1
|
Douglas EJ, Laabei M. Staph wars: the antibiotic pipeline strikes back. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001387. [PMID: 37656158 PMCID: PMC10569064 DOI: 10.1099/mic.0.001387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Antibiotic chemotherapy is widely regarded as one of the most significant medical advancements in history. However, the continued misuse of antibiotics has contributed to the rapid rise of antimicrobial resistance (AMR) globally. Staphylococcus aureus, a major human pathogen, has become synonymous with multidrug resistance and is a leading antimicrobial-resistant pathogen causing significant morbidity and mortality worldwide. This review focuses on (1) the targets of current anti-staphylococcal antibiotics and the specific mechanisms that confirm resistance; (2) an in-depth analysis of recently licensed antibiotics approved for the treatment of S. aureus infections; and (3) an examination of the pre-clinical pipeline of anti-staphylococcal compounds. In addition, we examine the molecular mechanism of action of novel antimicrobials and derivatives of existing classes of antibiotics, collate data on the emergence of resistance to new compounds and provide an overview of key data from clinical trials evaluating anti-staphylococcal compounds. We present several successful cases in the development of alternative forms of existing antibiotics that have activity against multidrug-resistant S. aureus. Pre-clinical antimicrobials show promise, but more focus and funding are required to develop novel classes of compounds that can curtail the spread of and sustainably control antimicrobial-resistant S. aureus infections.
Collapse
Affiliation(s)
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
2
|
Douglas EJA, Wulandari SW, Lovell SD, Laabei M. Novel antimicrobial strategies to treat multi-drug resistant Staphylococcus aureus infections. Microb Biotechnol 2023; 16:1456-1474. [PMID: 37178319 PMCID: PMC10281381 DOI: 10.1111/1751-7915.14268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Antimicrobial resistance is a major obstacle for the treatment of infectious diseases and currently represents one of the most significant threats to global health. Staphylococcus aureus remains a formidable human pathogen with high mortality rates associated with severe systemic infections. S. aureus has become notorious as a multidrug resistant bacterium, which when combined with its extensive arsenal of virulence factors that exacerbate disease, culminates in an incredibly challenging pathogen to treat clinically. Compounding this major health issue is the lack of antibiotic discovery and development, with only two new classes of antibiotics approved for clinical use in the last 20 years. Combined efforts from the scientific community have reacted to the threat of dwindling treatment options to combat S. aureus disease in several innovative and exciting developments. This review describes current and future antimicrobial strategies aimed at treating staphylococcal colonization and/or disease, examining therapies that show significant promise at the preclinical development stage to approaches that are currently being investigated in clinical trials.
Collapse
|
3
|
Hydrogels with intrinsic antibacterial activity prepared from naphthyl anthranilamide (NaA) capped peptide mimics. Sci Rep 2022; 12:22259. [PMID: 36564414 PMCID: PMC9789043 DOI: 10.1038/s41598-022-26426-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, we prepared antibacterial hydrogels through the self-assembly of naphthyl anthranilamide (NaA) capped amino acid based cationic peptide mimics. These ultra-short cationic peptide mimics were rationally designed with NaA as a capping group, L-phenylalanine, a short aliphatic linker, and a cationic group. The synthesized peptide mimics efficiently formed hydrogels with minimum gel concentrations between 0.1 and 0.3%w/v. The resulting hydrogels exhibited desirable viscoelastic properties which can be tuned by varying the cationic group, electronegative substituent, or counter anion. Importantly, nanofibers from the NaA-capped cationic hydrogels were found to be the source of hydrogels' potent bacteriacidal actvity against both Gram-positive and Gram-negative bacteria while remaining non-cytotoxic. These intrinsically antibacterial hydrogels are ideal candidates for further development in applications where bacterial contamination is problematic.
Collapse
|
4
|
Yu B, Choudhury MR, Yang X, Benoit SL, Womack E, Van Mouwerik Lyles K, Acharya A, Kumar A, Yang C, Pavlova A, Zhu M, Yuan Z, Gumbart JC, Boykin DW, Maier RJ, Eichenbaum Z, Wang B. Restoring and Enhancing the Potency of Existing Antibiotics against Drug-Resistant Gram-Negative Bacteria through the Development of Potent Small-Molecule Adjuvants. ACS Infect Dis 2022; 8:1491-1508. [PMID: 35801980 PMCID: PMC11227883 DOI: 10.1021/acsinfecdis.2c00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid and persistent emergence of drug-resistant bacteria poses a looming public health crisis. The possible task of developing new sets of antibiotics to replenish the existing ones is daunting to say the least. Searching for adjuvants that restore or even enhance the potency of existing antibiotics against drug-resistant strains of bacteria represents a practical and cost-effective approach. Herein, we describe the discovery of potent adjuvants that extend the antimicrobial spectrum of existing antibiotics and restore their effectiveness toward drug-resistant strains including mcr-1-expressing strains. From a library of cationic compounds, MD-100, which has a diamidine core structure, was identified as a potent antibiotic adjuvant against Gram-negative bacteria. Further optimization efforts including the synthesis of ∼20 compounds through medicinal chemistry work led to the discovery of a much more potent compound MD-124. MD-124 was shown to sensitize various Gram-negative bacterial species and strains, including multidrug resistant pathogens, toward existing antibiotics with diverse mechanisms of action. We further demonstrated the efficacy of MD-124 in an ex vivo skin infection model and in an in vivo murine systemic infection model using both wild-type and drug-resistant Escherichia coli strains. MD-124 functions through selective permeabilization of the outer membrane of Gram-negative bacteria. Importantly, bacteria exhibited low-resistance frequency toward MD-124. In-depth computational investigations of MD-124 binding to the bacterial outer membrane using equilibrium and steered molecular dynamics simulations revealed key structural features for favorable interactions. The very potent nature of such adjuvants distinguishes them as very useful leads for future drug development in combating bacterial drug resistance.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Manjusha Roy Choudhury
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | | | - Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | | | - Atanu Acharya
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Anna Pavlova
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - James C. Gumbart
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - David W. Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
5
|
Chen V, Burgess JL, Verpile R, Tomic-Canic M, Pastar I. Novel Diagnostic Technologies and Therapeutic Approaches Targeting Chronic Wound Biofilms and Microbiota. CURRENT DERMATOLOGY REPORTS 2022; 11:60-72. [PMID: 37007641 PMCID: PMC10065746 DOI: 10.1007/s13671-022-00354-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of Review To provide an up-to-date overview of recent developments in diagnostic methods and therapeutic approaches for chronic wound biofilms and pathogenic microbiota. Recent Findings Biofilm infections are one of the major contributors to impaired wound healing in chronic wounds, including diabetic foot ulcers, venous leg ulcers, pressure ulcers, and nonhealing surgical wounds. As an organized microenvironment commonly including multiple microbial species, biofilms develop and persist through methods that allow evasion from host immune response and antimicrobial treatments. Suppression and reduction of biofilm infection have been demonstrated to improve wound healing outcomes. However, chronic wound biofilms are a challenge to treat due to limited methods for accurate, accessible clinical identification and the biofilm's protective properties against therapeutic agents. Here we review recent approaches towards visual markers for less invasive, enhanced biofilm detection in the clinical setting. We outline progress in wound care treatments including investigation of their antibiofilm effects, such as with hydrosurgical and ultrasound debridement, negative pressure wound therapy with instillation, antimicrobial peptides, nanoparticles and nanocarriers, electroceutical dressings, and phage therapy. Summary Current evidence for biofilm-targeted treatments has been primarily conducted in preclinical studies, with limited clinical investigation for many therapies. Improved identification, monitoring, and treatment of biofilms require expansion of point-of-care visualization methods and increased evaluation of antibiofilm therapies in robust clinical trials.
