug delivery systems, and combined approaches towards developing the optimum treatment.
Collapse
|
16
|
Carmona-Ribeiro AM, Araújo PM. Antimicrobial Polymer-Based Assemblies: A Review. Int J Mol Sci 2021; 22:5424. [PMID: 34063877 PMCID: PMC8196616 DOI: 10.3390/ijms22115424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
An antimicrobial supramolecular assembly (ASA) is conspicuous in biomedical applications. Among the alternatives to overcome microbial resistance to antibiotics and drugs, ASAs, including antimicrobial peptides (AMPs) and polymers (APs), provide formulations with optimal antimicrobial activity and acceptable toxicity. AMPs and APs have been delivered by a variety of carriers such as nanoparticles, coatings, multilayers, hydrogels, liposomes, nanodisks, lyotropic lipid phases, nanostructured lipid carriers, etc. They have similar mechanisms of action involving adsorption to the cell wall, penetration across the cell membrane, and microbe lysis. APs, however, offer the advantage of cheap synthetic procedures, chemical stability, and improved adsorption (due to multipoint attachment to microbes), as compared to the expensive synthetic routes, poor yield, and subpar in vivo stability seen in AMPs. We review recent advances in polymer-based antimicrobial assemblies involving AMPs and APs.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo 05508-000, Brazil;
| | | |
Collapse
|
17
|
McCrorie P, Mistry J, Taresco V, Lovato T, Fay M, Ward I, Ritchie AA, Clarke PA, Smith SJ, Marlow M, Rahman R. Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. Eur J Pharm Biopharm 2020; 157:108-120. [PMID: 33068736 DOI: 10.1016/j.ejpb.2020.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 02/09/2023]
Abstract
Glioblastoma is a malignant brain tumour with a median survival of 14.6 months from diagnosis. Despite maximal surgical resection and concurrent chemoradiotherapy, reoccurrence is inevitable. To try combating the disease at a stage of low residual tumour burden immediately post-surgery, we propose a localised drug delivery system comprising of a spray device, bioadhesive hydrogel (pectin) and drug nanocrystals coated with polylactic acid-polyethylene glycol (NCPPs), to be administered directly into brain parenchyma adjacent to the surgical cavity. We have repurposed pectin for use within the brain, showing in vitro and in vivo biocompatibility, bio-adhesion to mammalian brain and gelling at physiological brain calcium concentrations. Etoposide and olaparib NCPPs with high drug loading have shown in vitro stability and drug release over 120 h. Pluronic F127 stabilised NCPPs to ensure successful spraying, as determined by dynamic light scattering and transmission electron microscopy. Successful delivery of Cy5-labelled NCPPs was demonstrated in a large ex vivo mammalian brain, with NCPP present in the tissue surrounding the resection cavity. Our data collectively demonstrates the pre-clinical development of a novel localised delivery device based on a sprayable hydrogel containing therapeutic NCPPs, amenable for translation to intracranial surgical resection models for the treatment of malignant brain tumours.
Collapse
Affiliation(s)
- Phoebe McCrorie
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, NG7 2RD, UK
| | - Jatin Mistry
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Vincenzo Taresco
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Tatiana Lovato
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Michael Fay
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Ian Ward
- School of Life Sciences Imaging, School of Life Sciences, University of Nottingham, NG7 2RD, UK
| | - Alison A Ritchie
- Division of Cancer and Stem Cells, Faculty of Medicine and Health Sciences, University of Nottingham, NG7 2RD, UK
| | - Philip A Clarke
- Division of Cancer and Stem Cells, Faculty of Medicine and Health Sciences, University of Nottingham, NG7 2RD, UK
| | - Stuart J Smith
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, NG7 2RD, UK
| | - Maria Marlow
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
18
|
Mercer DK, O'Neil DA. Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics From the Host Immune Response. Front Immunol 2020; 11:2177. [PMID: 33072081 PMCID: PMC7533533 DOI: 10.3389/fimmu.2020.02177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to describe antifungal therapeutic candidates in preclinical and clinical development derived from, or directly influenced by, the immune system, with a specific focus on antimicrobial peptides (AMP). Although the focus of this review is AMP with direct antimicrobial effects on fungi, we will also discuss compounds with direct antifungal activity, including monoclonal antibodies (mAb), as well as immunomodulatory molecules that can enhance the immune response to fungal infection, including immunomodulatory AMP, vaccines, checkpoint inhibitors, interferon and colony stimulating factors as well as immune cell therapies. The focus of this manuscript will be a non-exhaustive review of antifungal compounds in preclinical and clinical development that are based on the principles of immunology and the authors acknowledge the incredible amount of in vitro and in vivo work that has been conducted to develop such therapeutic candidates.
