1
|
Ajiboye J, Teixeira JE, Gasonoo M, Mattice EB, Korwin-Mihavics B, Miller P, Cameron AC, Stebbins E, Campbell SD, Griggs DW, Spangenberg T, Meyers MJ, Huston CD. Identification of potent and orally efficacious phosphodiesterase inhibitors in Cryptosporidium parvum-infected immunocompromised male mice. Nat Commun 2024; 15:8272. [PMID: 39333545 PMCID: PMC11436873 DOI: 10.1038/s41467-024-52658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Cryptosporidium parvum and C. hominis are parasites that cause life-threatening diarrhea in children and immunocompromised people. There is only one approved treatment that is modestly effective for children and ineffective for AIDS patients. Here, screening 278 compounds from the Merck KGaA, Darmstadt, Germany collection and accelerated follow-up enabled by prior investigation of the compounds identifies a series of pyrazolopyrimidine human phosphodiesterase (PDE)-V (hPDE-V) inhibitors with potent anticryptosporidial activity and efficacy following oral administration in C. parvum-infected male mice. The lead compounds affect parasite host cell egress, inhibit both C. parvum and C. hominis, work rapidly, and have minimal off-target effects in a safety screening panel. Interestingly, the hPDE-V inhibitors sildenafil and the 4-aminoquinoline compound 7a do not affect Cryptosporidium. C. parvum expresses one PDE (CpPDE1) continuously during asexual growth, the inhibited life stage. According to homology modeling and docking, the lead compounds interact with CpPDE1. Bulkier amino acids (Val900 and His884) in the CpPDE1 active site replace alanines in hPDE-V and block sildenafil binding. Supporting this, sildenafil kills a CRISPR-engineered Cryptosporidium CpPDE1 V900A mutant. The CpPDE1 mutation also alters parasite susceptibility to pyrazolopyrimidines. CpPDE1 is therefore a validated pyrazolopyrimidine molecular target to exploit for target-based optimization for improved anticryptosporidial development.
Collapse
Affiliation(s)
- Jubilee Ajiboye
- Department of Medicine, University of Vermont Larner College of Medicine, Room 202 Stafford Hall, 95 Carrigan Drive, Burlington, Vermont, USA
| | - José E Teixeira
- Department of Medicine, University of Vermont Larner College of Medicine, Room 202 Stafford Hall, 95 Carrigan Drive, Burlington, Vermont, USA
| | - Makafui Gasonoo
- Department of Chemistry, Saint Louis University, Room 206 Monsanto Hall, 3501 Laclede Avenue, Saint Louis, MO, USA
| | - Ethan B Mattice
- Department of Medicine, University of Vermont Larner College of Medicine, Room 202 Stafford Hall, 95 Carrigan Drive, Burlington, Vermont, USA
| | - Bethany Korwin-Mihavics
- Department of Medicine, University of Vermont Larner College of Medicine, Room 202 Stafford Hall, 95 Carrigan Drive, Burlington, Vermont, USA
| | - Peter Miller
- Department of Medicine, University of Vermont Larner College of Medicine, Room 202 Stafford Hall, 95 Carrigan Drive, Burlington, Vermont, USA
| | - Alexandra C Cameron
- Department of Medicine, University of Vermont Larner College of Medicine, Room 202 Stafford Hall, 95 Carrigan Drive, Burlington, Vermont, USA
| | - Erin Stebbins
- Department of Medicine, University of Vermont Larner College of Medicine, Room 202 Stafford Hall, 95 Carrigan Drive, Burlington, Vermont, USA
| | - Scott D Campbell
- Department of Molecular Microbiology and Immunology, Saint Louis University, Room 316 Doisy Research Center, 1100 South Grand Boulevard, Saint Louis, MO, USA
| | - David W Griggs
- Department of Molecular Microbiology and Immunology, Saint Louis University, Room 316 Doisy Research Center, 1100 South Grand Boulevard, Saint Louis, MO, USA
| | - Thomas Spangenberg
- Global Health R&D of Merck Healthcare, Ares Trading S.A. (a subsidiary of Merck KGaA, Darmstadt, Germany), Route de Crassier 1, Eysins, Switzerland
| | - Marvin J Meyers
- Department of Chemistry, Saint Louis University, Room 206 Monsanto Hall, 3501 Laclede Avenue, Saint Louis, MO, USA.
| | - Christopher D Huston
- Department of Medicine, University of Vermont Larner College of Medicine, Room 202 Stafford Hall, 95 Carrigan Drive, Burlington, Vermont, USA.
| |
Collapse
|
2
|
Lenière AC, Vlandas A, Follet J. Treating cryptosporidiosis: A review on drug discovery strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100542. [PMID: 38669849 PMCID: PMC11066572 DOI: 10.1016/j.ijpddr.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Despite several decades of research on therapeutics, cryptosporidiosis remains a major concern for human and animal health. Even though this field of research to assess antiparasitic drug activity is highly active and competitive, only one molecule is authorized to be used in humans. However, this molecule was not efficacious in immunocompromised people and the lack of animal therapeutics remains a cause of concern. Indeed, the therapeutic arsenal needs to be developed for both humans and animals. Our work aims to clarify research strategies that historically were diffuse and poorly directed. This paper reviews in vitro and in vivo methodologies to assess the activity of future therapeutic compounds by screening drug libraries or through drug repurposing. It focuses on High Throughput Screening methodologies (HTS) and discusses the lack of knowledge of target mechanisms. In addition, an overview of several specific metabolic pathways and enzymatic activities used as targets against Cryptosporidium is provided. These metabolic processes include glycolytic pathways, fatty acid production, kinase activities, tRNA elaboration, nucleotide synthesis, gene expression and mRNA maturation. As a conclusion, we highlight emerging future strategies for screening natural compounds and assessing drug resistance issues.
Collapse
Affiliation(s)
- Anne-Charlotte Lenière
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Alexis Vlandas
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Jérôme Follet
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France.
| |
Collapse
|
3
|
Pan B, Weerasinghe H, Sezmis A, McDonald MJ, Traven A, Thompson P, Simm C. Leveraging the MMV Pathogen Box to Engineer an Antifungal Compound with Improved Efficacy and Selectivity against Candida auris. ACS Infect Dis 2023; 9:1901-1917. [PMID: 37756147 DOI: 10.1021/acsinfecdis.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Fungal infections pose a significant and increasing threat to human health, but the current arsenal of antifungal drugs is inadequate. We screened the Medicines for Malaria Venture (MMV) Pathogen Box for new antifungal agents against three of the most critical Candida species (Candida albicans, Candida auris, and Candida glabrata). Of the 14 identified hit compounds, most were active against C. albicans and C. auris. We selected the pyrazolo-pyrimidine MMV022478 for chemical modifications to build structure-activity relationships and study their antifungal properties. Two analogues, 7a and 8g, with distinct fluorine substitutions, greatly improved the efficacy against C. auris and inhibited fungal replication inside immune cells. Additionally, analogue 7a had improved selectivity toward fungal killing compared to mammalian cytotoxicity. Evolution experiments generating MMV022478-resistant isolates revealed a change in morphology from oblong to round cells. Most notably, the resistant isolates blocked the uptake of the fluorescent dye rhodamine 6G and showed reduced susceptibility toward fluconazole, indicative of structural changes in the yeast cell surface. In summary, our study identified a promising antifungal compound with activity against high-priority fungal pathogens. Additionally, we demonstrated how structure-activity relationship studies of known and publicly available compounds can expand the repertoire of molecules with antifungal efficacy and reduced cytotoxicity to drive the development of novel therapeutics.
Collapse
Affiliation(s)
- Baolong Pan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Harshini Weerasinghe
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, VIC, Australia
| | - Aysha Sezmis
- School of Biological Sciences, Monash University, Clayton 3800, VIC, Australia
| | - Michael J McDonald
- Centre to Impact AMR, Monash University, Clayton 3800, VIC, Australia
- School of Biological Sciences, Monash University, Clayton 3800, VIC, Australia
| | - Ana Traven
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, VIC, Australia
| | - Philip Thompson
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Claudia Simm
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, VIC, Australia
| |
Collapse
|
4
|
Rizk MA, El-Sayed SAES, Igarashi I. In vivo activity and atom pair fingerprint analysis of MMV665941 against the apicomplexan parasite Babesia microti, the causative agent of babesiosis in humans and rodents. Pathog Glob Health 2023; 117:315-321. [PMID: 36172647 PMCID: PMC10081058 DOI: 10.1080/20477724.2022.2128571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The effect of MMV665941 on the growth of Babesia microti (B. microti) in mice, was investigated in this study using a fluorescence-based SYBR Green I test. Using atom Pair signatures, we investigated the structural similarity between MMV665941 and the commonly used antibabesial medicines diminazene aceturate (DA), imidocarb dipropionate (ID), or atovaquone (AV). In vitro cultures of Babesia bovis (B. bovis) and, Theileria equi (T. equi) were utilized to determine the MMV665941 and AV interaction using combination ratios ranged from 0.75 IC50 MMV665941:0.75 IC50 AV to 0.50 IC50 MMV665941:0.50 IC50 AV. The used combinations were prepared depending on the IC50 of each drug against the in vitro growth of the tested parasite. Every 96 h, the hemolytic anemia in the treated mice was monitored using a Celltac MEK-6450 computerized hematology analyzer. A single dose of 5 mg/kg MMV665941 exhibited inhibition in the B. microti growth from day 4 post-inoculation (p.i.) till day 12 p.i. MMV665941 caused 62.10%, 49.88%, and 74.23% inhibitions in parasite growth at days 4, 6 and 8 p.i., respectively. Of note, 5 mg/kg MMV665941 resulted in quick recovery of hemolytic anemia caused by babesiosis. The atom pair fingerprint (APfp) analysis revealed that MMV665941 and atovaquone (AV) showed maximum structural similarity. Of note, high concentrations (0.75 IC50) of MMV665941 and AV caused synergistic inhibition on B. bovis growth. These findings suggest that MMV665941 might be a promising drug for babesiosis treatment, particularly when combined with the commonly used antibabesial drug, AV.