Collapse
|
6
|
Zaknoon F, Meir O, Mor A. Mechanistic Studies of Antibiotic Adjuvants Reducing Kidney's Bacterial Loads upon Systemic Monotherapy. Pharmaceutics 2021; 13:pharmaceutics13111947. [PMID: 34834362 PMCID: PMC8621570 DOI: 10.3390/pharmaceutics13111947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/01/2022] Open
Abstract
We describe the design and attributes of a linear pentapeptide-like derivative (C14(ω5)OOc10O) screened for its ability to elicit bactericidal competences of plasma constituents against Gram-negative bacteria (GNB). In simpler culture media, the lipopeptide revealed high aptitudes to sensitize resilient GNB to hydrophobic and/or efflux-substrate antibiotics, whereas in their absence, C14(ω5)OOc10O only briefly delayed bacterial proliferation. Instead, at low micromolar concentrations, the lipopeptide has rapidly lowered bacterial proton and ATP levels, although significantly less than upon treatment with its bactericidal analog. Mechanistic studies support a two-step scenario providing a plausible explanation for the lipopeptide’s biological outcomes against GNB: initially, C14(ω5)OOc10O permeabilizes the outer membrane similarly to polymyxin B, albeit in a manner not necessitating as much LPS-binding affinity. Subsequently, C14(ω5)OOc10O would interact with the inner membrane gently yet intensively enough to restrain membrane-protein functions such as drug efflux and/or ATP generation, while averting the harsher inner membrane perturbations that mediate the fatal outcome associated with bactericidal peers. Preliminary in vivo studies where skin wound infections were introduced in mice, revealed a significant efficacy in affecting bacterial viability upon topical treatment with creams containing C14(ω5)OOc10O, whereas synergistic combination therapies were able to secure the pathogen’s eradication. Further, capitalizing on the finding that C14(ω5)OOc10O plasma-potentiating concentrations were attainable in mice blood at sub-maximal tolerated doses, we used a urinary tract infection model to acquire evidence for the lipopeptide’s systemic capacity to reduce the kidney’s bacterial loads. Collectively, the data establish the role of C14(ω5)OOc10O as a compelling antibacterial potentiator and suggest its drug-like potential.
Collapse
|
7
|
Rodríguez AA, Otero-González A, Ghattas M, Ständker L. Discovery, Optimization, and Clinical Application of Natural Antimicrobial Peptides. Biomedicines 2021; 9:1381. [PMID: 34680498 PMCID: PMC8533436 DOI: 10.3390/biomedicines9101381] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are widespread in multicellular organisms. These structurally diverse molecules are produced as the first line of defense against pathogens such as bacteria, viruses, fungi, and parasites. Also known as host defense peptides in higher eukaryotic organisms, AMPs display immunomodulatory and anticancer activities. During the last 30 years, technological advances have boosted the research on antimicrobial peptides, which have also attracted great interest as an alternative to tackling the antimicrobial resistance scenario mainly provoked by some bacterial and fungal pathogens. However, the introduction of natural AMPs in clinical trials faces challenges such as proteolytic digestion, short half-lives, and cytotoxicity upon systemic and oral application. Therefore, some strategies have been implemented to improve the properties of AMPs aiming to be used as effective therapeutic agents. In the present review, we summarize the discovery path of AMPs, focusing on preclinical development, recent advances in chemical optimization and peptide delivery systems, and their introduction into the market.
Collapse
Affiliation(s)
- Armando A. Rodríguez
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Maretchia Ghattas
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11511, Egypt;
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
8
|
Lin L, Chi J, Yan Y, Luo R, Feng X, Zheng Y, Xian D, Li X, Quan G, Liu D, Wu C, Lu C, Pan X. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B 2021; 11:2609-2644. [PMID: 34589385 PMCID: PMC8463292 DOI: 10.1016/j.apsb.2021.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
Membrane-disruptive peptides/peptidomimetics (MDPs) are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes, in contrast to conventional chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes. Owing to their rapid action, broad-spectrum activity, and mechanisms of action that potentially hinder the development of resistance, MDPs have been increasingly considered as future therapeutics in the drug-resistant era. Recently, growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents. In this review, we evaluate the literature around the broad-spectrum antimicrobial properties and anticancer activity of MDPs, and summarize the current development and mechanisms of MDPs alone or in combination with other agents. Notably, this review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs, minimize side effects, and promote the co-delivery of multiple chemotherapeutics, for more efficient antimicrobial and anticancer therapy.