Collapse
|
19
|
Comparative Evaluations of the Pathogenesis of Candida auris Phenotypes and Candida albicans Using Clinically Relevant Murine Models of Infections. mSphere 2020; 5:5/4/e00760-20. [PMID: 32759340 PMCID: PMC7407074 DOI: 10.1128/msphere.00760-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The newly emerged Candida species Candida auris is associated with an exponential rise in life-threatening invasive disease in health care facilities worldwide. Unlike other species, C. auris exhibits a high level of transmissibility, multidrug resistance, and persistence in the environment, yet little is known about its pathogenesis largely due to limited data from animal models. Based on in vitro biofilm evaluations and confocal laser scanning microscopy, C. auris phenotypes with different biofilm-forming abilities were identified, indicating potential clinical implications. Using clinically relevant murine models of implanted catheter, oral, and intraperitoneal infections, we comparatively evaluated the host site-specific pathogenic potential of C. auris phenotypes and Candida albicans Based on the results of microbial recovery and scanning electron microscopy analysis of explanted catheters, compared to C. albicans, C. auris more avidly adhered and formed biofilms on catheters. However, although C. auris adhered to oral tissue ex vivo, unlike C. albicans, it failed to colonize the oral cavity in vivo, as demonstrated by microbial recovery and tissue histopathology analysis. In contrast, recovery from peritoneal lavage fluid and kidneys during time course experiments demonstrated that C. auris persisted longer in the peritoneal cavity and kidneys. Although there were clear niche-specific differences in pathogenic features between C. auris and C. albicans, no significant differences were noted between the C. auris phenotypes in vivo The combined findings highlight unique niche-specific pathogenic traits for C. auris warranting further investigations. Understanding the factors contributing to the rise of C. auris as a nosocomial pathogen is critical for controlling the spread of this species.IMPORTANCE The newly emerged Candida species C. auris has been associated with an exponential rise in invasive disease in health care facilities worldwide with a mortality rate approaching 60%. C. auris exhibits a high level of transmissibility, multidrug resistance, and persistence in hospital environments, yet little is known about its pathogenesis largely due to limited data from animal studies. We used clinically relevant murine models of infection to comparatively evaluate the host niche-specific pathogenic potential of C. auris and C. albicans Findings demonstrated that C. auris adheres more avidly, forming robust biofilms on catheters implanted in mice. However, although C. auris adhered to oral tissue ex vivo, it failed to colonize the oral cavity in vivo In contrast, in the intraperitoneal infection model, C. auris persisted longer in the peritoneal cavity and kidneys. Understanding the host-pathogen factors contributing to the rise of C. auris as a nosocomial pathogen is critical for controlling the spread of this species.
Collapse
|
20
|
Chemokine CCL28 Is a Potent Therapeutic Agent for Oropharyngeal Candidiasis. Antimicrob Agents Chemother 2020; 64:AAC.00210-20. [PMID: 32423961 DOI: 10.1128/aac.00210-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/15/2020] [Indexed: 12/28/2022] Open
Abstract
Candida albicans is a commensal organism that causes life-threatening or life-altering opportunistic infections. Treatment of Candida infections is limited by the paucity of antifungal drug classes. Naturally occurring antimicrobial peptides are promising agents for drug development. CCL28 is a CC chemokine that is abundant in saliva and has in vitro antimicrobial activity. In this study, we examine the in vivo Candida killing capacity of CCL28 in oropharyngeal candidiasis as well as the spectrum and mechanism of anti-Candida activity. In the mouse model of oropharyngeal candidiasis, application of wild-type CCL28 reduces oral fungal burden in severely immunodeficient mice without causing excessive inflammation or altering tissue neutrophil recruitment. CCL28 is effective against multiple clinical strains of C. albicans Polyamine protein transporters are not required for CCL28 anti-Candida activity. Both structured and unstructured CCL28 proteins show rapid and sustained fungicidal activity that is superior to that of clinical antifungal agents. Application of wild-type CCL28 to C. albicans results in membrane disruption as measured by solute movement, enzyme leakage, and induction of negative Gaussian curvature on model membranes. Membrane disruption is reduced in CCL28 lacking the functional C-terminal tail. Our results strongly suggest that CCL28 can exert antifungal activity in part via membrane permeation and has potential for development as an anti-Candida therapeutic agent without inflammatory side effects.