Collapse
Affiliation(s)
- Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
5
|
Dhal AK, Panda C, Yun SIL, Mahapatra RK. An update on Cryptosporidium biology and therapeutic avenues. J Parasit Dis 2022; 46:923-939. [PMID: 35755159 PMCID: PMC9215156 DOI: 10.1007/s12639-022-01510-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium species has been identified as an important pediatric diarrheal pathogen in resource-limited countries, particularly in very young children (0–24 months). However, the only available drug (nitazoxanide) has limited efficacy and can only be prescribed in a medical setting to children older than one year. Many drug development projects have started to investigate new therapeutic avenues. Cryptosporidium’s unique biology is challenging for the traditional drug discovery pipeline and requires novel drug screening approaches. Notably, in recent years, new methods of oocyst generation, in vitro processing, and continuous three-dimensional cultivation capacities have been developed. This has enabled more physiologically pertinent research assays for inhibitor discovery. In a short time, many great strides have been made in the development of anti-Cryptosporidium drugs. These are expected to eventually turn into clinical candidates for cryptosporidiosis treatment in the future. This review describes the latest development in Cryptosporidium biology, genomics, transcriptomics of the parasite, assay development, and new drug discovery.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Chinmaya Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Soon-IL Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | | |
Collapse
|
6
|
Araveti PB, Vijay M, Kar PP, Varunan S, Srivastava A. MMV560185 from pathogen box induces extrinsic pathway of apoptosis in Theileria annulata infected bovine leucocytes. Int J Parasitol Drugs Drug Resist 2022; 18:20-31. [PMID: 35032948 PMCID: PMC8761611 DOI: 10.1016/j.ijpddr.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Tropical theileriosis is a lymphoproliferative disease caused by the intracellular schizonts of Theileria annulata, an apicomplexan parasite. It causes severe infection in cattle and the untreated cattle would possibly die within 3–4 weeks of infection. The chemotherapy for this disease is largely dependent on the use of hydroxynaphthoquinone, namely buparvaquone. There have been reports recently of the development of resistance against this drug in T. annulata. Hence, identification of new drug molecule(s) or repurposing of existing drug molecule(s) against T. annulata is quite important. Here, we present the screening of 400 compounds included in the open-access Pathogen box from Medicine for Malaria Venture (MMV) to discover the novel compounds with potential inhibitory activity against T. annulata infected bovine leucocytes. We identified two compounds, MMV000062 and MMV560185, with IC50 values of 2.97 μM and 3.07 μM, respectively. MMV000062 and MMV560185 were found non-toxic to BoMac cells with CC50 values 34 μM and > 100 μM, respectively. The therapeutic indices of these compounds, MMV000062 and MMV560185, were calculated as more than 33 and 11, respectively. Further, it was observed that the parasite-infected cells under long-term culture were unable to recover with these compounds. We further deciphered that MMV560185 kills the infected cell by activation of TNFR-1 mediated extrinsic pathway of the apoptosis. The phenotypic characteristics of apoptosis were confirmed by Transmission Electron Microscopy. Our results suggest that it may be possible to develop MMV560185 further for chemotherapeutics of tropical theilerosis.
Collapse
|
7
|
Advances in therapeutic and vaccine targets for Cryptosporidium: Challenges and possible mitigation strategies. Acta Trop 2022; 226:106273. [PMID: 34906550 DOI: 10.1016/j.actatropica.2021.106273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Cryptosporidium is known to be the second most common diarrheal pathogen in children, causing potentially fatal diarrhea and associated with long-term growth stunting and cognitive deficits. The only Food and Drug Administration-approved treatment for cryptosporidiosis is nitazoxanide, but this drug has not shown potentially effective results in susceptible hosts. Therefore, a safe and effective drug for cryptosporidiosis is urgently needed. Cryptosporidium genome sequencing analysis may help develop an effective drug, but both in vitro and in vivo approaches to drug evaluation are not fully standardized. On the other hand, the development of partial immunity after exposure suggests the possibility of a successful and effective vaccine, but protective surrogates are not precise. In this review, we present our current perspectives on novel cryptosporidiosis therapies, vaccine targets and efficacies, as well as potential mitigation plans, recommendations and perceived challenges.
Collapse
|
8
|
Compounds from the Medicines for Malaria Venture Box Inhibit In Vitro Growth of Babesia divergens, a Blood-Borne Parasite of Veterinary and Zoonotic Importance. Molecules 2021; 26:molecules26237118. [PMID: 34885700 PMCID: PMC8658764 DOI: 10.3390/molecules26237118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Babesiosis is an infectious disease with an empty drug pipeline. A search inside chemical libraries for novel potent antibabesial candidates may help fill such an empty drug pipeline. A total of 400 compounds (200 drug-like and 200 probe-like) from the Malaria Box were evaluated in the current study against the in vitro growth of Babesia divergens (B. divergens), a parasite of veterinary and zoonotic importance. Novel and more effective anti-B. divergens drugs than the traditionally used ones were identified. Seven compounds (four drug-like and three probe-like) revealed a highly inhibitory effect against the in vitro growth of B. divergens, with IC50s ≤ 10 nanomolar. Among these hits, MMV006913 exhibited an IC50 value of 1 nM IC50 and the highest selectivity index of 32,000. The atom pair fingerprint (APfp) analysis revealed that MMV006913 and MMV019124 showed maximum structural similarity (MSS) with atovaquone and diminazene aceturate (DA), and with DA and imidocarb dipropionate (ID), respectively. MMV665807 and MMV665850 showed MMS with each other and with ID. Of note, a high concentration (0.75 IC50) of MMV006913 caused additive inhibition of B. divergens growth when combined with DA at 0.75 or 0.50 IC50. The Medicines for Malaria Venture box is a treasure trove of anti-B. divergens candidates according to the obtained results.
Collapse
|
9
|
O'Leary JK, Sleator RD, Lucey B. Cryptosporidium spp. diagnosis and research in the 21 st century. Food Waterborne Parasitol 2021; 24:e00131. [PMID: 34471706 PMCID: PMC8390533 DOI: 10.1016/j.fawpar.2021.e00131] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
The protozoan parasite Cryptosporidium has emerged as a leading cause of diarrhoeal illness worldwide, posing a significant threat to young children and immunocompromised patients. While endemic in the vast majority of developing countries, Cryptosporidium also has the potential to cause waterborne epidemics and large scale outbreaks in both developing and developed nations. Anthroponontic and zoonotic transmission routes are well defined, with the ingestion of faecally contaminated food and water supplies a common source of infection. Microscopy, the current diagnostic mainstay, is considered by many to be suboptimal. This has prompted a shift towards alternative diagnostic techniques in the advent of the molecular era. Molecular methods, particularly PCR, are gaining traction in a diagnostic capacity over microscopy in the diagnosis of cryptosporidiosis, given the laborious and often tedious nature of the latter. Until now, developments in the field of Cryptosporidium detection and research have been somewhat hampered by the intractable nature of this parasite. However, recent advances in the field have taken the tentative first steps towards bringing Cryptosporidium research into the 21st century. Herein, we provide a review of these advances.
Collapse
Affiliation(s)
- Jennifer K. O'Leary
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Roy D. Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| |
Collapse
|
10
|
Tandi M, Sundriyal S. Recent trends in the design of antimicrobial agents using Ugi-multicomponent reaction. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Abstract
High-content screening (HCS) is a cell-based type of phenotypic screening that combines multiple simultaneous readouts with a high level of throughput. A particular benefit of this form of screening for drug discovery is the ability to perform the interrogation in a biologically relevant system. This approach has greatly advanced the field of drug discovery for cryptosporidiosis, a diarrheal disease caused by protozoan parasites of Cryptosporidium spp. These parasites are obligate intracellular parasites and cannot be cultured in vitro without the support of a host cell, limiting the options for potential assay readout. Here we describe an established 384- or 1536-well format high-content imaging (HCI) assay of Cryptosporidium-infected HCT-8 human ileocecal adenocarcinoma cells. This HCS assay is a powerful tool to assess large numbers of compounds to power drug discovery, as well as to phenotypically characterize known Cryptosporidium-active compounds.
Collapse
|
12
|
Vinayak S, Jumani RS, Miller P, Hasan MM, McLeod BI, Tandel J, Stebbins EE, Teixeira JE, Borrel J, Gonse A, Zhang M, Yu X, Wernimont A, Walpole C, Eckley S, Love MS, McNamara CW, Sharma M, Sharma A, Scherer CA, Kato N, Schreiber SL, Melillo B, Striepen B, Huston CD, Comer E. Bicyclic azetidines kill the diarrheal pathogen Cryptosporidium in mice by inhibiting parasite phenylalanyl-tRNA synthetase. Sci Transl Med 2020; 12:eaba8412. [PMID: 32998973 PMCID: PMC8381743 DOI: 10.1126/scitranslmed.aba8412] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022]
Abstract
Cryptosporidium is a protozoan parasite and a leading cause of diarrheal disease and mortality in young children. Currently, there are no fully effective treatments available to cure infection with this diarrheal pathogen. In this study, we report a broad drug repositioning effort that led to the identification of bicyclic azetidines as a new anticryptosporidial series. Members of this series blocked growth in in vitro culture of three Cryptosporidium parvum isolates with EC50 's in 1% serum of <0.4 to 96 nM, had comparable potencies against Cryptosporidium hominis and C. parvum, and was effective in three of four highly susceptible immunosuppressed mice with once-daily dosing administered for 4 days beginning 2 weeks after infection. Comprehensive genetic, biochemical, and chemical studies demonstrated inhibition of C. parvum phenylalanyl-tRNA synthetase (CpPheRS) as the mode of action of this new lead series. Introduction of mutations directly into the C. parvum pheRS gene by CRISPR-Cas9 genome editing resulted in parasites showing high degrees of compound resistance. In vitro, bicyclic azetidines potently inhibited the aminoacylation activity of recombinant ChPheRS. Medicinal chemistry optimization led to the identification of an optimal pharmacokinetic/pharmacodynamic profile for this series. Collectively, these data demonstrate that bicyclic azetidines are a promising series for anticryptosporidial drug development and establish a broad framework to enable target-based drug discovery for this infectious disease.
Collapse
Affiliation(s)
- Sumiti Vinayak
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Rajiv S Jumani
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA
| | - Peter Miller
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Muhammad M Hasan
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA
| | - Briana I McLeod
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jayesh Tandel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin E Stebbins
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jose E Teixeira
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Julien Borrel
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Arthur Gonse
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Mingliang Zhang
- International Discovery Service Unit, WuXi AppTec (Tianjin) Co. Ltd., Tianjin 300457, P.R. China
| | - Xianshui Yu
- International Discovery Service Unit, WuXi AppTec (Tianjin) Co. Ltd., Tianjin 300457, P.R. China
| | - Amy Wernimont
- Structural Genomics Consortium, MaRS Building, South Tower, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
| | - Chris Walpole
- Structural Genomics Consortium, MaRS Building, South Tower, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
| | | | - Melissa S Love
- Calibr, a division of The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Manmohan Sharma
- Structural Parasitology, Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110070, India
| | - Amit Sharma
- Structural Parasitology, Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110070, India
| | - Christina A Scherer
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Nobutaka Kato
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bruno Melillo
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Christopher D Huston
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | - Eamon Comer
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Love MS, McNamara CW. Phenotypic screening techniques for Cryptosporidium drug discovery. Expert Opin Drug Discov 2020; 16:59-74. [PMID: 32892652 DOI: 10.1080/17460441.2020.1812577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Two landmark epidemiological studies identified Cryptosporidium spp. as a significant cause of diarrheal disease in pediatric populations in resource-limited countries. Notably, nitazoxanide is the only approved drug for treatment of cryptosporidiosis but shows limited efficacy. As a result, many drug discovery efforts have commenced to find improved treatments. The unique biology of Cryptosporidium presents challenges for traditional drug discovery methods, which has inspired new assay platforms to study parasite biology and drug screening. Areas covered: The authors review historical advancements in phenotypic-based assays and techniques for Cryptosporidium drug discovery, as well as recent advances that will define future drug discovery. The reliance on phenotypic-based screens and repositioning of phenotypic hits from other pathogens has quickly created a robust pipeline of potential cryptosporidiosis therapeutics. The latest advances involve new in vitro culture methods for oocyst generation, continuous culturing capabilities, and more physiologically relevant assays for testing compounds. Expert opinion: Previous phenotypic screening techniques have laid the groundwork for recent cryptosporidiosis drug discovery efforts. The resulting improved methodologies characterize compound activity, identify, and validate drug targets, and prioritize new compounds for drug development. The most recent improvements in phenotypic assays are poised to help advance compounds into clinical development.