Collapse
Affiliation(s)
- Liming Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yilang Yan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Rui Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xiaoqian Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yuwei Zheng
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Dongyi Xian
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Li
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Daojun Liu
- Shantou University Medical College, Shantou 515041, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
9
|
Miao F, Li Y, Tai Z, Zhang Y, Gao Y, Hu M, Zhu Q. Antimicrobial Peptides: The Promising Therapeutics for Cutaneous Wound Healing. Macromol Biosci 2021; 21:e2100103. [PMID: 34405955 DOI: 10.1002/mabi.202100103] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/31/2021] [Indexed: 12/12/2022]
Abstract
Chronic wound infections have caused an increasing number of deaths and economic burden, which necessitates wound treatment options. Hitherto, the development of functional wound dressings has achieved reasonable progress. Antibacterial agents, growth factors, and miRNAs are incorporated in different wound dressings to treat various types of wounds. As an effective antimicrobial agent and emerging wound healing therapeutic, antimicrobial peptides (AMPs) have attracted significant attention. The present study focuses on the application of AMPs in wound healing and discusses the types, properties and formulation strategies of AMPs used for wound healing. In addition, the clinical trial and the current status of studies on "antimicrobial peptides and wound healing" are elaborated through bibliometrics. Also, the challenges and opportunities for further development and utilization of AMP formulations in wound healing are discussed.
Collapse
Affiliation(s)
- Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Ying Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China
| | - Yong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yue Gao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Menghong Hu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China
| |
Collapse
|
10
|
Antibiofilm activity of host defence peptides: complexity provides opportunities. Nat Rev Microbiol 2021; 19:786-797. [PMID: 34183822 DOI: 10.1038/s41579-021-00585-w] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Host defence peptides (HDPs) are integral components of innate immunity across all living organisms. These peptides can exert direct antibacterial effects, targeting planktonic cells (referred to as antimicrobial peptides), and exhibit antibiofilm (referred to as antibiofilm peptides), antiviral, antifungal and host-directed immunomodulatory activities. In this Review, we discuss how the complex functional attributes of HDPs provide many opportunities for the development of antimicrobial therapeutics, focusing particularly on their emerging antibiofilm properties. The mechanisms of action of antibiofilm peptides are compared and contrasted with those of antimicrobial peptides. Furthermore, obstacles for the practical translation of candidate peptides into therapeutics and the potential solutions are discussed. Critically, HDPs have the value-added assets of complex functional attributes, particularly antibiofilm and anti-inflammatory activities and their synergy with conventional antibiotics.
Collapse
|
11
|
Manniello MD, Moretta A, Salvia R, Scieuzo C, Lucchetti D, Vogel H, Sgambato A, Falabella P. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol Life Sci 2021; 78:4259-4282. [PMID: 33595669 PMCID: PMC8164593 DOI: 10.1007/s00018-021-03784-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Misuse and overuse of antibiotics have contributed in the last decades to a phenomenon known as antibiotic resistance which is currently considered one of the principal threats to global public health by the World Health Organization. The aim to find alternative drugs has been demonstrated as a real challenge. Thanks to their biodiversity, insects represent the largest class of organisms in the animal kingdom. The humoral immune response includes the production of antimicrobial peptides (AMPs) that are released into the insect hemolymph after microbial infection. In this review, we have focused on insect immune responses, particularly on AMP characteristics, their mechanism of action and applications, especially in the biomedical field. Furthermore, we discuss the Toll, Imd, and JAK-STAT pathways that activate genes encoding for the expression of AMPs. Moreover, we focused on strategies to improve insect peptides stability against proteolytic susceptibility such as D-amino acid substitutions, N-terminus modification, cyclization and dimerization.
Collapse
Affiliation(s)
- M D Manniello
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - A Moretta
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - R Salvia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - C Scieuzo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - D Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - H Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - A Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture (PZ), Italy
| | - P Falabella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
12
|
Håkansson J, Cavanagh JP, Stensen W, Mortensen B, Svendsen JS, Svenson J. In vitro and in vivo antibacterial properties of peptide AMC-109 impregnated wound dressings and gels. J Antibiot (Tokyo) 2021; 74:337-345. [PMID: 33495549 DOI: 10.1038/s41429-021-00406-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/16/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
Synthetic mimics of antimicrobial peptides (AMPs) is a promising class of molecules for a variety of antimicrobial applications. Several hurdles must be passed before effective systemic infection therapies with AMPs can be achieved, but the path to effective topical treatment of skin, nail, and soft tissue infections appears less challenging to navigate. Skin and soft tissue infection is closely coupled to the emergence of antibiotic resistance and represents a major burden to the healthcare system. The present study evaluates the promising synthetic cationic AMP mimic, AMC-109, for treatment of skin infections in vivo. The compound is evaluated both in impregnated cotton wound dressings and in a gel formulation against skin infections caused by Staphylococcus aureus and methicillin resistant S. aureus. Both the ability to prevent colonization and formation of an infection, as well as eradicate an ongoing infection in vivo with a high bacterial load, were evaluated. The present work demonstrates that AMC-109 displays a significantly higher antibacterial activity with up to a seven-log reduction in bacterial loads compared to current clinical standard therapy; Altargo cream (1% retapamulin) and Fucidin cream (2% fusidic acid) in the in vivo wound models. It is thus concluded that AMC-109 represents a promising entry in the development of new and effective remedies for various skin infections.