Collapse
|
21
|
Bio- and Nanotechnology as the Key for Clinical Application of Salivary Peptide Histatin: A Necessary Advance. Microorganisms 2020; 8:microorganisms8071024. [PMID: 32664360 PMCID: PMC7409060 DOI: 10.3390/microorganisms8071024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a common microorganism of human’s microbiota and can be easily found in both respiratory and gastrointestinal tracts as well as in the genitourinary tract. Approximately 30% of people will be infected by C. albicans during their lifetime. Due to its easy adaptation, this microorganism started to present high resistance to antifungal agents which is associated with their indiscriminate use. There are several reports of adaptive mechanisms that this species can present. Some of them are intrinsic alteration in drug targets, secretion of extracellular enzymes to promote host protein degradation and efflux receptors that lead to a diminished action of common antifungal and host’s innate immune response. The current review aims to bring promising alternatives for the treatment of candidiasis caused mainly by C. albicans. One of these alternatives is the use of antifungal peptides (AFPs) from the Histatin family, like histatin-5. Besides that, our focus is to show how nanotechnology can allow the application of these peptides for treatment of this microorganism. In addition, our intention is to show the importance of nanoparticles (NPs) for this purpose, which may be essential in the near future.
Collapse
|
22
|
Dellière S, Sze Wah Wong S, Aimanianda V. Soluble mediators in anti-fungal immunity. Curr Opin Microbiol 2020; 58:24-31. [PMID: 32604018 DOI: 10.1016/j.mib.2020.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Although soluble mediators of our innate immune system have a substantial impact on invading microbes, their role against fungal pathogens has been underexplored. Constituting the humoral immunity, soluble mediators comprise the complement system, collectins, acute-phase proteins, antibodies and antimicrobial peptides. These components can prevent fungal infection either by directly interacting with invading microbes, leading to their aggregation (microbistatic), destruction (microbicidal) or linking them to cellular immunity. The composition of soluble-mediator varies with human body-fluids, resulting in different antifungal mechanisms. Moreover, cellular immune system deploys both oxidative and non-oxidative mechanisms to destroy extracellular or internalized fungal pathogens; however, cellular immune activation is mainly influenced as well as regulated by soluble mediators. This review outlines the antifungal mechanism employed, directly or indirectly, by soluble mediators, and in response, the evading strategies of the fungal pathogens.
Collapse
Affiliation(s)
- Sarah Dellière
- Institut Pasteur, Molecular Mycology Unit, UMR2000, CNRS, Paris, France; Parasitology-Mycoloy Laboratory, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | | | | |
Collapse
|
23
|
Fidel PL, Yano J, Esher SK, Noverr MC. Applying the Host-Microbe Damage Response Framework to Candida Pathogenesis: Current and Prospective Strategies to Reduce Damage. J Fungi (Basel) 2020; 6:jof6010035. [PMID: 32168864 PMCID: PMC7151217 DOI: 10.3390/jof6010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Disease is a complex outcome that can occur as a result of pathogen-mediated damage, host-mediated damage or both. This has led to the revolutionary concept of the damage response framework (DRF) that defines microbial virulence as a function of host immunity. The DRF outlines six scenarios (classes) of host damage or beneficial outcomes, depending on the microbe and the strength of the immune response. Candida albicans is uniquely adapted to its human host and can exist as either a commensal, colonizing various anatomical sites without causing notable damage, or as a pathogen, with the ability to cause a diverse array of diseases, ranging from mucosal to invasive systemic infections that result in varying levels of microbe-mediated and/or host-mediated damage. We recently categorized six different forms of candidiasis (oropharyngeal, hematogenous, intra-abdominal, gastrointestinal, denture stomatitis, and vulvovaginitis) into independent DRF classes, supporting a contemporary view of unique mechanisms of pathogenesis for these Candida infections. In this review, we summarize the evidence for the pathogenesis of these various forms of candidiasis in the context of the DRF with the further intent to provide insights into strategies to achieve a level of host response or outcome otherwise, that limits host damage.