Collapse
Affiliation(s)
- Melissa S Love
- Calibr, a division of The Scripps Research Institute , La Jolla, CA, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute , La Jolla, CA, USA
| |
Collapse
|
14
|
Martin KA, Jesudoss Chelladurai JRJ, Bader C, Carreiro E, Long K, Thompson K, Brewer MT. Repurposing the open access malaria box reveals compounds with activity against Tritrichomonas foetus trophozoites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:89-93. [PMID: 32734889 PMCID: PMC7326994 DOI: 10.1016/j.ijpddr.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Abstract
The protozoan parasite Tritrichomonas foetus causes early embryonic death in cattle which results in severe economic loss. In the United States, there are no drugs are approved for treatment of this pathogen. In this study, we evaluated in vitro anti-protozoal effects of compounds from an open access chemical library against T. foetus trophozoites. An initial high-throughput screen identified 16 compounds of interest. Further investigation revealed 12 compounds that inhibited parasite growth and 4 compounds with lethal effects. For lethal compounds, dose-response curves were constructed and the LD50 was calculated for laboratory and field strains of T. foetus. Our experiments revealed chemical scaffolds that were parasiticidal in the micromolar range, and these scaffolds provide a starting point for drug discovery efforts. Further investigation is still needed to investigate suitability of these scaffolds and related compounds in food animals. Importantly, open access chemical libraries can be useful for identifying compounds with activity against protozoan pathogens of veterinary importance. No legal treatments are available for bovine trichomoniasis in the United States. The open access malaria box was screened for compounds with activity against T. foetus trophozoites. Identification of several scaffolds meriting further investigation for suitability in food animals.
Collapse
Affiliation(s)
- Katy A Martin
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | - Christopher Bader
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Elizabeth Carreiro
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Katelyn Long
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Kylie Thompson
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Matthew T Brewer
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
15
|
Pines G, Fankhauser RG, Eckert CA. Predicting Drug Resistance Using Deep Mutational Scanning. Molecules 2020; 25:E2265. [PMID: 32403408 PMCID: PMC7248951 DOI: 10.3390/molecules25092265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Drug resistance is a major healthcare challenge, resulting in a continuous need to develop new inhibitors. The development of these inhibitors requires an understanding of the mechanisms of resistance for a critical mass of occurrences. Recent genome editing technologies based on high-throughput DNA synthesis and sequencing may help to predict mutations resulting in resistance by testing large mutagenesis libraries. Here we describe the rationale of this approach, with examples and relevance to drug development and resistance in malaria.
Collapse
Affiliation(s)
- Gur Pines
- Department of Entomology, Agricultural Research Organization, Volcani Center, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Reilly G. Fankhauser
- Department of Dermatology, Oregon Health & Science University, Baird Hall 3225 SW Pavilion Loop, Portland, OR 97239, USA;
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, 027 UCB, Boulder, CO 80309, USA
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| |
Collapse
|
16
|
Müller J, Winzer PA, Samby K, Hemphill A. In Vitro Activities of MMV Malaria Box Compounds against the Apicomplexan Parasite Neospora caninum, the Causative Agent of Neosporosis in Animals. Molecules 2020; 25:molecules25061460. [PMID: 32213892 PMCID: PMC7145303 DOI: 10.3390/molecules25061460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Neospora caninum is a major cause of abortion in cattle and represents a veterinary health problem of great economic significance. In order to identify novel chemotherapeutic agents for the treatment of neosporosis, the Medicines for Malaria Venture (MMV) Malaria Box, a unique collection of anti-malarial compounds, were screened against N. caninum tachyzoites, and the most efficient compounds were characterized in more detail. (2) Methods: A N. caninum beta-galactosidase reporter strain grown in human foreskin fibroblasts was treated with 390 compounds from the MMV Malaria Box. The IC50s of nine compounds were determined, all of which had been previously been shown to be active against another apicomplexan parasite, Theileria annulata. The effects of three of these compounds on the ultrastructure of N. caninum tachyzoites were further investigated by transmission electron microscopy at different timepoints after initiation of drug treatment. (3) Results: Five MMV Malaria Box compounds exhibited promising IC50s below 0.2 µM. The compound with the lowest IC50, namely 25 nM, was MMV665941. This compound and two others, MMV665807 and MMV009085, specifically induced distinct alterations in the tachyzoites. More specifically, aberrant structural changes were first observed in the parasite mitochondrion, and subsequently progressed to other cytoplasmic compartments of the tachyzoites. The pharmacokinetic (PK) data obtained in mice suggest that treatment with MMV665941 could be potentially useful for further in vivo studies. (4) Conclusions: We have identified five novel compounds with promising activities against N. caninum, the effects of three of these compounds were studies by transmission electron microscopy (TEM). Their modes of action are unknown and require further investigation.
Collapse
Affiliation(s)
- Joachim Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Correspondence: (J.M.); (A.H.); Tel.: 0041-31-631-23-84 (J.M. & A.H.); Fax: 0041-31-631-24-76 (J.M. & A.H.)
| | - Pablo A. Winzer
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland;
| | - Kirandeep Samby
- Medicines for Malaria Venture (MMV), 20, Route de Pré-Bois, 1215 Geneva 15, Switzerland;
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Correspondence: (J.M.); (A.H.); Tel.: 0041-31-631-23-84 (J.M. & A.H.); Fax: 0041-31-631-24-76 (J.M. & A.H.)
| |
Collapse
|
17
|
Lee S, Ginese M, Girouard D, Beamer G, Huston CD, Osbourn D, Griggs DW, Tzipori S. Piperazine-Derivative MMV665917: An Effective Drug in the Diarrheic Piglet Model of Cryptosporidium hominis. J Infect Dis 2020; 220:285-293. [PMID: 30893435 DOI: 10.1093/infdis/jiz105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/18/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cryptosporidiosis, an enteric protozoon, causes substantial morbidity and mortality associated with diarrhea in children <2 years old in low- to middle-income countries. There is no vaccine and treatments are inadequate. A piperazine-based compound, MMV665917, has in vitro and in vivo efficacy against Cryptosporidium parvum. In this study, we evaluated the efficacy of MMV665917 in gnotobiotic piglets experimentally infected with Cryptosporidium hominis, the species responsible for >75% of diarrhea reported in these children. METHODS Gnotobiotic piglets were orally challenged with C hominis oocysts, and oral treatment with MMV665917 was commenced 3 days after challenge. Oocyst excretion and diarrhea severity were observed daily, and mucosal colonization and lesions were recorded after necropsy. RESULTS MMV665917 significantly reduced fecal oocyst excretion, parasite colonization and damage to the intestinal mucosa, and peak diarrheal symptoms, compared with infected untreated controls. A dose of 20 mg/kg twice daily for 7 days was more effective than 10 mg/kg. There were no signs of organ toxicity at either dose, but 20 mg/kg was associated with slightly elevated blood cholesterol and monocytes at euthanasia. CONCLUSIONS These results demonstrate the effectiveness of this drug against C hominis. Piperazine-derivative MMV665917 may potentially be used to treat human cryptosporidiosis; however, further investigations are required.
Collapse
Affiliation(s)
- Sangun Lee
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - Melanie Ginese
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - Don Girouard
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - Christopher D Huston
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington
| | - Damon Osbourn
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - David W Griggs
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| |
Collapse
|
18
|
Jin Z, Ma J, Zhu G, Zhang H. Discovery of Novel Anti-cryptosporidial Activities From Natural Products by in vitro High-Throughput Phenotypic Screening. Front Microbiol 2019; 10:1999. [PMID: 31551955 PMCID: PMC6736568 DOI: 10.3389/fmicb.2019.01999] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/15/2019] [Indexed: 01/12/2023] Open
Abstract
Cryptosporidium parvum is a globally distributed zoonotic protozoan parasite of both medical and veterinary importance. Nitazoxanide is the only FDA-approved drug to treat cryptosporidiosis in immunocompetent people, but it is not fully effective. There is no drug approved by FDA for use in immunocompromised patients or in animals. In the present study, we conducted phenotypic screening of 800 nature products with defined chemical structures for potential novel activity against the growth of C. parvum in vitro. We identified a large number of compounds showing low to sub-micromolar anti-cryptosporidial activity, and fully characterized 16 top hits for anti-parasitic efficacies in vitro [EC50 values from 0.122 to 3.940 μM, cytotoxicity (TC50) values from 6.31 to >100 μm] and their safety margins. Among them, 11 compounds were derived from plants with EC50 values from 0.267 to 3.940 μM [i.e., cedrelone, deoxysappanone B 7,4'-dimethyl ether (Deox B 7,4), tanshinone IIA, baicalein, deoxysappanone B 7,3'-dimethyl ether acetate, daunorubicin, dihydrogambogic acid, deacetylgedunin, deacetoxy-7-oxogedunin, dihydrotanshinone I, 2,3,4'-trihydroxy-4-methoxybenzophenone, and 3-deoxo-3beta-hydroxy-mexicanolide 16-enol ether]. Three compounds with sub-micromolar EC50 values (i.e., cedrelone, Deox B 7,4, and baicalein) were further investigated for their effectiveness on various parasite developmental stages in vitro. Cedrelone and baicalein were more effective than Dexo B 7,4 when treating parasite for shorter periods of time, but all three compounds could kill the parasite irreversibly. These findings provide us a large selection of new structures derived from natural products to be explored for developing anti-cryptosporidial therapeutics.