Collapse
Affiliation(s)
- Joakim Håkansson
- Department of Chemistry, Biomaterial & Textile, RISE Research Institutes of Sweden, Borås, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Gothenburg University, Gothenburg, Sweden
| | - Jorunn Pauline Cavanagh
- Amicoat A/S, Sandvika, Norway.,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - John-Sigurd Svendsen
- Amicoat A/S, Sandvika, Norway.,Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Johan Svenson
- Department of Chemistry, Biomaterial & Textile, RISE Research Institutes of Sweden, Borås, Sweden. .,Cawthron Institute, Nelson, New Zealand.
| |
Collapse
|
13
|
Scheper H, Wubbolts JM, Verhagen JAM, de Visser AW, van der Wal RJP, Visser LG, de Boer MGJ, Nibbering PH. SAAP-148 Eradicates MRSA Persisters Within Mature Biofilm Models Simulating Prosthetic Joint Infection. Front Microbiol 2021; 12:625952. [PMID: 33584628 PMCID: PMC7879538 DOI: 10.3389/fmicb.2021.625952] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Prosthetic joint infection (PJI) is a severe complication of arthroplasty. Due to biofilm and persister formation current treatment strategies often fail. Therefore, innovative anti-biofilm and anti-persister agents are urgently needed. Antimicrobial peptides with their broad antibacterial activities may be such candidates. An in vitro model simulating PJI comprising of rifampicin/ciprofloxacin-exposed, mature methicillin-resistant Staphylococcus aureus (MRSA) biofilms on polystyrene plates, titanium/aluminium/niobium disks, and prosthetic joint liners were developed. Bacteria obtained from and residing within these biofilms were exposed to SAAP-148, acyldepsipeptide-4, LL-37, and pexiganan. Microcalorimetry was used to monitor the heat flow by the bacteria in these models. Daily exposure of mature biofilms to rifampicin/ciprofloxacin for 3 days resulted in a 4-log reduction of MRSA. Prolonged antibiotic exposure did not further reduce bacterial counts. Microcalorimetry confirmed the low metabolic activity of these persisters. SAAP-148 and pexiganan, but not LL-37, eliminated the persisters while ADEP4 reduced the number of persisters. SAAP-148 further eradicated persisters within antibiotics-exposed, mature biofilms on the various surfaces. To conclude, antibiotic-exposed, mature MRSA biofilms on various surfaces have been developed as in vitro models for PJI. SAAP-148 is highly effective against persisters obtained from the biofilms as well as within these models. Antibiotics-exposed, mature biofilms on relevant surfaces can be instrumental in the search for novel treatment strategies to combat biofilm-associated infections.
Collapse
Affiliation(s)
- Henk Scheper
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Julia M Wubbolts
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Joanne A M Verhagen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Adriëtte W de Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Mark G J de Boer
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
14
|
Wu BC, Haney EF, Akhoundsadegh N, Pletzer D, Trimble MJ, Adriaans AE, Nibbering PH, Hancock REW. Human organoid biofilm model for assessing antibiofilm activity of novel agents. NPJ Biofilms Microbiomes 2021; 7:8. [PMID: 33495449 PMCID: PMC7835231 DOI: 10.1038/s41522-020-00182-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023] Open
Abstract
Bacterial biofilms cause 65% of all human infections and are highly resistant to antibiotic therapy but lack specific treatments. To provide a human organoid model for studying host-microbe interplay and enabling screening for novel antibiofilm agents, a human epidermis organoid model with robust methicillin-resistant Staphylococcus aureus (MRSA) USA300 and Pseudomonas aeruginosa PAO1 biofilm was developed. Treatment of 1-day and 3-day MRSA and PAO1 biofilms with antibiofilm peptide DJK-5 significantly and substantially reduced the bacterial burden. This model enabled the screening of synthetic host defense peptides, revealing their superior antibiofilm activity against MRSA compared to the antibiotic mupirocin. The model was extended to evaluate thermally wounded skin infected with MRSA biofilms resulting in increased bacterial load, cytotoxicity, and pro-inflammatory cytokine levels that were all reduced upon treatment with DJK-5. Combination treatment of DJK-5 with an anti-inflammatory peptide, 1002, further reduced cytotoxicity and skin inflammation.
Collapse
Affiliation(s)
- Bing Catherine Wu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Evan F Haney
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Noushin Akhoundsadegh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Michael J Trimble
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Alwin E Adriaans
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Jiang Y, Geng M, Bai L. Targeting Biofilms Therapy: Current Research Strategies and Development Hurdles. Microorganisms 2020; 8:microorganisms8081222. [PMID: 32796745 PMCID: PMC7465149 DOI: 10.3390/microorganisms8081222] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023] Open
Abstract
Biofilms are aggregate of microorganisms in which cells are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS) and adhere to each other and/or to a surface. The development of biofilm affords pathogens significantly increased tolerances to antibiotics and antimicrobials. Up to 80% of human bacterial infections are biofilm-associated. Dispersal of biofilms can turn microbial cells into their more vulnerable planktonic phenotype and improve the therapeutic effect of antimicrobials. In this review, we focus on multiple therapeutic strategies that are currently being developed to target important structural and functional characteristics and drug resistance mechanisms of biofilms. We thoroughly discuss the current biofilm targeting strategies from four major aspects—targeting EPS, dispersal molecules, targeting quorum sensing, and targeting dormant cells. We explain each aspect with examples and discuss the main hurdles in the development of biofilm dispersal agents in order to provide a rationale for multi-targeted therapy strategies that target the complicated biofilms. Biofilm dispersal is a promising research direction to treat biofilm-associated infections in the future, and more in vivo experiments should be performed to ensure the efficacy of these therapeutic agents before being used in clinic.
Collapse
|
16
|
Frog Skin-Derived Peptides Against Corynebacterium jeikeium: Correlation between Antibacterial and Cytotoxic Activities. Antibiotics (Basel) 2020; 9:antibiotics9080448. [PMID: 32722535 PMCID: PMC7459541 DOI: 10.3390/antibiotics9080448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/03/2023] Open
Abstract
Corynebacterium jeikeium is a commensal bacterium that colonizes human skin, and it is part of the normal bacterial flora. In non-risk subjects, it can be the cause of bad body smell due to the generation of volatile odorous metabolites, especially in the wet parts of the body that this bacterium often colonizes (i.e., groin and axillary regions). Importantly, in the last few decades, there have been increasing cases of serious infections provoked by this bacterium, especially in immunocompromised or hospitalized patients who have undergone installation of prostheses or catheters. The ease in developing resistance to commonly-used antibiotics (i.e., glycopeptides) has made the search for new antimicrobial compounds of clinical importance. Here, for the first time, we characterize the antimicrobial activity of some selected frog skin-derived antimicrobial peptides (AMPs) against C. jeikeium by determining their minimum inhibitory and bactericidal concentrations (MIC and MBC) by a microdilution method. The results highlight esculentin-1b(1-18) [Esc(1-18)] and esculentin-1a(1-21) [Esc(1-21)] as the most active AMPs with MIC and MBC of 4-8 and 0.125-0.25 µM, respectively, along with a non-toxic profile after a short- and long-term (40 min and 24 h) treatment of mammalian cells. Overall, these findings indicate the high potentiality of Esc(1-18) and Esc(1-21) as (i) alternative antimicrobials against C. jeikeium infections and/or as (ii) additives in cosmetic products (creams, deodorants) to reduce the production of bad body odor.