Collapse
Affiliation(s)
- Paul L. Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA 70119, USA;
- Correspondence: ; Tel.: +1-504-941-8425
| | - Junko Yano
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA 70119, USA;
| | - Shannon K. Esher
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (S.K.E.); (M.C.N.)
| | - Mairi C. Noverr
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (S.K.E.); (M.C.N.)
| |
Collapse
|
24
|
Methylcellulose Hydrogel with Melissa officinalis Essential Oil as a Potential Treatment for Oral Candidiasis. Microorganisms 2020; 8:microorganisms8020215. [PMID: 32041100 PMCID: PMC7074814 DOI: 10.3390/microorganisms8020215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
Candida spp. are the most prevalent fungi of the human microbiota and are opportunistic pathogens that can cause oral candidiasis. Management of such infections is limited due to the low number of antifungal drugs available, their relatively high toxicity and the emergence of antifungal resistance. Therefore, much interest in the antimicrobial potential of natural compounds has recently been evident. The use of hydrogels in the delivery of biocides has been explored due to their biocompatibility, ease with drug encapsulation, and due to their potential to confer mechanical and structural properties similar to biological tissue. Methylcellulose hydrogels (10% (w/v)) with 1% (v/v) and 2% (v/v) Melissa officinalis oil were synthesised. The rheological properties and gelation time of the hydrogels were evaluated. Antimicrobial action, the antifungal potential and ability to displace Candida were determined. Rheological tests revealed that the hydrogel jellified in three minutes at 37 °C. Loaded hydrogels successfully inhibited Candida albicans growth as evident by zone of inhibition and time-kill assays. A significant reduction in retained C. albicans was demonstrated with the hydrogel at 2% Melissa officinalis concentration. This work demonstrated that an essential oil-loaded hydrogel had the potential to provide a novel antimicrobial therapy for the treatment of oral candidiasis.
Collapse
|
25
|
Liang J, Peng X, Zhou X, Zou J, Cheng L. Emerging Applications of Drug Delivery Systems in Oral Infectious Diseases Prevention and Treatment. Molecules 2020; 25:E516. [PMID: 31991678 PMCID: PMC7038021 DOI: 10.3390/molecules25030516] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/27/2022] Open
Abstract
The oral cavity is a unique complex ecosystem colonized with huge numbers of microorganism species. Oral cavities are closely associated with oral health and sequentially with systemic health. Many factors might cause the shift of composition of oral microbiota, thus leading to the dysbiosis of oral micro-environment and oral infectious diseases. Local therapies and dental hygiene procedures are the main kinds of treatment. Currently, oral drug delivery systems (DDS) have drawn great attention, and are considered as important adjuvant therapy for oral infectious diseases. DDS are devices that could transport and release the therapeutic drugs or bioactive agents to a certain site and a certain rate in vivo. They could significantly increase the therapeutic effect and reduce the side effect compared with traditional medicine. In the review, emerging recent applications of DDS in the treatment for oral infectious diseases have been summarized, including dental caries, periodontitis, peri-implantitis and oral candidiasis. Furthermore, oral stimuli-responsive DDS, also known as "smart" DDS, have been reported recently, which could react to oral environment and provide more accurate drug delivery or release. In this article, oral smart DDS have also been reviewed. The limits have been discussed, and the research potential demonstrates good prospects.
Collapse
Affiliation(s)
| | | | | | - Jing Zou
- State Key Laboratory of Oral Diseases& West China School of Stomatology& National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (J.L.); (X.P.); (X.Z.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases& West China School of Stomatology& National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (J.L.); (X.P.); (X.Z.)