Collapse
Affiliation(s)
- Zi Jin
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jingbo Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States.,Department of Parasitology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
19
|
Discovering the in vitro potent inhibitors against Babesia and Theileria parasites by repurposing the Malaria Box: A review. Vet Parasitol 2019; 274:108895. [PMID: 31494399 DOI: 10.1016/j.vetpar.2019.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/27/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
There is an innovative approach to discovering and developing novel potent and safe anti-Babesia and anti-Theileria agents for the control of animal piroplasmosis. Large-scale screening of 400 compounds from a Malaria Box (a treasure trove of 400 diverse compounds with antimalarial activity has been established by Medicines for Malaria Venture) against the in vitro growth of bovine Babesia and equine Babesia and Theileria parasites was performed, and the data were published in a brief with complete dataset from 236 screens of the Malaria Box compounds. Therefore, in this review, we explored and discussed in detail the in vitro inhibitory effects of 400 antimalarial compounds (200 drug-like and 200 probe-like) from the Malaria Box against Babesia (B.) bovis, B. bigemina, B. caballi, and Theileria (T.) equi. Seventeen hits were the most interesting with regard to bovine Babesia parasites, with mean selectivity indices (SIs) greater than 300 and half maximal inhibitory concentration (IC50s) ranging from 50 to 410 nM. The most interesting compounds with regard to equine Babesia and Theileria parasites were MMV020490 and MMV020275, with mean SIs > 258.68 and >251.55, respectively, and IC50s ranging from 76 to 480 nM. Ten novel anti-B. bovis, anti-B. bigemina, anti-T. equi, and anti-B. caballi hits, MMV666093, MMV396794, MMV006706, MMV665941, MMV085203, MMV396693, MMV006787, MMV073843, MMV007092, and MMV665875, with nanomole levels of IC50 were identified. The most interesting hits were MMV396693, MMV073843, MMV666093, and MMV665875, with mean SIs greater than 307.8 and IC50s ranging from 43 to 630 nM for both bovine Babesia and equine Babesia and Theileria parasites. Screening the Malaria Box against the in vitro growth of Babesia and Theileria parasites helped with the discovery of new drugs than those traditionally used, diminazene aceturate and imidocarb dipropionate, and indicated the potential of the Malaria Box in finding new, potent antibabesial drugs.
Collapse
|
20
|
Jumani RS, Hasan MM, Stebbins EE, Donnelly L, Miller P, Klopfer C, Bessoff K, Teixeira JE, Love MS, McNamara CW, Huston CD. A suite of phenotypic assays to ensure pipeline diversity when prioritizing drug-like Cryptosporidium growth inhibitors. Nat Commun 2019; 10:1862. [PMID: 31015448 PMCID: PMC6478823 DOI: 10.1038/s41467-019-09880-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/01/2019] [Indexed: 01/07/2023] Open
Abstract
Cryptosporidiosis is a leading cause of life-threatening diarrhea in children, and the only currently approved drug is ineffective in malnourished children and immunocompromised people. Large-scale phenotypic screens are ongoing to identify anticryptosporidial compounds, but optimal approaches to prioritize inhibitors and establish a mechanistically diverse drug development pipeline are unknown. Here, we present a panel of medium-throughput mode of action assays that enable testing of compounds in several stages of the Cryptosporidium life cycle. Phenotypic profiles are given for thirty-nine anticryptosporidials. Using a clustering algorithm, the compounds sort by phenotypic profile into distinct groups of inhibitors that are either chemical analogs (i.e. same molecular mechanism of action (MMOA)) or known to have similar MMOA. Furthermore, compounds belonging to multiple phenotypic clusters are efficacious in a chronic mouse model of cryptosporidiosis. This suite of phenotypic assays should ensure a drug development pipeline with diverse MMOA without the need to identify underlying mechanisms.
Collapse
Affiliation(s)
- Rajiv S Jumani
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.,Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT, 05405, USA.,Novartis Institute for Tropical Diseases, Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | - Muhammad M Hasan
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.,Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT, 05405, USA
| | - Erin E Stebbins
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Liam Donnelly
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Peter Miller
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Connor Klopfer
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Kovi Bessoff
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.,Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305-5101, USA
| | - Jose E Teixeira
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Melissa S Love
- Calibr at The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Case W McNamara
- Calibr at The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christopher D Huston
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA. .,Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT, 05405, USA. .,Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| |
Collapse
|
21
|
Screening the Pathogen Box for Identification of New Chemical Agents with Anti- Fasciola hepatica Activity. Antimicrob Agents Chemother 2019; 63:AAC.02373-18. [PMID: 30602522 DOI: 10.1128/aac.02373-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Fascioliasis is an infectious parasitic disease distributed globally and caused by the liver fluke Fasciola hepatica or F. gigantica This neglected tropical disease affects both animals and humans, and it represents a latent public health problem due to the significant economic losses related to its effects on animal husbandry. For decades, triclabendazole has been the unique anti-Fasciola drug that can effectively treat this disease. However, triclabendazole resistance in fascioliasis has more recently been reported around the world, and thus, the discovery of novel drugs is an urgent need. The aim of this study was to investigate the fasciocidal properties of 400 compounds contained in the Pathogen Box. The first stage of the screening was carried out by measuring the fasciocidal activity on metacercariae at a concentration of 33 μM each compound (the standard dose). Subsequently, the activities of the most active compounds (n = 33) at their 50% inhibitory concentration (IC50) values against metacercariae were assayed, and the results showed that 13 compounds had IC50s of ≤10 μM. The second stage queried the activities of these compounds at 33 μM against adult flukes, with seven of the compounds producing high mortality rates of >50%. Four hit compounds were selected on the basis of their predicted nontoxic properties, and the IC50 values obtained for adult worms were <10 μM; thus, these compounds represented the best fasciocidal compounds tested here. A cytotoxicity assay on four types of cell lines demonstrated that three compounds were nontoxic at their most active concentration. In conclusion, three hit compounds identified in this proof-of-concept study are potential candidates in the discovery of new fasciocidal drugs. Further studies are warranted.
Collapse
|
22
|
Evaluation of 4-Amino 2-Anilinoquinazolines against Plasmodium and Other Apicomplexan Parasites In Vitro and in a P. falciparum Humanized NOD- scid IL2Rγ null Mouse Model of Malaria. Antimicrob Agents Chemother 2019; 63:AAC.01804-18. [PMID: 30559138 DOI: 10.1128/aac.01804-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022] Open
Abstract
A series of 4-amino 2-anilinoquinazolines optimized for activity against the most lethal malaria parasite of humans, Plasmodium falciparum, was evaluated for activity against other human Plasmodium parasites and related apicomplexans that infect humans and animals. Four of the most promising compounds from the 4-amino 2-anilinoquinazoline series were equally as effective against the asexual blood stages of the zoonotic P. knowlesi, suggesting that they could also be effective against the closely related P. vivax, another important human pathogen. The 2-anilinoquinazoline compounds were also potent against an array of P. falciparum parasites resistant to clinically available antimalarial compounds, although slightly less so than against the drug-sensitive 3D7 parasite line. The apicomplexan parasites Toxoplasma gondii, Babesia bovis, and Cryptosporidium parvum were less sensitive to the 2-anilinoquinazoline series with a 50% effective concentration generally in the low micromolar range, suggesting that the yet to be discovered target of these compounds is absent or highly divergent in non-Plasmodium parasites. The 2-anilinoquinazoline compounds act as rapidly as chloroquine in vitro and when tested in rodents displayed a half-life that contributed to the compound's capacity to clear P. falciparum blood stages in a humanized mouse model. At a dose of 50 mg/kg of body weight, adverse effects to the humanized mice were noted, and evaluation against a panel of experimental high-risk off targets indicated some potential off-target activity. Further optimization of the 2-anilinoquinazoline antimalarial class will concentrate on improving in vivo efficacy and addressing adverse risk.
Collapse
|
23
|
Bones AJ, Jossé L, More C, Miller CN, Michaelis M, Tsaousis AD. Past and future trends of Cryptosporidium in vitro research. Exp Parasitol 2018; 196:28-37. [PMID: 30521793 PMCID: PMC6333944 DOI: 10.1016/j.exppara.2018.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022]
Abstract
Cryptosporidium is a genus of single celled parasites capable of infecting a wide range of animals including humans. Cryptosporidium species are members of the phylum apicomplexa, which includes well-known genera such as Plasmodium and Toxoplasma. Cryptosporidium parasites cause a severe gastro-intestinal disease known as cryptosporidiosis. They are one of the most common causes of childhood diarrhoea worldwide, and infection can have prolonged detrimental effects on the development of children, but also can be life threatening to HIV/AIDS patients and transplant recipients. A variety of hosts can act as reservoirs, and Cryptosporidium can persist in the environment for prolonged times as oocysts. While there has been substantial interest in these parasites, there is very little progress in terms of treatment development and understanding the majority of the life cycle of this unusual organism. In this review, we will provide an overview on the existing knowledge of the biology of the parasite and the current progress in developing in vitro cultivation systems. We will then describe a synopsis of current and next generation approaches that could spearhead further research in combating the parasite.
Collapse
Affiliation(s)
- Alexander J Bones
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Lyne Jossé
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Charlotte More
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Christopher N Miller
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | - Anastasios D Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK; School of Biosciences, University of Kent, Canterbury, Kent, UK.
| |
Collapse
|
24
|
Bartelt LA, Bolick DT, Kolling GL, Stebbins E, Huston CD, Guerrant RL, Hoffman PS. Amixicile Reduces Severity of Cryptosporidiosis but Does Not Have In Vitro Activity against Cryptosporidium. Antimicrob Agents Chemother 2018; 62:e00718-18. [PMID: 30297368 PMCID: PMC6256802 DOI: 10.1128/aac.00718-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Cryptosporidium species cause significant morbidity in malnourished children. Nitazoxanide (NTZ) is the only approved treatment for cryptosporidiosis, but NTZ has diminished effectiveness during malnutrition. Here, we show that amixicile, a highly selective water-soluble derivative of NTZ diminishes Cryptosporidium infection severity in a malnourished mouse model despite a lack of direct anticryptosporidial activity. We suggest that amixicile, by tamping down anaerobes associated with intestinal inflammation, reverses weight loss and indirectly mitigates infection-associated pathology.
Collapse
Affiliation(s)
- Luther A Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David T Bolick
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Glynis L Kolling
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Erin Stebbins
- Division of Infectious Diseases, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Christopher D Huston
- Division of Infectious Diseases, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Paul S Hoffman
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
25
|
Janes J, Young ME, Chen E, Rogers NH, Burgstaller-Muehlbacher S, Hughes LD, Love MS, Hull MV, Kuhen KL, Woods AK, Joseph SB, Petrassi HM, McNamara CW, Tremblay MS, Su AI, Schultz PG, Chatterjee AK. The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis. Proc Natl Acad Sci U S A 2018; 115:10750-10755. [PMID: 30282735 PMCID: PMC6196526 DOI: 10.1073/pnas.1810137115] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The chemical diversity and known safety profiles of drugs previously tested in humans make them a valuable set of compounds to explore potential therapeutic utility in indications outside those originally targeted, especially neglected tropical diseases. This practice of "drug repurposing" has become commonplace in academic and other nonprofit drug-discovery efforts, with the appeal that significantly less time and resources are required to advance a candidate into the clinic. Here, we report a comprehensive open-access, drug repositioning screening set of 12,000 compounds (termed ReFRAME; Repurposing, Focused Rescue, and Accelerated Medchem) that was assembled by combining three widely used commercial drug competitive intelligence databases (Clarivate Integrity, GVK Excelra GoStar, and Citeline Pharmaprojects), together with extensive patent mining of small molecules that have been dosed in humans. To date, 12,000 compounds (∼80% of compounds identified from data mining) have been purchased or synthesized and subsequently plated for screening. To exemplify its utility, this collection was screened against Cryptosporidium spp., a major cause of childhood diarrhea in the developing world, and two active compounds previously tested in humans for other therapeutic indications were identified. Both compounds, VB-201 and a structurally related analog of ASP-7962, were subsequently shown to be efficacious in animal models of Cryptosporidium infection at clinically relevant doses, based on available human doses. In addition, an open-access data portal (https://reframedb.org) has been developed to share ReFRAME screen hits to encourage additional follow-up and maximize the impact of the ReFRAME screening collection.