Collapse
|
17
|
Freeze-Dried Softisan ® 649-Based Lipid Nanoparticles for Enhanced Skin Delivery of Cyclosporine A. NANOMATERIALS 2020; 10:nano10050986. [PMID: 32455668 PMCID: PMC7279451 DOI: 10.3390/nano10050986] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory skin diseases, including psoriasis and atopic dermatitis, affect around one quarter to one third of the world population. Systemic cyclosporine A, an immunosuppressant agent, is included in the current therapeutic armamentarium of these diseases. Despite being highly effective, it is associated with several side effects, and its topical administration is limited by its high molecular weight and poor water solubility. To overcome these limitations, cyclosporine A was incorporated into solid lipid nanoparticles obtained from Softisan® 649, a commonly used cosmetic ingredient, aiming to develop a vehicle for application to the skin. The nanoparticles presented sizes of around 200 nm, low polydispersity, negative surface charge, and stability when stored for 8 weeks at room temperature or 4 °C. An effective incorporation of 88% of cyclosporine A within the nanoparticles was observed, without affecting its morphology. After the freeze-drying process, the Softisan® 649-based nanoparticles formed an oleogel. Skin permeation studies using pig ear as a model revealed low permeation of the applied cyclosporine A in the freeze-dried form of the nanoparticles in relation to free drug and the freshly prepared nanoparticles. About 1.0 mg of cyclosporine A was delivered to the skin with reduced transdermal permeation. These results confirm local delivery of cyclosporine A, indicating its promising topical administration.
Collapse
|
18
|
Choi KYG, Wu BC, Lee AHY, Baquir B, Hancock REW. Utilizing Organoid and Air-Liquid Interface Models as a Screening Method in the Development of New Host Defense Peptides. Front Cell Infect Microbiol 2020; 10:228. [PMID: 32509598 PMCID: PMC7251080 DOI: 10.3389/fcimb.2020.00228] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Host defense peptides (HDPs), also known as antimicrobial peptides, are naturally occurring polypeptides (~12–50 residues) composed of cationic and hydrophobic amino acids that adopt an amphipathic conformation upon folding usually after contact with membranes. HDPs have a variety of biological activities including immunomodulatory, anti-inflammatory, anti-bacterial, and anti-biofilm functions. Although HDPs have the potential to address the global threat of antibiotic resistance and to treat immune and inflammatory disorders, they have yet to achieve this promise. Indeed, there are several challenges associated with bringing peptide-based drug candidates from the lab bench to clinical practice, including identifying appropriate indications, stability, toxicity, and cost. These challenges can be addressed in part by the development of innate defense regulator (IDR) peptides and peptidomimetics, which are synthetic derivatives of HDPs with similar or better efficacy, increased stability, and reduced toxicity and cost of the original HDP. However, one of the largest gaps between basic research and clinical application is the validity and translatability of conventional model systems, such as cell lines and animal models, for screening HDPs and their derivatives as potential drug therapies. Indeed, such translation has often relied on animal models, which have only limited validity. Here we discuss the recent development of human organoids for disease modeling and drug screening, assisted by the use of omics analyses. Organoids, developed from primary cells, cell lines, or human pluripotent stem cells, are three-dimensional, self-organizing structures that closely resemble their corresponding in vivo organs with regards to immune responses, tissue organization, and physiological properties; thus, organoids represent a reliable method for studying efficacy, formulation, toxicity and to some extent drug stability and pharmacodynamics. The use of patient-derived organoids enables the study of patient-specific efficacy, toxicogenomics and drug response predictions. We outline how organoids and omics data analysis can be leveraged to aid in the clinical translation of IDR peptides.
Collapse
Affiliation(s)
- Ka-Yee Grace Choi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Bing Catherine Wu
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Amy Huei-Yi Lee
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Beverlie Baquir
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Riool M, de Breij A, Kwakman PHS, Schonkeren-Ravensbergen E, de Boer L, Cordfunke RA, Malanovic N, Drijfhout JW, Nibbering PH, Zaat SAJ. Thrombocidin-1-derived antimicrobial peptide TC19 combats superficial multi-drug resistant bacterial wound infections. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183282. [PMID: 32376222 DOI: 10.1016/j.bbamem.2020.183282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
Abstract
Antimicrobial peptides are considered promising candidates for the development of novel antimicrobial agents to combat infections by multi-drug-resistant (MDR) bacteria. Here, we describe the identification and characterization of the synthetic peptide TC19, derived from the human thrombocidin-1-derived peptide L3. Biophysical experiments into the interaction between TC19 and mimics of human and bacterial plasma membranes demonstrated that the peptide is highly selective for bacterial membranes. In agreement, TC19 combined low cytotoxicity towards human fibroblasts with efficient and rapid killing in human plasma of MDR strains of several bacterial species of the ESKAPE panel. In addition, TC19 induced minor resistance in vitro, neutralized pro-inflammatory activity of bacterial cell envelope components while displaying slight chemotactic activity for human neutrophils. Importantly, topical application of TC19-containing hypromellose gel significantly reduced numbers of viable methicillin-resistant Staphylococcus aureus (MRSA) and MDR Acinetobacter baumannii in a superficial wound infection in mice. Together, TC19 is an attractive candidate for further development as a novel agent against (MDR) bacterial skin wound infections.