| |
Collapse
|
26
|
Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral Candidiasis: A Disease of Opportunity. J Fungi (Basel) 2020; 6:jof6010015. [PMID: 31963180 PMCID: PMC7151112 DOI: 10.3390/jof6010015] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Oral candidiasis, commonly referred to as “thrush,” is an opportunistic fungal infection that commonly affects the oral mucosa. The main causative agent, Candida albicans, is a highly versatile commensal organism that is well adapted to its human host; however, changes in the host microenvironment can promote the transition from one of commensalism to pathogen. This transition is heavily reliant on an impressive repertoire of virulence factors, most notably cell surface adhesins, proteolytic enzymes, morphologic switching, and the development of drug resistance. In the oral cavity, the co-adhesion of C. albicans with bacteria is crucial for its persistence, and a wide range of synergistic interactions with various oral species were described to enhance colonization in the host. As a frequent colonizer of the oral mucosa, the host immune response in the oral cavity is oriented toward a more tolerogenic state and, therefore, local innate immune defenses play a central role in maintaining Candida in its commensal state. Specifically, in addition to preventing Candida adherence to epithelial cells, saliva is enriched with anti-candidal peptides, considered to be part of the host innate immunity. The T helper 17 (Th17)-type adaptive immune response is mainly involved in mucosal host defenses, controlling initial growth of Candida and inhibiting subsequent tissue invasion. Animal models, most notably the mouse model of oropharyngeal candidiasis and the rat model of denture stomatitis, are instrumental in our understanding of Candida virulence factors and the factors leading to host susceptibility to infections. Given the continuing rise in development of resistance to the limited number of traditional antifungal agents, novel therapeutic strategies are directed toward identifying bioactive compounds that target pathogenic mechanisms to prevent C. albicans transition from harmless commensal to pathogen.
Collapse
Affiliation(s)
- Taissa Vila
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Ahmed S. Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-0508; Fax: +1-410-706-0519
| |
Collapse
|
27
|
Harloff-Helleberg S, Fliervoet LAL, Fanø M, Schmitt M, Antopolski M, Urtti A, Nielsen HM. Exploring the mucoadhesive behavior of sucrose acetate isobutyrate: a novel excipient for oral delivery of biopharmaceuticals. Drug Deliv 2019; 26:532-541. [PMID: 31090468 PMCID: PMC6534213 DOI: 10.1080/10717544.2019.1606866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 11/02/2022] Open
Abstract
Oral drug delivery is an attractive noninvasive alternative to injectables. However, oral delivery of biopharmaceuticals is highly challenging due to low stability during transit in the gastrointestinal tract (GIT), resulting in low systemic bioavailability. Thus, novel formulation strategies are essential to overcome this challenge. An interesting approach is increasing retention in the GIT by utilizing mucoadhesive biomaterials as excipients. Here, we explored the potential of the GRAS excipient sucrose acetate isobutyrate (SAIB) to obtain mucoadhesion in vivo. Mucoadhesive properties of a 90% SAIB/10% EtOH (w/w) drug delivery system (DDS) were assessed using a biosimilar mucus model and evaluation of rheological behavior after immersion in biosimilar intestinal fluid. To ease readability of this manuscript, we will refer to this as SAIB DDS. The effect of SAIB DDS on cell viability and epithelial membrane integrity was tested in vitro prior to in vivo studies that were conducted using SPECT/CT imaging in rats. When combining SAIB DDS with biosimilar mucus, increased viscosity was observed due to secondary interactions between biosimilar mucus and sucrose ester predicting considerable mucoadhesion. Mucoadhesion was confirmed in vivo, as radiolabeled insulin entrapped in SAIB DDS, remained in the small intestine for up to 22 h after administration. Moreover, the integrity of the system was investigated using the dynamic gastric model under conditions simulating the chemical composition of stomach fluid and physical shear stress in the antrum under fasted conditions. In conclusion, SAIB is an interesting and safe biomaterial to promote high mucoadhesion in the GIT after oral administration.
Collapse
Affiliation(s)
- Stine Harloff-Helleberg
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| | - Lies A. L. Fliervoet
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, CG Utrecht, The Netherlands
| | - Mathias Fanø
- Bioneer: FARMA, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| | - Mechthild Schmitt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Maxim Antopolski
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Arto Urtti
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| |
Collapse
|
28
|
Digital Design of a Universal Rat Intraoral Device for Therapeutic Evaluation of a Topical Formulation against Candida-Associated Denture Stomatitis. Infect Immun 2019; 87:IAI.00617-19. [PMID: 31527130 DOI: 10.1128/iai.00617-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Candida-associated denture stomatitis (DS) is a persistent and chronic oral infection of the denture-bearing palatal mucosa. DS stems from the ability of the fungal opportunistic pathogen Candida albicans to adhere to denture material and invade palatal tissue. Although DS is the most prevalent form of oral candidiasis, there are currently no feasible therapeutic strategies for the prevention of this recurrent condition. We developed a peptide-based antimicrobial bioadhesive formulation specifically designed for oral topical formulation. In this study, we aimed to evaluate the applicability of the novel formulation for the prevention of C. albicans colonization on denture material and development of clinical disease. To that end, using the latest technological advances in dental digital design and three-dimensional (3D) printing, we fabricated an intraoral device for rats with universal fit. The device was successfully installed and used to develop clinical DS. Importantly, by taking a preventative therapeutic approach, we demonstrated the potential clinical utility of the novel formulation as a safe and feasible prophylactic agent against DS.