Collapse
Affiliation(s)
- Jeff Janes
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Megan E Young
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Emily Chen
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Nicole H Rogers
- California Institute for Biomedical Research, La Jolla, CA 92037
| | | | - Laura D Hughes
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Melissa S Love
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Mitchell V Hull
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Kelli L Kuhen
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Ashley K Woods
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Sean B Joseph
- California Institute for Biomedical Research, La Jolla, CA 92037
| | | | - Case W McNamara
- California Institute for Biomedical Research, La Jolla, CA 92037
| | | | - Andrew I Su
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Peter G Schultz
- California Institute for Biomedical Research, La Jolla, CA 92037;
| | | |
Collapse
|
26
|
Jiménez-Meléndez A, Rico-San Román L, Hemphill A, Balmer V, Ortega-Mora LM, Álvarez-García G. Repurposing of commercially available anti-coccidials identifies diclazuril and decoquinate as potential therapeutic candidates against Besnoitia besnoiti infection. Vet Parasitol 2018; 261:77-85. [PMID: 30253854 DOI: 10.1016/j.vetpar.2018.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 01/07/2023]
Abstract
Repurposing of currently marketed compounds with proven efficacy against apicomplexan parasites was used as an approach to define novel candidate therapeutics for bovine besnoitiosis. Besnoitia besnoiti tachyzoites grown in MARC-145 cells were exposed to different concentrations of toltrazuril, diclazuril, imidocarb, decoquinate, sulfadiazine and trimethoprim alone or in combination with sulfadiazine. Drugs were added either just prior to infection of MARC-145 cells (0 h post infection, hpi) or at 6 hpi. A primary evaluation of drug effects was done by direct immunofluorescence staining and counting. Potential effects on the host cells were assessed using a XTT kit for cell proliferation. Compounds displaying promising efficacy were selected for IC50 and IC99 determination by qPCR. In addition, the impact of drugs on the tachyzoite ultrastructure was assessed by TEM and long-term treatment assays were performed. Cytotoxicity assays confirmed that none of the compounds affected the host cells. Decoquinate and diclazuril displayed invasion inhibition rates of 90 and 83% at 0 h pi and 73 and 72% at 6 h pi, respectively. The remaining drugs showed lower efficacy and were not further studied. Decoquinate and diclazuril exhibited IC99 values of 100 nM and 29.9 μM, respectively. TEM showed that decoquinate primarily affected the parasite mitochondrium, whilst diclazuril interfered in cytokinesis of daughter zoites. The present study demonstrates the efficacy of diclazuril and decoquinate against B. besnoiti in vitro and further assessments of safety and efficacy of both drugs should be performed in the target species.
Collapse
Affiliation(s)
- Alejandro Jiménez-Meléndez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Laura Rico-San Román
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Vreni Balmer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Gema Álvarez-García
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
27
|
Lee S, Beamer G, Tzipori S. The piglet acute diarrhea model for evaluating efficacy of treatment and control of cryptosporidiosis. Hum Vaccin Immunother 2018; 15:1445-1452. [PMID: 30036127 DOI: 10.1080/21645515.2018.1498436] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cryptosporidium spp. are ranked as the second leading pathogens causing life-threatening diarrhea in children under 2 years of age. Although Cryptosporidium hominis causes three quarters of the cases of cryptosporidiosis, studies on C. hominis are limited since natural disease due to C. hominis is host-restricted to humans only. In this mini-review, we demonstrate the successfully adoption, propagation, and utility of the C. hominis strain TU502, isolated originally from an infant with diarrhea in Uganda, in gnotobiotic piglets. The TU502 C. hominis strain and the gnotobiotic piglet model currently are the only available preclinical tools to evaluate therapeutics that specifically target C. hominis. Infection in this gnotobiotic piglet model displays similar clinical symptoms of diarrhea observed in humans. Here we further describe how this unique model of acute diarrhea, can be used for drug discovery and testing of vaccine candidates against cryptosporidiosis. The shared anatomical, physiological and immunological characteristics between piglets and human infants makes the model ideal for evaluating the efficacy of therapeutics and vaccines against cryptosporidiosis as they become available.
Collapse
Affiliation(s)
- Sangun Lee
- a Department of Infectious Disease and Global Health , Cummings School of Veterinary Medicine at Tufts University , North Grafton, MA , USA
| | - Gillian Beamer
- a Department of Infectious Disease and Global Health , Cummings School of Veterinary Medicine at Tufts University , North Grafton, MA , USA
| | - Saul Tzipori
- a Department of Infectious Disease and Global Health , Cummings School of Veterinary Medicine at Tufts University , North Grafton, MA , USA
| |
Collapse
|
28
|
Khan A, Shaik JS, Grigg ME. Genomics and molecular epidemiology of Cryptosporidium species. Acta Trop 2018; 184:1-14. [PMID: 29111140 DOI: 10.1016/j.actatropica.2017.10.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022]
Abstract
Cryptosporidium is one of the most widespread protozoan parasites that infects domestic and wild animals and is considered the second major cause of diarrhea and death in children after rotavirus. So far, around 20 distinct species are known to cause severe to moderate infections in humans, of which Cryptosporidium hominis and Cryptosporidium parvum are the major causative agents. Currently, ssurRNA and gp60 are used as the optimal markers for differentiating species and subtypes respectively. Over the last decade, diagnostic tools to detect and differentiate Cryptosporidium species at the genotype and subtype level have improved, but our understanding of the zoonotic and anthroponotic transmission potential of each species is less clear, largely because of the paucity of high resolution whole genome sequencing data for the different species. Defining which species possess an anthroponotic vs. zoonotic transmission cycle is critical if we are to limit the spread of disease between animals and humans. Likewise, it is unclear to what extent genetic hybridization impacts disease potential or the emergence of outbreak strains. The development of high resolution genetic markers and whole genome sequencing of different species should provide new insights into these knowledge gaps. The aim of this review is to outline currently available molecular epidemiology and genomics data for different species of Cryptosporidium.
Collapse
Affiliation(s)
- Asis Khan
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Jahangheer S Shaik
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael E Grigg
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Chen JJ, Rateb ME, Love MS, Xu Z, Yang D, Zhu X, Huang Y, Zhao LX, Jiang Y, Duan Y, McNamara CW, Shen B. Herbicidins from Streptomyces sp. CB01388 Showing Anti- Cryptosporidium Activity. JOURNAL OF NATURAL PRODUCTS 2018; 81:791-797. [PMID: 29469575 DOI: 10.1021/acs.jnatprod.7b00850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A high-content imaging assay was used to screen the fraction collection of the Natural Product Library at The Scripps Research Institute for inhibitors of Cryptosporidium parvum. A chemical investigation of one strain, Streptomyces sp. CB01388, resulted in the isolation of six herbicidins (1-6), one of which is new (herbicidin L, 1). Five of the six herbicidins (1-3, 5, 6) showed moderate inhibitory activity against C. parvum, with 1 and 6 comparable to the FDA-approved drug nitazoxanide, and 2-6 showed no toxicity to the host HCT-8 cells and human HEK293T and HepG2 cells. These findings highlight the herbicidin scaffold for anti- Cryptosporidium drug development.
Collapse
Affiliation(s)
- Jian-Jun Chen
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Mostafa E Rateb
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Melissa S Love
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Zhengren Xu
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Dong Yang
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410013 , People's Republic of China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
| | - Li-Xing Zhao
- Yunnan Institute of Microbiology , Yunnan University , Kunming , Yunnan 650091 , People's Republic of China
| | - Yi Jiang
- Yunnan Institute of Microbiology , Yunnan University , Kunming , Yunnan 650091 , People's Republic of China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410013 , People's Republic of China
| | - Case W McNamara
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Ben Shen
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Department of Molecular Medicine , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| |
Collapse
|
30
|
Identification of novel therapeutic candidates in Cryptosporidium parvum: an in silico approach. Parasitology 2018; 145:1907-1916. [PMID: 29692282 DOI: 10.1017/s0031182018000677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Unavailability of vaccines and effective drugs are primarily responsible for the growing menace of cryptosporidiosis. This study has incorporated a bioinformatics-based screening approach to explore potential vaccine candidates and novel drug targets in Cryptosporidium parvum proteome. A systematic strategy was defined for comparative genomics, orthology with related Cryptosporidium species, prioritization parameters and MHC class I and II binding promiscuity. The approach reported cytoplasmic protein cgd7_1830, a signal peptide protein, as a novel drug target. SWISS-MODEL online server was used to generate the 3D model of the protein and was validated by PROCHECK. The model has been subjected to in silico docking study with screened potent lead compounds from the ZINC database, PubChem and ChEMBL database using Flare software package of Cresset®. Furthermore, the approach reported protein cgd3_1400, as a vaccine candidate. The predicted B- and T-cell epitopes on the proposed vaccine candidate with highest scores were also subjected to docking study with MHC class I and II alleles using ClusPro web server. Results from this study could facilitate selection of proteins which could serve as drug targets and vaccine candidates to efficiently tackle the growing threat of cryptosporidiosis.
Collapse
|
31
|
Chao AT, Lee BH, Wan KF, Selva J, Zou B, Gedeck P, Beer DJ, Diagana TT, Bonamy GMC, Manjunatha UH. Development of a Cytopathic Effect-Based Phenotypic Screening Assay against Cryptosporidium. ACS Infect Dis 2018; 4:635-645. [PMID: 29341586 DOI: 10.1021/acsinfecdis.7b00247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryptosporidiosis is a diarrheal disease predominantly caused by Cryptosporidium parvum ( Cp) and Cryptosporidium hominis ( Ch), apicomplexan parasites which infect the intestinal epithelial cells of their human hosts. The only approved drug for cryptosporidiosis is nitazoxanide, which shows limited efficacy in immunocompromised children, the most vulnerable patient population. Thus, new therapeutics and in vitro infection models are urgently needed to address the current unmet medical need. Toward this aim, we have developed novel cytopathic effect (CPE)-based Cp and Ch assays in human colonic tumor (HCT-8) cells and compared them to traditional imaging formats. Further model validation was achieved through screening a collection of FDA-approved drugs and confirming many previously known anti- Cryptosporidium hits as well as identifying a few novel candidates. Collectively, our data reveals this model to be a simple, functional, and homogeneous gain of signal format amenable to high throughput screening, opening new avenues for the discovery of novel anticryptosporidials.