Collapse
Affiliation(s)
- Martijn Riool
- Dept. of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Anna de Breij
- Dept. of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Paulus H S Kwakman
- Dept. of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | | | - Leonie de Boer
- Dept. of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Robert A Cordfunke
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Nermina Malanovic
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Jan W Drijfhout
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Peter H Nibbering
- Dept. of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Sebastian A J Zaat
- Dept. of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects. Acta Biomater 2020; 103:52-67. [PMID: 31874224 DOI: 10.1016/j.actbio.2019.12.025] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Antimicrobial peptides (AMPs) are the natural antibiotics recognized for their potent antibacterial and wound healing properties. Bare AMPs have limited activity following topical application attributable to their susceptibility to environment (hydrolysis, oxidation, photolysis), and wound (alkaline pH, proteolysis) related factors as well as minimal residence time. Therefore, the formulation of AMPs is essential to enhance stability, prolong delivery, and optimize effectiveness at the wound site. Different topical formulations of AMPs have been developed so far including nanoparticles, hydrogels, creams, ointments, and wafers to aid in controlling bacterial infection and enhance wound healing process in vivo. Herein, an overview is provided of the AMPs and current understanding of their formulations for topical wound healing applications along with suitable examples. Furthermore, future prospects for the development of effective combination AMP formulations are discussed. STATEMENT OF SIGNIFICANCE: Chronic wound infection and subsequent development of antibiotic resistance are serious clinical problems affecting millions of people worldwide. Antimicrobial peptides (AMPs) possess great potential in effectively killing the bacteria with minimal risk of resistance development. However, AMPs susceptibility to degradation following topical application limits their antimicrobial and wound healing effects. Therefore, development of an optimized topical formulation with high peptide stability and sustained AMP delivery is necessary to maximize the antimicrobial and wound healing effects. The present review provides an overview of the state-of-art in the field of topical AMP formulations for wound healing. Current developments in the field of topical AMP formulations are reviewed and future prospects for the development of effective combination AMP formulations are discussed.
Collapse
|
21
|
Dijksteel GS, Ulrich MMW, Vlig M, Nibbering PH, Cordfunke RA, Drijfhout JW, Middelkoop E, Boekema BKHL. Potential factors contributing to the poor antimicrobial efficacy of SAAP-148 in a rat wound infection model. Ann Clin Microbiol Antimicrob 2019; 18:38. [PMID: 31796055 PMCID: PMC6891976 DOI: 10.1186/s12941-019-0336-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We investigated the efficacy of a synthetic antimicrobial peptide SAAP-148, which was shown to be effective against Methicillin-resistant Staphylococcus aureus (MRSA) on tape-stripped mice skin. Unexpectedly, SAAP-148 was not effective against MRSA in our pilot study using rats with excision wounds. Therefore, we investigated factors that might have contributed to the poor efficacy of SAAP-148. Subsequently, we optimised the protocol and assessed the efficacy of SAAP-148 in an adapted rat study. METHODS We incubated 100 µL of SAAP-148 with 1 cm2 of a wound dressing for 1 h and determined the unabsorbed volume of peptide solution. Furthermore, 105 colony forming units (CFU)/mL MRSA were exposed to increasing dosages of SAAP-148 in 50% (v/v) human plasma, eschar- or skin extract or PBS. After 30 min incubation, the number of viable bacteria was determined. Next, ex vivo skin models were inoculated with MRSA for 1 h and exposed to SAAP-148. Finally, excision wounds on the back of rats were inoculated with 107 CFU MRSA overnight and treated with SAAP-148 for 4 h or 24 h. Subsequently, the number of viable bacteria was determined. RESULTS Contrary to Cuticell, Parafilm and Tegaderm film, < 20% of peptide solution was recovered after incubation with gauze, Mepilex border and Opsite Post-op. Furthermore, in plasma, eschar- or skin extract > 20-fold higher dosages of SAAP-148 were required to achieve a 2-log reduction (LR) of MRSA versus SAAP-148 in PBS. Exposure of ex vivo models to SAAP-148 for 24 h resulted in a 4-fold lower LR than a 1 h or 4 h exposure period. Additionally, SAAP-148 caused a 1.3-fold lower mean LR at a load of 107 CFU compared to 105 CFU MRSA. Moreover, exposure of ex vivo excision wound models to SAAP-148 resulted in a 1.5-fold lower LR than for tape-stripped skin. Finally, SAAP-148 failed to reduce the bacterial counts in an adapted rat study. CONCLUSIONS Several factors, such as absorption of SAAP-148 by wound dressings, components within wound exudates, re-colonisation during the exposure of SAAP-148, and a high bacterial load may contribute to the poor antimicrobial effect of SAAP-148 against MRSA in the rat model.