Collapse
|
29
|
Evaluation of the Antifungal and Wound-Healing Properties of a Novel Peptide-Based Bioadhesive Hydrogel Formulation. Antimicrob Agents Chemother 2019; 63:AAC.00888-19. [PMID: 31332066 DOI: 10.1128/aac.00888-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022] Open
Abstract
Oral candidiasis (OC) caused by the fungal pathogen Candida albicans is the most common opportunistic infection in immunocompromised populations. The dramatic increase in resistance to common antifungal agents has emphasized the importance of identifying alternative therapeutic options. Antimicrobial peptides have emerged as promising drug candidates due to their antimicrobial properties; specifically, histatin-5 (Hst-5), a peptide naturally produced and secreted by human salivary glands, has demonstrated potent activity against C. albicans However, as we previously demonstrated vulnerability for Hst-5 to proteolysis by C. albicans proteolytic enzymes at specific amino acid residues, a new variant (K11R-K17R) was designed with amino acid substitutions at the identified cleavage sites. The new resistant peptide demonstrated no cytotoxicity to erythrocytes or human oral keratinocytes. To evaluate the potential of the new peptide for clinical application, we utilized our FDA-approved polymer-based bioadhesive hydrogel as a delivery system and developed a therapeutic formulation specifically designed for oral topical application. The new formulation was demonstrated to be effective against C. albicans strains resistant to the traditional antifungals, and the in vitro therapeutic efficacy was found to be comparable to that of the common topical antifungal agents in clinical use. Importantly, in addition to its antifungal properties, our findings also demonstrated that the new peptide variant induces cell proliferation and rapid cell migration of human oral keratinocytes, indicative of wound healing properties. The findings from this study support the progression of the novel formulation as a therapeutic agent against oral candidiasis, as well as a therapeutic modality for promoting wound healing.
Collapse
|
30
|
Carmona-Ribeiro AM. Self-Assembled Antimicrobial Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1408. [PMID: 29973521 PMCID: PMC6069395 DOI: 10.3390/ijerph15071408] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Nanotechnology came to stay improving the quality of human life by reducing environmental contamination of earth and water with pathogens. This review discusses how self-assembled antimicrobial nanomaterials can contribute to maintain humans, their water and their environment inside safe boundaries to human life even though some of these nanomaterials display an overt toxicity. At the core of their strategic use, the self-assembled antimicrobial nanomaterials exhibit optimal and biomimetic organization leading to activity at low doses of their toxic components. Antimicrobial bilayer fragments, bilayer-covered or multilayered nanoparticles, functionalized inorganic or organic polymeric materials, coatings and hydrogels disclose their potential for environmental and public health applications in this review.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Instituto de Química, Universidade de São Paulo; Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
31
|
Ikonomova SP, Moghaddam-Taaheri P, Jabra-Rizk MA, Wang Y, Karlsson AJ. Engineering improved variants of the antifungal peptide histatin 5 with reduced susceptibility to Candida albicans secreted aspartic proteases and enhanced antimicrobial potency. FEBS J 2017; 285:146-159. [PMID: 29143452 DOI: 10.1111/febs.14327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/06/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022]
Abstract
Candida albicans is an opportunistic fungal pathogen and a commensal organism that commonly colonizes mucosal surfaces, including those inside the human mouth. To help control C. albicans, human saliva contains the antifungal peptide histatin 5 (Hst-5), which has strong antifungal activity against C. albicans. However, the pathogen produces secreted aspartic proteases (Saps) that cleave Hst-5 at lysine residues and eliminate its antifungal properties. We designed variants of Hst-5 with its lysine residues substituted with arginine or leucine to evaluate the effect on proteolysis by Saps. We found site-, residue-, and Sap-dependent effects from single amino acid substitutions. The K17R and K17L modifications led to dramatic results, with over 77% and 100% intact peptide remaining after incubation with Sap9 and Sap2, respectively, compared to 47% and 61% of Hst-5. This decrease in proteolysis was accompanied by a reduction in cleavage on the C-terminal side of K17, suggesting the Saps prefer lysine at K17 for cleavage. Incubation with C. albicans cells and culture supernatant corroborated the results with purified Saps and highlighted their biological relevance. The modifications to Hst-5 do not diminish the antifungal activity of Hst-5, and, in fact, the K17R, K17L, and K11R peptides retained significantly more antifungal activity after treatment with Saps than Hst-5. Our results indicate that single amino acid modifications drastically impact both proteolysis at the modification sites and the overall level of proteolysis of the peptide, demonstrating the potential of designing peptides for resistance to proteolysis as a means for improving therapeutic efficacy.