Collapse
Affiliation(s)
- Alexander T. Chao
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Boon Heng Lee
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Kah Fei Wan
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Jeremy Selva
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Bin Zou
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Peter Gedeck
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - David John Beer
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Thierry T. Diagana
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Ghislain M. C. Bonamy
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
32
|
Vu H, Pedro L, Mak T, McCormick B, Rowley J, Liu M, Di Capua A, Williams-Noonan B, Pham NB, Pouwer R, Nguyen B, Andrews KT, Skinner-Adams T, Kim J, Hol WGJ, Hui R, Crowther GJ, Van Voorhis WC, Quinn RJ. Fragment-Based Screening of a Natural Product Library against 62 Potential Malaria Drug Targets Employing Native Mass Spectrometry. ACS Infect Dis 2018; 4:431-444. [PMID: 29436819 PMCID: PMC5902791 DOI: 10.1021/acsinfecdis.7b00197] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Natural
products are well known for their biological relevance, high degree
of three-dimensionality, and access to areas of largely unexplored
chemical space. To shape our understanding of the interaction between
natural products and protein targets in the postgenomic era, we have
used native mass spectrometry to investigate 62 potential protein
targets for malaria using a natural-product-based fragment library.
We reveal here 96 low-molecular-weight natural products identified
as binding partners of 32 of the putative malarial targets. Seventy-nine
(79) fragments have direct growth inhibition on Plasmodium
falciparum at concentrations that are promising for the development
of fragment hits against these protein targets. This adds a fragment
library to the published HTS active libraries in the public domain.
Collapse
Affiliation(s)
- Hoan Vu
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Liliana Pedro
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Tin Mak
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Brendan McCormick
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Jessica Rowley
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Angela Di Capua
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Billy Williams-Noonan
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Ngoc B. Pham
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Rebecca Pouwer
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Bao Nguyen
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Katherine T. Andrews
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Tina Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | | | | | - Raymond Hui
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, seventh floor 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | | | | | - Ronald J. Quinn
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| |
Collapse
|
33
|
Jumani RS, Bessoff K, Love MS, Miller P, Stebbins EE, Teixeira JE, Campbell MA, Meyers MJ, Zambriski JA, Nunez V, Woods AK, McNamara CW, Huston CD. A Novel Piperazine-Based Drug Lead for Cryptosporidiosis from the Medicines for Malaria Venture Open-Access Malaria Box. Antimicrob Agents Chemother 2018; 62:e01505-17. [PMID: 29339392 PMCID: PMC5913971 DOI: 10.1128/aac.01505-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Cryptosporidiosis causes life-threatening diarrhea in children under the age of 5 years and prolonged diarrhea in immunodeficient people, especially AIDS patients. The standard of care, nitazoxanide, is modestly effective in children and ineffective in immunocompromised individuals. In addition to the need for new drugs, better knowledge of drug properties that drive in vivo efficacy is needed to facilitate drug development. We report the identification of a piperazine-based lead compound for Cryptosporidium drug development, MMV665917, and a new pharmacodynamic method used for its characterization. The identification of MMV665917 from the Medicines for Malaria Venture Malaria Box was followed by dose-response studies, in vitro toxicity studies, and structure-activity relationship studies using commercial analogues. The potency of this compound against Cryptosporidium parvum Iowa and field isolates was comparable to that against Cryptosporidium hominis Furthermore, unlike nitazoxanide, clofazimine, and paromomycin, MMV665917 appeared to be curative in a NOD SCID gamma mouse model of chronic cryptosporidiosis. MMV665917 was also efficacious in a gamma interferon knockout mouse model of acute cryptosporidiosis. To determine if efficacy in this mouse model of chronic infection might relate to whether compounds are parasiticidal or parasitistatic for C. parvum, we developed a novel in vitro parasite persistence assay. This assay suggested that MMV665917 was parasiticidal, unlike nitazoxanide, clofazimine, and paromomycin. The assay also enabled determination of the concentration of the compound required to maximize the rate of parasite elimination. This time-kill assay can be used to prioritize early-stage Cryptosporidium drug leads and may aid in planning in vivo efficacy experiments. Collectively, these results identify MMV665917 as a promising lead and establish a new method for characterizing potential anticryptosporidial agents.
Collapse
Affiliation(s)
- R S Jumani
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - K Bessoff
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - M S Love
- California Institute for Biomedical Research, La Jolla, California, USA
| | - P Miller
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - E E Stebbins
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - J E Teixeira
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - M A Campbell
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - M J Meyers
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - J A Zambriski
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - V Nunez
- California Institute for Biomedical Research, La Jolla, California, USA
| | - A K Woods
- California Institute for Biomedical Research, La Jolla, California, USA
| | - C W McNamara
- California Institute for Biomedical Research, La Jolla, California, USA
| | - C D Huston
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
34
|
Characterization of Plasmodium Atg3-Atg8 Interaction Inhibitors Identifies Novel Alternative Mechanisms of Action in Toxoplasma gondii. Antimicrob Agents Chemother 2018; 62:AAC.01489-17. [PMID: 29158278 DOI: 10.1128/aac.01489-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/15/2017] [Indexed: 01/17/2023] Open
Abstract
Protozoan parasites, including the apicomplexan pathogens Plasmodium falciparum (which causes malaria) and Toxoplasma gondii (which causes toxoplasmosis), infect millions of people worldwide and represent major human disease burdens. Despite their prevalence, therapeutic strategies to treat infections caused by these parasites remain limited and are threatened by the emergence of drug resistance, highlighting the need for the identification of novel drug targets. Recently, homologues of the core autophagy proteins, including Atg8 and Atg3, were identified in many protozoan parasites. Importantly, components of the Atg8 conjugation system that facilitate the lipidation of Atg8 are required for both canonical and parasite-specific functions and are essential for parasite viability. Structural characterization of the P. falciparum Atg3-Atg8 (PfAtg3-Atg8) interaction has led to the identification of compounds that block this interaction. Additionally, many of these compounds inhibit P. falciparum growth in vitro, demonstrating the viability of this pathway as a drug target. Given the essential role of the Atg8 lipidation pathway in Toxoplasma, we sought to determine whether three PfAtg3-Atg8 interaction inhibitors identified in the Medicines for Malaria Venture Malaria Box exerted a similar inhibitory effect in Toxoplasma While all three inhibitors blocked Toxoplasma replication in vitro at submicromolar concentrations, they did not inhibit T. gondii Atg8 (TgAtg8) lipidation. Rather, high concentrations of two of these compounds induced TgAtg8 lipidation and fragmentation of the parasite mitochondrion, similar to the effects seen following starvation and monensin-induced autophagy. Additionally, we report that one of the PfAtg3-Atg8 interaction inhibitors induces Toxoplasma egress and provide evidence that this is mediated by an increase in intracellular calcium in response to drug treatment.
Collapse
|
35
|
Discovery of New Inhibitors of Toxoplasma gondii via the Pathogen Box. Antimicrob Agents Chemother 2018; 62:AAC.01640-17. [PMID: 29133550 PMCID: PMC5786798 DOI: 10.1128/aac.01640-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/29/2017] [Indexed: 01/08/2023] Open
Abstract
Toxoplasma gondii is a cosmopolitan protozoan parasite which affects approximately 30% of the population worldwide. The drugs currently used against toxoplasmosis are few in number and show several limitations, such as drug intolerance, poor bioavailability, or drug resistance mechanism developed by the parasite. Thus, it is important to find new compounds able to inhibit parasite invasion or proliferation. In this study, the 400 compounds of the open-access Pathogen Box, provided by the Medicines for Malaria Venture (MMV) foundation, were screened for their anti-Toxoplasma gondii activity. A preliminary in vitro screening performed over 72 h by an enzyme-linked immunosorbent assay (ELISA) revealed 15 interesting compounds that were effective against T. gondii at 1 μM. Their cytotoxicity was estimated on Vero cells, and their 50% inhibitory concentrations (IC50) were further calculated. As a result, eight anti-Toxoplasma gondii compounds with an IC50 of less than 2 μM and a selectivity index (SI) value of greater than 4 were identified. The most active was MMV675968, showing an IC50 of 0.02 μM and a selectivity index value equal to 275. Two other compounds, MMV689480 and MMV687807, also showed a good activity against T. gondii, with IC50s of 0.10 μM (SI of 86.6) and 0.15 μM (SI of 11.3), respectively. Structure-activity relationships for the eight selected compounds also were discussed on the basis of fingerprinting similarity measurements using the Tanimoto method. The anti-Toxoplasma gondii compounds highlighted here represent potential candidates for the development of new drugs that could be used against toxoplasmosis.
Collapse
|
36
|
Targeted Phenotypic Screening in Plasmodium falciparum and Toxoplasma gondii Reveals Novel Modes of Action of Medicines for Malaria Venture Malaria Box Molecules. mSphere 2018; 3:mSphere00534-17. [PMID: 29359192 PMCID: PMC5770543 DOI: 10.1128/msphere.00534-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/20/2017] [Indexed: 01/23/2023] Open
Abstract
The Malaria Box collection includes 400 chemically diverse small molecules with documented potency against malaria parasite growth, but the underlying modes of action are largely unknown. Using complementary phenotypic screens against Plasmodium falciparum and Toxoplasma gondii, we report phenotype-specific hits based on inhibition of overall parasite growth, apicoplast segregation, and egress or host invasion, providing hitherto unavailable insights into the possible mechanisms affected. First, the Malaria Box library was screened against tachyzoite stage T. gondii and the half-maximal effective concentrations (EC50s) of molecules showing ≥80% growth inhibition at 10 µM were determined. Comparison of the EC50s for T. gondii and P. falciparum identified a subset of 24 molecules with nanomolar potency against both parasites. Thirty molecules that failed to induce acute growth inhibition in T. gondii tachyzoites in a 2-day assay caused delayed parasite death upon extended exposure, with at least three molecules interfering with apicoplast segregation during daughter cell formation. Using flow cytometry and microscopy-based examinations, we prioritized 26 molecules with the potential to inhibit host cell egress/invasion during asexual developmental stages of P. falciparum. None of the inhibitors affected digestive vacuole integrity, ruling out a mechanism mediated by broadly specific protease inhibitor activity. Interestingly, five of the plasmodial egress inhibitors inhibited ionophore-induced egress of T. gondii tachyzoites. These findings highlight the advantage of comparative and targeted phenotypic screens in related species as a means to identify lead molecules with a conserved mode of action. Further work on target identification and mechanism analysis will facilitate the development of antiparasitic compounds with cross-species efficacy. IMPORTANCE The phylum Apicomplexa includes many human and animal pathogens, such as Plasmodium falciparum (human malaria) and Toxoplasma gondii (human and animal toxoplasmosis). Widespread resistance to current antimalarials and the lack of a commercial vaccine necessitate novel pharmacological interventions with distinct modes of action against malaria. For toxoplasmosis, new drugs to effectively eliminate tissue-dwelling latent cysts of the parasite are needed. The Malaria Box antimalarial collection, managed and distributed by the Medicines for Malaria Venture, includes molecules of novel chemical classes with proven antimalarial efficacy. Using targeted phenotypic assays of P. falciparum and T. gondii, we have identified a subset of the Malaria Box molecules as potent inhibitors of plastid segregation and parasite invasion and egress, thereby providing early insights into their probable mode of action. Five molecules that inhibit the egress of both parasites have been identified for further mechanistic studies. Thus, the approach we have used to identify novel molecules with defined modes of action in multiple parasites can expedite the development of pan-active antiparasitic agents.