Collapse
Affiliation(s)
- Gabrielle S. Dijksteel
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ Beverwijk, The Netherlands
- Dept. of Plastic Reconstructive & Hand Surgery, Amsterdam University Medical Centres, Free University of Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Magda M. W. Ulrich
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ Beverwijk, The Netherlands
- Dept. of Plastic Reconstructive & Hand Surgery, Amsterdam University Medical Centres, Free University of Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marcel Vlig
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ Beverwijk, The Netherlands
| | - Peter H. Nibbering
- Dept. of Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Robert A. Cordfunke
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jan W. Drijfhout
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Esther Middelkoop
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ Beverwijk, The Netherlands
- Dept. of Plastic Reconstructive & Hand Surgery, Amsterdam University Medical Centres, Free University of Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
22
|
Nibbering PH, Göblyös A, Adriaans AE, Cordfunke RA, Ravensbergen B, Rietveld MH, Zwart S, Commandeur S, van Leeuwen R, Haisma EM, Schimmel KJM, den Hartigh J, Drijfhout JW, Ghalbzouri AE. Eradication of meticillin-resistant Staphylococcus aureus from human skin by the novel LL-37-derived peptide P10 in four pharmaceutical ointments. Int J Antimicrob Agents 2019; 54:610-618. [PMID: 31356860 DOI: 10.1016/j.ijantimicag.2019.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 11/20/2022]
Abstract
Skin bacterial colonization/infection is a frequent cause of morbidity in patients with chronic wounds and allergic/inflammatory skin diseases. This study aimed to develop a novel approach to eradicate meticillin-resistant Staphylococcus aureus (MRSA) from human skin. To achieve this, the stability and antibacterial activity of the novel LL-37-derived peptide P10 in four ointments was compared. Results indicate that P10 is chemically stable and antibacterial in hypromellose gel and Softisan-containing cream, but not in Cetomacrogol cream (with or without Vaseline), at 4 °C for 16 months. Reduction in MRSA counts on Leiden human epidermal models (LEMs) by P10 in hypromellose gel was greater than that of the peptide in Cetomacrogol cream or phosphate buffered saline. P10 did not show adverse effects on LEMs irrespective of the ointment used, while Cetomacrogol with Vaseline and Softisan cream, but not hypromellose gel or Cetomacrogol cream, destroyed MRSA-colonized LEMs. Taking all this into account, P10 in hypromellose gel dose-dependently reduced MRSA colonizing the stratum corneum of the epidermis as well as biofilms of this bacterial strain on LEMs. Moreover, P10 dose-dependently reduced MRSA counts on ex-vivo human skin, with P10 in hypromellose gel being more effective than P10 in Cetomacrogol and Softisan creams. P10 in hypromellose gel is a strong candidate for eradication of MRSA from human skin.
Collapse
Affiliation(s)
- Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Anikó Göblyös
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alwin E Adriaans
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robert A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Bep Ravensbergen
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marion H Rietveld
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sarah Zwart
- Biomimiq-Aeon Astron Europe BV, Leiden, The Netherlands
| | | | | | - Elisabeth M Haisma
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands; Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kirsten J M Schimmel
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jan den Hartigh
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
23
|
de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, Ravensbergen E, Franken M, van der Heijde T, Boekema BK, Kwakman PHS, Kamp N, El Ghalbzouri A, Lohner K, Zaat SAJ, Drijfhout JW, Nibbering PH. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 2019; 10:10/423/eaan4044. [PMID: 29321257 DOI: 10.1126/scitranslmed.aan4044] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/18/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023]
Abstract
Development of novel antimicrobial agents is a top priority in the fight against multidrug-resistant (MDR) and persistent bacteria. We developed a panel of synthetic antimicrobial and antibiofilm peptides (SAAPs) with enhanced antimicrobial activities compared to the parent peptide, human antimicrobial peptide LL-37. Our lead peptide SAAP-148 was more efficient in killing bacteria under physiological conditions in vitro than many known preclinical- and clinical-phase antimicrobial peptides. SAAP-148 killed MDR pathogens without inducing resistance, prevented biofilm formation, and eliminated established biofilms and persister cells. A single 4-hour treatment with hypromellose ointment containing SAAP-148 completely eradicated acute and established, biofilm-associated infections with methicillin-resistant Staphylococcus aureus and MDR Acinetobacter baumannii from wounded ex vivo human skin and murine skin in vivo. Together, these data demonstrate that SAAP-148 is a promising drug candidate in the battle against antibiotic-resistant bacteria that pose a great threat to human health.
Collapse
Affiliation(s)
- Anna de Breij
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Martijn Riool
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Robert A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Nermina Malanovic
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, Naturwissenschaftliche Fakultät (NAWI) Graz, BioTechMed, 8010 Graz, Austria
| | - Leonie de Boer
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Roman I Koning
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, Netherlands.,Netherlands Center for Electron Nanoscopy, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Elisabeth Ravensbergen
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Marnix Franken
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Tobias van der Heijde
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Bouke K Boekema
- Association of Dutch Burn Centres, 1942 LT Beverwijk, Netherlands
| | - Paulus H S Kwakman
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Niels Kamp
- Animal Research Institute, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | | | - Karl Lohner
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, Naturwissenschaftliche Fakultät (NAWI) Graz, BioTechMed, 8010 Graz, Austria
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands.
| |
Collapse
|
24
|
Dostert M, Belanger CR, Hancock REW. Design and Assessment of Anti-Biofilm Peptides: Steps Toward Clinical Application. J Innate Immun 2018; 11:193-204. [PMID: 30134244 PMCID: PMC6738209 DOI: 10.1159/000491497] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/23/2018] [Accepted: 06/23/2018] [Indexed: 12/13/2022] Open
Abstract
Highly antibiotic resistant, microbial communities, referred to as biofilms, cause various life-threatening infections in humans. At least two-thirds of all clinical infections are biofilm associated, and antibiotic therapy regularly fails to cure patients. Anti-biofilm peptides represent a promising approach to treat these infections by targeting biofilm-specific characteristics such as highly conserved regulatory mechanisms. They are being considered for clinical application and we discuss here key factors in discovery, design, and application, particularly the implementation of host-mimicking conditions, that are required to enable the successful advancement of potent anti-biofilm peptides from the bench to the clinic.
Collapse
Affiliation(s)
- Melanie Dostert
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Corrie R Belanger
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada,
| |
Collapse
|
25
|
Haney EF, Wuerth KC, Rahanjam N, Safaei Nikouei N, Ghassemi A, Alizadeh Noghani M, Boey A, Hancock REW. Identification of an IDR peptide formulation candidate that prevents peptide aggregation and retains immunomodulatory activity. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Evan F. Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology; University of British Columbia; Vancouver Canada
| | - Kelli C. Wuerth
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology; University of British Columbia; Vancouver Canada
| | - Negin Rahanjam
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology; University of British Columbia; Vancouver Canada
| | | | - Arvin Ghassemi
- The Centre for Drug Research & Development, Formulations Division; Vancouver Canada
| | | | - Anthony Boey
- The Centre for Drug Research & Development, Formulations Division; Vancouver Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology; University of British Columbia; Vancouver Canada
| |
Collapse
|
26
|
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol 2018; 9:281. [PMID: 29643807 PMCID: PMC5882822 DOI: 10.3389/fphar.2018.00281] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Günther Weindl
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
27
|
Cardoso MH, Oshiro KG, Rezende SB, Cândido ES, Franco OL. The Structure/Function Relationship in Antimicrobial Peptides: What Can we Obtain From Structural Data? THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:359-384. [DOI: 10.1016/bs.apcsb.2018.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Abstract
The use of human organotypic models for biomedical research is experiencing a significant increase due to their biological relevance, the possibility to perform high-throughput analyses, and their cost efficiency. In the field of anti-infective research, comprising the search for novel antipathogenic treatments including vaccines, efforts have been made to reduce the use of animal models. That is due to two main reasons: unreliability of data obtained with animal models and the increasing willingness to reduce the use of animals in research for ethical reasons. Human three-dimensional (3-D) models may substitute and/or complement in vivo studies, to increase the translational value of preclinical data. Here, we provide an overview of recent studies utilizing human organotypic models, resembling features of the cervix, intestine, lungs, brain, and skin in the context of anti-infective research. Furthermore, we focus on the future applications of human skin models and present methodological protocols to culture human skin equivalents and human skin explants.