Collapse
Affiliation(s)
- Svetlana P Ikonomova
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | | | - Mary Ann Jabra-Rizk
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA.,Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, MD, USA
| | - Yan Wang
- Proteomics Core Facility, College of Mathematics and Natural Sciences, University of Maryland, College Park, MD, USA
| | - Amy J Karlsson
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
32
|
Bondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z. Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds. J Fungi (Basel) 2017; 3:E46. [PMID: 29371563 PMCID: PMC5715947 DOI: 10.3390/jof3030046] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022] Open
Abstract
Invasive fungal infections are associated with high mortality rates, despite appropriate antifungal therapy. Limited therapeutic options, resistance development and the high mortality of invasive fungal infections brought about more concern triggering the search for new compounds capable of interfering with fungal viability and virulence. In this context, peptides gained attention as promising candidates for the antimycotics development. Variety of structural and functional characteristics identified for various natural antifungal peptides makes them excellent starting points for design novel drug candidates. Current review provides a brief overview of natural and synthetic antifungal peptides.
Collapse
Affiliation(s)
- Małgorzata Bondaryk
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Paulina Zielińska
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | | |
Collapse
|
33
|
Piotrowska U, Sobczak M, Oledzka E. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors. Chem Biol Drug Des 2017; 90:1079-1093. [DOI: 10.1111/cbdd.13031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/14/2017] [Accepted: 05/18/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Urszula Piotrowska
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| | - Marcin Sobczak
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| | - Ewa Oledzka
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
34
|
Liao H, Liu S, Wang H, Su H, Liu Z. Efficacy of Histatin5 in a murine model of vulvovaginal candidiasis caused by Candida albicans. Pathog Dis 2017. [DOI: 10.1093/femspd/ftx072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
35
|
Wang Z, Shen Y, Haapasalo M. Antibiofilm peptides against oral biofilms. J Oral Microbiol 2017; 9:1327308. [PMID: 28748031 PMCID: PMC5508375 DOI: 10.1080/20002297.2017.1327308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/01/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
The oral cavity is a major entry point for bacteria and other microorganisms. Oral biofilms are formed by mixed communities of microorganisms embedded in an exopolysaccharide matrix. Biofilms forming on dental hard or soft tissue are the major cause of caries and endodontic and periodontal disease. Human oral biofilms exhibit high resistance to antimicrobial agents. Antibiofilm peptides constitute a diverse class of host-defense molecules that act to combat invasion and infection with biofilms. Different in vitro and in vivo biofilm models with quantitative analysis have been established to provide predictable platforms for the evaluation of the antibiofilm effect of oral antibiofilm peptides. These peptides have engendered considerable interest in the past decades as potential alternatives to traditional disinfecting agents due to their ability to target bacterial biofilms specifically, leading to the prevention of biofilm formation and destruction of pre-existing biofilms by Gram-positive and -negative bacterial pathogens and fungi. At the same time, challenges associated with the application of these antibiofilm peptides in dental practice also exist. The production of effective, nontoxic, and stable antibiofilm peptides is desired in both academic and industrial fields. This review focuses on the antibiofilm properties of current synthetic peptides and their application in different areas of dentistry.