Collapse
|
37
|
Stebbins E, Jumani RS, Klopfer C, Barlow J, Miller P, Campbell MA, Meyers MJ, Griggs DW, Huston CD. Clinical and microbiologic efficacy of the piperazine-based drug lead MMV665917 in the dairy calf cryptosporidiosis model. PLoS Negl Trop Dis 2018; 12:e0006183. [PMID: 29309415 PMCID: PMC5774826 DOI: 10.1371/journal.pntd.0006183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/19/2018] [Accepted: 12/20/2017] [Indexed: 02/08/2023] Open
Abstract
Cryptosporidiosis causes life-threatening diarrhea in infants, but the best available treatment is only modestly efficacious. Rodents infected with relevant Cryptosporidium species do not develop diarrhea, which complicates drug development. Cryptosporidium parvum infection of dairy calves, however, causes an illness like that seen in infants. Here, the clinical and microbiologic anti-Cryptosporidium efficacy of the piperazine-based compound MMV665917 was demonstrated in neonatal calves. Oral administration of MMV665917 (22 mg/kg once daily) was begun two days after the onset of severe diarrhea and continued for seven days. Treatment resulted in prompt resolution of diarrhea, and reduced total fecal oocyst shedding by ~94%. MMV665917 was useful for treatment, rather than just prophylaxis, since it was safe and effective when administered well after the onset of diarrhea. Furthermore, even though all animals received intensive supportive care, there was a strong trend towards improved secondary health outcomes, including general health, appetite, and dehydration measures amongst treated animals. These data establish MMV665917 as an outstanding lead compound for Cryptosporidium drug development.
Collapse
Affiliation(s)
- Erin Stebbins
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Rajiv S. Jumani
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
- Cell, Molecular and Biomedical Sciences graduate program, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Connor Klopfer
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - John Barlow
- Department of Animal and Veterinary Sciences, University of Vermont College of Agriculture and Life Sciences, Burlington, Vermont
| | - Peter Miller
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
| | | | | | | | - Christopher D. Huston
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
- Cell, Molecular and Biomedical Sciences graduate program, University of Vermont Larner College of Medicine, Burlington, Vermont
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont
| |
Collapse
|
38
|
Abstract
In the last 2 decades, renewed attention to neglected tropical diseases (NTDs) has spurred the development of antiparasitic agents, especially in light of emerging drug resistance. The need for new drugs has required in vitro screening methods using parasite culture. Furthermore, clinical laboratories sought to correlate in vitro susceptibility methods with treatment outcomes, most notably with malaria. Parasites with their various life cycles present greater complexity than bacteria, for which standardized susceptibility methods exist. This review catalogs the state-of-the-art methodologies used to evaluate the effects of drugs on key human parasites from the point of view of drug discovery as well as the need for laboratory methods that correlate with clinical outcomes.
Collapse
|
39
|
Ryan U, Zahedi A, Paparini A. Cryptosporidium in humans and animals-a one health approach to prophylaxis. Parasite Immunol 2017; 38:535-47. [PMID: 27454991 DOI: 10.1111/pim.12350] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/05/2016] [Indexed: 01/13/2023]
Abstract
Cryptosporidium is a major cause of moderate-to-severe diarrhoea in humans worldwide, second only to rotavirus. Due to the wide host range and environmental persistence of this parasite, cryptosporidiosis can be zoonotic and associated with foodborne and waterborne outbreaks. Currently, 31 species are recognized as valid, and of these, Cryptosporidium hominis and Cryptosporidium parvum are responsible for the majority of infections in humans. The immune status of the host, both innate and adaptive immunity, has a major impact on the severity of the disease and its prognosis. Immunocompetent individuals typically experience self-limiting diarrhoea and transient gastroenteritis lasting up to 2 weeks and recover without treatment, suggesting an efficient host antiparasite immune response. Immunocompromised individuals can suffer from intractable diarrhoea, which can be fatal. Effective drug treatments and vaccines are not yet available. As a result of this, the close cooperation and interaction between veterinarians, health physicians, environmental managers and public health operators is essential to properly control this disease. This review focuses on a One Health approach to prophylaxis, including the importance of understanding transmission routes for zoonotic Cryptosporidium species, improved sanitation and better risk management, improved detection, diagnosis and treatment and the prospect of an effective anticryptosporidial vaccine.
Collapse
Affiliation(s)
- U Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia.
| | - A Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - A Paparini
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| |
Collapse
|
40
|
Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery. Antimicrob Agents Chemother 2017; 61:AAC.00379-17. [PMID: 28674055 PMCID: PMC5571359 DOI: 10.1128/aac.00379-17] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/19/2017] [Indexed: 01/19/2023] Open
Abstract
Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research.
Collapse
|
41
|
Hulverson MA, Vinayak S, Choi R, Schaefer DA, Castellanos-Gonzalez A, Vidadala RSR, Brooks CF, Herbert GT, Betzer DP, Whitman GR, Sparks HN, Arnold SLM, Rivas KL, Barrett LK, White AC, Maly DJ, Riggs MW, Striepen B, Van Voorhis WC, Ojo KK. Bumped-Kinase Inhibitors for Cryptosporidiosis Therapy. J Infect Dis 2017; 215:1275-1284. [PMID: 28329187 PMCID: PMC5853794 DOI: 10.1093/infdis/jix120] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/01/2017] [Indexed: 01/13/2023] Open
Abstract
Bumped kinase inhibitors (BKIs) of Cryptosporidium parvum calcium-dependent protein kinase 1 (CpCDPK1) are leading candidates for treatment of cryptosporidiosis-associated diarrhea. Potential cardiotoxicity related to anti-human ether-à-go-go potassium channel (hERG) activity of the first-generation anti-Cryptosporidium BKIs triggered further testing for efficacy. A luminescence assay adapted for high-throughput screening was used to measure inhibitory activities of BKIs against C. parvum in vitro. Furthermore, neonatal and interferon γ knockout mouse models of C. parvum infection identified BKIs with in vivo activity. Additional iterative experiments for optimum dosing and selecting BKIs with minimum levels of hERG activity and frequencies of other safety liabilities included those that investigated mammalian cell cytotoxicity, C. parvum proliferation inhibition in vitro, anti-human Src inhibition, hERG activity, in vivo pharmacokinetic data, and efficacy in other mouse models. Findings of this study suggest that fecal concentrations greater than parasite inhibitory concentrations correlate best with effective therapy in the mouse model of cryptosporidiosis, but a more refined model for efficacy is needed.
Collapse
Affiliation(s)
- Matthew A Hulverson
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | - Sumiti Vinayak
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Ryan Choi
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | - Deborah A Schaefer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson
| | | | | | - Carrie F Brooks
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Gillian T Herbert
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Dana P Betzer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson
| | - Grant R Whitman
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | | | - Samuel L M Arnold
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | - Kasey L Rivas
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | - Lynn K Barrett
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | - A Clinton White
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch, Galveston
| | - Dustin J Maly
- Chemistry & Biochemistry, University of Washington, Seattle
| | - Michael W Riggs
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
- Department of Cellular Biology, University of Georgia, Athens
| | - Wesley C Van Voorhis
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| | - Kayode K Ojo
- Division of Allergy & Infectious Disease, Center for Emerging & Reemerging Infectious Disease (CERID), University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
42
|
Love MS, Beasley FC, Jumani RS, Wright TM, Chatterjee AK, Huston CD, Schultz PG, McNamara CW. A high-throughput phenotypic screen identifies clofazimine as a potential treatment for cryptosporidiosis. PLoS Negl Trop Dis 2017; 11:e0005373. [PMID: 28158186 PMCID: PMC5310922 DOI: 10.1371/journal.pntd.0005373] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/15/2017] [Accepted: 01/30/2017] [Indexed: 11/19/2022] Open
Abstract
Cryptosporidiosis has emerged as a leading cause of non-viral diarrhea in children under five years of age in the developing world, yet the current standard of care to treat Cryptosporidium infections, nitazoxanide, demonstrates limited and immune-dependent efficacy. Given the lack of treatments with universal efficacy, drug discovery efforts against cryptosporidiosis are necessary to find therapeutics more efficacious than the standard of care. To date, cryptosporidiosis drug discovery efforts have been limited to a few targeted mechanisms in the parasite and whole cell phenotypic screens against small, focused collections of compounds. Using a previous screen as a basis, we initiated the largest known drug discovery effort to identify novel anticryptosporidial agents. A high-content imaging assay for inhibitors of Cryptosporidium parvum proliferation within a human intestinal epithelial cell line was miniaturized and automated to enable high-throughput phenotypic screening against a large, diverse library of small molecules. A screen of 78,942 compounds identified 12 anticryptosporidial hits with sub-micromolar activity, including clofazimine, an FDA-approved drug for the treatment of leprosy, which demonstrated potent and selective in vitro activity (EC50 = 15 nM) against C. parvum. Clofazimine also displayed activity against C. hominis-the other most clinically-relevant species of Cryptosporidium. Importantly, clofazimine is known to accumulate within epithelial cells of the small intestine, the primary site of Cryptosporidium infection. In a mouse model of acute cryptosporidiosis, a once daily dosage regimen for three consecutive days or a single high dose resulted in reduction of oocyst shedding below the limit detectable by flow cytometry. Recently, a target product profile (TPP) for an anticryptosporidial compound was proposed by Huston et al. and highlights the need for a short dosing regimen (< 7 days) and formulations for children < 2 years. Clofazimine has a long history of use and has demonstrated a good safety profile for a disease that requires chronic dosing for a period of time ranging 3-36 months. These results, taken with clofazimine's status as an FDA-approved drug with over four decades of use for the treatment of leprosy, support the continued investigation of clofazimine both as a new chemical tool for understanding cryptosporidium biology and a potential new treatment of cryptosporidiosis.