Collapse
|
29
|
Approaches to Dispersing Medical Biofilms. Microorganisms 2017; 5:microorganisms5020015. [PMID: 28368320 PMCID: PMC5488086 DOI: 10.3390/microorganisms5020015] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023] Open
Abstract
Biofilm-associated infections pose a complex problem to the medical community, in that residence within the protection of a biofilm affords pathogens greatly increased tolerances to antibiotics and antimicrobials, as well as protection from the host immune response. This results in highly recalcitrant, chronic infections and high rates of morbidity and mortality. Since as much as 80% of human bacterial infections are biofilm-associated, many researchers have begun investigating therapies that specifically target the biofilm architecture, thereby dispersing the microbial cells into their more vulnerable, planktonic mode of life. This review addresses the current state of research into medical biofilm dispersal. We focus on three major classes of dispersal agents: enzymes (including proteases, deoxyribonucleases, and glycoside hydrolases), antibiofilm peptides, and dispersal molecules (including dispersal signals, anti-matrix molecules, and sequestration molecules). Throughout our discussion, we provide detailed lists and summaries of some of the most prominent and extensively researched dispersal agents that have shown promise against the biofilms of clinically relevant pathogens, and we catalog which specific microorganisms they have been shown to be effective against. Lastly, we discuss some of the main hurdles to development of biofilm dispersal agents, and contemplate what needs to be done to overcome them.
Collapse
|
30
|
Delivery systems for antimicrobial peptides. Adv Colloid Interface Sci 2017; 242:17-34. [PMID: 28159168 DOI: 10.1016/j.cis.2017.01.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration, or through achieving co-localization with intracellular pathogens. Here, an overview is provided of the current understanding of delivery systems for antimicrobial peptides, with special focus on AMP-carrier interactions, as well as consequences of these interactions for antimicrobial and related biological effects of AMP-containing formulations.
Collapse
|
31
|
Günther F, Blessing B, Tacconelli E, Mutters NT. MRSA decolonization failure-are biofilms the missing link? Antimicrob Resist Infect Control 2017; 6:32. [PMID: 28360994 PMCID: PMC5371339 DOI: 10.1186/s13756-017-0192-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Device-associated infections due to biofilm-producing methicillin-resistant Staphylococcus aureus (MRSA) have been recently associated with the failure of antibiotic treatment and decolonization measures. The goal of our study was to evaluate the extent to which the formation of biofilms influenced the efficacy of topical decolonization agents or disinfectants such as mupirocin (MUP), octenidine (OCT), chlorhexidine (CHG), polyhexanide (POL), and chloroxylenol (CLO). METHODS Bacterial killing in biofilms by the disinfectants and MUP was determined as the reduction [%] in metabolic activity determined by a biofilm viability assay that uses kinetic analysis of metabolic activity. The test substances were diluted in water with standardized hardness (WSH) at 25 °C at the standard concentration as well as half the standard concentration to demonstrate the dilution effects in a practical setting. The tested concentrations were: CHG 1%, 2%; OCT 0.1%, 0.05%; PH 0.04%, 0.02%; and CLO 0.12%, 0.24%. A test organism suspension, 1 mL containing ~1 × 109 bacterial cells/mL, and 1 mL of sterile WSH were mixed and incubated for six different exposure times (15 s, 1, 3, 5, 10 and 20 min) after the test substance was added. Additionally, the bactericidal effects of all substances were tested on planktonic bacteria and measured as the log10 reduction. RESULTS The disinfectants OCT and CHG showed good efficacy in inhibiting MRSA in biofilms with reduction rates of 94 ± 1% and 91 ± 1%, respectively. POL, on the other hand, had a maximum efficacy of only 81 ± 7%. Compared to the tested disinfectants, MUP showed a significantly lower efficacy with <20% inhibition (p < .05). Bactericidal effects were the greatest for CHG (log10 reduction of 9.0), followed by OCT (7.7), POL (5.1), and CLO (6.8). MUP, however, showed a very low bactericidal effect of only 2.1. Even when the exposure time was increased to 24 h, 2% MUP did not show sufficient bactericidal effect. CONCLUSIONS Our data provide evidence that OCT and CHG are effective components for disinfection of MRSA-biofilms. On the other hand, exposure to MUP at the standard concentrations in topical preparations did not effectively inhibit MRSA-biofilms and also did not show adequate bactericidal effects. Combining an MUP-based decolonization regimen with a disinfectant such as OCT or CHG could decrease decolonization failure.
Collapse
Affiliation(s)
- Frank Günther
- Department of Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69126 Heidelberg, Germany
| | - Brigitte Blessing
- Department of Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69126 Heidelberg, Germany
| | - Evelina Tacconelli
- Division of Infectious Diseases - Department of Internal Medicine I, Tübingen University Hospital, Tübingen, Germany
- German Centre for Infection Research (DZIF), Tübingen, Germany
| | - Nico T. Mutters
- Department of Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69126 Heidelberg, Germany
- Division of Infectious Diseases - Department of Internal Medicine I, Tübingen University Hospital, Tübingen, Germany
| |
Collapse
|