Collapse
Affiliation(s)
- Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Markus Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
36
|
Reddy RCJ, Jeelani S, Duraiselvi P, Kandasamy M, Kumar GS, Pandian RAV. Assessment of Effectiveness of Fluconazole and Clotrimazole in Treating Oral Candidiasis Patients: A Comparative Study. J Int Soc Prev Community Dent 2017; 7:90-94. [PMID: 28462176 PMCID: PMC5390584 DOI: 10.4103/jispcd.jispcd_34_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/28/2017] [Indexed: 11/29/2022] Open
Abstract
Aims: One of the most common fungal infections infecting humans is Candidiasis. Belonging to the group of opportunistic infections, it often affects individuals with various debilitating diseases. Fluconazole and clotrimazole are two of the commonly used anti-fungal agents for the treatment of oral candidiasis. Hence, we planned this study to evaluate the effectiveness of fluconazole and clotrimazole in the treatment of patients suffering from candidiasis. Materials and Methods: A total of 180 participants were enrolled in the present study. All the patients of candidiasis were divided broadly into two study groups. Group I included patients who were treated with fluconazole mouthrinse whereas group II included patients who were treated with clotrimazole mouth paint. Grading of patient discomfort was done as noted from readings given by the patients. Specimen was collection by a swab from the lesional area of the oral cavity from the patients and were incubated in Sabouraud's dextrose agar medium and assessed. All the patients were treated with medication as give to their respective groups. Patients were recalled as assessed. All the readings were recorded and analyzed. Results: For group I patients, the fungal eradication was 89.5%, whereas for group II patients, the fungal eradication was 86.7%. No significant results were obtained while comparing the mycological eradiation in patients of the two study groups. Conclusion: Approximately similar effectiveness in terms of treatment was noted with fluconazole and clotrimazole in treating patients with candidiasis.
Collapse
Affiliation(s)
- R C Jagat Reddy
- Department of Oral Medicine and Radiology, Chettinad Dental College and Research Institute, Kelambakkam, Tamil Nadu, India
| | - S Jeelani
- Department of Oral Medicine and Radiology, Sri Venkateshwaraa Dental College, Puducherry, India
| | - P Duraiselvi
- Department of Oral Medicine and Radiology, Sri Venkateshwaraa Dental College, Puducherry, India
| | - M Kandasamy
- Department of Oral Medicine and Radiology, Rajas Dental College and Hospital, Tirunelveli, Tamil Nadu, India
| | - G Suresh Kumar
- Department of Oral and Maxillofacial Surgery, Adthiparasakthi Dental College and Hospital, Melmaruvathur, Tamil Nadu, India
| | - R Azhal Vel Pandian
- Department of Oral Medicine and Radiology, Sri Venkateshwaraa Dental College, Puducherry, India
| |
Collapse
|
37
|
Malik E, Dennison SR, Harris F, Phoenix DA. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals (Basel) 2016; 9:ph9040067. [PMID: 27809281 PMCID: PMC5198042 DOI: 10.3390/ph9040067] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era.
Collapse
Affiliation(s)
- Erum Malik
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Sarah R Dennison
- School of Pharmacy and Biological Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Frederick Harris
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK.
| |
Collapse
|
38
|
Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework. Infect Immun 2016; 84:2724-39. [PMID: 27430274 DOI: 10.1128/iai.00469-16] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Historically, the nature and extent of host damage by a microbe were considered highly dependent on virulence attributes of the microbe. However, it has become clear that disease is a complex outcome which can arise because of pathogen-mediated damage, host-mediated damage, or both, with active participation from the host microbiota. This awareness led to the formulation of the damage response framework (DRF), a revolutionary concept that defined microbial virulence as a function of host immunity. The DRF outlines six classifications of host damage outcomes based on the microbe and the strength of the immune response. In this review, we revisit this concept from the perspective of Candida albicans, a microbial pathogen uniquely adapted to its human host. This fungus commonly colonizes various anatomical sites without causing notable damage. However, depending on environmental conditions, a diverse array of diseases may occur, ranging from mucosal to invasive systemic infections resulting in microbe-mediated and/or host-mediated damage. Remarkably, C. albicans infections can fit into all six DRF classifications, depending on the anatomical site and associated host immune response. Here, we highlight some of these diverse and site-specific diseases and how they fit the DRF classifications, and we describe the animal models available to uncover pathogenic mechanisms and related host immune responses.
Collapse
|
39
|
Abstract
In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections.
Collapse
|