Collapse
Affiliation(s)
- Melissa S. Love
- California Institute for Biomedical Research, La Jolla, California, United States of America
| | - Federico C. Beasley
- California Institute for Biomedical Research, La Jolla, California, United States of America
| | - Rajiv S. Jumani
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Timothy M. Wright
- California Institute for Biomedical Research, La Jolla, California, United States of America
| | - Arnab K. Chatterjee
- California Institute for Biomedical Research, La Jolla, California, United States of America
| | - Christopher D. Huston
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Peter G. Schultz
- California Institute for Biomedical Research, La Jolla, California, United States of America
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Case W. McNamara
- California Institute for Biomedical Research, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Hart CJS, Munro T, Andrews KT, Ryan JH, Riches AG, Skinner-Adams TS. A novel in vitro image-based assay identifies new drug leads for giardiasis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:83-89. [PMID: 28171818 PMCID: PMC5295624 DOI: 10.1016/j.ijpddr.2017.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/26/2022]
Abstract
Giardia duodenalis is an intestinal parasite that causes giardiasis, a widespread human gastrointestinal disease. Treatment of giardiasis relies on a small arsenal of compounds that can suffer from limitations including side-effects, variable treatment efficacy and parasite drug resistance. Thus new anti-Giardia drug leads are required. The search for new compounds with anti-Giardia activity currently depends on assays that can be labour-intensive, expensive and restricted to measuring activity at a single time-point. Here we describe a new in vitro assay to assess anti-Giardia activity. This image-based assay utilizes the Perkin-Elmer Operetta® and permits automated assessment of parasite growth at multiple time points without cell-staining. Using this new approach, we assessed the "Malaria Box" compound set for anti-Giardia activity. Three compounds with sub-μM activity (IC50 0.6-0.9 μM) were identified as potential starting points for giardiasis drug discovery.
Collapse
Affiliation(s)
- Christopher J S Hart
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Taylah Munro
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - John H Ryan
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria 3168, Australia
| | - Andrew G Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria 3168, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
44
|
Chellan P, Sadler PJ, Land KM. Recent developments in drug discovery against the protozoal parasites Cryptosporidium and Toxoplasma. Bioorg Med Chem Lett 2017; 27:1491-1501. [PMID: 28242275 DOI: 10.1016/j.bmcl.2017.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/19/2022]
Abstract
Apicomplexan parasites cause some of the most devastating human diseases, including malaria, toxoplasmosis, and cryptosporidiosis. New drug discovery is imperative in light of increased resistance. In this digest article, we briefly explore some of the recent and promising developments in new drug discovery against two apicomplexan parasites, Cryptosporidium and Toxoplasma.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry, University of Warwick, Coventry, Warwickshire CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, Warwickshire CV4 7AL, UK
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States.
| |
Collapse
|
45
|
Fletcher S, Lucantoni L, Sykes ML, Jones AJ, Holleran JP, Saliba KJ, Avery VM. Biological characterization of chemically diverse compounds targeting the Plasmodium falciparum coenzyme A synthesis pathway. Parasit Vectors 2016; 9:589. [PMID: 27855724 PMCID: PMC5114727 DOI: 10.1186/s13071-016-1860-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023] Open
Abstract
Background In the fight against malaria, the discovery of chemical compounds with a novel mode of action and/or chemistry distinct from currently used drugs is vital to counteract the parasite’s known ability to develop drug resistance. Another desirable aspect is efficacy against gametocytes, the sexual developmental stage of the parasite which enables the transmission through Anopheles vectors. Using a chemical rescue approach, we previously identified compounds targeting Plasmodium falciparum coenzyme A (CoA) synthesis or utilization, a promising target that has not yet been exploited in anti-malarial drug development. Results We report on the outcomes of a series of biological tests that help to define the species- and stage-specificity, as well as the potential targets of these chemically diverse compounds. Compound activity against P. falciparum gametocytes was determined to assess stage-specificity and transmission-reducing potential. Against early stage gametocytes IC50 values ranging between 60 nM and 7.5 μM were obtained. With the exception of two compounds with sub-micromolar potencies across all intra-erythrocytic stages, activity against late stage gametocytes was lower. None of the compounds were specific pantothenate kinase inhibitors. Chemical rescue profiling with CoA pathway intermediates demonstrated that most compounds acted on either of the two final P. falciparum CoA synthesis enzymes, phosphopantetheine adenylyltransferase (PPAT) or dephospho CoA kinase (DPCK). The most active compound targeted either phosphopantothenoylcysteine synthetase (PPCS) or phosphopantothenoylcysteine decarboxylase (PPCDC). Species-specificity was evaluated against Trypanosoma cruzi and Trypanosoma brucei brucei. No specific activity against T. cruzi amastigotes was observed; however three compounds inhibited the viability of trypomastigotes with sub-micromolar potencies and were confirmed to act on T. b. brucei CoA synthesis. Conclusions Utilizing the compounds we previously identified as effective against asexual P. falciparum, we demonstrate for the first time that gametocytes, like the asexual stages, depend on CoA, with two compounds exhibiting sub-micromolar potencies across asexual forms and all gametocytes stages tested. Furthermore, three compounds inhibited the viability of T. cruzi and T. b. brucei trypomastigotes with sub-micromolar potencies and were confirmed to act on T. b. brucei CoA synthesis, indicating that the CoA synthesis pathway might represent a valuable new drug target in these parasite species. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1860-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabine Fletcher
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Melissa L Sykes
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Amy J Jones
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - John P Holleran
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Kevin J Saliba
- Medical School and Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Vicky M Avery
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
46
|
Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways. Antimicrob Agents Chemother 2016; 60:6635-6649. [PMID: 27572391 DOI: 10.1128/aac.01224-16] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022] Open
Abstract
The threat of widespread drug resistance to frontline antimalarials has renewed the urgency for identifying inexpensive chemotherapeutic compounds that are effective against Plasmodium falciparum, the parasite species responsible for the greatest number of malaria-related deaths worldwide. To aid in the fight against malaria, a recent extensive screening campaign has generated thousands of lead compounds with low micromolar activity against blood stage parasites. A subset of these leads has been compiled by the Medicines for Malaria Venture (MMV) into a collection of structurally diverse compounds known as the MMV Malaria Box. Currently, little is known regarding the activity of these Malaria Box compounds on parasite metabolism during intraerythrocytic development, and a majority of the targets for these drugs have yet to be defined. Here we interrogated the in vitro metabolic effects of 189 drugs (including 169 of the drug-like compounds from the Malaria Box) using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). The resulting metabolic fingerprints provide information on the parasite biochemical pathways affected by pharmacologic intervention and offer a critical blueprint for selecting and advancing lead compounds as next-generation antimalarial drugs. Our results reveal several major classes of metabolic disruption, which allow us to predict the mode of action (MoA) for many of the Malaria Box compounds. We anticipate that future combination therapies will be greatly informed by these results, allowing for the selection of appropriate drug combinations that simultaneously target multiple metabolic pathways, with the aim of eliminating malaria and forestalling the expansion of drug-resistant parasites in the field.
Collapse
|
47
|
Manjunatha UH, Chao AT, Leong FJ, Diagana TT. Cryptosporidiosis Drug Discovery: Opportunities and Challenges. ACS Infect Dis 2016; 2:530-7. [PMID: 27626293 DOI: 10.1021/acsinfecdis.6b00094] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The apicomplexan parasite Cryptosporidium is the second most important diarrheal pathogen causing life-threatening diarrhea in children, which is also associated with long-term growth faltering and cognitive deficiency. Cryptosporidiosis is a parasitic disease of public health concern caused by Cryptosporidium parvum and Cryptosporidium hominis. Currently, nitazoxanide is the only approved treatment for cryptosporidium infections. Unfortunately, it has limited efficacy in the most vulnerable patients, thus there is an urgent need for a safe and efficacious cryptosporidiosis drug. In this work, we present our current perspectives on the target product profile for novel cryptosporidiosis therapies and the perceived challenges and possible mitigation plans at different stages in the cryptosporidiosis drug discovery process.
Collapse
Affiliation(s)
- Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01, Singapore 138670
| | - Alexander T. Chao
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01, Singapore 138670
| | - F. Joel Leong
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01, Singapore 138670
| | - Thierry T. Diagana
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01, Singapore 138670
| |
Collapse
|
48
|
Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog 2016; 12:e1005763. [PMID: 27467575 PMCID: PMC4965013 DOI: 10.1371/journal.ppat.1005763] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/21/2016] [Indexed: 01/22/2023] Open
Abstract
A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts. Malaria leads to the loss of over 440,000 lives annually; accelerating research to discover new candidate drugs is a priority. Medicines for Malaria Venture (MMV) has distilled over 25,000 compounds that kill malaria parasites in vitro into a group of 400 representative compounds, called the "Malaria Box". These Malaria Box sets were distributed free-of-charge to research laboratories in 30 different countries that work on a wide variety of pathogens. Fifty-five groups compiled >290 assay results for this paper describing the many activities of the Malaria Box compounds. The collective results suggest a potential mechanism of action for over 130 compounds against malaria and illuminate the most promising compounds for further malaria drug development research. Excitingly some of these compounds also showed outstanding activity against other disease agents including fungi, bacteria, other single-cellular parasites, worms, and even human cancer cells. The results have ignited over 30 drug development programs for a variety of diseases. This open access effort was so successful that MMV has begun to distribute another set of compounds with initial activity against a wider range of infectious agents that are of public health concern, called the Pathogen Box, available now to scientific labs all over the world (www.PathogenBox.org).
Collapse
|
49
|
Extensive Shared Chemosensitivity between Malaria and Babesiosis Blood-Stage Parasites. Antimicrob Agents Chemother 2016; 60:5059-63. [PMID: 27246780 DOI: 10.1128/aac.00928-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022] Open
Abstract
The apicomplexan parasites that cause malaria and babesiosis invade and proliferate within erythrocytes. To assess the potential for common antiparasitic treatments, we measured the sensitivities of multiple species of Plasmodium and Babesia parasites to the chemically diverse collection of antimalarial compounds in the Malaria Box library. We observed that these parasites share sensitivities to a large fraction of the same inhibitors and we identified compounds with strong babesiacidal activity.
Collapse
|
50
|
In Vitro Screening of the Open-Source Medicines for Malaria Venture Malaria Box Reveals Novel Compounds with Profound Activities against Theileria annulata Schizonts. Antimicrob Agents Chemother 2016; 60:3301-8. [PMID: 26976863 DOI: 10.1128/aac.02801-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/04/2016] [Indexed: 11/20/2022] Open
Abstract
Intracellular schizonts of the apicomplexans Theileria annulata and Theileria parva immortalize bovine leukocytes and thereby cause fatal diseases. The hydroxynaphthoquinone buparvaquone is currently the only option for the treatment of theileriosis, and resistance development has been reported. It is therefore tempting to investigate the repurposing of compounds effective against related apicomplexan parasites, such as Plasmodium Here, we present the results of a screen of 400 compounds included in the open-access Medicines for Malaria Venture (MMV) malaria box on TaC12 cells, a macrophage-derived cell line immortalized by T. annulata schizonts. Using a combination of the classical alamarBlue vitality assay and a recently developed quantitative reverse transcriptase real-time PCR method based on the Theileria TaSP gene, we have identified 5 compounds, characterized their effects on the ultrastructure of TaC12 cells, and investigated whether they easily induce resistance formation. Two compounds, the quinolinols MMV666022 and MMV666054, have 50% inhibitory concentrations (IC50s) of 0.5 and 0.2 μM on TaC12 cells and 5.3 and 5.2 μM on BoMac cells, respectively. Thus, with therapeutic indexes of 11 and 18, they represent promising leads for further development of antitheilerial chemotherapeutics.
Collapse
|